JP2006105926A - Inspection apparatus - Google Patents

Inspection apparatus Download PDF

Info

Publication number
JP2006105926A
JP2006105926A JP2004296654A JP2004296654A JP2006105926A JP 2006105926 A JP2006105926 A JP 2006105926A JP 2004296654 A JP2004296654 A JP 2004296654A JP 2004296654 A JP2004296654 A JP 2004296654A JP 2006105926 A JP2006105926 A JP 2006105926A
Authority
JP
Japan
Prior art keywords
light
illumination light
image
imaging
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004296654A
Other languages
Japanese (ja)
Inventor
Koichiro Komatsu
宏一郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004296654A priority Critical patent/JP2006105926A/en
Publication of JP2006105926A publication Critical patent/JP2006105926A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection apparatus for accurately detecting defects on the surface of an object to be inspected even if the spectral characteristics of illumination light change. <P>SOLUTION: The inspection apparatus comprises illumination means 12-18 for irradiating the object 10A to be inspected with illumination light from a light source 11; image-forming means 17-19 for forming the image of the object to be inspected irradiated with illumination light; an imaging means 20 for decomposing the image of the object to be inspected into a plurality of color components for imaging for each color component; and detection means 21-24 for decomposing the illumination light into a plurality of color components for detecting for each color component. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被検物体の表面の欠陥検査に用いられる検査装置に関し、特に、半導体ウエハや液晶ガラス基板などを被検物体とする高精度な欠陥検査に好適な検査装置に関する。   The present invention relates to an inspection apparatus used for defect inspection of a surface of an object to be inspected, and more particularly to an inspection apparatus suitable for highly accurate defect inspection using a semiconductor wafer, a liquid crystal glass substrate, or the like as an object to be inspected.

半導体ウエハや液晶ガラス基板などの被検物体に照明光を照射して、被検物体の白黒画像を取り込み、画像処理によって被検物体の表面の欠陥を検出する検査装置が知られている。また、欠陥を検出する際の情報量を増やすために、被検物体のカラー画像を取り込むようにした検査装置も知られている(例えば特許文献1〜4を参照)。この装置では、カラー画像の色情報の変化を被検物体の分光特性の変化と見なして欠陥の検出を行う。
特開平7−159333号公報 特開2002−5846号公報 特開2002−14052号公報 特開2004−170109号公報
There is known an inspection apparatus that irradiates a test object such as a semiconductor wafer or a liquid crystal glass substrate with illumination light, captures a black and white image of the test object, and detects defects on the surface of the test object by image processing. In addition, an inspection apparatus that captures a color image of an object to be detected in order to increase the amount of information when detecting a defect is also known (see, for example, Patent Documents 1 to 4). In this apparatus, a defect is detected by regarding a change in color information of a color image as a change in spectral characteristics of an object to be detected.
JP 7-159333 A Japanese Patent Laid-Open No. 2002-5846 JP 2002-14052 A JP 2004-170109 A

しかしながら、被検物体のカラー画像の色情報には、被検物体の分光特性だけでなく照明光の分光特性に関する情報も含まれている。このため、カラー画像の色情報の変化を被検物体の分光特性の変化と見なす(つまり照明光の分光特性を不変と見なす)上記の方法では、照明光の分光特性の変化によって色情報が変動してしまい、正確に欠陥を検出できないことがあった。なお、照明光の分光特性は、照明光の強度を調整する際に変化しやすい。また、光源や照明光学系の経時変化に起因して、照明光の分光特性が変化することもある。   However, the color information of the color image of the test object includes not only the spectral characteristics of the test object but also information related to the spectral characteristics of the illumination light. For this reason, in the above method, in which the change in the color information of the color image is regarded as a change in the spectral characteristic of the object to be measured (that is, the spectral characteristic of the illumination light is regarded as unchanged), the color information varies due to the change in the spectral characteristic of the illumination light. As a result, defects may not be detected accurately. Note that the spectral characteristics of the illumination light are likely to change when the intensity of the illumination light is adjusted. In addition, the spectral characteristics of the illumination light may change due to changes in the light source and illumination optical system over time.

本発明の目的は、照明光の分光特性が変化しても、被検物体の表面の欠陥を正確に検出できる検査装置を提供することにある。   An object of the present invention is to provide an inspection apparatus that can accurately detect defects on the surface of an object to be inspected even if the spectral characteristics of illumination light change.

請求項1に記載の検査装置は、光源からの照明光を被検物体に照射する照明手段と、前記照明光が照射された前記被検物体の像を形成する結像手段と、前記被検物体の像を複数の色成分に分解して各色成分ごとに撮像する撮像手段と、前記照明光を複数の色成分に分解して各色成分ごとに検知する検知手段とを備えたものである。
請求項2に記載の発明は、請求項1に記載の検査装置において、前記結像手段の光路上には、前記被検物体からの検査光を透過すると共に、前記光路外からの前記照明光の一部を反射して他の一部を透過する光学部材が配置され、前記結像手段は、前記光学部材を透過した前記検査光に基づいて前記像を形成し、前記照明手段は、前記光学部材で反射した前記照明光の一部を前記被検物体に照射し、前記検知手段は、前記光学部材を透過した前記照明光の他の一部を複数の色成分に分解して各色成分ごとに検知するものである。
The inspection apparatus according to claim 1, an illuminating unit that irradiates a test object with illumination light from a light source, an imaging unit that forms an image of the test object irradiated with the illumination light, and the test An image pickup unit that separates an object image into a plurality of color components and picks up the image for each color component, and a detection unit that separates the illumination light into a plurality of color components and detects each color component.
According to a second aspect of the present invention, in the inspection apparatus according to the first aspect, the illumination light from the outside of the optical path is transmitted through the optical path of the imaging means while transmitting the inspection light from the object to be examined. An optical member that reflects a part of the optical member and transmits the other part is disposed, the imaging means forms the image based on the inspection light that has passed through the optical member, and the illuminating means A part of the illumination light reflected by the optical member is irradiated onto the object to be inspected, and the detection means separates another part of the illumination light transmitted through the optical member into a plurality of color components to obtain each color component. Every one is detected.

請求項3に記載の発明は、請求項1または請求項2に記載の検査装置において、前記撮像手段から出力される各色成分ごとの撮像信号と、前記検知手段から出力される各色成分ごとの検知信号とに基づいて、検査用のデータを生成する生成手段を備えたものである。
請求項4に記載の発明は、請求項3に記載の検査装置において、前記生成手段は、前記被検物体の像の色度座標を前記データとして生成するものである。
According to a third aspect of the present invention, in the inspection apparatus according to the first or second aspect, the image pickup signal for each color component output from the image pickup unit and the detection for each color component output from the detection unit. A generating means for generating data for inspection based on the signal is provided.
According to a fourth aspect of the present invention, in the inspection apparatus according to the third aspect, the generation unit generates chromaticity coordinates of an image of the test object as the data.

本発明の検査装置によれば、照明光の分光特性が変化しても、被検物体の表面の欠陥を正確に検出することができる。   According to the inspection apparatus of the present invention, it is possible to accurately detect defects on the surface of an object to be inspected even if the spectral characteristics of illumination light change.

以下、図面を用いて本発明の実施形態を詳細に説明する。
(第1実施形態)
第1実施形態の検査装置10は、図1に示す通り、光源11と、照明系(12〜18)と、結像系(17〜19)と、撮像素子20と、モニタ系(21〜24)と、信号処理部25とで構成される。被検物体10Aは、半導体ウエハや液晶ガラス基板などであり、不図示のステージ上に載置されている。被検物体10Aの表面には、例えばステッパーなどの露光機を用い、微細なパターンが繰り返し形成されている。このパターンの乱れ(つまり欠陥)を検出するために、第1実施形態の検査装置10が用いられる。検査装置10は、被検物体10Aの表面の高精度な欠陥検査に好適なものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
As shown in FIG. 1, the inspection apparatus 10 according to the first embodiment includes a light source 11, illumination systems (12 to 18), an imaging system (17 to 19), an image sensor 20, and a monitor system (21 to 24). ) And the signal processing unit 25. The test object 10A is a semiconductor wafer, a liquid crystal glass substrate, or the like, and is placed on a stage (not shown). A fine pattern is repeatedly formed on the surface of the test object 10A using, for example, an exposure machine such as a stepper. In order to detect this pattern disturbance (that is, a defect), the inspection apparatus 10 of the first embodiment is used. The inspection apparatus 10 is suitable for high-accuracy defect inspection of the surface of the test object 10A.

