JP2006105968A - Radar apparatus - Google Patents

Radar apparatus Download PDF

Info

Publication number
JP2006105968A
JP2006105968A JP2005244343A JP2005244343A JP2006105968A JP 2006105968 A JP2006105968 A JP 2006105968A JP 2005244343 A JP2005244343 A JP 2005244343A JP 2005244343 A JP2005244343 A JP 2005244343A JP 2006105968 A JP2006105968 A JP 2006105968A
Authority
JP
Japan
Prior art keywords
correction value
radar apparatus
fourier transform
storage means
value storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005244343A
Other languages
Japanese (ja)
Other versions
JP4911932B2 (en
Inventor
Kanako Honda
加奈子 本田
Osamu Isaji
修 伊佐治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP2005244343A priority Critical patent/JP4911932B2/en
Publication of JP2006105968A publication Critical patent/JP2006105968A/en
Application granted granted Critical
Publication of JP4911932B2 publication Critical patent/JP4911932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate the effect of noise induced by antenna switching, in a radar apparatus constructed to perform switching among a plurality of receiving antennas using a switch. <P>SOLUTION: A situation where there is no echo signal from a target is created, for example, by turning off a transmitter amplifier (step 1000), and the Fourier transformed result obtained at this time is taken as the correction value (step 1002) and stored to a memory (step 1004). At radar operation, the effect of noise caused by the antenna switching can be eliminated, by subtracting the correction value from the Fourier transformed result. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数の受信アンテナをスイッチで切り換える構成のレーダ装置におけるアンテナ切り換えに伴うノイズの除去に関する。   The present invention relates to noise removal associated with antenna switching in a radar apparatus configured to switch a plurality of receiving antennas with a switch.

ターゲットの方位を決定する手法の1つとして、複数の受信アンテナを用いるDBF(デジタルビームフォーミング)方式、位相モノパルス方式などが知られている。また、例えば特開平11−160423号公報には、複数の受信アンテナを順次切り換えて選択することにより、高価な高周波部品の数を削減することが記載されている。   As one of the methods for determining the azimuth of the target, a DBF (digital beam forming) method using a plurality of receiving antennas, a phase monopulse method, and the like are known. For example, Japanese Patent Laid-Open No. 11-160423 describes that the number of expensive high-frequency components is reduced by sequentially switching and selecting a plurality of receiving antennas.

このように、複数の受信アンテナを順次切り換えて選択する、例えば図1に示すような構成のレーダ装置においては、高周波部での送信側と受信側の間の回り込み信号が直流値となって回り込み、それがチャンネル間で異なるため、ミキサ7の出力において、図2の(A)欄に示すような方形波を生じる。この方形波は後段のフィルタ特性により図2の(B)欄に示すような過度応答のノイズとなる。図2(B)に示されるフィルタ後の信号をフーリエ変換すると、その周波数成分に対応する周波数位置にノイズピークが出現し、ターゲットからの反射波によるピークの周波数がこれに近ければその解析を困難にするという問題がある。例えばノイズの周波数が近距離に存在するターゲットからの反射波のピークの周波数の近傍であれば、近距離のターゲットのピークの識別を困難にし、近距離検知性能が悪化する。   In this way, in a radar apparatus having a configuration as shown in FIG. 1 in which a plurality of receiving antennas are sequentially switched and selected, a sneak signal between the transmitting side and the receiving side in the high frequency section becomes a dc value and sneaks. Since it differs between channels, a square wave as shown in the column (A) of FIG. 2 is generated at the output of the mixer 7. This square wave becomes excessive response noise as shown in the column (B) of FIG. When the filtered signal shown in FIG. 2B is Fourier-transformed, a noise peak appears at a frequency position corresponding to the frequency component, and analysis is difficult if the frequency of the peak due to the reflected wave from the target is close to this. There is a problem of making it. For example, if the noise frequency is in the vicinity of the peak frequency of the reflected wave from the target existing at a short distance, it becomes difficult to identify the peak of the short distance target, and the short distance detection performance deteriorates.

特開平11−160423号公報JP-A-11-160423

したがって本発明の目的は、複数の受信アンテナをスイッチで切り換える構成のレーダ装置において、アンテナ切り換えに起因するノイズの影響を除去することにある。   Accordingly, an object of the present invention is to eliminate the influence of noise caused by antenna switching in a radar apparatus configured to switch a plurality of receiving antennas with a switch.

