JP2006105208A - Double row automatic aligning roller bearing and wind power generator main shaft support device - Google Patents

Double row automatic aligning roller bearing and wind power generator main shaft support device Download PDF

Info

Publication number
JP2006105208A
JP2006105208A JP2004290240A JP2004290240A JP2006105208A JP 2006105208 A JP2006105208 A JP 2006105208A JP 2004290240 A JP2004290240 A JP 2004290240A JP 2004290240 A JP2004290240 A JP 2004290240A JP 2006105208 A JP2006105208 A JP 2006105208A
Authority
JP
Japan
Prior art keywords
roller
spherical
row
double
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004290240A
Other languages
Japanese (ja)
Inventor
Nobuyuki Mori
信之 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004290240A priority Critical patent/JP2006105208A/en
Priority to PCT/JP2005/017277 priority patent/WO2006033320A1/en
Priority to US11/663,162 priority patent/US7922396B2/en
Publication of JP2006105208A publication Critical patent/JP2006105208A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a double row automatic aligning roller bearing which achieves long service life of a spherical roller having high load during utilization. <P>SOLUTION: An inner ring 20 has a middle collar 21. End surfaces 11a, 12a of the respective spherical rollers 11, 12 have a protruded spherical shape. In the middle collar 21, one side surface 21b has a recessed curve shape fitted to the protruded spherical shape of the spherical roller 12. The other side surface 21a has a flat surface. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、複列自動調心ころ軸受に関し、特に左右の列の球面ころに不均等な荷重が作用する複列自動調心ころ軸受およびそのような軸受を備えた風力発電機の主軸支持構造に関するものである。   The present invention relates to a double-row spherical roller bearing, and more particularly to a double-row spherical roller bearing in which an uneven load is applied to the left and right rows of spherical rollers, and a main shaft support structure of a wind power generator having such a bearing. It is about.

近年、クリーンで無尽蔵なエネルギを利用できる風力発電が注目されている。大型の風力発電設備では、風車を備えた発電機本体が地上から数十mの高さに設置されているので、風車のブレードの主軸を支持する軸受の保守には大変な労力と危険が伴う。そのため、風力発電機の主軸を支持する軸受には、高い信頼性と耐久寿命が要求される。   In recent years, wind power generation that can use clean and inexhaustible energy has attracted attention. In a large-scale wind power generation facility, the generator body equipped with a windmill is installed at a height of several tens of meters from the ground, so maintenance of the bearing that supports the main shaft of the windmill blade involves great effort and danger. . For this reason, a bearing that supports the main shaft of the wind power generator is required to have high reliability and durability.

風力発電機の主軸を回転自在に支持するのに好適な自動調心ころ軸受は、例えば特開2004−11737号公報(特許文献1)に開示されている。この公報に開示されているように、大型の風力発電機における主軸用軸受には、図1に示すような大型の複列自動調心ころ軸受1が用いられることが多い。   A self-aligning roller bearing suitable for rotatably supporting a main shaft of a wind power generator is disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-11737 (Patent Document 1). As disclosed in this publication, a large double row self-aligning roller bearing 1 as shown in FIG. 1 is often used for a main shaft bearing in a large wind power generator.

風力発電機の風車の主軸2は、ブレード3が設けられた先端側を片持ち支持するようにハウジング4に取り付けられるので、その片持ち支持用の軸受として、通常、主軸2の撓みに対応可能な大型の自動調心ころ軸受1が使用される。ブレード3が風力を受けると、主軸2がブレード3とともに回転する。この主軸2の回転は、増速機(図示せず)で増速されて発電機に伝達され、発電する。   Since the main shaft 2 of the wind turbine of the wind power generator is attached to the housing 4 so as to support the tip end side where the blade 3 is provided, the main shaft 2 can normally support the bending of the main shaft 2 as a bearing for the cantilever support. A large spherical roller bearing 1 is used. When the blade 3 receives wind force, the main shaft 2 rotates together with the blade 3. The rotation of the main shaft 2 is increased by a speed increaser (not shown) and transmitted to the generator to generate power.

自動調心ころ軸受1は、内輪5と、外輪6と、複列の球面ころ7,8とを備える。風を受けて発電しているとき、ブレード3を支える主軸2には、ブレード3にかかる風力による軸方向荷重(軸受スラスト荷重)と、ブレード軸の自重による径方向荷重(軸受ラジアル荷重)が負荷される。複列自動調心ころ軸受1は、ラジアル荷重とスラスト荷重とを同時に受けることができ、かつ調心性をもつため、ハウジング4の精度誤差や、取り付け誤差による主軸2の傾きを吸収でき、かつ運転中の主軸2の撓みを吸収できる。   The self-aligning roller bearing 1 includes an inner ring 5, an outer ring 6, and double-row spherical rollers 7 and 8. When power is generated by receiving wind, the main shaft 2 supporting the blade 3 is loaded with an axial load (bearing thrust load) caused by the wind force applied to the blade 3 and a radial load (bearing radial load) due to the blade shaft's own weight. Is done. The double-row self-aligning roller bearing 1 can receive both a radial load and a thrust load at the same time, and has a self-aligning property, so that it can absorb the accuracy error of the housing 4 and the inclination of the spindle 2 due to the mounting error, and can be operated. The bending of the inner main shaft 2 can be absorbed.