光源11は、例えばハロゲンランプである。この場合、光源11からの照明光は、可視域の白色光となる。照明光の強度は、光源11に供給する電流値に応じて調整可能である。照明光の強度の調整は、撮像素子20への入射光(つまり被検物体10Aから発生して撮像素子20に到達する検査光L3)の強度を、撮像素子20の画像信号を得られる光強度範囲に合わせるために行うことが多い。   The light source 11 is a halogen lamp, for example. In this case, the illumination light from the light source 11 becomes visible white light. The intensity of the illumination light can be adjusted according to the current value supplied to the light source 11. The intensity of the illumination light is adjusted by adjusting the intensity of the incident light to the image sensor 20 (that is, the inspection light L3 generated from the test object 10A and reaching the image sensor 20), and the light intensity with which the image signal of the image sensor 20 can be obtained. Often done to fit range.

照明系(12〜18)は、コレクタレンズ12aと、リレーレンズ12bと、フィルタ13と、開口絞り14と、視野絞り15と、コンデンサレンズ16と、ハーフミラー17と、対物レンズ18とで構成される。ハーフミラー17は落射プリズムであり、ハーフミラー17と対物レンズ18は結像系(17〜19)と共有である。結像系(17〜19)は、ハーフミラー17と、対物レンズ18と、結像レンズ19とで構成される。つまり、対物レンズ18を介して被検物体10Aを照明する落射型の光学系である。   The illumination system (12 to 18) includes a collector lens 12a, a relay lens 12b, a filter 13, an aperture stop 14, a field stop 15, a condenser lens 16, a half mirror 17, and an objective lens 18. The The half mirror 17 is an episcopic prism, and the half mirror 17 and the objective lens 18 are shared with the imaging system (17 to 19). The imaging system (17 to 19) includes a half mirror 17, an objective lens 18, and an imaging lens 19. That is, it is an epi-illumination type optical system that illuminates the test object 10A via the objective lens 18.

照明系(12〜18)において、光源11からの照明光は、コレクタレンズ12aで集光され、フィルタ13と開口絞り14と視野絞り15を介してコンデンサレンズ16に入射し、コンデンサレンズ16で平行光に変換されてハーフミラー17に入射する。点線で示したように、コレクタレンズ12aからコンデンサレンズ16までの光学系は、対物レンズ18の瞳面上に光源11の像を結像する、いわゆるケーラー照明の配置となっている。フィルタ13は熱線(赤外成分)を吸収するためのフィルタである。   In the illumination system (12 to 18), the illumination light from the light source 11 is collected by the collector lens 12a, enters the condenser lens 16 through the filter 13, the aperture stop 14, and the field stop 15, and is parallel by the condenser lens 16. It is converted into light and enters the half mirror 17. As indicated by the dotted line, the optical system from the collector lens 12 a to the condenser lens 16 has a so-called Koehler illumination arrangement in which an image of the light source 11 is formed on the pupil plane of the objective lens 18. The filter 13 is a filter for absorbing heat rays (infrared component).

ハーフミラー17は、結像系(17〜19)の光路10B上に配置されており、その光路10B外(つまり照明光学系12〜16のある光路IL)(つまりコンデンサレンズ16側)から入射した照明光の一部(L1)を反射して他の一部(L2)を透過する。つまり、光源11からの照明光を2方向に振幅分割する。ハーフミラー17で分割される照明光L1,L2の強度比は一定である。   The half mirror 17 is disposed on the optical path 10B of the imaging system (17 to 19), and is incident from the outside of the optical path 10B (that is, the optical path IL with the illumination optical systems 12 to 16) (that is, the condenser lens 16 side). A part (L1) of the illumination light is reflected and the other part (L2) is transmitted. That is, the amplitude of the illumination light from the light source 11 is divided in two directions. The intensity ratio between the illumination lights L1 and L2 divided by the half mirror 17 is constant.

そして、照明系(12〜18)では、ハーフミラー17で反射した一部の照明光L1を、対物レンズ18を介して被検物体10Aに照射する。照明光L1が結像系(17〜19)の光路10Bに平行な方向から被検物体10Aに入射するため、被検物体10Aはほぼ垂直な方向から照明されたことになる。なお、ハーフミラー17を透過した一部の照明光L2は、被検物体10Aの照明に寄与することなくモニタ系(21〜24)に導かれる。   In the illumination system (12 to 18), a part of the illumination light L1 reflected by the half mirror 17 is irradiated to the object 10A to be examined through the objective lens 18. Since the illumination light L1 enters the test object 10A from a direction parallel to the optical path 10B of the imaging system (17 to 19), the test object 10A is illuminated from a substantially vertical direction. A part of the illumination light L2 transmitted through the half mirror 17 is guided to the monitor system (21 to 24) without contributing to the illumination of the object 10A.

ここで、被検物体10Aに入射する照明光L1の分光特性S(λ)は、例えば図2に示すようになる。図2の横軸は波長λを表し、縦軸は各波長の強度を表している。また、図2に示す分光特性S(λ)の波形と横軸とで囲まれた面積は、照明光L1の強度を表している。照明光L1の強度は、上記の通り、光源11に供給する電流値に応じて調整可能である。   Here, the spectral characteristic S (λ) of the illumination light L1 incident on the test object 10A is, for example, as shown in FIG. The horizontal axis of FIG. 2 represents the wavelength λ, and the vertical axis represents the intensity of each wavelength. Further, the area surrounded by the waveform of the spectral characteristic S (λ) and the horizontal axis shown in FIG. 2 represents the intensity of the illumination light L1. The intensity of the illumination light L1 can be adjusted according to the current value supplied to the light source 11 as described above.

ただし、照明光L1の強度の調整によって、照明光L1の分光特性も変化してしまう。光源11がハロゲンランプの場合、強度を高くすると青色成分(450nm付近)が相対的に増え、強度を低くすると赤色成分(650nm付近)が相対的に増える。さらに、照明光L1の分光特性の変化は、光源11や照明系(12〜18)の経時変化に起因する場合もある。
本実施形態の検査装置10では、このような照明光L1の分光特性の変化をモニタするため、ハーフミラー17を透過した一部の照明光L2の光路上に、モニタ系(21〜24)を設けている。モニタ系(21〜24)は、色分解プリズム21と、3つの受光センサ22〜24とで構成される。色分解プリズム21には、分光特性の異なる2つのフィルタ膜2A,2Bが設けられる。フィルタ膜2Aは、主に青色成分を反射して緑色成分と赤色成分を透過するような分光特性である。また、フィルタ膜2Bは、主に緑色成分を反射して赤色成分を透過するような分光特性である。
However, adjustment of the intensity of the illumination light L1 also changes the spectral characteristics of the illumination light L1. When the light source 11 is a halogen lamp, the blue component (around 450 nm) is relatively increased when the intensity is increased, and the red component (around 650 nm) is relatively increased when the intensity is decreased. Furthermore, the change in the spectral characteristics of the illumination light L1 may be caused by a change with time of the light source 11 or the illumination system (12 to 18).
In the inspection apparatus 10 of the present embodiment, in order to monitor such a change in spectral characteristics of the illumination light L1, a monitor system (21 to 24) is provided on the optical path of a part of the illumination light L2 that has passed through the half mirror 17. Provided. The monitor system (21-24) includes a color separation prism 21 and three light receiving sensors 22-24. The color separation prism 21 is provided with two filter films 2A and 2B having different spectral characteristics. The filter film 2A has spectral characteristics that mainly reflect the blue component and transmit the green and red components. The filter film 2B has spectral characteristics that mainly reflect the green component and transmit the red component.

このため、モニタ系(21〜24)に入射した照明光L2のうち、赤色成分は色分解プリズム21のフィルタ膜2A,2Bを透過して受光センサ22に入射する。また、緑色成分は、フィルタ膜2Aを透過してフィルタ膜2Bで反射して受光センサ23に入射する。また、青色成分は、フィルタ膜2Aで反射して受光センサ24に入射する。そして、3つの受光センサ22〜24では、各々の入射光を光電変換して検知する。つまり、モニタ系(21〜24)では、照明光L2を3つの色成分(赤緑青)に分解して各色成分ごとに検知する。   Therefore, the red component of the illumination light L <b> 2 that has entered the monitor system (21 to 24) passes through the filter films 2 </ b> A and 2 </ b> B of the color separation prism 21 and enters the light receiving sensor 22. Further, the green component passes through the filter film 2A, is reflected by the filter film 2B, and enters the light receiving sensor 23. Further, the blue component is reflected by the filter film 2 </ b> A and enters the light receiving sensor 24. The three light receiving sensors 22 to 24 photoelectrically convert each incident light and detect it. That is, in the monitor system (21 to 24), the illumination light L2 is separated into three color components (red, green and blue) and detected for each color component.