本発明によれば、複数の受信アンテナで受信した信号の1つを順次切り換えて選択するスイッチと、該スイッチで選択された受信信号と送信信号の一部とを混合してビート信号を生成するミキサと、該ミキサの出力信号をフーリエ変換するフーリエ変換演算手段と、ターゲットからの反射信号がないときの該フーリエ変換演算手段のフーリエ変換結果を、前記スイッチの切換に伴って前記ミキサの直流レベルが変動することによる影響をキャンセルする補正値として記憶する補正値記憶手段と、該フーリエ変換演算手段のフーリエ変換結果を該記憶手段に記憶された補正値で補正する補正手段とを具備するレーダ装置が提供される。   According to the present invention, a beat signal is generated by mixing a switch that sequentially switches and selects one of signals received by a plurality of receiving antennas, and a part of the transmission signal selected by the switch. A mixer, a Fourier transform computing means for Fourier transforming the output signal of the mixer, and a Fourier transform result of the Fourier transform computing means when there is no reflected signal from the target, the DC level of the mixer as the switch is switched Radar apparatus comprising: correction value storage means for storing as a correction value for canceling the influence caused by fluctuations, and correction means for correcting the Fourier transform result of the Fourier transform operation means with the correction value stored in the storage means Is provided.

図3は本発明のレーダ装置の概略構成を示す。図3において、本発明のレーダ装置は、複数の受信アンテナ1で受信した信号の1つを順次切り換えて選択するスイッチ2と、該スイッチ2で選択された受信信号と送信信号の一部とを混合してビート信号を生成するミキサ3と、該ミキサ3の出力信号をフーリエ変換するフーリエ変換演算手段4と、ターゲットからの反射信号がないときの該フーリエ変換演算手段4のフーリエ変換結果を、前記スイッチ2の切換に伴って前記ミキサ3の直流レベルが変動することによる影響をキャンセルする補正値として記憶する補正値記憶手段5と、該フーリエ変換演算手段4のフーリエ変換結果を該記憶手段5に記憶された補正値で補正する補正手段6とを具備している。   FIG. 3 shows a schematic configuration of the radar apparatus of the present invention. In FIG. 3, a radar apparatus according to the present invention includes a switch 2 that sequentially switches and selects one of signals received by a plurality of receiving antennas 1, and a received signal selected by the switch 2 and a part of a transmission signal. Mixer 3 that generates a beat signal by mixing, Fourier transform operation means 4 that Fourier-transforms the output signal of mixer 3, and Fourier transform result of Fourier transform operation means 4 when there is no reflected signal from the target, The correction value storage means 5 for storing the correction value for canceling the influence caused by the change in the DC level of the mixer 3 as the switch 2 is switched, and the Fourier transform result of the Fourier transform calculation means 4 are stored in the storage means 5. And a correction means 6 for correcting with the correction value stored in.

図4は本発明が適用されるレーダ装置の一例としての車載用FM−CWレーダ装置の第1の例の構成を示すブロック図である。図4において、電圧制御発振器(VCO)10から出力される、三角波でFM変調された送信信号は送信増幅器14で増幅されて送信アンテナ16から送出される。受信は3本のアンテナAT0,AT1,AT2のうちスイッチ22で選択されたものが用いられる。   FIG. 4 is a block diagram showing a configuration of a first example of an in-vehicle FM-CW radar apparatus as an example of a radar apparatus to which the present invention is applied. In FIG. 4, a transmission signal which is output from a voltage controlled oscillator (VCO) 10 and is FM-modulated with a triangular wave is amplified by a transmission amplifier 14 and transmitted from a transmission antenna 16. For reception, one selected from the three antennas AT0, AT1, AT2 by the switch 22 is used.

各アンテナで受信された受信信号はその1つがスイッチ22で選択されて受信増幅器26で増幅され、ミキサ28において送信波の一部と混合されて、ビート信号が生成される。ミキサ28において生成されたビート信号は、スイッチ30により図中上下の2つの処理系のいずれかに振り分けられ、A/Dコンバータ32においてディジタル信号に変換され、高速フーリエ変換されて(34)CPU36へ入力される。   One of the received signals received by each antenna is selected by the switch 22, amplified by the receiving amplifier 26, and mixed with a part of the transmission wave by the mixer 28 to generate a beat signal. The beat signal generated in the mixer 28 is distributed to one of the upper and lower two processing systems in the figure by the switch 30, converted to a digital signal by the A / D converter 32, and fast Fourier transformed (34) to the CPU 36. Entered.