図1に示した内輪5は、左右の列の球面ころ7,8の端面7a,8aに当接する中鍔9を有している。通常、球面ころ7,8のスキューを防止するために、球面ころ7,8の端面を凸状の球面形状とした場合、中鍔9の両側面を球面ころの凸状球面形状に適合する凹状湾曲面とすることによって両者の接触面積を増大している。
特開2004−11737号公報
The inner ring 5 shown in FIG. 1 has a center flange 9 that comes into contact with the end faces 7a and 8a of the spherical rollers 7 and 8 in the left and right rows. Usually, in order to prevent the skew of the spherical rollers 7 and 8, when the end surfaces of the spherical rollers 7 and 8 are convex spherical shapes, both side surfaces of the center flange 9 are concave shapes that fit the convex spherical shape of the spherical rollers. The curved contact surface increases the contact area between the two.
Japanese Patent Application Laid-Open No. 2004-11737

上記の風力発電機の主軸支持用の複列自動調心ころ軸受1では、風車の回転中はラジアル荷重に対してスラスト荷重が大きくなる。この場合、複列の球面ころ7,8のうち、ブレード3から遠い方の列の球面ころ8が、ラジアル荷重とスラスト荷重とを同時に受けることになる。ブレード3に近い方の列の球面ころ7については、スラスト荷重があまりかからず、もっぱらラジアル荷重を受けることになる。   In the double-row self-aligning roller bearing 1 for supporting the main shaft of the wind power generator described above, the thrust load becomes larger than the radial load during the rotation of the wind turbine. In this case, of the double-row spherical rollers 7 and 8, the spherical roller 8 in the row farther from the blade 3 receives the radial load and the thrust load at the same time. For the spherical rollers 7 in the row closer to the blade 3, the thrust load is not so much, and only the radial load is received.

一方、無風状態においては、主軸支持用軸受1にかかる荷重はもっぱらラジアル荷重となる。そのため、ブレード3に近い方の列の球面ころ7については、風車の回転中よりも、風車が回転しない無風状態のときの方が大きなラジアル荷重を受けることになる。   On the other hand, in a windless state, the load applied to the spindle support bearing 1 is exclusively a radial load. Therefore, the spherical rollers 7 in the row closer to the blade 3 receive a larger radial load when the windmill is not rotating than when the windmill is rotating.

上記のように、風力発電機の主軸支持用複列自動調心ころ軸受1の場合、ブレード3から遠い方の列の球面ころ8の負荷が大きくなるので、ブレード3に近い方の列の球面ころ7に比べて転がり疲労寿命が短くなる。特に、内輪5の中鍔9の側面と球面ころ8の端面とは凸状球面形状と凹状湾曲面とを接触させているので、接触面圧が大きくなり、摩擦抵抗が発生し接触部の回転トルクが大きくなる。さらに、接触位置が中鍔側面の上側になるため、接触だ円が切れて上端部にエッジ応力が発生し、この部分における早期摩耗や、剥離等の問題が生じる可能性が高くなる。   As described above, in the case of the double row self-aligning roller bearing 1 for supporting the main shaft of the wind power generator, the load on the spherical roller 8 in the row farther from the blade 3 is increased, so that the spherical surface in the row closer to the blade 3 is used. Compared with the roller 7, the rolling fatigue life is shortened. In particular, since the convex spherical surface and the concave curved surface are in contact with the side surface of the inner ring 9 of the inner ring 5 and the end surface of the spherical roller 8, the contact surface pressure increases, frictional resistance is generated, and the contact portion rotates. Torque increases. Furthermore, since the contact position is on the upper side of the middle flange, the contact ellipse is cut and edge stress is generated at the upper end portion, and there is a high possibility that problems such as premature wear and peeling will occur in this portion.

一方、ブレード3に近い方の列の球面ころ7では軽負荷となり、球面ころ7と内外輪5,6の軌道面5a,6aとの間で滑りを生じ、表面損傷や摩耗の問題を引き起こす。大きな荷重に対応するために軸受サイズを大きくすることが考えられるが、軽負荷側では余裕が大きくなりすぎ、不経済である。   On the other hand, the spherical rollers 7 in the row closer to the blade 3 are lightly loaded, causing slippage between the spherical rollers 7 and the raceway surfaces 5a and 6a of the inner and outer rings 5 and 6, causing surface damage and wear problems. Although it is conceivable to increase the bearing size in order to cope with a large load, the margin becomes too large on the light load side, which is uneconomical.

この発明の目的は、特に高負荷となる球面ころの寿命を延ばすことのできる複列自動調心ころ軸受を提供することである。   An object of the present invention is to provide a double row self-aligning roller bearing capable of extending the life of a spherical roller that is particularly subjected to a high load.

この発明の他の目的は、負荷に応じた適正なころの支持が各列で行なえて、実質寿命を延長することができ、また材料に無駄のない経済的な複列自動調心ころ軸受およびこの軸受を用いた風力発電機の主軸支持構造を提供することである。   Another object of the present invention is to provide an economical double-row self-aligning roller bearing that can support the appropriate rollers according to the load in each row, extend the actual life, and has no waste of materials. A main shaft support structure for a wind power generator using this bearing is provided.

この発明に従った複列自動調心ころ軸受は、内輪と外輪との間に複列に球面ころを配置したものであって、次のことを特徴とする。すなわち、内輪は複列の球面ころの端面に当接する中鍔を有する。中鍔に当接する各球面ころの端面は凸状の球面形状を有しており、中鍔は、複列の球面ころの端面に当接する両側面のうち、少なくとも一方の側面が平坦な面を有している。   The double-row self-aligning roller bearing according to the present invention has spherical rollers arranged in a double row between an inner ring and an outer ring, and is characterized by the following. That is, the inner ring has a center flange that abuts against the end faces of the double-row spherical rollers. The end surface of each spherical roller in contact with the center flange has a convex spherical shape, and at least one of the side surfaces in contact with the end surface of the double row spherical roller has a flat surface. Have.