モニタ系(21〜24)の分光感度特性は、モニタ光L2が色分解プリズム21によってそれぞれ受光センサ22〜24に到達するプリズム分岐比と、受光センサ22〜24の受光感度特性との積の形で表される。モニタ光L2に波長λで1単位の強度光が入射したときの受光センサ22〜24の出力信号の大きさを、モニタ系(21〜24)の分光感度特性ρr(λ),ρg(λ),ρb(λ)と示す。   The spectral sensitivity characteristics of the monitor systems (21 to 24) are the product of the prism branching ratio at which the monitor light L2 reaches the light receiving sensors 22 to 24 by the color separation prism 21 and the light receiving sensitivity characteristics of the light receiving sensors 22 to 24, respectively. It is represented by The magnitudes of the output signals of the light receiving sensors 22 to 24 when the intensity light of one unit at the wavelength λ is incident on the monitor light L2 are the spectral sensitivity characteristics ρr (λ) and ρg (λ) of the monitor systems (21 to 24). , ρb (λ).

受光センサ22〜24に到達する光それぞれのモニタ系(21〜24)の分光感度特性ρr(λ),ρg(λ),ρb(λ)は、例えば図3に示すようになる。図3の横軸は波長λを表し、縦軸は各波長の感度を表す。モニタ系(21〜24)の分光感度特性ρr(λ)は、受光センサ22によって受光される赤色成分の感度特性である。同様に、モニタ系(21〜24)の分光感度特性ρg(λ),ρb(λ)は、受光センサ23,24によって受光される緑色成分,青色成分の感度特性である。   The spectral sensitivity characteristics ρr (λ), ρg (λ), and ρb (λ) of the monitor systems (21 to 24) of the light reaching the light receiving sensors 22 to 24 are as shown in FIG. 3, for example. The horizontal axis in FIG. 3 represents the wavelength λ, and the vertical axis represents the sensitivity of each wavelength. The spectral sensitivity characteristic ρr (λ) of the monitor system (21 to 24) is a sensitivity characteristic of the red component received by the light receiving sensor 22. Similarly, the spectral sensitivity characteristics ρg (λ) and ρb (λ) of the monitor systems (21 to 24) are the sensitivity characteristics of the green and blue components received by the light receiving sensors 23 and 24.

したがって、受光センサ22に入射する光(照明光L2の赤色成分)の分光特性は、図2に示す照明光L2の分光特性S(λ)と図3に示すモニタ系(21〜24)の分光感度特性ρr(λ)との積によって表される。また同様に、受光センサ23に入射する光(照明光L2の緑色成分)と、受光センサ24に入射する光(照明光L2の青色成分)は、それぞれ、照明光L2の分光特性S(λ)と図3に示すモニタ系(21〜24)の分光感度特性ρg(λ),ρb(λ)との積によって表される。   Therefore, the spectral characteristics of the light incident on the light receiving sensor 22 (red component of the illumination light L2) are the spectral characteristics S (λ) of the illumination light L2 shown in FIG. 2 and the spectral characteristics of the monitor systems (21 to 24) shown in FIG. It is represented by the product of the sensitivity characteristic ρr (λ). Similarly, the light incident on the light receiving sensor 23 (green component of the illumination light L2) and the light incident on the light receiving sensor 24 (blue component of the illumination light L2) are respectively spectral characteristics S (λ) of the illumination light L2. And the spectral sensitivity characteristics ρg (λ) and ρb (λ) of the monitor system (21 to 24) shown in FIG.

さらに、受光センサ22による赤色成分の検知信号強度Srは、次の式(1)に示す通り、受光センサ22への入射光の分光特性(S(λ)・ρr(λ))を波長λで積分した値に相当する。同様に、受光センサ23による緑色成分の検知信号強度Sgと、受光センサ24による青色成分の検知信号強度Sbは、次の式(2),(3)に示す通り、受光センサ23,24への入射光の分光特性(S(λ)・ρg(λ),S(λ)・ρb(λ))を波長λで積分した値に相当する。   Further, the detection signal intensity Sr of the red component by the light receiving sensor 22 is obtained by setting the spectral characteristic (S (λ) · ρr (λ)) of the incident light to the light receiving sensor 22 at the wavelength λ, as shown in the following equation (1). It corresponds to the integrated value. Similarly, the detection signal intensity Sg of the green component by the light receiving sensor 23 and the detection signal intensity Sb of the blue component by the light receiving sensor 24 are applied to the light receiving sensors 23 and 24 as shown in the following equations (2) and (3). This corresponds to a value obtained by integrating the spectral characteristics (S (λ) · ρg (λ), S (λ) · ρb (λ)) of the incident light with the wavelength λ.

Sr=∫S(λ)・ρr(λ)dλ …(1)
Sg=∫S(λ)・ρg(λ)dλ …(2)
Sb=∫S(λ)・ρb(λ)dλ …(3)
そして、受光センサ22による赤色成分の検知信号強度Srと、受光センサ23による緑色成分の検知信号強度Sgと、受光センサ24による青色成分の検知信号強度Sbは、それぞれ、信号処理部25に出力される。
Sr = ∫S (λ) · ρr (λ) dλ (1)
Sg = ∫S (λ) · ρg (λ) dλ (2)
Sb = ∫S (λ) · ρb (λ) dλ (3)
Then, the red component detection signal intensity Sr by the light receiving sensor 22, the green component detection signal intensity Sg by the light receiving sensor 23, and the blue component detection signal intensity Sb by the light receiving sensor 24 are output to the signal processing unit 25, respectively. The

したがって、信号処理部25では、3つの受光センサ22〜24からの検知信号強度Sr,Sg,Sbの和に基づいて、照明光L2の強度(つまり被検物体10Aに入射する照明光L1の強度)をモニタすることができる。さらに、検知信号強度Sr,Sg,Sbの相対比に基づいて、照明光L2の分光特性の変化(つまり被検物体10Aに入射する照明光L1の分光特性の変化)をモニタすることができる。   Therefore, in the signal processing unit 25, based on the sum of the detection signal intensities Sr, Sg, Sb from the three light receiving sensors 22 to 24, the intensity of the illumination light L2 (that is, the intensity of the illumination light L1 incident on the test object 10A). ) Can be monitored. Furthermore, the change in the spectral characteristics of the illumination light L2 (that is, the change in the spectral characteristics of the illumination light L1 incident on the test object 10A) can be monitored based on the relative ratio of the detection signal intensities Sr, Sg, Sb.

また、本実施形態の検査装置10では、モニタ系(21〜24)を色分解プリズム21と3つの受光センサ22〜24で構成するため、各色成分ごとの検知信号強度Sr,Sg,Sbを同時に取り込むことができ、照明光L2の強度や分光特性の変化(つまり被検物体10Aに入射する照明光L1の強度や分光特性の変化)を正確にモニタすることができる。さらに、モニタ系(21〜24)をハーフミラー17の透過光路上に設け、被検物体10Aの照明に寄与しない不要な光(L2)を取り込むため、照明光L1の強度を損失することなく、そのモニタを行うことができる。   In the inspection apparatus 10 of the present embodiment, the monitor system (21 to 24) is configured by the color separation prism 21 and the three light receiving sensors 22 to 24. Therefore, the detection signal intensities Sr, Sg, and Sb for each color component are simultaneously provided. It is possible to capture, and it is possible to accurately monitor changes in the intensity and spectral characteristics of the illumination light L2 (that is, changes in the intensity and spectral characteristics of the illumination light L1 incident on the test object 10A). Furthermore, since the monitor system (21 to 24) is provided on the transmission optical path of the half mirror 17 and takes in unnecessary light (L2) that does not contribute to illumination of the test object 10A, without losing the intensity of the illumination light L1, That monitoring can be done.

一方、照明光L1が照射された被検物体10Aでは、その表面に形成されている微細なパターン(凹凸構造)で反射した光や回折した光に基づいて検査光が発生する。被検物体10Aからの検査光は、対物レンズ18で集光され、ハーフミラー17を透過して(検査光L3)、結像レンズ19に入射する。対物レンズ18は無限遠系であり、検査光L3は結像レンズ19を介して撮像素子20に入射し、対物レンズ18と結像レンズ19の作用によって撮像素子20の撮像面に被検物体10Aの像を形成する。結像系でもモニタ系と同様に、色分解プリズム26で決められた各々の分光分岐比で撮像素子20R,20G,20Bに分岐され、それぞれの撮像面上に像を形成する。   On the other hand, in the test object 10A irradiated with the illumination light L1, inspection light is generated based on light reflected or diffracted by a fine pattern (uneven structure) formed on the surface thereof. Inspection light from the test object 10A is collected by the objective lens 18, passes through the half mirror 17 (inspection light L3), and enters the imaging lens 19. The objective lens 18 is an infinite system, and the inspection light L3 is incident on the image sensor 20 via the imaging lens 19, and the object 10A to be examined is applied to the imaging surface of the image sensor 20 by the action of the objective lens 18 and the imaging lens 19. Form an image of Similarly to the monitor system, the imaging system is branched to the imaging elements 20R, 20G, and 20B at the respective spectral branching ratios determined by the color separation prism 26, and images are formed on the respective imaging surfaces.