図5は図4の電圧制御発振器10へ入力される三角波の波形を示し、図6の(A)〜(C)欄はそれぞれ、図5のA〜Cで示す区間における制御信号SWT,SWR,SW0,SW1,SW2の波形を示し、図6の(D)欄はスイッチ30の制御信号CHの波形を(A)〜(C)欄と同じタイムスケール、同じタイミングで示す。なお、図5の横軸のタイムスケールは図6と比べて著しく圧縮されている。   FIG. 5 shows a waveform of a triangular wave input to the voltage controlled oscillator 10 of FIG. 4, and columns (A) to (C) in FIG. 6 respectively show control signals SWT, SWR, The waveforms of SW0, SW1, and SW2 are shown, and the (D) column in FIG. 6 shows the waveform of the control signal CH of the switch 30 with the same time scale and the same timing as the (A) to (C) columns. Note that the time scale of the horizontal axis in FIG. 5 is significantly compressed as compared with FIG.

図5に示される三角波の最初の周期、すなわち区間Aにおいては、図6(A)からわかるように、送信→AT0による受信→送信→AT1による受信が繰り返される。そして図6(D)からわかるように、AT0の受信信号によるビート信号は図4のスイッチ30により図中上側の系に振り分けられ、AT1の受信信号によるビート信号は図中下側の系に振り分けられ、並列的に処理される。すなわち、区間Aにおいては、受信アンテナAT0,AT1の受信信号から生成された、三角波の上り区間および下り区間におけるビート信号のデータが収集される。これらのフーリエ変換結果に現われるピークの周波数はターゲットとの距離および相対速度の演算に用いられ、ピークの位相はアンテナAT0とAT1による位相モノパルスの演算に用いられる。   In the first period of the triangular wave shown in FIG. 5, that is, in section A, transmission → reception by AT0 → transmission → reception by AT1 is repeated as can be seen from FIG. 6D, the beat signal based on the AT0 received signal is distributed to the upper system in the figure by the switch 30 in FIG. 4, and the beat signal based on the AT1 received signal is distributed to the lower system in the figure. And processed in parallel. That is, in the section A, beat signal data in the up and down sections of the triangular wave generated from the reception signals of the receiving antennas AT0 and AT1 are collected. The peak frequency appearing in these Fourier transform results is used for the calculation of the distance to the target and the relative speed, and the peak phase is used for the calculation of the phase monopulse by the antennas AT0 and AT1.

図5に示される三角波の次の周期、すなわち区間Bにおいては、図6(B)からわかるように、送信→AT1による受信→送信→AT2による受信が繰り返される。そして図6(D)からわかるように、AT1の受信信号によるビート信号は図4のスイッチ30により図中上側の系に振り分けられ、AT2の受信信号によるビート信号は図中下側の系に振り分けられ、並列的に処理される。すなわち、区間Bにおいては、受信アンテナAT1,AT2の受信信号から生成された、三角波の上り区間および下り区間におけるビート信号のデータが収集される。これらのフーリエ変換結果に現われるピークの周波数はターゲットとの距離および相対速度の演算に用いられ、ピークの位相はアンテナAT1とAT2による位相モノパルスの演算に用いられる。   In the next period of the triangular wave shown in FIG. 5, that is, the section B, transmission → reception by AT1 → transmission → reception by AT2 is repeated as can be seen from FIG. 6 (B). As can be seen from FIG. 6D, the beat signal based on the received signal of AT1 is distributed to the upper system in the figure by the switch 30 of FIG. 4, and the beat signal based on the received signal of AT2 is distributed to the lower system in the figure. And processed in parallel. That is, in the section B, beat signal data in the up and down sections of the triangular wave generated from the reception signals of the receiving antennas AT1 and AT2 are collected. The peak frequency appearing in these Fourier transform results is used for the calculation of the distance to the target and the relative velocity, and the peak phase is used for the calculation of the phase monopulse by the antennas AT1 and AT2.