上記の構成によれば、中鍔の平坦な側面と球面ころとは点接触となるので、接触面積が小さくなるため摩擦抵抗が減少し、低トルクとなる。従って、使用時に高負荷となる球面ころの寿命を延ばすことができる。   According to the above configuration, since the flat side surface of the center and the spherical roller are in point contact, the contact area is reduced, so that the frictional resistance is reduced and the torque is reduced. Therefore, it is possible to extend the life of the spherical roller that is highly loaded during use.

一つの実施形態では、中鍔は、その一方側面が、球面ころの凸状球面形状に適合する凹状湾曲面を有し、他方側面が平坦な面を有している。この実施形態によれば、中鍔の凹状湾曲面に当接する一方列の球面ころに対しては接触面積を大きくし、中鍔上端部でころと接するため、幅広くころを拘束することができることにより、スキューを効果的に抑制し、中鍔の平坦な側面に当接する他方列の球面ころに対しては点接触にして摩擦抵抗を低下させる。   In one embodiment, the intermediate flange has a concave curved surface that matches the convex spherical shape of the spherical roller on one side surface, and a flat surface on the other side surface. According to this embodiment, the contact area is increased for one row of spherical rollers in contact with the concave curved surface of the center collar, and the rollers are constrained widely because they contact the roller at the upper end of the center collar. The skew is effectively suppressed, and the frictional resistance is reduced by making point contact with the spherical roller in the other row contacting the flat side surface of the center.

上記の実施形態において、好ましくは、中鍔の凹状湾曲面に当接する一方の球面ころは、中鍔の平坦な面に当接する他方の球面ころよりも、小さなころ長さを有している。このように左右の列の球面ころのころ長さを異ならせるようにすれば、それぞれの球面ころの負荷容量が異なったものとなる。従って、負荷容量が大きくなる列にころ長さが大きな球面ころを用い、軽負荷側の列にころ長さの小さな球面ころを用いれば、負荷に応じた適正な支持が各列で行なえる。ころ長さを小さくすればころのスキューが生じ易くなるが、ころ長さの小さな球面ころと中鍔の側面とを大きな接触幅で当接させることによりスキューを効果的に抑制できる。   In the above-described embodiment, preferably, one spherical roller that contacts the concave curved surface of the center has a smaller roller length than the other spherical roller that contacts the flat surface of the center. In this way, if the roller lengths of the left and right rows of spherical rollers are made different, the load capacities of the respective spherical rollers will be different. Therefore, if a spherical roller having a large roller length is used for a row having a large load capacity and a spherical roller having a small roller length is used for a row on the light load side, proper support corresponding to the load can be performed in each row. If the roller length is reduced, the roller skew is likely to occur. However, the skew can be effectively suppressed by bringing the spherical roller having a small roller length into contact with the side surface of the center with a large contact width.

球面ころとしては、ころの最大径の位置がころ長さの中央に位置する対称ころでもよいし、ころの最大径の位置がころ長さの中央から外れている非対称ころでもよい。ころの最大径の位置がころ長さの中央よりも中鍔側にずれている非対称ころであれば、使用時にころを中鍔側に押圧する力の成分が生じるので、ころのスキューを効果的に抑制できる。   The spherical roller may be a symmetric roller in which the position of the maximum diameter of the roller is located at the center of the roller length, or an asymmetric roller in which the position of the maximum diameter of the roller is deviated from the center of the roller length. If the position of the maximum roller diameter is an asymmetrical roller that is shifted to the center side from the center of the roller length, a component of the force that presses the roller to the center side during use will be generated, so the roller skew is effective. Can be suppressed.

好ましくは、平坦な面を有する中鍔の側面の高さは、この側面と球面ころの端面との接触面に生ずる接触だ円の該高さ方向における直径よりも大きくされている。このような高さ寸法を有する中鍔であれば、使用時の荷重に十分耐えることができるようなる。   Preferably, the height of the side surface of the center flange having a flat surface is larger than the diameter in the height direction of the contact ellipse formed on the contact surface between the side surface and the end surface of the spherical roller. If it is a middle rod having such a height dimension, it can sufficiently withstand the load during use.

上記の特徴を有する複列自動調心ころ軸受は、例えば、左右の列の球面ころに不均等な荷重が作用する用途に使用される。   The double-row self-aligning roller bearing having the above-described features is used, for example, in applications in which uneven loads act on the left and right rows of spherical rollers.

この発明に従った風力発電機の主軸支持構造は、風力を受けるブレードと、その一端がブレードに固定され、ブレードとともに回転する主軸と、固定部材に組込まれ、主軸を回転自在に支持する複列自動調心ころ軸受とを備える。複列自動調心ころ軸受は、内輪と、外輪と、複列の球面ころとを備える。内輪は、複列の球面ころの端面に当接する中鍔を有する。中鍔に当接する各球面ころの端面は凸状の球面形状を有している。中鍔は、その一方側面が、球面ころの凸状球面形状に適合する凹状湾曲面を有し、他方側面が平坦な面を有している。   A main shaft support structure of a wind power generator according to the present invention includes a blade that receives wind power, a main shaft that is fixed to the blade and rotating together with the blade, and a double row that is incorporated in a fixed member and rotatably supports the main shaft. Spherical roller bearings are provided. The double row spherical roller bearing includes an inner ring, an outer ring, and a double row spherical roller. The inner ring has a center flange that abuts against the end faces of the double-row spherical rollers. The end face of each spherical roller in contact with the center has a convex spherical shape. One side surface of the intermediate collar has a concave curved surface that conforms to the convex spherical shape of the spherical roller, and the other side surface has a flat surface.