撮像素子20の撮像面の点(X,Y)における像の分光特性、つまり、撮像面の点(X,Y)に入射する検査光L3の分光特性は、撮像面の点(X,Y)に共役な被検物体10A上の点(u,v)の分光反射特性Γuv(λ)(例えば図4)と、照明光L1の分光特性S(λ)(図2)との積によって表される(例えば図5)。図4の縦軸は反射率を表し、図5の縦軸は強度を表している。検査光L3に対する各々の撮像光学系の分光感度特性は、色分解プリズム26の分岐比と撮像素子20R,20G,20Bの感度との積で表され、色ごとにこれらをまとめて受光系の分光感度特性Rr(λ),Rg(λ),Rb(λ)とする。   The spectral characteristic of the image at the point (X, Y) on the imaging surface of the imaging element 20, that is, the spectral characteristic of the inspection light L3 incident on the point (X, Y) on the imaging surface is the point (X, Y) on the imaging surface. Is represented by the product of the spectral reflection characteristic Γuv (λ) (for example, FIG. 4) of the point (u, v) on the test object 10A conjugated with the spectral characteristic S (λ) (FIG. 2) of the illumination light L1. (For example, FIG. 5). The vertical axis in FIG. 4 represents reflectance, and the vertical axis in FIG. 5 represents intensity. The spectral sensitivity characteristic of each imaging optical system with respect to the inspection light L3 is represented by the product of the branching ratio of the color separation prism 26 and the sensitivity of the imaging devices 20R, 20G, and 20B. Sensitivity characteristics Rr (λ), Rg (λ), and Rb (λ) are assumed.

そして、撮像素子20Rには、色分解フィルタを経て、検査光L3のうち主に赤色成分が入射する。この赤色成分の分光特性は、例えば撮像素子20Rの撮像面の点(X,Y)において、図5に示す検査光L3の分光特性Γuv(λ)・S(λ)と分光感度特性Rr(λ)との積によって表される(例えば図6)。図6の縦軸は強度を表す。
また同様に、撮像素子20Gと撮像素子20Bには、それぞれ、色分解フィルタを経て、検査光L3のうち主に緑色成分,青色成分が入射する。そして、この緑色成分,青色成分の分光特性は、例えば撮像面の点(X,Y)において、それぞれ、検査光L3の分光特性Γuv(λ)・S(λ)と分光感度特性Rg(λ),Rb(λ)との積によって表される(例えば図6)。
Then, mainly the red component of the inspection light L3 enters the imaging element 20R through the color separation filter. The spectral characteristics of the red component are, for example, the spectral characteristics Γuv (λ) · S (λ) of the inspection light L3 shown in FIG. 5 and the spectral sensitivity characteristics Rr (λ) at the point (X, Y) on the imaging surface of the imaging device 20R. ) And the product (for example, FIG. 6). The vertical axis in FIG. 6 represents intensity.
Similarly, mainly the green component and the blue component of the inspection light L3 are incident on the image sensor 20G and the image sensor 20B through the color separation filter, respectively. The spectral characteristics of the green component and blue component are, for example, the spectral characteristics Γuv (λ) · S (λ) and spectral sensitivity characteristics Rg (λ) of the inspection light L3 at the point (X, Y) on the imaging surface, for example. , Rb (λ), for example (FIG. 6).

さらに、被検物体10A上の点(u,v)に相当する撮像素子20R上の点(X,Y)での撮像信号Tr(X,Y)は、次の式(4)に示す通り、撮像素子20R上の点(X,Y)の分光特性(S(λ)・Γuv(λ)・Rr(λ))を波長λで積分した値に相当する。同様に、撮像素子20G,20B上の点(X,Y)の緑色成分,青色成分の撮像信号Tg(X,Y),Tb(X,Y)は、次の式(5),(6)に示す通り、撮像素子20G,20B上の点(X,Y)の受光光の分光特性(S(λ)・Γuv(λ)・Rg(λ),S(λ)・Γuv(λ)・Rb(λ))をそれぞれ波長λで積分した値に相当する。   Further, an imaging signal Tr (X, Y) at a point (X, Y) on the imaging device 20R corresponding to the point (u, v) on the object 10A to be examined is represented by the following equation (4): This corresponds to a value obtained by integrating the spectral characteristics (S (λ) · Γuv (λ) · Rr (λ)) of the point (X, Y) on the image sensor 20R with the wavelength λ. Similarly, the image signals Tg (X, Y) and Tb (X, Y) of the green and blue components at the point (X, Y) on the image sensors 20G and 20B are expressed by the following equations (5) and (6). As shown in FIG. 4, the spectral characteristics (S (λ) · Γuv (λ) · Rg (λ), S (λ) · Γuv (λ) · Rb of the received light at the point (X, Y) on the image sensors 20G and 20B (λ)) corresponds to a value obtained by integrating each with the wavelength λ.

Tr(X,Y)=∫S(λ)・Γuv(λ)・Rr(λ)dλ …(4)
Tg(X,Y)=∫S(λ)・Γuv(λ)・Rg(λ)dλ …(5)
Tb(X,Y)=∫S(λ)・Γuv(λ)・Rb(λ)dλ …(6)
そして、撮像素子20Rの点(X,Y)の撮像信号Tr(X,Y)と、撮像素子20Gの点(X,Y)の撮像信号Tg(X,Y)と、撮像素子20Bの点(X,Y)の撮像信号Tb(X,Y)は、それぞれ、信号処理部25に出力される。つまり、撮像素子20R,20G,20Bでは、被検物体10Aの像を3つの色成分(赤緑青)に分解して各色成分ごとに撮像し、その結果(撮像信号Tr(X,Y),Tg(X,Y),Tb(X,Y))を後段の信号処理部25に出力する。
Tr (X, Y) = ∫S (λ) · Γuv (λ) · Rr (λ) dλ (4)
Tg (X, Y) = ∫S (λ) · Γuv (λ) · Rg (λ) dλ (5)
Tb (X, Y) = ∫S (λ) · Γuv (λ) · Rb (λ) dλ (6)
The imaging signal Tr (X, Y) at the point (X, Y) of the imaging device 20R, the imaging signal Tg (X, Y) at the point (X, Y) of the imaging device 20G, and the point ( The imaging signals Tb (X, Y) of X, Y) are output to the signal processing unit 25, respectively. That is, the image pickup devices 20R, 20G, and 20B separate the image of the test object 10A into three color components (red, green, and blue) and pick up images for each color component, and the result (image signals Tr (X, Y), Tg). (X, Y), Tb (X, Y)) is output to the signal processing unit 25 in the subsequent stage.

本実施形態の検査装置10では、各色成分ごとの撮像信号Tr(X,Y),Tg(X,Y),Tb(X,Y)を同時に信号処理部25に取り込むことができる。ちなみに、上記の式(4)〜式(6)から分かるように、被検物体10Aのカラー画像の色情報には、被検物体10Aの分光特性(Γuv(λ))だけでなく、照明光L1の分光特性(S(λ))に関する情報も含まれている。   In the inspection apparatus 10 of the present embodiment, the imaging signals Tr (X, Y), Tg (X, Y), and Tb (X, Y) for each color component can be taken into the signal processing unit 25 at the same time. Incidentally, as can be seen from the above formulas (4) to (6), the color information of the color image of the test object 10A includes not only the spectral characteristic (Γuv (λ)) of the test object 10A but also the illumination light. Information on the spectral characteristic (S (λ)) of L1 is also included.

次に、信号処理部25における信号処理について説明する。
信号処理部25では、撮像素子20R,20G,20Bから出力される各色成分ごとの撮像信号Tr(X,Y),Tg(X,Y),Tb(X,Y)と、モニタ系(21〜24)から出力される各色成分ごとの検知信号強度Sr,Sg,Sbとに基づいて、被検物体10Aに対する検査用のデータ(後述の式(7)〜式(9)で表される像強度Γ(X,Y)と色度座標cx(X,Y),cy(X,Y))を生成する。
Next, signal processing in the signal processing unit 25 will be described.
In the signal processing unit 25, the imaging signals Tr (X, Y), Tg (X, Y), Tb (X, Y) for each color component output from the imaging elements 20R, 20G, and 20B and the monitor system (21 to 21) are displayed. 24) based on the detection signal intensities Sr, Sg, and Sb for each color component output from (24), data for inspection with respect to the object to be inspected 10A (image intensities represented by equations (7) to (9) described later) Γ (X, Y) and chromaticity coordinates cx (X, Y), cy (X, Y)) are generated.