図5に示される三角波のさらに次の周期、すなわち区間Cにおいては、図6(C)からわかるように、送信→AT2による受信→送信→AT0による受信が繰り返される。そして図6(D)からわかるように、AT2の受信信号によるビート信号は図4のスイッチ30により図中上側の系に振り分けられ、AT0の受信信号によるビート信号は図中下側の系に振り分けられ、並列的に処理される。すなわち、区間Cにおいては、受信アンテナAT2,AT0の受信信号から生成された、三角波の上り区間および下り区間におけるビート信号のデータが収集される。これらのフーリエ変換結果に現われるピークの周波数はターゲットとの距離および相対速度の演算に用いられ、ピークの位相はアンテナAT2とAT0による位相モノパルスの演算に用いられる。   In the further next cycle of the triangular wave shown in FIG. 5, that is, in the section C, transmission → reception by AT2 → transmission → reception by AT0 is repeated as can be seen from FIG. As can be seen from FIG. 6D, the beat signal based on the AT2 received signal is distributed to the upper system in the figure by the switch 30 in FIG. 4, and the beat signal based on the AT0 received signal is distributed to the lower system in the figure. And processed in parallel. That is, in section C, beat signal data in the up and down sections of the triangular wave generated from the reception signals of the receiving antennas AT2 and AT0 is collected. The frequency of the peak appearing in these Fourier transform results is used for the calculation of the distance to the target and the relative velocity, and the phase of the peak is used for the calculation of the phase monopulse by the antennas AT2 and AT0.

図7は本発明が適用されるレーダ装置の一例としての車載用FM−CWレーダ装置の第2の例の構成を示すブロック図である。図7において、電圧制御発振器(VCO)10から出力される、三角波でFM変調された送信信号は逓倍器12でミリ波帯に逓倍され送信増幅器14で増幅されてアンテナ切換スイッチ13へ入力され、アンテナ切換スイッチ13では、増幅器15、スイッチ16を経てアンテナAT0から送出される。図7に示されたレーダ装置では、3本のアンテナAT0,AT1,AT2のうち送信に用いられるのはアンテナAT0のみであり、受信は3本のアンテナAT0,AT1,AT2のうちスイッチ22で選択されたものが用いられる。アンテナAT0と増幅器24の間には送信信号の受信側への回り込みを阻止するためのスイッチ21が設けられる。受信側への回り込みを別の手段で阻止できるときは、スイッチ16,21は必ずしも必要ではない。   FIG. 7 is a block diagram showing a configuration of a second example of an in-vehicle FM-CW radar apparatus as an example of a radar apparatus to which the present invention is applied. In FIG. 7, a transmission signal that is output from a voltage controlled oscillator (VCO) 10 and is FM-modulated with a triangular wave is multiplied to a millimeter wave band by a multiplier 12, amplified by a transmission amplifier 14, and input to an antenna selector switch 13. In the antenna selector switch 13, the signal is transmitted from the antenna AT 0 through the amplifier 15 and the switch 16. In the radar apparatus shown in FIG. 7, only the antenna AT0 is used for transmission among the three antennas AT0, AT1 and AT2, and reception is selected by the switch 22 among the three antennas AT0, AT1 and AT2. Is used. A switch 21 is provided between the antenna AT0 and the amplifier 24 to prevent the transmission signal from wrapping around to the reception side. The switches 16 and 21 are not necessarily required when the sneaking to the receiving side can be prevented by another means.

各アンテナで受信された受信信号は増幅器24で増幅されスイッチ22で選択されて受信増幅器26で増幅され、ミキサ28において送信波の一部と混合されて、ビート信号が生成される。以後の処理は図4を参考して説明した第1の例と同じである。各スイッチに与えられる信号も図6と同様である。   The received signal received by each antenna is amplified by the amplifier 24, selected by the switch 22, amplified by the receiving amplifier 26, and mixed with a part of the transmission wave by the mixer 28 to generate a beat signal. The subsequent processing is the same as the first example described with reference to FIG. Signals given to the switches are the same as those in FIG.