上記構成の風力発電機の主軸支持構造では、高負荷側の列の球面ころと中鍔とがより低いトルクで接触し、低負荷側の列の球面ころと中鍔とがより大きな接触面積で接触することになるので、各列に対して負荷に応じた適正な支持を行なうことができる。   In the main shaft support structure of the wind power generator configured as described above, the spherical roller and the center of the high load side contact with lower torque, and the spherical roller and the center of the lower load side have a larger contact area. Since they come into contact with each other, it is possible to properly support each row according to the load.

以上のように、この発明に従った複列自動調心ころ軸受によれば、中鍔の平坦な側面と球面ころとを点接触となるように構成しているので、両者の接触面圧が低下し低トルクとなる。また、平坦な側面の場合、角度により接触点の位置をコントロールし易いというメリットがある。中鍔への負荷が大きくても接触だ円を中鍔側面から外れないようにすることができるため、エッジ応力の発生を防ぐことができる。こうして、使用時に高負荷となる球面ころの寿命を延ばすことができる。   As described above, according to the double-row self-aligning roller bearing according to the present invention, the flat side surface of the center and the spherical roller are configured to be in point contact with each other. Lowers and lowers torque. Further, in the case of a flat side surface, there is an advantage that the position of the contact point can be easily controlled by the angle. Since it is possible to prevent the contact ellipse from coming off from the side surface of the middle collar even when the load on the middle collar is large, the generation of edge stress can be prevented. In this way, the life of the spherical roller that becomes a high load during use can be extended.

この発明によれば、負荷に応じた適正な支持が各列で行なえて、実質寿命を延長することができる。このような複列自動調心ころ軸受を風力発電機の主軸支持構造に適用することにより、主軸に作用する特性に応じた適正な支持を行なえるので、信頼性が高く、長寿命の主軸支持構造が得られる。   According to the present invention, proper support according to the load can be provided in each row, and the substantial life can be extended. By applying such a double-row spherical roller bearing to the main shaft support structure of a wind power generator, it is possible to provide proper support according to the characteristics acting on the main shaft, so the main shaft support has high reliability and long life. A structure is obtained.

図2および図3を参照して、この発明の一実施形態に係る複列自動調心ころ軸受を説明する。   With reference to FIG. 2 and FIG. 3, the double row self-aligning roller bearing which concerns on one Embodiment of this invention is demonstrated.

複列自動調心ころ軸受10は、内輪20と、外輪30と、両軌道輪の間に複列に配置した球面ころ11,12と、これらの球面ころ11,12を保持する保持器13とを備える。保持器13は、各列毎に別個に設けられたものである。外輪30の軌道面30aは球面状に形成されており、各列の球面ころ11,12の外周面は、外輪30の軌道面30aに沿う球面形状を有している。   The double-row self-aligning roller bearing 10 includes an inner ring 20, an outer ring 30, spherical rollers 11 and 12 arranged in a double row between both race rings, and a cage 13 that holds these spherical rollers 11 and 12. Is provided. The cage 13 is provided separately for each column. The raceway surface 30 a of the outer ring 30 is formed in a spherical shape, and the outer peripheral surfaces of the spherical rollers 11 and 12 in each row have a spherical shape along the raceway surface 30 a of the outer ring 30.

外輪30は、その外径面における中間位置に油溝31を有し、さらに油溝31から内径面にまで貫通する油孔32を有している。油孔32は、円周方向の1箇所または複数箇所に設けられている。   The outer ring 30 has an oil groove 31 at an intermediate position on the outer diameter surface, and further has an oil hole 32 penetrating from the oil groove 31 to the inner diameter surface. The oil holes 32 are provided at one place or a plurality of places in the circumferential direction.

図示した実施形態における内輪20は、幅方向の両端に外鍔22,23を有し、また中間に中鍔21を有している。内輪20は、各列の球面ころ11,12の外周面に沿う断面形状の複列の軌道面20a,20bを有している。   The inner ring 20 in the illustrated embodiment has outer flanges 22 and 23 at both ends in the width direction and an intermediate flange 21 in the middle. The inner ring 20 has double-row raceway surfaces 20a and 20b having a cross-sectional shape along the outer peripheral surfaces of the spherical rollers 11 and 12 in each row.

左右の列の球面ころ11,12のころ長さに注目すると、図中右側列の球面ころ11の長さL1は、左側列の球面ころ12の長さL2よりも大きくされている。また、図示した実施形態では、左右の列の軸受部分10a,10bは、互いに接触角θ1,θ2が異なるものとされる。この場合、ころ長さの大きな球面ころ11の列に対応する軸受部分10aの接触角θ1の方が、ころ長さの小さな球面ころ12の列の軸受部分10bの接触角θ2よりも大きく設定されている。   When attention is paid to the roller lengths of the left and right rows of spherical rollers 11, 12, the length L1 of the right side of the spherical rollers 11 in the drawing is larger than the length L2 of the left side of the spherical rollers 12. In the illustrated embodiment, the bearing portions 10a and 10b in the left and right rows have different contact angles θ1 and θ2. In this case, the contact angle θ1 of the bearing portion 10a corresponding to the row of spherical rollers 11 having a large roller length is set to be larger than the contact angle θ2 of the bearing portion 10b of the row of spherical rollers 12 having a small roller length. ing.