また、検査用のデータの生成に当たっては、他に、撮像系の分光感度特性Rr(λ),Rg(λ),Rb(λ)とモニタ系(21〜24)の分光感度特性ρr(λ),ρg(λ),ρb(λ)との相違分、ハーフミラー17の分光反射特性、対物レンズ18と結像レンズ19の各々の分光透過特性、照明ムラなどを加味した補正値Hr(X,Y),Hg(X,Y),Hb(X,Y)が用いられる。この補正値Hr(X,Y),Hg(X,Y),Hb(X,Y)は、撮像素子20R,20G,20Bの撮像面の点(X,Y)における値であり、撮像面の各点ごとに(各画素ごとに)予め求められ、信号処理部25のメモリに記憶されている。   In addition, when generating data for inspection, in addition, spectral sensitivity characteristics Rr (λ), Rg (λ), Rb (λ) of the imaging system and spectral sensitivity characteristics ρr (λ) of the monitor systems (21 to 24) are used. , ρg (λ), ρb (λ), the correction value Hr (X, X) taking into account the spectral reflection characteristics of the half mirror 17, the spectral transmission characteristics of the objective lens 18 and the imaging lens 19, illumination unevenness, and the like. Y), Hg (X, Y), Hb (X, Y) are used. The correction values Hr (X, Y), Hg (X, Y), Hb (X, Y) are values at the point (X, Y) on the imaging surface of the imaging elements 20R, 20G, 20B. It is obtained in advance for each point (for each pixel) and stored in the memory of the signal processing unit 25.

なお、補正値Hr(X,Y),Hg(X,Y),Hb(X,Y)の求め方としては、上記の撮像系の分光感度特性Rr(λ),Rg(λ),Rb(λ)とモニタ系の分光感度特性ρr(λ),ρg(λ),ρb(λ)と各光学素子(17〜19)の分光特性などの既知のデータを用いた計算処理を実行する方法が考えられる。また、検査に必要な所定の波長域で反射率が一様な光学素子(例えばアルミミラー)を被検物体10Aの代わりにステージ上に載置し、撮像素子20R,20G,20Bからの撮像信号Tr(X,Y),Tg(X,Y),Tb(X,Y)とモニター系(21〜24)の検知信号強度Sr,Sg,Sbとの比を求めることにより、補正値Hr(X,Y),Hg(X,Y),Hb(X,Y)を測定してもよい。   The correction values Hr (X, Y), Hg (X, Y), Hb (X, Y) can be obtained by using the spectral sensitivity characteristics Rr (λ), Rg (λ), Rb ( (λ) and a spectral sensitivity characteristic ρr (λ), ρg (λ), ρb (λ) of the monitor system and a method of executing a calculation process using known data such as the spectral characteristics of each optical element (17 to 19). Conceivable. In addition, an optical element (for example, an aluminum mirror) having a uniform reflectance in a predetermined wavelength range required for inspection is placed on the stage instead of the object to be inspected 10A, and image signals from the image sensors 20R, 20G, and 20B. By calculating the ratio of Tr (X, Y), Tg (X, Y), Tb (X, Y) and the detection signal intensity Sr, Sg, Sb of the monitor system (21-24), the correction value Hr (X , Y), Hg (X, Y), Hb (X, Y) may be measured.

信号処理部25では、予めメモリに記憶されている補正値Hr(X,Y),Hg(X,Y),Hb(X,Y)と、撮像素子20R,20G,20Bから出力される撮像信号Tr(X,Y),Tg(X,Y),Tb(X,Y)と、モニタ系(21〜24)から出力される検知信号強度Sr,Sg,Sbとを、次の式(7)に代入することで、撮像素子20R,20G,20Bの撮像面の点(X,Y)における像強度Γ(X,Y)を検査用のデータとして生成する。   In the signal processing unit 25, correction values Hr (X, Y), Hg (X, Y), Hb (X, Y) stored in the memory in advance, and imaging signals output from the imaging elements 20R, 20G, and 20B. Tr (X, Y), Tg (X, Y), Tb (X, Y) and detection signal strengths Sr, Sg, Sb output from the monitor system (21-24) are expressed by the following equation (7). By substituting into, the image intensity Γ (X, Y) at the point (X, Y) on the imaging surface of the imaging elements 20R, 20G, 20B is generated as inspection data.

Γ(X,Y)=Tr(X,Y)・Hr(X,Y)/Sr+Tg(X,Y)・Hg(X,Y)/Sg
+Tb(X,Y)・Hb(X,Y)/Sb …(7)
さらに、信号処理部25では、次の式(8),(9)を用いて、撮像面の点(X,Y)における被検物体10Aの像の色度座標cx(X,Y),cy(X,Y)を検査用のデータとして生成する。色度座標cx(X,Y),cy(X,Y)は、CIE表色系におけるxy色度図の座標成分である。
Γ (X, Y) = Tr (X, Y) · Hr (X, Y) / Sr + Tg (X, Y) · Hg (X, Y) / Sg
+ Tb (X, Y) .Hb (X, Y) / Sb (7)
Further, the signal processing unit 25 uses the following formulas (8) and (9), and the chromaticity coordinates cx (X, Y), cy of the image of the test object 10A at the point (X, Y) on the imaging surface. (X, Y) is generated as inspection data. The chromaticity coordinates cx (X, Y) and cy (X, Y) are coordinate components of the xy chromaticity diagram in the CIE color system.

cx(X,Y)={Tr(X,Y)・Hr(X,Y)/Sr}/ Γ(X,Y) …(8)
cy(X,Y)={Tg(X,Y)・Hg(X,Y)/Sg}/ Γ(X,Y) …(9)
そして、生成された像強度Γ(X,Y)と色度座標cx(X,Y),cy(X,Y)とを用いて、被検物体10Aの表面の欠陥検査が行われる。被検物体10Aの表面には微細なパターンが繰り返し形成されているため、欠陥が無ければ、生成された像強度Γ(X,Y)と色度座標cx(X,Y),cy(X,Y)は空間的に一定の周期で変化することになる。しかし、欠陥がある場合には、像強度Γ(X,Y)と色度座標cx(X,Y),cy(X,Y)の周期性が乱れることになる。したがって、例えば、3つの検査用のデータ(Γ(X,Y),cx(X,Y),cy(X,Y))のうち何れか1つに周期性の乱れが現れていれば、その位置をパターンの乱れ(つまり欠陥)として検出することができる。
cx (X, Y) = {Tr (X, Y) · Hr (X, Y) / Sr} / Γ (X, Y) (8)
cy (X, Y) = {Tg (X, Y) .Hg (X, Y) / Sg} / Γ (X, Y) (9)
Then, using the generated image intensity Γ (X, Y) and chromaticity coordinates cx (X, Y), cy (X, Y), a defect inspection of the surface of the test object 10A is performed. Since a fine pattern is repeatedly formed on the surface of the test object 10A, if there is no defect, the generated image intensity Γ (X, Y) and chromaticity coordinates cx (X, Y), cy (X, Y) varies at a spatially constant period. However, if there is a defect, the periodicity of the image intensity Γ (X, Y) and the chromaticity coordinates cx (X, Y), cy (X, Y) will be disturbed. Therefore, for example, if periodic disturbance appears in any one of the three test data (Γ (X, Y), cx (X, Y), cy (X, Y)), The position can be detected as pattern disturbance (that is, a defect).

このとき、本実施形態の検査装置10では、モニタ系(21〜24)の3つの受光センサ22〜24からの検知信号強度Sr,Sg,Sbに基づいて、被検物体10Aに入射する照明光L1の強度や分光特性の変化をモニタするため、照明光L1の分光特性(S(λ))が変化しても、被検物体10Aの表面の欠陥を正確に検出することができる。
また、本実施形態の検査装置10の信号処理部25では、モニタ系(21〜24)から出力される検知信号強度Sr,Sg,Sbを加味した計算式(式(7)〜式(9))によって、撮像素子20の撮像面における被検物体10Aの像の強度Γ(X,Y)と色度座標cx(X,Y),cy(X,Y)とを求めるため、照明光L1の分光特性(S(λ))が変化しても、被検物体10Aの表面の欠陥を正確に検出することができる。
At this time, in the inspection apparatus 10 of the present embodiment, illumination light incident on the object 10A is detected based on the detection signal intensities Sr, Sg, Sb from the three light receiving sensors 22-24 of the monitor system (21-24). Since changes in the intensity and spectral characteristics of L1 are monitored, even if the spectral characteristics (S (λ)) of the illumination light L1 change, it is possible to accurately detect defects on the surface of the test object 10A.
Further, in the signal processing unit 25 of the inspection apparatus 10 according to the present embodiment, calculation formulas (formulas (7) to (9)) in consideration of the detection signal intensities Sr, Sg, and Sb output from the monitor systems (21 to 24). ) To obtain the intensity Γ (X, Y) and chromaticity coordinates cx (X, Y), cy (X, Y) of the image of the object 10A to be examined on the imaging surface of the imaging device 20. Even if the spectral characteristics (S (λ)) change, it is possible to accurately detect defects on the surface of the object 10A.