図8は本発明における補正値記憶処理の一例のフローチャートである。図8において、まず送信増幅器14をオフとすることにより、フーリエ変換結果にターゲットからの反射に起因するピークが出ないようにし(ステップ1000)、それ以外は前述と同じ動作を行って、フーリエ変換結果を取り込み(ステップ1002)、これを補正値としてメモリに格納する(ステップ1004)。レーダ動作時には、フーリエ変換結果からこの補正値を差し引くことによりアンテナ切り換えに伴うノイズの影響を除くことができる。図5、図6に示すように、アンテナの切替順序は区間A,B,Cごとに異なるので出現するノイズも異なる。従って、各区間ごとに補正値が格納される。   FIG. 8 is a flowchart of an example of the correction value storing process in the present invention. In FIG. 8, first, the transmission amplifier 14 is turned off so that the peak resulting from the reflection from the target does not appear in the Fourier transform result (step 1000). Otherwise, the same operation as described above is performed, and the Fourier transform is performed. The result is fetched (step 1002) and stored in the memory as a correction value (step 1004). During the radar operation, the effect of noise associated with antenna switching can be eliminated by subtracting this correction value from the Fourier transform result. As shown in FIGS. 5 and 6, since the antenna switching order is different for each of the sections A, B, and C, the appearing noise is also different. Therefore, a correction value is stored for each section.

この処理は製品の出荷前の例えば製品検査時に行い、補正値を不揮発メモリに保存する。レーダ動作時に一定時間間隔で行って補正値を書き替えることにより、温度の変動や部品の経年変化に対応することができる。この場合には補正値はRAMに保存される。   This process is performed, for example, during product inspection before product shipment, and the correction value is stored in a nonvolatile memory. By rewriting correction values at regular time intervals during radar operation, it is possible to cope with temperature fluctuations and component aging. In this case, the correction value is stored in the RAM.

送信増幅器14をオフとする代わりに、アンテナに電波吸収体をかぶせることにより、ターゲットのない状況をつくっても良い。   Instead of turning off the transmission amplifier 14, a target-free situation may be created by covering the antenna with a radio wave absorber.

補正値は、フーリエ変換結果の実数成分および虚数成分それぞれについて保存し、実数成分および虚数成分それぞれについて補正演算を行う。すなわち、周波数fの関数としての補正前の実数成分をRe(f)、実数成分の補正値をRe(f)とすると、補正後の実数成分Re(f)は、周波数fごとに式
Re(f)=Re(f)−Re(f)
から計算され、同様にして、虚数成分については周波数fごとに式
Im(f)=Im(f)−Im(f)
から計算される。
The correction value is stored for each of the real number component and the imaginary number component of the Fourier transform result, and correction calculation is performed for each of the real number component and the imaginary number component. That is, when the real component before correction as a function of the frequency f is Re (f) and the correction value of the real component is Re N (f), the corrected real component Re t (f) Re t (f) = Re (f) −Re N (f)
Similarly, for the imaginary component, the expression Im t (f) = Im (f) −Im N (f) for each frequency f
Calculated from

方位の検出を例えば機械的スキャンで行っていて位相の情報を使っていない場合には、パワー(絶対値)演算後のパワーについて、補正値の保存および補正演算を行っても良い。
また、フーリエ変換結果について補正値、保存および補正演算を行う代わりにフーリエ変換前のADコンバータ32の出力値について補正値の保存および補正演算を行っても良い。
しかしながらこの場合、図2の(B)欄に示されるようなフーリエ変換前の時間領域でのノイズは時間軸上で安定していないことが多いので適切な補正を行うことが困難である。一方、フーリエ変換後の周波数領域でのノイズは周波数軸上で安定しているので、適切な補正を行うことができる。
For example, when the direction is detected by mechanical scanning and phase information is not used, the correction value may be stored and corrected for the power after the power (absolute value) calculation.
Further, instead of performing correction values, storage, and correction operations on the Fourier transform results, correction values may be stored and correction operations may be performed on the output values of the AD converter 32 before the Fourier transform.
However, in this case, noise in the time domain before Fourier transform as shown in the column (B) of FIG. 2 is often not stable on the time axis, so that it is difficult to perform appropriate correction. On the other hand, since noise in the frequency domain after Fourier transform is stable on the frequency axis, appropriate correction can be performed.