両列の球面ころ11,12の外径は、例えば最大径が同じとされる。変更例として、両列の球面ころ11,12の外径を互いに異ならせてもよい。例えば、長さの大きな球面ころ11の方が、長さの小さな球面ころ12よりも大きな外径を有するようにしてもよい。各列の球面ころ11,12の形状に関しては、ころの最大径の位置がころ長さの中央に位置する対称ころであってもよいし、ころの最大径の位置がころ長さの中央から中鍔21側にずれている非対称ころであってもよい。   The outer diameters of the spherical rollers 11 and 12 in both rows have the same maximum diameter, for example. As a modification, the outer diameters of the spherical rollers 11 and 12 in both rows may be different from each other. For example, the spherical roller 11 having a larger length may have a larger outer diameter than the spherical roller 12 having a smaller length. Regarding the shape of the spherical rollers 11 and 12 in each row, the roller may be a symmetric roller in which the position of the maximum diameter is located at the center of the roller length, or the position of the maximum diameter of the roller may be from the center of the roller length. It may be an asymmetric roller that is displaced toward the intermediate collar 21 side.

図3は、内輪20の中鍔21と、左右の列の球面ころ11,12とが当接している状態を拡大して示している。図示するように、中鍔21に当接する球面ころ11,12の端面11a,12aは凸状の球面形状を有している。   FIG. 3 shows an enlarged view of a state in which the inner collar 21 of the inner ring 20 is in contact with the spherical rollers 11 and 12 in the left and right rows. As shown in the drawing, the end surfaces 11a and 12a of the spherical rollers 11 and 12 that abut against the intermediate collar 21 have a convex spherical shape.

中鍔21は、左右の列の球面ころ11,12に当接する両側面21a,21bのうち、少なくとも一方の側面が平坦な面を有している。図示した実施形態では、中鍔21は、その一方側面21bが一方の球面ころ12の凸状球面形状に適合する凹状湾曲面を有し、他方の球面ころ11に当接する他方側面21aが平坦な面を有している。   The intermediate collar 21 has a flat surface on at least one of the side surfaces 21a and 21b that abut the spherical rollers 11 and 12 in the left and right rows. In the illustrated embodiment, the intermediate flange 21 has a concave curved surface whose one side surface 21 b matches the convex spherical shape of one spherical roller 12, and the other side surface 21 a that contacts the other spherical roller 11 is flat. Has a surface.

上記構成の複列自動調心ころ軸受10は、左右の列に非対称の負荷が作用する用途、例えば一方の列にスラスト荷重とラジアル荷重とを受け、他方の列にはもっぱらラジアル荷重のみを受けるような用途に用いられる。この場合、スラスト荷重およびラジアル荷重を受ける高負荷列側にころ長さの大きな球面ころ11を用い、もっぱらラジアル荷重のみを受ける軽負荷側列にころ長さの小さな球面ころ12を用いる。   The double-row self-aligning roller bearing 10 having the above-described configuration is used in applications where asymmetric loads act on the left and right rows, for example, one row receives a thrust load and a radial load, and the other row receives only a radial load. It is used for such applications. In this case, the spherical roller 11 having a large roller length is used on the high load row side that receives the thrust load and the radial load, and the spherical roller 12 having a small roller length is used exclusively on the light load side row that receives only the radial load.

上記のように、高負荷側列にころ長さの大きな球面ころ11を配置し、軽負荷側列にころ長さの小さな球面ころ12を配置することにより、各列の負荷状況に応じた適正な支持を行なうことができる。すなわち、高負荷側列では負荷能力が増大しているので、転がり疲労寿命が向上する。また、軽負荷側列ではころ長さの小さな球面ころ12と軌道面30a,20bとの接触応力が大きくなり、かつころの自重が小さくなるので滑りが軽減される。   As described above, the spherical roller 11 having a large roller length is arranged in the high load side row, and the spherical roller 12 having a small roller length is arranged in the light load side row, so that the appropriateness corresponding to the load condition of each row is obtained. Support can be made. That is, since the load capacity is increased in the high load side row, the rolling fatigue life is improved. Further, in the light load side row, the contact stress between the spherical roller 12 having a small roller length and the raceway surfaces 30a and 20b is increased, and the roller's own weight is reduced, so that the slip is reduced.

さらに、ころ長さを小さくした球面ころ12はスキューを生じ易くなるが、この球面ころ12に対しては、凸状球面形状の端面12aと凹状湾曲面の側面21bとの接触により中鍔21との接触面積を大きくしているので、スキューを効果的に抑制できる。一方、高負荷側となる他方の球面ころ11に対しては、凸状球面形状の端面11aと平坦な側面21aとの接触により両者を点接触となるようにしているので、接触面圧を小さくし接触部でのトルクを低下させることができる。   Further, the spherical roller 12 having a reduced roller length is likely to be skewed. However, the spherical roller 12 is in contact with the intermediate collar 21 by contact between the end surface 12a having a convex spherical shape and the side surface 21b having a concave curved surface. Since the contact area is increased, the skew can be effectively suppressed. On the other hand, with respect to the other spherical roller 11 on the high load side, since the convex spherical end face 11a and the flat side face 21a are brought into point contact with each other, the contact surface pressure is reduced. The torque at the contact portion can be reduced.

図4は、球面ころ11の端面11aと中鍔21の平坦な側面21aとが当接している状態を模式的に示している。球面ころ11の端面11aと中鍔21の側面21aとが荷重を受けて接触すると、その接触面は弾性変形し、接点の周りにだ円形の接触面、すなわち接触だ円14が生じる。好ましくは、中鍔21の側面21aの上端部におけるエッジロードを低く保つために、中鍔21の側面21aの高さ寸法Hは、接触だ円14の該高さ方向における直径Aよりも大きくする。   FIG. 4 schematically shows a state in which the end surface 11a of the spherical roller 11 and the flat side surface 21a of the intermediate collar 21 are in contact with each other. When the end surface 11a of the spherical roller 11 and the side surface 21a of the intermediate collar 21 come into contact with each other under load, the contact surface is elastically deformed, and an oval contact surface, that is, a contact ellipse 14 is formed around the contact point. Preferably, in order to keep the edge load at the upper end of the side surface 21a of the center collar 21 low, the height dimension H of the side surface 21a of the center collar 21 is made larger than the diameter A of the contact ellipse 14 in the height direction. .