さらに、本実施形態の検査装置10の信号処理部25では、補正値Hr(X,Y),Hg(X,Y),Hb(X,Y)を含む計算式(式(7)〜式(9))によって、検査用のデータ(Γ(X,Y),cx(X,Y),cy(X,Y))を求めるため、撮像素子20R,20G,20Bの分光感度特性Rr(λ),Rg(λ),Rb(λ)とモニタ系(21〜24)の分光感度特性ρr(λ),ρg(λ),ρb(λ)との相違分などが補正された正確な検査用のデータ(Γ(X,Y),cx(X,Y),cy(X,Y))を得ることができる。したがって、さらに正確な欠陥検査が可能となる。   Further, in the signal processing unit 25 of the inspection apparatus 10 according to the present embodiment, calculation formulas (expressions (7) to (7)) including correction values Hr (X, Y), Hg (X, Y), and Hb (X, Y). 9)) to obtain the inspection data (Γ (X, Y), cx (X, Y), cy (X, Y)), the spectral sensitivity characteristics Rr (λ) of the image sensors 20R, 20G, and 20B. , Rg (λ), Rb (λ) and the spectral sensitivity characteristics ρr (λ), ρg (λ), ρb (λ) of the monitor system (21 to 24) are corrected for accurate inspection. Data (Γ (X, Y), cx (X, Y), cy (X, Y)) can be obtained. Therefore, a more accurate defect inspection can be performed.

また、本実施形態の検査装置10では、検査用のデータとして色度座標cx(X,Y),cy(X,Y)を求めるため、欠陥の有無だけでなく、その種類の類推を行うこともできる。
なお、検査装置10の対物レンズ18と結像レンズ19を切り換えて、被検物体10Aの像の倍率を変更する場合には、各状態ごとに異なる補正値Hr(X,Y),Hg(X,Y),Hb(X,Y)を設定し、検査用のデータ(Γ(X,Y),cx(X,Y),cy(X,Y))を生成することが望ましい。
(第2実施形態)
第2実施形態の検査装置30は、図7に示す通り、図1のハーフミラー17と対物レンズ18に代えて、穴あきミラー31と対物レンズ32を設けたものである。対物レンズ32は、その外側に暗視野照明部3Aを有する。穴あきミラー31は、結像系(31,32,19)の光路10B外(つまり光路IL)(つまりコンデンサレンズ16側)から入射した輪帯状の照明光の一部(L4)を全反射して他の一部(L5)を開口部3Bからモニタ系(21〜24)へ透過する。
Further, in the inspection apparatus 10 of the present embodiment, in order to obtain the chromaticity coordinates cx (X, Y), cy (X, Y) as inspection data, not only the presence / absence of a defect, but also the kind of analogy is performed. You can also.
When changing the magnification of the image of the test object 10A by switching the objective lens 18 and the imaging lens 19 of the inspection apparatus 10, different correction values Hr (X, Y), Hg (X , Y), Hb (X, Y) are set to generate inspection data (Γ (X, Y), cx (X, Y), cy (X, Y)).
(Second Embodiment)
As shown in FIG. 7, the inspection device 30 of the second embodiment is provided with a perforated mirror 31 and an objective lens 32 instead of the half mirror 17 and the objective lens 18 of FIG. 1. The objective lens 32 has a dark field illumination unit 3A on the outside thereof. The perforated mirror 31 totally reflects a part (L4) of the annular illumination light incident from outside the optical path 10B (that is, the optical path IL) (that is, the condenser lens 16 side) of the imaging system (31, 32, 19). The other part (L5) is transmitted from the opening 3B to the monitor system (21 to 24).

その結果、対物レンズ32の暗視野照明部3Aには、穴あきミラー31で全反射した一部の照明光L4が導かれる。そして、照明系(12〜16,31,32)では、対物レンズ32の暗視野照明部3Aを介して被検物体10Aが暗視野照明される。被検物体10Aに入射する照明光L4の強度や分光特性の変化は、穴あきミラー31の開口部3Bを透過してモニタ系(21〜24)に入射する照明光L5によってモニタされる。   As a result, a part of the illumination light L4 totally reflected by the perforated mirror 31 is guided to the dark field illumination unit 3A of the objective lens 32. In the illumination system (12 to 16, 31, 32), the object to be examined 10A is illuminated in the dark field via the dark field illumination unit 3A of the objective lens 32. Changes in the intensity and spectral characteristics of the illumination light L4 incident on the test object 10A are monitored by the illumination light L5 transmitted through the opening 3B of the perforated mirror 31 and incident on the monitor system (21-24).

第2実施形態の検査装置30では、被検物体10Aを暗視野照明するため、被検物体10Aからの正反射光が結像系(31,32,19)に入射せず、被検物体10Aからの検査光のみを結像系(31,32,19)の中空ミラー31の開口部3Bを介して撮像素子20に導くことができる。このため、被検物体10Aの微細なパターンのエッジ部分を強調した像を得ることができる。   In the inspection apparatus 30 of the second embodiment, the object to be examined 10A is illuminated in the dark field, so the specularly reflected light from the object to be examined 10A does not enter the imaging system (31, 32, 19), and the object to be examined 10A. Only the inspection light from can be guided to the image sensor 20 through the opening 3B of the hollow mirror 31 of the imaging system (31, 32, 19). Therefore, it is possible to obtain an image in which the edge portion of the fine pattern of the test object 10A is emphasized.

また、第2実施形態の検査装置30でも、上記した第1実施形態の検査装置10と同様、モニタ系(21〜24)の3つの受光センサ22〜24からの検知信号強度Sr,Sg,Sbに基づいて、被検物体10Aに入射する照明光L4の強度や分光特性の変化をモニタするため、照明光L4の分光特性(S(λ))が変化しても、被検物体10Aの表面の欠陥を正確に検出することができる。   Also in the inspection apparatus 30 of the second embodiment, the detection signal intensities Sr, Sg, Sb from the three light receiving sensors 22-24 of the monitor system (21-24) are the same as the inspection apparatus 10 of the first embodiment described above. Therefore, even if the spectral characteristic (S (λ)) of the illumination light L4 changes, the surface of the test object 10A is monitored. It is possible to accurately detect defects.

さらに、上記の計算式(式(7)〜式(9))を用いることで、撮像素子20の撮像面における被検物体10Aの像の強度Γ(X,Y)と色度座標cx(X,Y),cy(X,Y)とを求めることもできる。この際、上記した明視野照明下での検査とは異なる補正値Hr(X,Y),Hg(X,Y),Hb(X,Y)を用いることが好ましい。補正値の相違分は、図1のハーフミラー17と対物レンズ18に代えて中空ミラー31と対物レンズ32を用いたことに起因する。   Furthermore, by using the above calculation formulas (formulas (7) to (9)), the intensity Γ (X, Y) of the image of the test object 10A on the imaging surface of the image sensor 20 and the chromaticity coordinates cx (X , Y), cy (X, Y). At this time, it is preferable to use correction values Hr (X, Y), Hg (X, Y), Hb (X, Y) different from those in the above-described inspection under bright field illumination. The difference between the correction values is due to the use of the hollow mirror 31 and the objective lens 32 instead of the half mirror 17 and the objective lens 18 of FIG.

また、第2実施形態のように、暗視野照明部3Aの付いた対物レンズ32を用いる場合、照明系のミラー部(落射プリズム)をハーフミラー17と穴あきミラー31とで切り替えることにより、通常の明視野照明と暗視野照明とを切り替えながら被検物体10Aの欠陥検査を行うことが可能である。
(変形例)
なお、上記した実施形態では、モニタ系(21〜24)を色分解プリズム21と受光センサ22〜24とで構成し、撮像系(20R,20G,20B,26)を色分解プリズム26と撮像素子20R,20G,20Bとで構成したが、本発明はこれに限定されない。例えば、撮像面上の画素それぞれに色分解フィルタを組み込んだ単板式の撮像素子を用いてもよい。このときモニタ系の分光感度特性は、撮像素子の分光感度となる。また、モニタ系(21〜24)に代えてカラー撮像素子(前述の単板式の撮像素子と同じ構成のもの)を用い、全R画素の撮像信号の合計を検知信号強度Srとし、全G画素,全B画素の撮像信号の合計を検知信号強度Sg,Sbとしても良い。この場合、各色成分ごとの検知信号強度Sr,Sg,Sbを同時に取り込むことができる。ただし受光センサの方が撮像素子より安価なため好ましい。
In addition, when the objective lens 32 with the dark field illumination unit 3A is used as in the second embodiment, the mirror unit (epi-illumination prism) of the illumination system is switched between the half mirror 17 and the perforated mirror 31 so that It is possible to inspect the defect of the object 10A while switching between bright field illumination and dark field illumination.
(Modification)
In the above-described embodiment, the monitor system (21 to 24) includes the color separation prism 21 and the light receiving sensors 22 to 24, and the imaging system (20R, 20G, 20B, 26) includes the color separation prism 26 and the image sensor. Although comprised with 20R, 20G, and 20B, this invention is not limited to this. For example, a single-plate image sensor in which a color separation filter is incorporated in each pixel on the imaging surface may be used. At this time, the spectral sensitivity characteristic of the monitor system is the spectral sensitivity of the image sensor. Further, instead of the monitor system (21 to 24), a color image pickup device (having the same configuration as the above-described single-plate image pickup device) is used, and the sum of the image pickup signals of all R pixels is set as a detection signal intensity Sr, , The total of the imaging signals of all B pixels may be used as the detection signal strengths Sg and Sb. In this case, the detection signal intensities Sr, Sg, Sb for each color component can be taken in simultaneously. However, the light receiving sensor is preferable because it is less expensive than the image sensor.