FM−CWレーダの場合、上記補正値にはアンテナ切り換えに起因する雑音のほかFM−AM変換雑音がある場合にそれが含まれている。ノーターゲットの状態にすることに加えて三角波によるFM変調を停止すれば、アンテナ切り換えに起因する雑音のみを検出することができる。   In the case of FM-CW radar, the correction value includes FM-AM conversion noise in addition to noise caused by antenna switching. If the FM modulation by the triangular wave is stopped in addition to the no target state, only the noise caused by the antenna switching can be detected.

アンテナ切り替えを行うレーダ装置の構成を示す図である。It is a figure which shows the structure of the radar apparatus which performs antenna switching. アンテナ切り換えに起因するノイズを説明する図である。It is a figure explaining the noise resulting from antenna switching. 本発明のレーダ装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the radar apparatus of this invention. 本発明が適用される車載用FM−CWレーダ装置の構成の第1の例を示す図である。It is a figure which shows the 1st example of a structure of the vehicle-mounted FM-CW radar apparatus to which this invention is applied. 三角波による変調波を示す波形図である。It is a wave form diagram which shows the modulation wave by a triangular wave. 図1の各制御信号の波形を示す波形図である。It is a wave form diagram which shows the waveform of each control signal of FIG. FM−CWレーダ装置の第2の例を示す図である。It is a figure which shows the 2nd example of FM-CW radar apparatus. 本発明の補正値記憶処理の一例のフローチャートである。It is a flowchart of an example of the correction value storage process of this invention.

Claims (13)