図5は、この発明の他の実施形態に係る自動調心ころ軸受を示している。なお、図2に示した実施形態と同一の参照番号は、同一または相当の要素を示すものであるので、詳しい説明を省略する。図5に示す実施形態では、外輪30を、軸方向に並ぶ2個の分割外輪30A,30Bで構成している。両分割外輪30A,30Bは、自然状態、つまり両分割外輪の軌道面が同じ球面状に位置する状態で、互いの間に隙間dが生じるように設けられている。   FIG. 5 shows a self-aligning roller bearing according to another embodiment of the present invention. Note that the same reference numerals as those in the embodiment shown in FIG. 2 indicate the same or corresponding elements, and detailed description thereof will be omitted. In the embodiment shown in FIG. 5, the outer ring 30 is constituted by two divided outer rings 30A and 30B arranged in the axial direction. Both split outer rings 30A and 30B are provided so that a gap d is formed between them in a natural state, that is, in a state where the raceway surfaces of both split outer rings are located on the same spherical surface.

図5に示すように、好ましくは、予圧付与手段41によって、両側の分割外輪30A,30Bの隙間dが狭まるように予圧が付与される。予圧付与手段41として、例えばばね部材や、締め付けねじ等を用いることができる。ばね部材を用いる場合、例えば、円周方向の複数箇所において外輪30Bの端面に接するように圧縮ばねを配置する。予圧付与手段41は、好ましくは、ころ長さの小さい球面ころ12側から予圧を与える。   As shown in FIG. 5, the preload is preferably applied by the preload applying means 41 so that the gap d between the split outer rings 30 </ b> A and 30 </ b> B on both sides is narrowed. As the preload applying means 41, for example, a spring member, a tightening screw, or the like can be used. When using a spring member, for example, the compression spring is disposed so as to be in contact with the end face of the outer ring 30B at a plurality of locations in the circumferential direction. The preload applying means 41 preferably applies preload from the side of the spherical roller 12 having a small roller length.

上記のように、外輪30を分割構造にすると、非対称形状の外輪30を容易に製造することができる。また、外輪30に予圧を与えることで、ころ長さの小さな球面ころ12の滑りを積極的に抑制することができる。なお、外輪を分割構造にすることに加えて、内輪20も軸方向に並んだ2個の分割内輪で構成するようにしてもよい。このようにすれば、左右非対称の内輪20の製造が容易になる。   As described above, when the outer ring 30 is divided, the asymmetric outer ring 30 can be easily manufactured. Further, by applying a preload to the outer ring 30, it is possible to positively suppress the slip of the spherical roller 12 having a small roller length. In addition to the split structure of the outer ring, the inner ring 20 may also be constituted by two divided inner rings arranged in the axial direction. In this way, manufacturing of the asymmetric inner ring 20 is facilitated.

図6および図7は、図2〜図5に示したような本発明の実施形態に係る複列自動調心ころ軸受が適用された風力発電機の主軸支持構造の一例を示している。主軸支持構造の主要部品を支持するナセル52のケーシング53は、高い位置で、旋回座軸受51を介して支持台50上に水平旋回自在に設置されている。一端にブレード57を保持する主軸56は、ナセル52のケーシング53内で、軸受ハウジング54に組込まれた主軸支持軸受55を介して回転自在に支持されている。主軸56の他端は増速機58に接続され、この増速機58の出力軸が発電機59のロータ軸に結合されている。ナセル52は、旋回用モータ60により、減速機61を介して任意の角度に旋回させられる。   6 and 7 show an example of a main shaft support structure of a wind power generator to which a double row self-aligning roller bearing according to an embodiment of the present invention as shown in FIGS. 2 to 5 is applied. The casing 53 of the nacelle 52 that supports the main components of the main shaft support structure is installed on the support base 50 via a swivel bearing 51 at a high position so as to be horizontally rotatable. A main shaft 56 holding a blade 57 at one end is rotatably supported in a casing 53 of the nacelle 52 via a main shaft support bearing 55 incorporated in a bearing housing 54. The other end of the main shaft 56 is connected to a speed increaser 58, and the output shaft of the speed increaser 58 is coupled to the rotor shaft of the generator 59. The nacelle 52 is turned at an arbitrary angle by the turning motor 60 via the speed reducer 61.

図示した実施形態では、主軸支持軸受55は2個並べて設置されているが、1個であってもよい。この主軸支持軸受55として、本発明の実施形態に係る複列自動調心ころ軸受が用いられる。この場合、ブレード57から遠い方の列の球面ころに大きな負荷がかかるので、ころ幅寸法の大きな球面ころを用いる。ブレード57に近い方の列の球面ころには主としてラジアル荷重のみが加わるので、ころ長さの小さな球面ころを用いる。各球面ころの端面は、凸状の球面形状を有している。   In the illustrated embodiment, two main shaft support bearings 55 are installed side by side, but may be one. As the main shaft support bearing 55, a double-row self-aligning roller bearing according to an embodiment of the present invention is used. In this case, since a large load is applied to the spherical rollers in the row far from the blade 57, spherical rollers having a large roller width are used. Since only radial load is mainly applied to the spherical rollers in the row closer to the blade 57, spherical rollers having a small roller length are used. The end face of each spherical roller has a convex spherical shape.

主軸支持軸受55の内輪は、複列の球面ころの端面に当接する中鍔を有している。中鍔は、ブレード57側に向く一方側面が、球面ころの凸状球面形状に適合する凹状湾曲面を有し、反対側の他方側面が平坦な面を有している。   The inner ring of the main shaft support bearing 55 has a center flange that abuts against the end faces of the double row spherical rollers. The intermediate flange has a concave curved surface that matches the convex spherical shape of the spherical roller on one side surface facing the blade 57 side, and a flat surface on the other side surface on the opposite side.

以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変更を加えることが可能である。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and changes can be made to the illustrated embodiment within the same range or equivalent range as the present invention.

この発明は、特に左右の列の球面ころに不均等な荷重が作用する複列自動調心ころ軸受およびそのような軸受を備えた風力発電機の主軸支持構造に有利に利用され得る。   The present invention can be advantageously used particularly for a double-row self-aligning roller bearing in which an uneven load acts on the left and right rows of spherical rollers and a main shaft support structure of a wind power generator equipped with such a bearing.

風力発電機の主軸支持軸受の従来例を示す断面図である。It is sectional drawing which shows the prior art example of the spindle support bearing of a wind power generator. 本発明の一実施形態に係る複列自動調心ころ軸受を示す断面図である。It is sectional drawing which shows the double row self-aligning roller bearing which concerns on one Embodiment of this invention. 内輪の中鍔と左右の列の球面ころとの当接部分を拡大して示す断面図である。It is sectional drawing which expands and shows the contact part of the inner ring | wheel inner ring | wheel and the spherical roller of a right-and-left row | line | column. 球面ころの端面と中鍔の平坦な側面とが当接している状態を模式的に示す図である。It is a figure which shows typically the state which the end surface of a spherical roller and the flat side surface of a center contact | abut. 本発明の他の実施形態に係る複列自動調心ころ軸受を示す断面図である。It is sectional drawing which shows the double row self-aligning roller bearing which concerns on other embodiment of this invention. 本発明に係る複列自動調心ころ軸受を用いた風力発電機の主軸支持構造の一例を示す図である。It is a figure which shows an example of the spindle support structure of the wind power generator using the double row self-aligning roller bearing which concerns on this invention. 図6に示した風力発電機の主軸支持構造の図解的側面図である。FIG. 7 is a schematic side view of the main shaft support structure of the wind power generator shown in FIG. 6.

符号の説明Explanation of symbols

10 複列自動調心ころ軸受、11,12 球面ころ、11a,12a 端面、13 保持器、14 接触だ円、20 内輪、20a,20b 軌道面、21 中鍔、21a,21b 側面、22,23 外鍔、30 外輪、30a 軌道面、31 油溝、32 油孔、40 軸受ハウジング、41 予圧付与手段、50 支持台、51 旋回座軸受、52 ナセル、53 ケーシング、54 軸受ハウジング、55 主軸支持軸受、56 主軸、57 ブレード、58 増速機、59 発電機、60 旋回用モータ、61 減速機。
10 Double Row Spherical Roller Bearing, 11, 12 Spherical Roller, 11a, 12a End Surface, 13 Cage, 14 Contact Ellipse, 20 Inner Ring, 20a, 20b Raceway Surface, 21 Middle, 21a, 21b Side Surface, 22, 23 Outer bush, 30 Outer ring, 30a Raceway surface, 31 Oil groove, 32 Oil hole, 40 Bearing housing, 41 Preload applying means, 50 Support base, 51 Swivel seat bearing, 52 Nacelle, 53 Casing, 54 Bearing housing, 55 Main shaft support bearing 56 spindles, 57 blades, 58 speed increasers, 59 generators, 60 turning motors, 61 speed reducers.

Claims (7)

内輪と外輪との間に複列に球面ころを配置した複列自動調心ころ軸受において、
前記内輪は前記複列の球面ころの端面に当接する中鍔を有し、
前記中鍔に当接する各球面ころの端面は凸状の球面形状を有しており、
前記中鍔は、前記複列の球面ころの端面に当接する両側面のうち、少なくとも一方の側面が平坦な面を有していることを特徴とする、複列自動調心ころ軸受。
In double row spherical roller bearings in which spherical rollers are arranged in double rows between the inner ring and outer ring,
The inner ring has a center abutting against an end surface of the double row spherical roller
The end surface of each spherical roller in contact with the center flange has a convex spherical shape,
The double-row self-aligning roller bearing, wherein at least one side surface of the middle flange has a flat surface among both side surfaces in contact with an end surface of the double-row spherical roller.
前記中鍔は、その一方側面が、前記球面ころの凸状球面形状に適合する凹状湾曲面を有し、他方側面が平坦な面を有していることを特徴とする、請求項1に記載の複列自動調心ころ軸受。 2. The center pin according to claim 1, wherein one side surface of the intermediate flange has a concave curved surface that conforms to the convex spherical shape of the spherical roller, and the other side surface has a flat surface. Double row spherical roller bearings. 前記中鍔の凹状湾曲面に当接する一方の球面ころは、前記中鍔の平坦な面に当接する他方の球面ころよりも、小さなころ長さを有している、請求項2に記載の複列自動調心ころ軸受。 3. The compound roller according to claim 2, wherein one spherical roller in contact with the concave curved surface of the center flange has a smaller roller length than the other spherical roller in contact with the flat surface of the center flange. Row spherical roller bearings. 前記各球面ころは、ころの最大径の位置がころ長さの中央よりも前記中鍔側にずれている非対称ころである、請求項1〜3のいずれかに記載の複列自動調心ころ軸受。 The double-row self-aligning roller according to any one of claims 1 to 3, wherein each of the spherical rollers is an asymmetric roller in which a position of the maximum diameter of the roller is shifted to the center side from the center of the roller length. bearing. 前記平坦な面を有する中鍔の側面の高さは、この側面と球面ころの端面との接触面に生ずる接触だ円の該高さ方向における直径よりも大きくされている、請求項1〜4のいずれかに記載の複列自動調心ころ軸受。 The height of the side surface of the center flange having the flat surface is made larger than the diameter in the height direction of the contact ellipse generated on the contact surface between the side surface and the end surface of the spherical roller. Double row spherical roller bearings according to any of the above. 当該複列自動調心ころ軸受は、左右の列の球面ころに不均等な荷重が作用する用途に使用される、請求項1〜5のいずれかに記載の複列自動調心ころ軸受。 The double row self-aligning roller bearing according to any one of claims 1 to 5, wherein the double row self-aligning roller bearing is used for an application in which an uneven load is applied to the left and right rows of spherical rollers. 風力を受けるブレードと、
その一端が前記ブレードに固定され、ブレードとともに回転する主軸と、
固定部材に組込まれ、前記主軸を回転自在に支持する複列自動調心ころ軸受とを備えた風力発電機の主軸支持構造において、
前記複列自動調心ころ軸受は、内輪と、外輪と、複列の球面ころとを備え、
前記内輪は、前記複列の球面ころの端面に当接する中鍔を有し、
前記中鍔に当接する各球面ころの端面は凸状の球面形状を有しており、
前記中鍔は、その一方側面が、前記球面ころの凸状球面形状に適合する凹状湾曲面を有し、他方側面が平坦な面を有していることを特徴とする、風力発電機の主軸支持構造。
A blade that receives wind,
One end of which is fixed to the blade and rotates with the blade;
In the main shaft support structure of a wind power generator, which is incorporated in a fixed member and includes a double-row self-aligning roller bearing that rotatably supports the main shaft,
The double-row spherical roller bearing includes an inner ring, an outer ring, and a double-row spherical roller,
The inner ring has a center flange that abuts against an end face of the double row spherical roller;
The end surface of each spherical roller in contact with the center flange has a convex spherical shape,
The main shaft of the wind power generator, characterized in that one side surface of the intermediate flange has a concave curved surface that conforms to the convex spherical shape of the spherical roller, and the other side surface has a flat surface. Support structure.
JP2004290240A 2004-09-21 2004-10-01 Double row automatic aligning roller bearing and wind power generator main shaft support device Withdrawn JP2006105208A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004290240A JP2006105208A (en) 2004-10-01 2004-10-01 Double row automatic aligning roller bearing and wind power generator main shaft support device
PCT/JP2005/017277 WO2006033320A1 (en) 2004-09-21 2005-09-20 Double-row self-aligning roller bearing and main shaft support structure for wind-turbine generator
US11/663,162 US7922396B2 (en) 2004-09-21 2005-09-20 Double row self-aligning roller bearing and main shaft support structure of wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290240A JP2006105208A (en) 2004-10-01 2004-10-01 Double row automatic aligning roller bearing and wind power generator main shaft support device

Publications (1)

Publication Number Publication Date
JP2006105208A true JP2006105208A (en) 2006-04-20

Family

ID=36375198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290240A Withdrawn JP2006105208A (en) 2004-09-21 2004-10-01 Double row automatic aligning roller bearing and wind power generator main shaft support device

Country Status (1)

Country Link
JP (1) JP2006105208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047506A1 (en) * 2015-09-17 2017-03-23 Ntn株式会社 Double-row self-aligning roller bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047506A1 (en) * 2015-09-17 2017-03-23 Ntn株式会社 Double-row self-aligning roller bearing

Similar Documents

Publication Publication Date Title
US7922396B2 (en) Double row self-aligning roller bearing and main shaft support structure of wind power generator
US10788018B2 (en) Wind turbine rotor shaft arrangement
JP5412516B2 (en) Wind power generator
US10385822B2 (en) Wind turbine rotor shaft arrangement
WO2005050038A1 (en) Double-row self-aligning roller bearing and device for supporting wind turbine generator main shaft
ES2906786T3 (en) Composite main bearing arrangement for a wind turbine
JP4522266B2 (en) Double row roller bearing
JP4699827B2 (en) Main shaft support structure for tapered roller bearing and wind power generator
WO2017047506A1 (en) Double-row self-aligning roller bearing
CN113294443A (en) Bearing device and wind power generation equipment
JP5354849B2 (en) Wind generator main shaft support structure
WO2018194025A1 (en) Slewing bearing and processing method thereof
JP2006349032A (en) Double-row tapered roller bearing and spindle supporting structure of aerogenerator
JP2006177446A (en) Tapered roller bearing with aligning ring
JP2006105208A (en) Double row automatic aligning roller bearing and wind power generator main shaft support device
JP2006090346A (en) Double row automatic aligning roller bearing and main shaft supporting structure of wind power generator
JP4616691B2 (en) Tapered roller bearing, pin type cage for tapered roller bearing and main shaft support structure of wind power generator
JP2006177447A (en) Double-row rolling bearing
JP2006090345A (en) Double row automatic aligning roller bearing and main shaft supporting structure of wind power generator
JP4163596B2 (en) Double row spherical roller bearing and wind power generator spindle support device
JP2017057951A (en) Double row self-aligning roller bearing
JP2007132418A (en) Spindle supporting structure for wind power generator
JP2005164047A (en) Double row self-aligning roller bearings
JP2006177445A (en) Double-row automatic aligned roller bearing
JP2005009669A (en) Self-alignment roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080609