また、色分解プリズム21,26を用いる代わりに、3つの受光センサ(RGB)の各々の前面に所定の分光透過特性を有するフィルタを配置し、3つの受光センサを光路上に順に配置することで、各色成分ごとの検知信号強度Sr,Sg,Sbを時系列の順に取り込んでもよい。
さらに、モニタ系(21〜24)の代わりに1つの受光センサを設け、この受光センサの前面で、ターレットに設けたRGBフィルタ(それぞれ所定のフィルタの分光透過率を持ち受光センサの分光感度特性と合わせてモニタ系の分光感度特性となる)を順に光路上に配置することで、各色成分ごとの検知信号強度Sr,Sg,Sbを時系列の順に取り込んでもよい。
Further, instead of using the color separation prisms 21 and 26, a filter having a predetermined spectral transmission characteristic is disposed on the front surface of each of the three light receiving sensors (RGB), and the three light receiving sensors are sequentially disposed on the optical path. The detection signal intensities Sr, Sg, and Sb for each color component may be taken in the order of time series.
Further, instead of the monitor system (21 to 24), one light receiving sensor is provided, and an RGB filter (each having a predetermined filter spectral transmittance and a spectral sensitivity characteristic of the light receiving sensor) is provided in front of the light receiving sensor. In addition, the detection signal intensities Sr, Sg, and Sb for each color component may be taken in the order of time series by sequentially arranging the spectral sensitivity characteristics of the monitor system on the optical path.

また、光源11からハーフミラー17(または中空ミラー31)までの照明光路の途中(例えばフィルタ13の近傍位置)で、上記と同様のターレットに設けたRGBフィルタを順に光路上に配置し、1つの受光センサからの検知信号強度に基づいて、各色成分ごとの検知信号強度Sr,Sg,Sbを時系列の順に取り込んでもよい。この場合、結像系の撮像素子20からも時系列の順に各色成分ごとの撮像信号Tr(X,Y),Tg(X,Y),Tb(X,Y)を取り込むことになる。   Further, in the middle of the illumination optical path from the light source 11 to the half mirror 17 (or the hollow mirror 31) (for example, in the vicinity of the filter 13), RGB filters provided in the turret similar to the above are sequentially arranged on the optical path. Based on the detection signal intensity from the light receiving sensor, the detection signal intensity Sr, Sg, Sb for each color component may be taken in the order of time series. In this case, the image pickup signals Tr (X, Y), Tg (X, Y), and Tb (X, Y) for each color component are taken in from the image pickup device 20 of the imaging system in the order of time series.

さらに、上記した実施形態では、分光特性の異なる2枚のダイクロイックミラーと3枚のモノクロ撮像素子を設ける場合(3板式)にも本発明を適用できる。2枚のダイクロイックミラーのうち、一方の分光特性は、主に青色成分を反射して緑色成分と赤色成分を透過する。他方の分光特性は、主に緑色成分を反射して赤色成分を透過する。
また、上記した実施形態では、モニタ系の受光部をハーフミラー17(または中空ミラー31)の後段に設け、被検物体10Aの照明に寄与しない不要な光をモニタ用に取り込む例を説明したが、本発明はこれに限定されない。光源11からハーフミラー17(または中空ミラー31)までの照明光路の途中で、一部の照明光を分岐させ、その光路上にモニタ系の受光部を配置してもよい。
Furthermore, in the above-described embodiment, the present invention can also be applied to a case where two dichroic mirrors and three monochrome imaging elements having different spectral characteristics are provided (three-plate type). One spectral characteristic of the two dichroic mirrors mainly reflects the blue component and transmits the green and red components. The other spectral characteristic mainly reflects the green component and transmits the red component.
Further, in the above-described embodiment, an example in which the light receiving unit of the monitor system is provided at the rear stage of the half mirror 17 (or the hollow mirror 31) and unnecessary light that does not contribute to the illumination of the test object 10A is taken in for monitoring. However, the present invention is not limited to this. A part of the illumination light may be branched in the middle of the illumination optical path from the light source 11 to the half mirror 17 (or the hollow mirror 31), and a monitor light receiving unit may be arranged on the optical path.

さらに、上記した実施形態では、モニタ結果(各色成分ごとの検知信号強度Sr,Sg,Sb)を加味した信号処理によって検査用のデータ(像強度Γ(X,Y)と色度座標cx(X,Y),cy(X,Y))を補正する例を説明したが、本発明はこれに限定されない。モニタ結果(各色成分ごとの検知信号強度Sr,Sg,Sb)に基づいて光源11に供給する電流値をフィードバック制御し、照明光L1,L4の分光特性を一定に保つようにしてもよい。この場合、照明光L1,L4の強度の調整をNDフィルタによって行うことが好ましい。   Furthermore, in the above-described embodiment, the inspection data (image intensity Γ (X, Y) and chromaticity coordinates cx (X) are obtained by signal processing that takes into account the monitoring results (detection signal intensity Sr, Sg, Sb for each color component). , Y), cy (X, Y)) has been described as an example, but the present invention is not limited to this. The current value supplied to the light source 11 may be feedback controlled based on the monitor result (detection signal intensity Sr, Sg, Sb for each color component) to keep the spectral characteristics of the illumination lights L1, L4 constant. In this case, it is preferable to adjust the intensity of the illumination lights L1 and L4 using an ND filter.

また、上記した実施形態では、可視域の白色光を照明光として出射する光源11(ハロゲンランプなど)を例に説明したが、本発明はこれに限らない。可視域以外の照明光を出射する光源(例えば紫外域の水銀ランプ)を用いる場合にも、本発明を適用できる。   In the above-described embodiment, the light source 11 (such as a halogen lamp) that emits white light in the visible range as illumination light has been described as an example, but the present invention is not limited thereto. The present invention can also be applied to the case of using a light source that emits illumination light other than the visible range (for example, a mercury lamp in the ultraviolet range).

第1実施形態の検査装置10の構成を示す図である。It is a figure which shows the structure of the test | inspection apparatus 10 of 1st Embodiment. 照明光L1の分光特性S(λ)を示す図である。It is a figure which shows the spectral characteristic S ((lambda)) of the illumination light L1. 色分解プリズム21の分光感度特性ρr(λ),ρg(λ),ρb(λ)を示す図である。FIG. 6 is a diagram showing spectral sensitivity characteristics ρr (λ), ρg (λ), and ρb (λ) of the color separation prism 21. 被検物体10A上の点(u,v)の分光反射特性Γuv(λ)を示す図である。It is a figure which shows the spectral reflection characteristic (GAMMA) uv ((lambda)) of the point (u, v) on to-be-tested object 10A. 撮像素子20の撮像面の点(X,Y)における分光特性を示す図である。3 is a diagram illustrating spectral characteristics at a point (X, Y) on the imaging surface of the imaging element 20. FIG. 撮像素子20の各画素への入射光(赤緑青)の分光特性を示す図である。3 is a diagram illustrating spectral characteristics of incident light (red, green, and blue) on each pixel of the image sensor 20. FIG. 第2実施形態の検査装置30の構成を示す図である。It is a figure which shows the structure of the test | inspection apparatus 30 of 2nd Embodiment.

符号の説明Explanation of symbols

10,30 検査装置
11 光源
12a コレクタレンズ
12b リレーレンズ
13 フィルタ
14 開口絞り
15 視野絞り
16 コンデンサレンズ
17 ハーフミラー
18,32 対物レンズ
19 結像レンズ
20 撮像素子
21 色分解フィルタ
22〜24 受光センサ
25 信号処理部
31 中空ミラー
3A 暗視野照明部
3B 開口部
DESCRIPTION OF SYMBOLS 10,30 Inspection apparatus 11 Light source 12a Collector lens 12b Relay lens 13 Filter 14 Aperture stop 15 Field stop 16 Condenser lens 17 Half mirror 18, 32 Objective lens 19 Imaging lens 20 Imaging element 21 Color separation filter 22-24 Light receiving sensor 25 Signal Processing unit 31 Hollow mirror 3A Dark field illumination unit 3B Opening

Claims (4)

光源からの照明光を被検物体に照射する照明手段と、
前記照明光が照射された前記被検物体の像を形成する結像手段と、
前記被検物体の像を複数の色成分に分解して各色成分ごとに撮像する撮像手段と、
前記照明光を複数の色成分に分解して各色成分ごとに検知する検知手段とを備えた
ことを特徴とする検査装置。
Illuminating means for illuminating the object to be examined with illumination light from a light source;
An image forming means for forming an image of the object to be examined irradiated with the illumination light;
Imaging means for decomposing the image of the test object into a plurality of color components and imaging each color component;
An inspection apparatus comprising: a detection unit that decomposes the illumination light into a plurality of color components and detects each of the color components.
請求項1に記載の検査装置において、
前記結像手段の光路上には、前記被検物体からの検査光を透過すると共に、前記光路外からの前記照明光の一部を反射して他の一部を透過する光学部材が配置され、
前記結像手段は、前記光学部材を透過した前記検査光に基づいて前記像を形成し、
前記照明手段は、前記光学部材で反射した前記照明光の一部を前記被検物体に照射し、
前記検知手段は、前記光学部材を透過した前記照明光の他の一部を複数の色成分に分解して各色成分ごとに検知する
ことを特徴とする検査装置。
The inspection apparatus according to claim 1,
An optical member that transmits the inspection light from the object to be inspected and reflects a part of the illumination light from the outside of the optical path and transmits the other part is disposed on the optical path of the imaging means. ,
The imaging means forms the image based on the inspection light transmitted through the optical member,
The illumination means irradiates a part of the illumination light reflected by the optical member onto the object to be examined.
The detection device is configured to detect another color component by separating another part of the illumination light transmitted through the optical member into a plurality of color components.
請求項1または請求項2に記載の検査装置において、
前記撮像手段から出力される各色成分ごとの撮像信号と、前記検知手段から出力される各色成分ごとの検知信号とに基づいて、検査用のデータを生成する生成手段を備えた
ことを特徴とする検査装置。
The inspection apparatus according to claim 1 or 2,
The image processing apparatus includes a generation unit that generates inspection data based on an imaging signal for each color component output from the imaging unit and a detection signal for each color component output from the detection unit. Inspection device.
請求項3に記載の検査装置において、
前記生成手段は、前記被検物体の像の色度座標を前記データとして生成する
ことを特徴とする検査装置。
The inspection apparatus according to claim 3,
The generating device generates chromaticity coordinates of the image of the test object as the data.
JP2004296654A 2004-10-08 2004-10-08 Inspection apparatus Pending JP2006105926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004296654A JP2006105926A (en) 2004-10-08 2004-10-08 Inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004296654A JP2006105926A (en) 2004-10-08 2004-10-08 Inspection apparatus

Publications (1)

Publication Number Publication Date
JP2006105926A true JP2006105926A (en) 2006-04-20

Family

ID=36375829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004296654A Pending JP2006105926A (en) 2004-10-08 2004-10-08 Inspection apparatus

Country Status (1)

Country Link
JP (1) JP2006105926A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112939A (en) * 2004-10-15 2006-04-27 Nikon Corp Flaw inspection device
CN100421453C (en) * 2006-11-30 2008-09-24 华南理工大学 L-shaped twin-lens image collecting device used for paste solder printing
JP2008256671A (en) * 2006-12-05 2008-10-23 Hoya Corp Photomask detecting device, photomask detecting method, method of manufacturing photomask for liquid crystal device, and pattern transferring method
JP2009150832A (en) * 2007-12-21 2009-07-09 Hitachi Ltd Method and device for inspecting pattern on hard disk medium
TWI422962B (en) * 2006-12-05 2014-01-11 Hoya Corp Gray tone mask inspecting method, method of producing a gray tone mask for use in manufacturing a liquid crystal device and pattern transferring method
JP2014089156A (en) * 2012-10-31 2014-05-15 Toyota Motor Corp Visual inspection method
JP2019020259A (en) * 2017-07-18 2019-02-07 聯一光學工業股▲ふん▼有限公司 Infrared reflection light measurement device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118815A (en) * 1991-10-25 1993-05-14 Toyoda Mach Works Ltd Optical measuring apparatus
JPH05203495A (en) * 1992-01-27 1993-08-10 Juki Corp Color meter and color measuring method for color meter
JPH07159333A (en) * 1993-12-03 1995-06-23 Hitachi Ltd Apparatus and method for inspection of appearance
JPH085571A (en) * 1994-06-21 1996-01-12 New Kurieishiyon:Kk Inspection equipment
JPH10221036A (en) * 1997-02-07 1998-08-21 Hitachi Ltd Method and apparatus for automatically identifying kind of part
JPH11101692A (en) * 1997-09-29 1999-04-13 Shimadzu Corp Spectroscopic colorimeter
JP2002005846A (en) * 2000-06-20 2002-01-09 Tokimec Inc Defect inspecting apparatus
JP2002014052A (en) * 2000-06-27 2002-01-18 Sony Corp Inspection equipment
JP2004170109A (en) * 2002-11-18 2004-06-17 Matsushita Electric Ind Co Ltd Apparatus and method for inspecting irregular color

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118815A (en) * 1991-10-25 1993-05-14 Toyoda Mach Works Ltd Optical measuring apparatus
JPH05203495A (en) * 1992-01-27 1993-08-10 Juki Corp Color meter and color measuring method for color meter
JPH07159333A (en) * 1993-12-03 1995-06-23 Hitachi Ltd Apparatus and method for inspection of appearance
JPH085571A (en) * 1994-06-21 1996-01-12 New Kurieishiyon:Kk Inspection equipment
JPH10221036A (en) * 1997-02-07 1998-08-21 Hitachi Ltd Method and apparatus for automatically identifying kind of part
JPH11101692A (en) * 1997-09-29 1999-04-13 Shimadzu Corp Spectroscopic colorimeter
JP2002005846A (en) * 2000-06-20 2002-01-09 Tokimec Inc Defect inspecting apparatus
JP2002014052A (en) * 2000-06-27 2002-01-18 Sony Corp Inspection equipment
JP2004170109A (en) * 2002-11-18 2004-06-17 Matsushita Electric Ind Co Ltd Apparatus and method for inspecting irregular color

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112939A (en) * 2004-10-15 2006-04-27 Nikon Corp Flaw inspection device
CN100421453C (en) * 2006-11-30 2008-09-24 华南理工大学 L-shaped twin-lens image collecting device used for paste solder printing
JP2008256671A (en) * 2006-12-05 2008-10-23 Hoya Corp Photomask detecting device, photomask detecting method, method of manufacturing photomask for liquid crystal device, and pattern transferring method
TWI407248B (en) * 2006-12-05 2013-09-01 Hoya Corp Photomask inspecting apparatus, photomask inspecting method, method of producing a photomask for use in manufacturing a liquid crystal device and pattern transferring method
TWI422962B (en) * 2006-12-05 2014-01-11 Hoya Corp Gray tone mask inspecting method, method of producing a gray tone mask for use in manufacturing a liquid crystal device and pattern transferring method
KR101364366B1 (en) 2006-12-05 2014-02-18 호야 가부시키가이샤 Apparatus and method for inspecting photomask, method for manufacturing photomask for liquid crystal device fabrication and method for transferring pattern
JP2009150832A (en) * 2007-12-21 2009-07-09 Hitachi Ltd Method and device for inspecting pattern on hard disk medium
JP2014089156A (en) * 2012-10-31 2014-05-15 Toyota Motor Corp Visual inspection method
JP2019020259A (en) * 2017-07-18 2019-02-07 聯一光學工業股▲ふん▼有限公司 Infrared reflection light measurement device

Similar Documents

Publication Publication Date Title
US6346966B1 (en) Image acquisition system for machine vision applications
JPH11237344A (en) Method and apparatus for inspection of defect
JPH08128916A (en) Oil leak detection device
JP3893922B2 (en) Lens evaluation method and lens evaluation apparatus
KR20100110321A (en) Inspecting apparatus and inspecting method
US20130063721A1 (en) Pattern inspection apparatus and method
US6760096B2 (en) Lens-evaluating method and lens-evaluating apparatus
JPH095252A (en) Inspecting equipment of foreign substance on mask
JP4332656B2 (en) Defect inspection method and defect inspection apparatus
WO2009133849A1 (en) Inspection device
JP2007327896A (en) Inspection device
JP2004022797A (en) Device and method for detecting position of mark
JP5890953B2 (en) Inspection device
JP2006105926A (en) Inspection apparatus
JP2718510B2 (en) Inspection method of colored periodic pattern
JP3956942B2 (en) Defect inspection method and apparatus
US20120069335A1 (en) Surface inspecting apparatus and surface inspecting method
JP2006220578A (en) Surface inspecting apparatus
JPH0157282B2 (en)
WO2021161684A1 (en) Imaging unit and measurement device
JP2008032951A (en) Optical device
JPH0943097A (en) Color filter defect inspection device
JP2011075280A (en) Inspection device and inspection method
JP2000258348A (en) Defect inspection apparatus
JPH09311108A (en) Defect inspecting device and defect inspecting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525