複数の受信アンテナで受信した信号の1つを順次切り換えて選択するスイッチと、
該スイッチで選択された受信信号と送信信号の一部とを混合してビート信号を生成するミキサと、
該ミキサの出力信号をフーリエ変換するフーリエ変換演算手段と、
ターゲットからの反射信号がないときの該フーリエ変換演算手段のフーリエ変換結果を、前記スイッチの切換に伴って前記ミキサの直流レベルが変動することによる影響をキャンセルする補正値として記憶する補正値記憶手段と、
該フーリエ変換演算手段のフーリエ変換結果を該補正値記憶手段に記憶された補正値で補正する補正手段とを具備するレーダ装置。
A switch for sequentially switching and selecting one of signals received by a plurality of receiving antennas;
A mixer that mixes the reception signal selected by the switch and a part of the transmission signal to generate a beat signal;
Fourier transform operation means for Fourier transforming the output signal of the mixer;
Correction value storage means for storing the Fourier transform result of the Fourier transform operation means when there is no reflected signal from the target as a correction value for canceling the influence caused by fluctuation of the DC level of the mixer accompanying the switching of the switch When,
A radar apparatus comprising: correction means for correcting a Fourier transform result of the Fourier transform calculation means with a correction value stored in the correction value storage means.
送信信号を増幅する送信増幅器をさらに具備し、
前記補正値記憶手段は、該送信増幅器をオフにしたときのフーリエ変換結果を前記補正値として記憶する請求項1記載のレーダ装置。
A transmission amplifier for amplifying the transmission signal;
The radar apparatus according to claim 1, wherein the correction value storage means stores a Fourier transform result when the transmission amplifier is turned off as the correction value.
前記補正値記憶手段は、ターゲットが存在しないときのフーリエ変換結果を前記補正値として記憶する請求項1記載のレーダ装置。   The radar apparatus according to claim 1, wherein the correction value storage unit stores a Fourier transform result when the target does not exist as the correction value. 前記補正値記憶手段は、レーダの運用中に定期的に前記送信増幅器をオフとして補正値を更新する請求項2記載のレーダ装置。   The radar apparatus according to claim 2, wherein the correction value storage means updates the correction value by periodically turning off the transmission amplifier during operation of the radar. 前記補正値記憶手段は、フーリエ変換結果の実数成分および虚数成分のそれぞれについて補正値を記憶し、
前記補正手段は、フーリエ変換結果の実数成分および虚数成分のそれぞれについて補正する請求項1記載のレーダ装置。
The correction value storage means stores a correction value for each of a real component and an imaginary component of a Fourier transform result,
The radar apparatus according to claim 1, wherein the correction unit corrects each of a real component and an imaginary component of a Fourier transform result.
前記補正値記憶手段は、フーリエ変換結果のパワーについて補正値を記憶し、
前記補正手段は、フーリエ変換結果のパワーについて補正する請求項1記載のレーダ装置。
The correction value storage means stores a correction value for the power of the Fourier transform result,
The radar apparatus according to claim 1, wherein the correction unit corrects power of a Fourier transform result.
前記送信信号は三角波で周波数変調されたものであり、前記補正値記憶手段は、該周波数変調を停止したときのフーリエ変換結果を補正値として記憶する請求項1記載のレーダ装置。   The radar apparatus according to claim 1, wherein the transmission signal is frequency-modulated with a triangular wave, and the correction value storage means stores a Fourier transform result when the frequency modulation is stopped as a correction value. 複数の受信アンテナで受信した信号の1つを順次切り換えて選択するスイッチと、
該スイッチで選択された受信信号と送信信号の一部とを混合してビート信号を生成するミキサと、
該ミキサの出力信号をディジタル値に変換するAD変換器と、
ターゲットからの反射信号がないときの該AD変換器の出力値を、前記スイッチの切換に伴って前記ミキサの直流レベルが変動することによる影響をキャンセルする補正値として記憶する補正値記憶手段と、
該AD変換器の出力値を該補正値記憶手段に記憶された補正値で補正する補正手段とを具備するレーダ装置。
A switch for sequentially switching and selecting one of signals received by a plurality of receiving antennas;
A mixer that mixes the reception signal selected by the switch and a part of the transmission signal to generate a beat signal;
An AD converter for converting the output signal of the mixer into a digital value;
Correction value storage means for storing the output value of the AD converter when there is no reflected signal from the target, as a correction value for canceling the influence caused by fluctuation of the DC level of the mixer accompanying the switching of the switch;
A radar apparatus comprising: correction means for correcting the output value of the AD converter with a correction value stored in the correction value storage means.
送信信号を増幅する送信増幅器をさらに具備し、
前記補正値記憶手段は、該送信増幅器をオフにしたときの前記AD変換器の出力値を前記補正値として記憶する請求項8記載のレーダ装置。
A transmission amplifier for amplifying the transmission signal;
The radar apparatus according to claim 8, wherein the correction value storage means stores the output value of the AD converter when the transmission amplifier is turned off as the correction value.
前記補正値記憶手段は、ターゲットが存在しないときの前記AD変換器の出力値を前記補正値として記憶する請求項8記載のレーダ装置。   The radar apparatus according to claim 8, wherein the correction value storage unit stores an output value of the AD converter when no target exists as the correction value. 前記補正値記憶手段は、レーダの運用中に定期的に前記送信増幅器をオフとして補正値を更新する請求項9記載のレーダ装置。   The radar apparatus according to claim 9, wherein the correction value storage means updates the correction value by periodically turning off the transmission amplifier during operation of the radar. 前記送信信号は三角波で周波数変調されたものであり、前記補正値記憶手段は、該周波数変調を停止したときの前記AD変換器の出力値を補正値として記憶する請求項8記載のレーダ装置。   9. The radar apparatus according to claim 8, wherein the transmission signal is frequency-modulated with a triangular wave, and the correction value storage means stores an output value of the AD converter when the frequency modulation is stopped as a correction value. 前記補正値記憶手段は、製品の出荷前において、補正値を収集して記憶する請求項3,4,10または11記載のレーダ装置。   12. The radar apparatus according to claim 3, 4, 10 or 11, wherein the correction value storage means collects and stores correction values prior to product shipment.
JP2005244343A 2004-09-13 2005-08-25 Radar equipment Expired - Fee Related JP4911932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005244343A JP4911932B2 (en) 2004-09-13 2005-08-25 Radar equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004265561 2004-09-13
JP2004265561 2004-09-13
JP2005244343A JP4911932B2 (en) 2004-09-13 2005-08-25 Radar equipment

Publications (2)

Publication Number Publication Date
JP2006105968A true JP2006105968A (en) 2006-04-20
JP4911932B2 JP4911932B2 (en) 2012-04-04

Family

ID=36375861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005244343A Expired - Fee Related JP4911932B2 (en) 2004-09-13 2005-08-25 Radar equipment

Country Status (1)

Country Link
JP (1) JP4911932B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241350A (en) * 2007-03-26 2008-10-09 Fujitsu Ten Ltd Radar system, and device, program, and method for controlling radar system
JP2013051646A (en) * 2011-08-31 2013-03-14 Tokai Rika Co Ltd Signal processor of time-division multiplex adaptive array antenna
JP2013104841A (en) * 2011-11-16 2013-05-30 Toshiba Corp Transceiver module
JP2013171006A (en) * 2012-02-22 2013-09-02 Furukawa Electric Co Ltd:The Pulse radar device
WO2016158958A1 (en) * 2015-03-31 2016-10-06 古河電気工業株式会社 Pulse radar device
JP2016219940A (en) * 2015-05-18 2016-12-22 富士通株式会社 Temperature compensation circuit and radar device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04291188A (en) * 1991-03-20 1992-10-15 Fujitsu Ltd Fm-cw radar
JPH05240947A (en) * 1992-02-27 1993-09-21 Honda Motor Co Ltd Fm radar equipment
JPH0980149A (en) * 1995-09-13 1997-03-28 Fujitsu Ltd Radar apparatus for detecting distance and speed
JPH11160423A (en) * 1997-11-28 1999-06-18 Toyota Motor Corp Radar
JP2003139847A (en) * 2001-10-31 2003-05-14 Fujitsu Ltd Communication processor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04291188A (en) * 1991-03-20 1992-10-15 Fujitsu Ltd Fm-cw radar
JPH05240947A (en) * 1992-02-27 1993-09-21 Honda Motor Co Ltd Fm radar equipment
JPH0980149A (en) * 1995-09-13 1997-03-28 Fujitsu Ltd Radar apparatus for detecting distance and speed
JPH11160423A (en) * 1997-11-28 1999-06-18 Toyota Motor Corp Radar
JP2003139847A (en) * 2001-10-31 2003-05-14 Fujitsu Ltd Communication processor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241350A (en) * 2007-03-26 2008-10-09 Fujitsu Ten Ltd Radar system, and device, program, and method for controlling radar system
JP2013051646A (en) * 2011-08-31 2013-03-14 Tokai Rika Co Ltd Signal processor of time-division multiplex adaptive array antenna
JP2013104841A (en) * 2011-11-16 2013-05-30 Toshiba Corp Transceiver module
JP2013171006A (en) * 2012-02-22 2013-09-02 Furukawa Electric Co Ltd:The Pulse radar device
WO2016158958A1 (en) * 2015-03-31 2016-10-06 古河電気工業株式会社 Pulse radar device
JPWO2016158958A1 (en) * 2015-03-31 2018-02-01 古河電気工業株式会社 Pulse radar equipment
US10754019B2 (en) 2015-03-31 2020-08-25 Furukawa Electric Co., Ltd. Pulse radar device
JP2016219940A (en) * 2015-05-18 2016-12-22 富士通株式会社 Temperature compensation circuit and radar device

Also Published As

Publication number Publication date
JP4911932B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4602267B2 (en) Electronic scanning radar equipment
JP4737165B2 (en) Radar target detection method and radar apparatus using the target detection method
JP2008232832A (en) Interference determination method and fmcw radar
JP7069309B2 (en) Radar device, failure detection method of radar device, and operation method of radar device
EP1635192B1 (en) Radar apparatus with DC offset correction
JP4911932B2 (en) Radar equipment
JP2006275840A (en) Electronic scanning type millimeter wave radar system, and computer program
US10101439B2 (en) Apparatus and method for controlling power of vehicle radar
JP2008267949A (en) Radar device
JP2011033498A (en) Radar device
US10505770B2 (en) Reception signal processing device, radar, and object detection method
JP5506214B2 (en) Underground radar equipment
JP6217887B1 (en) Frequency calculation device and radar device
JP4978276B2 (en) Pulse signal detector
JP2006242818A (en) Fm-cm radar device and noise suppressing method for the same
JPH11271428A (en) Fm-cw radar apparatus
JP2006010329A (en) Timing adjustment method for radar and radar with automatic timing adjustment function
CN108226919B (en) Method for computationally simple range-doppler angle tracking using a GOERZEL filter
JP2006078388A (en) Radar system
JP3366615B2 (en) Pulse radar equipment
JP4451203B2 (en) Pulse radar equipment
JP2007225319A (en) Pulse radar system
JP3690332B2 (en) Radar jamming device
JP3303862B2 (en) Pulse compression radar device
JP2005241264A (en) Radar apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Ref document number: 4911932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees