JP2006104595A - Coating fluid for covering glass fiber and glass fiber for reinforcing rubber given by using the same - Google Patents

Coating fluid for covering glass fiber and glass fiber for reinforcing rubber given by using the same Download PDF

Info

Publication number
JP2006104595A
JP2006104595A JP2004290183A JP2004290183A JP2006104595A JP 2006104595 A JP2006104595 A JP 2006104595A JP 2004290183 A JP2004290183 A JP 2004290183A JP 2004290183 A JP2004290183 A JP 2004290183A JP 2006104595 A JP2006104595 A JP 2006104595A
Authority
JP
Japan
Prior art keywords
glass fiber
coating
rubber
transmission belt
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004290183A
Other languages
Japanese (ja)
Other versions
JP4410648B2 (en
Inventor
Toshiya Kadota
俊哉 門田
Hiroyuki Momotake
弘行 百武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004290183A priority Critical patent/JP4410648B2/en
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to PCT/JP2005/017725 priority patent/WO2006038490A1/en
Priority to CNB2005800335536A priority patent/CN100516350C/en
Priority to CA 2581748 priority patent/CA2581748C/en
Priority to EP05788382.9A priority patent/EP1795645B1/en
Priority to US11/664,114 priority patent/US8455097B2/en
Priority to PL05788382T priority patent/PL1795645T3/en
Publication of JP2006104595A publication Critical patent/JP2006104595A/en
Application granted granted Critical
Publication of JP4410648B2 publication Critical patent/JP4410648B2/en
Priority to US13/790,928 priority patent/US9091325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make it possible that a glass fiber for reinforcing a rubber which has a cover layer formed by coating a glass fiber cord with a coating fluid for the glass fiber, drying the fluid, and making the dried fluid cover the cord, gives suitably excellent water resistance and heat resistance to a power transmission belt, when the glass fiber is formed into the power transmission belt by being laid in a crosslinked HNBR (hydrogenated nitrile butadiene rubber). <P>SOLUTION: The coating fluid for covering the glass fiber comprises an emulsion formed by dispersing a phenolic resin, a vinylpyridine-styrene-butadiene copolymer, and a chlorosulfonated polyethylene in water and is used for covering the glass fiber cord, wherein the phenolic resin comprises a monohydroxybenzene-formaldehyde resin formed by reacting monohydroxybenzene with formaldehyde. The fiber for reinforcing the rubber is formed by using the coating fluid. The power transmission belt is formed by laying the glass fiber for reinforcing the rubber in the heat-resistant rubber. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、各種ゴム製品の補強用に用いるガラス繊維と母材ゴムとの接着を高めるための被覆層を設けるためのガラス繊維被覆用塗布液およびそれを用いたゴム補強用ガラス繊維に関する。   The present invention relates to a glass fiber coating coating solution for providing a coating layer for enhancing the adhesion between glass fibers used for reinforcing various rubber products and a base rubber, and a rubber reinforcing glass fiber using the same.

伝動ベルト、タイヤ等のゴム製品に引っ張り強さおよび寸法安定性を付与するために、ガラス繊維、ナイロン繊維およびポリエステル繊維等の強度の高い繊維を母材ゴムに補強材として埋設することは一般的に行われ、母材ゴムに埋設するゴム補強用繊維には、母材であるゴムとの密着性がよく、界面が強固で剥離しないことが必要とされる。しかしながら、ガラス繊維をそのまま使用しても全く密着しないか、密着したとしても密着性が弱く界面が剥離してしまい補強材としての要をなさない。   In order to provide tensile strength and dimensional stability to rubber products such as transmission belts and tires, it is common to embed high-strength fibers such as glass fibers, nylon fibers, and polyester fibers as a reinforcing material in the base rubber. The rubber reinforcing fiber embedded in the base rubber is required to have good adhesion to the base rubber and have a strong interface and not peel off. However, even if the glass fiber is used as it is, it does not adhere at all, or even if it adheres, the adhesiveness is weak and the interface peels off, so that it is not necessary as a reinforcing material.

そのため、例えば、伝動ベルトには、母材ゴムとガラス繊維の密着性を向上させ、界面の剥離を防止するために、通常、フィラメントをより合わせてヤーンとしたガラス繊維コード゛に、レゾルシン−ホルムアルデヒド樹脂と各種ラテックスとを水に分散させたガラス繊維被覆用塗布液を塗布した後、乾燥させ被覆層としたゴム補強用ガラス繊維が用いられる。該被覆層は、高温下で、ゴム補強用ガラス繊維を母材ゴムに埋め込んで伝動ベルトに成形する際、母材ゴムとガラス繊維とを接着させる効果を有するが、接着力、即ち、接着強さは必ずしも十分な強さではない。例えば、自動車用伝動ベルトはエンジンル−ム内の高温の環境下で使用されるため、母材ゴムには、耐熱ゴムである、硫黄により、または過酸化物により架橋された水素化ニトリルゴム(以下、HNBRと略する)等が用いられる。前記被覆処理のみを行ったゴム補強用ガラス繊維を埋設した伝動ベルトは、高温下において屈曲し続ける走行状況下において、初期の接着強さが持続されず、長時間の走行においては、ゴム補強用ガラス繊維と母材ゴムとの界面の剥離をきたすこともある。   Therefore, for example, in order to improve the adhesion between the base rubber and the glass fiber and prevent the peeling of the interface, the transmission belt usually has a resorcin-formaldehyde in a glass fiber cord which is made by combining the filaments into a yarn. A glass fiber covering glass fiber in which a resin and various latexes are dispersed in water is applied and then dried to form a glass layer for rubber reinforcement. The coating layer has an effect of adhering the base rubber and the glass fiber at a high temperature when the rubber reinforcing glass fiber is embedded in the base rubber and molded into a transmission belt. Is not necessarily strong enough. For example, since a power transmission belt for an automobile is used in a high-temperature environment in an engine room, the base rubber is a heat-resistant rubber, a hydrogenated nitrile rubber cross-linked with sulfur or peroxide ( Hereinafter, it is abbreviated as HNBR). The transmission belt embedded with the glass fiber for rubber reinforcement that has been subjected only to the coating treatment does not maintain the initial adhesive strength under running conditions that continue to bend at high temperatures. The interface between the glass fiber and the base rubber may be peeled off.

架橋されたHNBRとゴム補強用ガラス繊維との接着強さを持続し界面の剥離をきたさず、高温の環境下の走行においても長期信頼性のある伝動ベルトを提供するためのゴム補強ガラス繊維として、ガラス繊維コードに上述の被覆処理を行った後に得られた被覆を1次被覆層として、該2次被覆層上に異なる組成の第2液を塗布し乾燥させて2次被覆層としたゴム補強用ガラス繊維が特許文献1〜4に開示されている。   As a rubber-reinforced glass fiber for providing a transmission belt that maintains the bond strength between the cross-linked HNBR and the glass fiber for rubber reinforcement, does not cause separation of the interface, and is reliable for a long time even in a high temperature environment. The rubber obtained by applying the above-mentioned coating treatment to the glass fiber cord as a primary coating layer, applying a second liquid having a different composition on the secondary coating layer, and drying it to form a secondary coating layer Reinforcing glass fibers are disclosed in Patent Documents 1 to 4.

例えば、特許文献1において、ハロゲン含有ポリマーとイソシアネートを含む第2液で処理する方法が開示されている。   For example, Patent Document 1 discloses a method of treating with a second liquid containing a halogen-containing polymer and an isocyanate.

また、特許文献2には、ゴム補強用ガラス繊維に、レゾルシン−ホルマリン縮合物とゴムラテックスを含む処理剤を塗布し乾燥硬化させ第1被覆層とし、当該第1被覆層上にさらに異なる処理剤を塗布し乾燥硬化させ形成させた第2被覆層を有するゴム補強用ガラス繊維コードであって、当該第2被覆層用の処理剤が、ゴム配合物、加硫剤およびマレイミド系加硫助剤を主成分とすることを特徴とするゴム補強用コードが開示されている。   In Patent Document 2, a processing agent containing a resorcin-formalin condensate and a rubber latex is applied to a glass fiber for rubber reinforcement, dried and cured to form a first coating layer, and a different processing agent is further formed on the first coating layer. A glass fiber cord for reinforcing rubber having a second coating layer formed by applying and drying and curing, wherein the treating agent for the second coating layer is a rubber compound, a vulcanizing agent, and a maleimide vulcanizing aid A cord for reinforcing rubber is disclosed which is characterized by having a main component.

また、本出願人の特許出願に関わる特許文献3には、ガラス繊維にアクリル酸エステル系樹脂とビニルピリジン−スチレン−ブタジエン共重合体とレゾルシン−ホルムアルデヒド樹脂とを水に分散させエマルジョンとしたガラス繊維被覆用塗布液を塗布した後、乾燥させてなる被覆層を設け、ハロゲン含有ポリマーの重量に対して0.3重量%〜10.0重量%のビスアリルナジイミドとを有機溶剤に分散させたガラス繊維被覆用塗布液を塗布し、更なる被覆層を設けてなることを特徴とするゴム補強用ガラス繊維が開示されている。該ゴム補強用ガラス繊維は、架橋されたHNBRとの接着において、好ましい接着強さを示した。   In addition, Patent Document 3 relating to the applicant's patent application describes glass fiber in which an acrylic ester resin, a vinylpyridine-styrene-butadiene copolymer, and a resorcin-formaldehyde resin are dispersed in water to form an emulsion. After the coating coating solution is applied, a coating layer is provided by drying, and 0.3% by weight to 10.0% by weight of bisallylnadiimide is dispersed in an organic solvent with respect to the weight of the halogen-containing polymer. A glass fiber for reinforcing rubber is disclosed, which is obtained by applying a glass fiber coating coating solution and providing a further coating layer. The rubber reinforcing glass fiber showed a preferable adhesive strength in bonding with a cross-linked HNBR.

また、本出願人の特許出願に関わる特許文献4には、レゾルシン−ホルムアルデヒド樹脂とゴムラテックスとを水に分散させてなるガラス繊維被覆用第1液をガラス繊維に塗布し塗膜を形成した後に乾燥硬化させ1次被覆層とした後で、該1次被覆層上に異なる組成のガラス繊維被覆用第2液を塗布し塗膜を形成した後に乾燥硬化させて2次被覆層としたゴム補強用ガラス繊維において、ガラス繊維被覆用第2液がビスアリルナジイミドとゴムエラストマーと加硫剤と無機充填材とを有機溶剤に分散させてなることを特徴とするゴム補強用ガラス繊維が記載されている。該ゴム補強用ガラス繊維は、架橋されたHNBRとの接着において、好ましい接着強さを示し、架橋されたHNBRに埋設し伝動ベルトとして、高温下、長時間走行後も、引張り強さの低下がなく優れた耐熱性を有するものであった。
特公平2−4715号公報 特許第3201330号公報 特開2004−203730号公報 特開2004-244785号公報
Further, in Patent Document 4 relating to the applicant's patent application, a glass fiber coating first liquid obtained by dispersing a resorcin-formaldehyde resin and a rubber latex in water is applied to glass fibers to form a coating film. After drying and curing to form a primary coating layer, a glass fiber coating second liquid having a different composition is applied onto the primary coating layer to form a coating film, followed by drying and curing to form a secondary coating layer. A glass fiber for reinforcing rubber, characterized in that the second liquid for glass fiber coating is obtained by dispersing bisallylnadiimide, a rubber elastomer, a vulcanizing agent, and an inorganic filler in an organic solvent. ing. The glass fiber for rubber reinforcement exhibits a preferable adhesive strength in bonding with a cross-linked HNBR, and the tensile strength is lowered even after running for a long time at high temperature as a transmission belt embedded in the cross-linked HNBR. And had excellent heat resistance.
Japanese Examined Patent Publication No. 2-4715 Japanese Patent No. 3201330 JP 2004-203730 A JP 2004-244785 A

伝動ベルトを製造する際に母材ゴムに埋設して使用するゴム補強用ガラス繊維には、母材ゴムとの接着性を改善するための被覆材がガラス繊維コードに塗布被覆されたものが用いられる。   Glass fiber cords coated with a coating material for improving adhesion to the base rubber are used for the glass fiber for rubber reinforcement that is embedded in the base rubber when using the transmission belt. It is done.

従来の伝動ベルトにおいて、ガラス繊維コードに被覆材を塗布したゴム補強用ガラス繊維と母材ゴムとの初期の接着強さは得られたが、伝動ベルトとしての多湿高温下で長時間走行させた後において、走行前の引っ張り強度を持続し、寸法変化のない優れた耐水性および耐熱性を併せ持つものがなく、特に耐水性が劣っていると言う問題があった。   In the conventional transmission belt, although the initial bond strength between the rubber fiber glass and the base rubber, which was coated with a coating material on a glass fiber cord, was obtained, it was run for a long time under high humidity and temperature as a transmission belt. Later, there was no problem that the tensile strength before running was maintained and there was no excellent water resistance and heat resistance without dimensional change, and the water resistance was particularly poor.

特許文献1、特許文献2、特許文献3または特許文献4に記載されているゴム補強用ガラス繊維を耐熱ゴムの中に埋設してなる従来の伝動ベルトに比較して、同等以上のゴム補強用ガラス繊維と耐熱ベルトの接着強さを有し、高温下において長時間走行させても被覆層が初期の接着強さを持続する耐熱性に加え、伝動ベルトに水をかけつつ長時間走行させても被覆層が初期の接着強さを持続するとともに、ガラス繊維コードへの水の浸透を防ぐことで耐水性を併せ持つ伝動ベルトおよびそれを与えるゴム補強用ガラス繊維の開発が待たれている。   Compared to the conventional transmission belt in which the glass fiber for rubber reinforcement described in Patent Document 1, Patent Document 2, Patent Document 3 or Patent Document 4 is embedded in heat-resistant rubber, it is equivalent to or better than rubber In addition to the heat resistance that has the adhesive strength between glass fiber and heat-resistant belt, and the coating layer maintains the initial adhesive strength even when running for a long time at high temperatures, However, the development of a transmission belt having a water resistance by preventing the penetration of water into the glass fiber cord and the glass fiber for rubber reinforcement providing the same while the coating layer maintains the initial adhesive strength is awaited.

本発明者らが鋭意検討した結果、ビニルピリジン−スチレン−ブタジエン共重合体とクロロスルフォン化ポリエチレンに、モノヒドロキシベンゼンにホルムアルデヒドを反応させてなるモノヒドロキシベンゼン−ホルムアルデヒド樹脂を加えてガラス繊維被覆用塗布液とし、ガラス繊維被覆用塗布液をガラス繊維コードに塗布した後に乾燥させて被覆層とし、その上に更なる2次被覆層を設けゴム補強用ガラス繊維とすると、架橋されたHNBRに埋設し伝動ベルトとした際に、ゴム補強用ガラス繊維と耐熱ゴムの好ましい接着強さを得、伝動ベルトに優れた耐水性および耐熱性を併せ持たせる、言い換えれば、高温下および注水下の長時間の走行後も引っ張り強さを維持し、伝動ベルトに優れた寸法安定性を与えるゴム補強用ガラス繊維が提供されることが判った。   As a result of intensive studies by the present inventors, a monohydroxybenzene-formaldehyde resin obtained by reacting formaldehyde with monohydroxybenzene is added to a vinylpyridine-styrene-butadiene copolymer and chlorosulfonated polyethylene, thereby coating a glass fiber. When the glass fiber cord coating solution is applied to the glass fiber cord and dried to form a coating layer, a further secondary coating layer is provided on the glass fiber cord, and the rubber fiber glass fiber is embedded in the crosslinked HNBR. When a power transmission belt is used, the preferred adhesion strength between the glass fiber for rubber reinforcement and the heat-resistant rubber is obtained, and the power transmission belt is combined with excellent water resistance and heat resistance, in other words, at a high temperature and under water injection for a long time. A glass fiber for rubber reinforcement that maintains tensile strength after running and gives the transmission belt excellent dimensional stability. It was found to be subjected.

即ち、本発明は、フェノール樹脂とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)とを水に分散させエマルジョンとしたガラス繊維に被覆するためのガラス繊維被覆用塗布液であって、前記フェノール樹脂が、モノヒドロキシベンゼン(D)とホルムアルデヒド(E)を反応させてなるモノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)であることを特徴とするガラス繊維被覆用塗布液である。   That is, the present invention is a glass fiber coating application for coating glass fibers in which a phenol resin, a vinylpyridine-styrene-butadiene copolymer (B) and a chlorosulfonated polyethylene (C) are dispersed in water to form an emulsion. A coating solution for coating glass fibers, wherein the phenol resin is a monohydroxybenzene-formaldehyde resin (A) obtained by reacting monohydroxybenzene (D) and formaldehyde (E). .

更に、本発明は、モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)が、モノヒドロキシベンゼン(D)に対するホルムアルデヒド(E)のモル比を0.5〜3.0とし塩基性の触媒で反応させたレゾール型樹脂であることを特徴とする上記のガラス繊維被覆用塗布液である。   Furthermore, the present invention relates to a resol type in which a monohydroxybenzene-formaldehyde resin (A) is reacted with a basic catalyst at a molar ratio of formaldehyde (E) to monohydroxybenzene (D) of 0.5 to 3.0. It is a coating solution for glass fiber coating, which is a resin.

更に、本発明は、モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)とを併せた重量を100%とした重量百分率で表して、モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)がA/(A+B+C)=1.0%〜15.0%、ビニルピリジン−スチレン−ブタジエン共重合体(B)がB/(A+B+C)=45.0%〜82.0%、クロロスルフォン化ポリエチレン(C)がC/(A+B+C)=3.0%〜40.0%の範囲に含まれてなることを特徴とする上記のガラス繊維被覆用塗布液である。   Further, the present invention is expressed as a weight percentage where the combined weight of the monohydroxybenzene-formaldehyde resin (A), the vinylpyridine-styrene-butadiene copolymer (B) and the chlorosulfonated polyethylene (C) is 100%. The monohydroxybenzene-formaldehyde resin (A) is A / (A + B + C) = 1.0% to 15.0%, and the vinylpyridine-styrene-butadiene copolymer (B) is B / (A + B + C) = 45.0. % To 82.0%, and chlorosulfonated polyethylene (C) is contained in the range of C / (A + B + C) = 3.0% to 40.0%. It is.

更に、本発明は、前記ビニルピリジン−スチレン−ブタジエン共重合体(B)を、スチレン−ブタジエン共重合体(F)に、重量百分率で表して、F/B=5.0%〜80.0%以下の範囲で替えてなることを特徴とする上記のガラス繊維被覆用塗布液である。   Furthermore, this invention represents the said vinylpyridine-styrene-butadiene copolymer (B) to a styrene-butadiene copolymer (F) by weight percentage, and F / B = 5.0%-80.0. % Of the above-mentioned coating solution for coating glass fibers.

更に、本発明は、上記のガラス繊維被覆用塗布液を塗布後、乾燥させたゴム補強用ガラス繊維に、ハロゲン含有ポリマー(G)と、重量百分率で表して、H/G=0.3%〜10.0%のビスアリルナジイミド(H)を有機溶剤に分散させたガラス繊維2次被覆用塗布液を塗布し、更なる2次被覆層を設けてなることを特徴とするゴム補強用ガラス繊維である。   Furthermore, the present invention provides a glass fiber for reinforcing rubber that is coated with the above glass fiber coating coating solution and then dried, and is expressed as a halogen-containing polymer (G) and a weight percentage, and H / G = 0.3%. A coating for glass fiber secondary coating in which 10.0% of bisallylnadiimide (H) is dispersed in an organic solvent is applied, and a further secondary coating layer is provided. Glass fiber.

更に、本発明は、上記のゴム補強用ガラス繊維を耐熱ゴムに埋設させてなることを特徴とする伝動ベルトである。   Furthermore, the present invention is a transmission belt characterized in that the rubber reinforcing glass fiber is embedded in a heat-resistant rubber.

更に、本発明は、前記耐熱ゴムが架橋されたHNBRであることを特徴とする上記の伝動ベルトである。   Furthermore, the present invention is the above transmission belt, wherein the heat resistant rubber is a cross-linked HNBR.

本発明によるガラス繊維被覆用塗布液を塗布しガラス繊維コードに被覆層を設けてなるゴム補強用ガラス繊維は、耐熱ゴムである、例えば、硫黄により、または過酸化物により架橋されたHNBRへ埋設した際に、ガラス繊維と架橋されたHNBRとに優れた接着強さを有する。更に、架橋されたHNBRへ埋設して伝動ベルトとした際に耐水性を与えたことで、耐水性および耐熱性を併せ持たせ、高温多湿下における伝動ベルトとしての長時間の使用後、言い換えれば、走行後において、ガラス繊維と耐熱ゴムの界面が剥離する懸念がなく該伝動ベルトは引っ張り強さを維持し寸法安定性に優れる。   The glass fiber for rubber reinforcement formed by applying the coating solution for coating glass fiber according to the present invention and providing a coating layer on the glass fiber cord is a heat-resistant rubber, for example, embedded in HNBR crosslinked with sulfur or with peroxide. In this case, the glass fiber and the cross-linked HNBR have excellent adhesive strength. Furthermore, by providing water resistance when buried in a cross-linked HNBR as a power transmission belt, it has both water resistance and heat resistance, in other words after a long time use as a power transmission belt under high temperature and humidity, in other words After running, there is no concern that the interface between the glass fiber and the heat-resistant rubber is peeled off, and the transmission belt maintains the tensile strength and is excellent in dimensional stability.

本発明は、フェノール樹脂に属するモノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)とを水に分散させたガラス繊維被覆用塗布液であり、該塗布液をガラス繊維コードに塗布後、乾燥させて、ガラス繊維コードへの水の浸透を防ぐ働きを有すると考えられる被覆層を設けた後、別のガラス繊維2次被覆用塗布液を塗布し乾燥させて更なる2次被覆層を設け乾燥させてなるゴム補強用ガラス繊維である。   The present invention relates to a coating for glass fiber in which a monohydroxybenzene-formaldehyde resin (A) belonging to a phenol resin, a vinylpyridine-styrene-butadiene copolymer (B), and a chlorosulfonated polyethylene (C) are dispersed in water. After the coating liquid is applied to the glass fiber cord and dried to provide a coating layer considered to have a function of preventing water penetration into the glass fiber cord, another glass fiber secondary coating is provided. It is a glass fiber for rubber reinforcement formed by applying a coating solution and drying it to provide a further secondary coating layer and drying it.

本発明のゴム補強用ガラス繊維は、従来のゴム補強用ガラス繊維に比較して、耐熱ゴム、例えば架橋されたHNBRに埋設して伝動ベルトとした際に、ガラス繊維コードへの水の浸透を防ぐことで伝動ベルトに優れた耐水性を与え、耐水性および耐熱性を併せ持たせる。   The glass fiber for rubber reinforcement of the present invention, when compared with the conventional glass fiber for rubber reinforcement, has a water penetration into the glass fiber cord when it is embedded in a heat resistant rubber, for example, a cross-linked HNBR, as a transmission belt. By preventing it, the transmission belt is given excellent water resistance and has both water resistance and heat resistance.

本発明において、ガラス繊維コードに塗布し被覆層を形成するガラス繊維被覆用塗布液には、モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)とを水に分散させたガラス繊維被覆用塗布液を用いる。   In the present invention, a coating solution for coating a glass fiber that is applied to a glass fiber cord to form a coating layer includes a monohydroxybenzene-formaldehyde resin (A), a vinylpyridine-styrene-butadiene copolymer (B), and chlorosulfonated. A glass fiber coating coating solution in which polyethylene (C) is dispersed in water is used.

尚、本発明において、伝動ベルトとは、エンジン、その他機械を運転するために、エンジン、モーター等の駆動源の駆動力を伝えるベルトのことであり、かみ合い伝動で駆動力を伝える歯付きベルト、摩擦伝動で駆動力を伝えるVベルトが挙げられる。自動車用伝動ベルトとは自動車のエンジンルーム内で用いられる耐熱性の前記伝動ベルトのことである。タイミングベルトとは、前記自動車用伝動ベルトの中で、カムシャフトを有するエンジンにおいて、クランクシャフトの回転をタイミングギヤに伝えカムシャフト駆動させバルブの開閉を設定されたタイミングで行うための、プーリーの歯とかみ合う歯を設けた歯付きベルトのことである。自動車用伝動ベルトには、エンジンの熱に対する耐熱性と雨天走行における耐水性が必要であり、高温下および多湿下での長時間の走行後において、引っ張り強さを持続し寸法安定性に優れていること、即ち、耐熱性、耐水性が要求される。   In the present invention, the transmission belt refers to a belt that transmits the driving force of a driving source such as an engine or a motor in order to operate an engine or other machine, and a toothed belt that transmits the driving force by meshing transmission, A V-belt that transmits the driving force by frictional transmission can be mentioned. The transmission belt for automobiles is the heat-resistant transmission belt used in the engine room of automobiles. A timing belt is a pulley tooth used in an engine having a camshaft to transmit the crankshaft to the timing gear and drive the camshaft to open and close the valve in the automobile transmission belt. It is a toothed belt provided with meshing teeth. Power transmission belts for automobiles must have heat resistance against engine heat and water resistance in rainy weather, and maintain tensile strength and excellent dimensional stability after running for a long time under high temperature and high humidity. That is, heat resistance and water resistance are required.

従来、耐熱性の伝動ベルトは、レゾルシン−ホルムアルデヒド樹脂、ビニルピリジン−スチレン−ブタジエン共重合体、クロロスルフォン化ポリエチレンからなるガラス繊維被覆用塗布液を用いガラス繊維コードに塗布乾燥させたゴム補強用ガラス繊維を耐熱ゴムとしての架橋されたHNBRに埋設し作製された。また、該ゴム補強用ガラス繊維に更なる2次被覆層を設け耐熱ゴムとしての架橋されたHNBRに埋設し作製された。   Conventionally, a heat-resistant transmission belt is a glass for reinforcing rubber that has been coated and dried on a glass fiber cord using a coating solution for coating glass fiber made of resorcin-formaldehyde resin, vinylpyridine-styrene-butadiene copolymer, and chlorosulfonated polyethylene. The fiber was embedded in a cross-linked HNBR as a heat-resistant rubber. Further, the glass fiber for reinforcing rubber was further provided with a secondary coating layer and embedded in a cross-linked HNBR as a heat-resistant rubber.

従来の伝動ベルトに比較して、モノヒドロキシベンゼン(D)をホルムアルデヒド(E)に反応させたモノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)、ビニルピリジン−スチレン−ブタジエン共重合体(B)、クロロスルフォン化ポリエチレン(C)からなる本発明のガラス繊維被覆用塗布液を用い、ガラス繊維コードに塗布乾燥させた後、ハロゲン含有ポリマー(G)と、ハロゲン含有ポリマー(G)を100%基準として、ビスアリルナジイミド(H)を、重量百分率で表して、0.3%以上、10.0%以下、即ち、H/G=0.3%〜10.0%の範囲で加え、有機溶剤に分散させたガラス繊維2次被覆用塗布液を塗布し、更なる2次被覆層を設けてなる本発明のゴム補強用ガラス繊維を架橋されたHNBRゴムに埋設し作製した伝動ベルトは、多湿下および高温下おける長時間の走行後も、被覆層によるガラス繊維と架橋されたHNBRの初期の接着強さが持続され、引っ張り強さを持続し寸法安定性に優れており、耐水性、耐熱性を併せ持つ。   Compared to conventional transmission belts, monohydroxybenzene-formaldehyde resin (A) obtained by reacting monohydroxybenzene (D) with formaldehyde (E), vinylpyridine-styrene-butadiene copolymer (B), and chlorosulfonation Using the glass fiber coating coating solution of the present invention made of polyethylene (C), the glass fiber cord is coated and dried, and then the halogen-containing polymer (G) and the halogen-containing polymer (G) are used as 100% standards. Lunadiimide (H), expressed as a percentage by weight, is added in a range of 0.3% to 10.0%, that is, H / G = 0.3% to 10.0%, and dispersed in an organic solvent. A glass fiber secondary coating coating solution is applied and a further secondary coating layer is provided, and the rubber reinforcing glass fiber of the present invention is embedded in a crosslinked HNBR rubber. Even after running for a long time under high humidity and high temperature, the transmission belt maintains the initial bond strength of the glass fiber and the cross-linked HNBR by the coating layer, maintains the tensile strength and has excellent dimensional stability. It has both water resistance and heat resistance.

本発明のガラス繊維被覆用塗布液に用いる前記モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)としては、モノヒドロキシベンゼン(D)に対するホルムアルデヒド(E)のモル比が0.5以上、3.0以下、即ち、E/D=0.5〜3.0で、塩基性の触媒で反応させた水溶性もしくは水溶媒レゾール型樹脂が挙げられる。ホルムアルデヒド(E)のモル比が0.5未満では、ゴム補強用ガラス繊維と耐熱ゴムとの接着強さに劣り、3.0を越えるとガラス繊維被覆用塗布液が、ゲル化し易い。   As said monohydroxybenzene-formaldehyde resin (A) used for the coating liquid for glass fiber coating of this invention, the molar ratio of formaldehyde (E) with respect to monohydroxybenzene (D) is 0.5 or more, 3.0 or less, , E / D = 0.5 to 3.0, and water-soluble or water-solvent resol type resin reacted with a basic catalyst. If the molar ratio of formaldehyde (E) is less than 0.5, the adhesive strength between the glass fiber for reinforcing rubber and the heat-resistant rubber is inferior, and if it exceeds 3.0, the glass fiber coating solution is easily gelled.

本発明のガラス繊維被覆用塗布液に使用されるモノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)として、例えば、工業用フェノール樹脂として市販されている群栄化学工業株式会社制、商品名、レジトップ、型番PL−4667が挙げられる。   As monohydroxybenzene-formaldehyde resin (A) used for the coating liquid for glass fiber coating of the present invention, for example, Gunei Chemical Industry Co., Ltd. marketed as industrial phenol resin, trade name, cash register top, model number PL-4667 is mentioned.

尚、前記塩基性の触媒としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムおよび水酸化バリウム等が挙げられる。   Examples of the basic catalyst include lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, and barium hydroxide.

本発明のガラス繊維被覆用塗布液の組成物として用いるビニルピリジン−スチレン−ブタジエン共重合体(B)には、ビニルピリジン:スチレン:ブタジエンの比が、重量比で10〜20:10〜20:80〜60の範囲で重合させてなるビニルピリジン−スチレン−ブタジエン共重合体(B)を用いることが好ましく、市販の日本エイアンドエル株式会社製、商品名、ピラテクス、JSR株式会社製、商品名、0650、および日本ゼオン株式会社製、商品名、Nipol、型番、1218FS等が挙げられる。尚、前記重量比を外れたビニルピリジン−スチレン−ブタジエン共重合体(B)を用いたガラス繊維被覆用塗布液を使用した後、塗布後乾燥させてガラス繊維コードに被覆を施し作製したゴム補強用ガラス繊維は、母材ゴムとの接着強さに劣る。   In the vinylpyridine-styrene-butadiene copolymer (B) used as the composition for the coating solution for coating glass fibers of the present invention, the ratio of vinylpyridine: styrene: butadiene is 10-20: 10-20: It is preferable to use a vinylpyridine-styrene-butadiene copolymer (B) polymerized in the range of 80 to 60, and commercially available Nippon A & L Co., Ltd., trade name, Pilatex, JSR Corporation, trade name, 0650. And Nippon Zeon Co., Ltd., trade name, Nipol, model number, 1218FS, and the like. In addition, after using the coating solution for glass fiber coating using the vinylpyridine-styrene-butadiene copolymer (B) deviating from the above weight ratio, it was dried after coating, and the rubber reinforcement produced by coating the glass fiber cord. Glass fiber for use is inferior in adhesive strength with the base rubber.

本発明のガラス繊維被覆用塗布液の組成物として用いるクロロスルフォン化ポリエチレン(C)は、重量百分率で表して、塩素含有量が20.0%〜40.0%、スルフォン基中の硫黄含有量が0.5%〜2.0%のものが好適に用いられ、例えば、固形分約40重量%のラテックスとして、住友精化株式会社製、商品名、CSM−450が市販されており、本発明のガラス繊維被覆用塗布液に使用される。尚、前述の塩素含有量及びスルフォン基中の硫黄含有量を外れたクロロスルフォン化ポリエチレン(C)を用いたガラス繊維被覆用塗布液を使用し、ガラス繊維コードに被覆を施し作製したゴム補強用ガラス繊維は、母材である架橋されたHNBRとの接着性に劣る。   The chlorosulfonated polyethylene (C) used as a composition for the coating solution for coating glass fibers of the present invention is expressed in terms of weight percentage, the chlorine content is 20.0% to 40.0%, and the sulfur content in the sulfone group Of 0.5% to 2.0% is preferably used. For example, as a latex having a solid content of about 40% by weight, a product name, CSM-450, manufactured by Sumitomo Seika Co., Ltd. is commercially available. It is used for the coating liquid for glass fiber coating of the invention. In addition, for the reinforcement of rubber produced by coating the glass fiber cord using the coating liquid for coating the glass fiber using the chlorosulfonated polyethylene (C) deviating from the chlorine content and the sulfur content in the sulfone group. Glass fiber is inferior in adhesiveness with the cross-linked HNBR which is a base material.

伝動ベルトに使用した際のゴム補強用ガラス繊維と母材ゴムに、所望の接着強さを得るには、ガラス繊維被覆用塗布液に含まれるモノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)とを合わせた重量を100%基準として、重量百分率で表して、モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)が1.0%以上、15.0%以下、即ち、A/(A+B+C)=1.0%〜15.0%、ビニルピリジン−スチレン−ブタジエン共重合体(B)が45.0%以上、82.0%以下、即ち、B/(A+B+C)=45.0%〜82.0%、クロロスルフォン化ポリエチレン(C)が3.0%以上、40.0%以下、即ち、C/(A+B+C)=3.0%〜40.0%の範囲で含まれることが好ましい。   Monohydroxybenzene-formaldehyde resin (A) and vinylpyridine contained in the coating solution for glass fiber coating are used to obtain the desired adhesion strength to the glass fiber and the base rubber for rubber reinforcement when used in the transmission belt. Expressed as a percentage by weight based on the combined weight of the styrene-butadiene copolymer (B) and the chlorosulfonated polyethylene (C), the monohydroxybenzene-formaldehyde resin (A) is 1.0% or more, 15.0% or less, that is, A / (A + B + C) = 1.0% to 15.0%, and vinylpyridine-styrene-butadiene copolymer (B) is 45.0% or more and 82.0% or less, , B / (A + B + C) = 45.0% -82.0%, chlorosulfonated polyethylene (C) is 3.0% or more and 40.0% or less, that is, C / (A + B + ) = It is preferably contained in the range of 3.0% 40.0%.

ガラス繊維被覆用塗布液中の、モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)の含有が1.0%より少ないと、ガラス繊維コードの被覆材とした際に、ガラス繊維と母材ゴムの接着強さが弱くなり、伝動ベルトにした際に好ましい耐水性、耐熱性が得難い。モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)の含有が15.0%を超えると、ガラス繊維被覆用塗布液が凝集沈殿を起こし易く使用不能となる。よって、本発明のガラス繊維被覆用塗布液における好適なモノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)の含有範囲は、ガラス繊維被覆用塗布液に含まれるビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)を合わせた重量を100%基準として、A/(A+B+C)=1.0%〜15.0%である。   When the content of the monohydroxybenzene-formaldehyde resin (A) in the coating solution for glass fiber coating is less than 1.0%, the adhesive strength between the glass fiber and the base rubber when the glass fiber cord coating material is used. However, it is difficult to obtain preferable water resistance and heat resistance when a transmission belt is used. If the content of the monohydroxybenzene-formaldehyde resin (A) exceeds 15.0%, the glass fiber coating solution tends to cause aggregation and precipitation and cannot be used. Therefore, the preferable content range of the monohydroxybenzene-formaldehyde resin (A) in the coating solution for glass fiber coating of the present invention is that of the vinylpyridine-styrene-butadiene copolymer (B) contained in the coating solution for glass fiber coating. A / (A + B + C) = 1.0% to 15.0% on the basis of the combined weight of the chlorosulfonated polyethylene (C) as 100%.

また、ガラス繊維被覆用塗布液中の、ビニルピリジン−スチレン−ブタジエン共重合体(B)の含有が45.0%より少ないと、ガラス繊維と架橋されたHNBRとの接着強さが弱くなり、伝動ベルトにした際に好ましい耐熱性が得難い。ビニルピリジン−スチレン−ブタジエン共重合体(B)の含有が82.0%を超えると、ガラス繊維コードの被覆とした際に、被覆に粘着性が生じ被覆層が転写し易くなり、工程が汚れる等の不具合が生じる。よって、本発明のガラス繊維被覆用塗布液におけるビニルピリジン−スチレン−ブタジエン共重合体(B)の好適な含有範囲は、ガラス繊維被覆用塗布液に含まれるモノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)とを合わせた重量を100%基準として、B/(A+B+C)=45.0%〜82.0%である。   Further, when the content of the vinylpyridine-styrene-butadiene copolymer (B) in the coating solution for coating glass fiber is less than 45.0%, the adhesive strength between the glass fiber and the crosslinked HNBR is weakened, It is difficult to obtain preferable heat resistance when using a transmission belt. When the content of the vinylpyridine-styrene-butadiene copolymer (B) exceeds 82.0%, when the glass fiber cord is coated, the coating becomes sticky and the coating layer is easily transferred, and the process becomes dirty. Such problems occur. Therefore, the preferable content range of the vinylpyridine-styrene-butadiene copolymer (B) in the coating solution for glass fiber coating of the present invention is the monohydroxybenzene-formaldehyde resin (A) contained in the coating solution for glass fiber coating. B / (A + B + C) = 45.0% to 82.0%, based on 100% of the total weight of the vinylpyridine-styrene-butadiene copolymer (B) and the chlorosulfonated polyethylene (C).

前記被覆層中のクロロスルフォン化ポリエチレン(C)が、3.0%より少ないと、伝動ベルトにした際に所望の耐熱性が得難く、クロロスルフォン化ポリエチレン(C)が40.0%より多いと、ガラス繊維と母材ゴムの接着強さが弱くなり、伝動ベルトにした際に好ましい耐熱性が得難い。本発明のガラス繊維被覆用塗布液において、好適なクロロスルフォン化ポリエチレン(C)の含有範囲は、ガラス繊維被覆用塗布液に含まれるモノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)とを合わせた重量を100%基準として、A/(A+B+C)=3.0%〜40.0%である。   When the chlorosulfonated polyethylene (C) in the coating layer is less than 3.0%, it is difficult to obtain desired heat resistance when the transmission belt is formed, and the chlorosulfonated polyethylene (C) is more than 40.0%. In addition, the adhesive strength between the glass fiber and the base rubber becomes weak, and it is difficult to obtain preferable heat resistance when a transmission belt is used. In the coating solution for glass fiber coating of the present invention, the preferred range of chlorosulfonated polyethylene (C) is monohydroxybenzene-formaldehyde resin (A) and vinylpyridine-styrene-butadiene contained in the coating solution for glass fiber coating. A / (A + B + C) = 3.0% to 40.0% on the basis of the combined weight of the copolymer (B) and the chlorosulfonated polyethylene (C) as 100%.

本発明のゴム補強用ガラス繊維に用いるガラス繊維被覆用塗布液の組成物の一つであるビニルピリジン−スチレン−ブタジエン共重合体(B)の一部を、他のゴムエラストマーに替えても良い。ビニルピリジン−スチレン−ブタジエン共重合体のみでは、ゴム補強用ガラス繊維の被覆に粘着性が生じ被覆層が転写し易くなり、工程が汚れたりして作業性が悪くなる。他のゴムエラストマーとしてカルボキシル基変性スチレン−ブタジエンゴム、アクリロニトリルーブタジエンゴム等も挙げられるが、ビニルピリジン−スチレン−ブタジエン共重合体(B)との相性が良いスチレン−ブタジエン共重合体(F)が特に好適に使用され、本発明のゴム補強用ガラス繊維の特徴である母材ゴムとの接着性、および母材ゴムとしての耐熱ゴムに埋設し伝動ベルトとした際の耐熱性を損なわない。   A part of the vinylpyridine-styrene-butadiene copolymer (B), which is one of the compositions of the glass fiber coating liquid used for the rubber reinforcing glass fiber of the present invention, may be replaced with another rubber elastomer. . With only the vinylpyridine-styrene-butadiene copolymer, the coating of the glass fiber for rubber reinforcement becomes sticky, the coating layer is easily transferred, the process becomes dirty, and the workability deteriorates. Other rubber elastomers include carboxyl group-modified styrene-butadiene rubber, acrylonitrile-butadiene rubber, etc., but styrene-butadiene copolymer (F) having good compatibility with vinylpyridine-styrene-butadiene copolymer (B). It is particularly preferably used and does not impair the adhesiveness with the base rubber, which is a feature of the glass fiber for reinforcing rubber of the present invention, and the heat resistance when embedded in a heat-resistant rubber as the base rubber to form a transmission belt.

ビニルピリジン−スチレン−ブタジエン共重合体(B)の重量を100%基準として、重量%で表して、スチレン−ブタジエン共重合体(F)を、F/B=5.0%〜80.0%の範囲で、ビニルピリジン−スチレン−ブタジエン共重合体(B)に替えて使用できる。5.0%未満では、ゴム補強用ガラス繊維の被覆に粘着性が生じ、被覆層が転写し易くなることを抑制する効果がない。好ましくは、25.0%以上である。80.0%を超えると、母材ゴムとの接着性および母材ゴムとしての耐熱ゴムに埋設し、伝動ベルトとした際の耐熱性が失われる。好ましくは、55.0%以下である。   Based on the weight of the vinylpyridine-styrene-butadiene copolymer (B) as 100%, expressed in weight%, the styrene-butadiene copolymer (F) is F / B = 5.0% to 80.0%. In this range, it can be used instead of the vinylpyridine-styrene-butadiene copolymer (B). If it is less than 5.0%, the coating of the glass fiber for reinforcing rubber has an adhesive effect, and there is no effect of suppressing the coating layer from being easily transferred. Preferably, it is 25.0% or more. If it exceeds 80.0%, the adhesiveness to the base rubber and the heat resistance when embedded in the heat-resistant rubber as the base rubber to form a transmission belt are lost. Preferably, it is 55.0% or less.

このようなスチレン−ブタジエン共重合体(F)として、例えば、日本エイアンドエル株式会社から、商品名、J−9049が市販されており、本発明のゴム補強用ガラス繊維の被覆層を形成するためのガラス繊維被覆用塗布液に使用される。   As such a styrene-butadiene copolymer (F), for example, a trade name, J-9049, is commercially available from Nippon A & L Co., Ltd., for forming the coating layer of the glass fiber for rubber reinforcement of the present invention. Used in glass fiber coating solution.

本発明のガラス繊維被覆用塗布液には、老化防止剤、pH調整剤、安定剤等を含有させても良い。老化防止剤にはジフェニルアミン系化合物、pH調整剤にはアンモニアが挙げられる。   The glass fiber coating coating solution of the present invention may contain an antioxidant, a pH adjuster, a stabilizer and the like. Examples of the anti-aging agent include diphenylamine compounds, and examples of the pH adjusting agent include ammonia.

本発明のガラス繊維被覆用塗布液をガラス繊維コードに塗布後、乾燥させて被覆層としたゴム補強用ガラス繊維に、更にハロゲン含有ポリマー(G)とビスアリルナジイミド(H)とを有機溶剤に分散させたガラス繊維2次被覆用塗布液を塗布し、2次被覆層を設けることが好ましい。2次被覆層を設け、種々の母材ゴム、特に架橋されたHNBR等の耐熱ゴムに埋設し伝動ベルトとすると、ガラス繊維コードと母材ゴムの優れた接着性が得られ、本発明のゴム補強用ガラス繊維は伝動ベルトの補強材として有効に働く。更に、前記伝動ベルトは、高温多湿の環境下における長時間の使用において、被覆層が初期の接着強さを持続し且つ寸法安定性に優れ、即ち、耐熱性および耐水性に優れる。有機溶剤としては、例えば、キシレンが挙げられる。   The glass fiber coating coating solution of the present invention is applied to a glass fiber cord and then dried to form a coating layer, which is further coated with a halogen-containing polymer (G) and bisallyldiimide (H) as an organic solvent. It is preferable to apply a coating solution for secondary coating of glass fiber dispersed in to provide a secondary coating layer. When a secondary coating layer is provided and embedded in various base rubbers, particularly heat-resistant rubbers such as cross-linked HNBR, and used as a transmission belt, excellent adhesion between the glass fiber cord and the base rubber is obtained, and the rubber of the present invention The reinforcing glass fiber works effectively as a reinforcing material for the transmission belt. Further, in the power transmission belt, the coating layer maintains the initial adhesive strength and is excellent in dimensional stability, that is, excellent in heat resistance and water resistance when used for a long time in a high temperature and humidity environment. Examples of the organic solvent include xylene.

その際、ガラス繊維2次被覆層用塗布液中のビスアリルナジイミド(H)は、ハロゲン含有ポリマー(G)の重量を100%基準として、重量百分率で表して、0.3%以上、10.0%以下、即ち、H/G=0.3%〜10.0%であることが好ましい。ビスアリルナジイミド(H)の含有が、0.3%より少ないと、前述の優れた耐熱性が得難い。10.0%を超えると、ガラス繊維コードと母材ゴムとの接着強さが弱くなり作製した伝動ベルトは、耐久性に劣る。   At that time, the bisallylnadiimide (H) in the coating solution for the glass fiber secondary coating layer is expressed as a percentage by weight based on the weight of the halogen-containing polymer (G) as 100%. 0.0% or less, that is, H / G = 0.3% to 10.0% is preferable. When the content of bisallylnadiimide (H) is less than 0.3%, the above-described excellent heat resistance is difficult to obtain. If it exceeds 10.0%, the adhesive strength between the glass fiber cord and the base rubber becomes weak, and the produced transmission belt is inferior in durability.

ビスアリルナジイミド(H)は熱硬化性イミド樹脂の一種であり、低分子量のビスアリルナジイミド(H)は他の樹脂との相溶性に優れており、硬化後のビスアリルナジイミド樹脂は、ガラス転移点が300℃以上で、前記伝動ベルトの耐熱性を高める効果があり、丸善石油化学株式会社よりBANI−M、BANI−H、BANI−X等の商品名で市販され、本発明のゴム補強用ガラス繊維に好適に用いられる。   Bisallyl nadiimide (H) is a kind of thermosetting imide resin, and low molecular weight bisallyl nadiimide (H) is excellent in compatibility with other resins. The glass transition point is 300 ° C. or higher, and has the effect of increasing the heat resistance of the transmission belt, and is commercially available from Maruzen Petrochemical Co., Ltd. under trade names such as BANI-M, BANI-H, and BANI-X. It is suitably used for rubber reinforcing glass fibers.

耐熱性のためには、前記ハロゲン含有ポリマー(G)には、クロロスルフォン化ポリエチレン(C)を用いることが好ましい。更に、加硫剤としてのニトロソ化合物、例えば、p−ニトロソベンゼン、無機充填剤、例えばカーボンブラックまたは酸化マグネシウムを前記ガラス繊維2次被覆用塗布液に添加し、ゴム補強用ガラス繊維に2次被覆層に加えることは、該ゴム補強用ガラス繊維をゴムに埋設して作製した伝動ベルトの耐熱性を高める一層の効果がある。ガラス繊維2次被覆用塗布液に、塗布液中のハロゲン含有ポリマー(G)の重量を100%基準として、重量百分率で表して、加硫剤を0.5%以上、20.0%以下、無機充填材を10.0%以上、70.0%以下の範囲で添加すると、作製した伝動ベルトは、いっそうの耐熱性を発揮する。加硫剤の含有が0.5%より少ない、無機充填材の含有が10.0%より少ないと耐熱性を向上させる効果が発揮されず、加硫剤を、20.0%を超えて、無機充填材を、70.0%を超えて加える必要はない。   For heat resistance, it is preferable to use chlorosulfonated polyethylene (C) for the halogen-containing polymer (G). Furthermore, a nitroso compound as a vulcanizing agent such as p-nitrosobenzene, an inorganic filler such as carbon black or magnesium oxide is added to the glass fiber secondary coating solution, and the rubber reinforcing glass fiber is secondary coated. Adding to the layer has a further effect of increasing the heat resistance of the transmission belt produced by embedding the rubber reinforcing glass fiber in rubber. In the glass fiber secondary coating coating solution, the weight of the halogen-containing polymer (G) in the coating solution is expressed as a percentage by weight based on 100%, and the vulcanizing agent is 0.5% or more and 20.0% or less. When the inorganic filler is added in the range of 10.0% or more and 70.0% or less, the produced transmission belt exhibits further heat resistance. When the content of the vulcanizing agent is less than 0.5% and the content of the inorganic filler is less than 10.0%, the effect of improving the heat resistance is not exhibited, and the vulcanizing agent exceeds 20.0%, It is not necessary to add more than 70.0% inorganic filler.

本発明のガラス繊維被覆用塗布液であるモノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)とを水に分散させてエマルジョンとした本発明のガラス繊維被覆用塗布液をガラス繊維コードに塗布後乾燥させ、更に、ハロゲン含有ポリマー(G)とビスアリルナジイミド(H)とを有機溶剤に分散させたガラス繊維2次被覆用塗布液を塗布し被覆層としたゴム補強用ガラス繊維を作製した。(実施例1〜4)
次いで、本発明の範疇にないゴム補強用ガラス繊維を作製した。(比較例1〜3)。これら本発明のゴム補強用ガラス繊維(実施例1〜4)、本発明の範疇にないゴム補強用ガラス繊維(比較例1〜3)の耐熱ゴムに対する接着強さ評価試験を行い、評価結果を比較した。
A monohydroxybenzene-formaldehyde resin (A), a vinylpyridine-styrene-butadiene copolymer (B), and a chlorosulfonated polyethylene (C), which are coating solutions for coating glass fibers of the present invention, are dispersed in water to give an emulsion. The glass fiber coating solution of the present invention is applied to a glass fiber cord and then dried, and further, a glass fiber secondary coating in which a halogen-containing polymer (G) and bisallylnadiimide (H) are dispersed in an organic solvent. A glass fiber for reinforcing rubber was prepared as a coating layer by applying a coating solution. (Examples 1-4)
Subsequently, a glass fiber for rubber reinforcement not within the scope of the present invention was produced. (Comparative Examples 1-3). These rubber reinforcing glass fibers of the present invention (Examples 1 to 4) and rubber reinforcing glass fibers not in the category of the present invention (Comparative Examples 1 to 3) were subjected to an adhesive strength evaluation test for heat-resistant rubber, and the evaluation results were obtained. Compared.

また、これら、本発明のゴム補強用ガラス繊維、または従来のゴム補強用ガラス繊維を耐熱ゴムに埋設させた伝動ベルトを作製した。次いで、これら伝動ベルトをプーリーにセットして、耐水性を評価するために、伝動ベルトに水をかけつつ長時間の走行させて、被覆層が初期の接着強さを持続した結果として長時間走行後も引っ張り強さが変化せず、寸法安定性に優れることことを評価するための耐水走行疲労性能評価試験を行い、本発明のゴム補強用ガラス繊維(実施例1〜4)を埋設した伝動ベルト、本発明の範疇にないゴム補強用ガラス繊維(比較例1〜3)を埋設した伝動ベルトにおける評価結果を比較した。また、耐熱性を評価するために、伝動ベルトに高温下複数のプーリーを用いて、長時間の屈曲走行をさせて、被覆層が初期の接着強さを持続した結果として長時間走行後も引っ張り強さが変化せず、寸法安定性に優れることことを評価するための耐熱耐屈曲走行疲労性能評価試験を行い、本発明のゴム補強用ガラス繊維(実施例2、4)を埋設した伝動ベルト、本発明の範疇にないゴム補強用ガラス繊維(比較例1、2)を埋設した伝動ベルトにおける評価結果を比較した。   In addition, a power transmission belt in which the rubber reinforcing glass fiber of the present invention or the conventional rubber reinforcing glass fiber was embedded in a heat resistant rubber was produced. Next, these transmission belts are set on pulleys, and in order to evaluate the water resistance, the transmission belts are run for a long time while water is applied, and the coating layers maintain the initial adhesive strength for a long time. The transmission in which the tensile strength does not change and the water resistance fatigue resistance evaluation test for evaluating that the dimensional stability is excellent is performed, and the glass fiber for rubber reinforcement (Examples 1 to 4) of the present invention is embedded. The evaluation results of the belt and the transmission belt in which the glass fibers for rubber reinforcement (Comparative Examples 1 to 3) not within the scope of the present invention were embedded were compared. In order to evaluate the heat resistance, a plurality of pulleys were used at high temperature on the transmission belt, and the belt was allowed to run for a long time. A power transmission belt in which the heat-resistant and bending-resistant running fatigue performance evaluation test for evaluating that the strength does not change and the dimensional stability is excellent is performed, and the glass fibers for rubber reinforcement of the present invention (Examples 2 and 4) are embedded. The evaluation results of the transmission belts in which the glass fibers for rubber reinforcement (Comparative Examples 1 and 2) not within the scope of the present invention were embedded were compared.

以下、詳細に述べる。
実施例1
(本発明のガラス繊維被覆用塗布液の調製)
最初に、モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)の合成について述べる。還流冷却器、温度計、攪拌機をつけた三つ口セパラブルフラスコに、モノヒドロキシベンゼン(D)、100重量部、37.0重量%の濃度のホルムアルデヒド(E)水溶液、157重量部(モル比で表せば、E/D=1.8)、10重量%の濃度の水酸化ナトリウム水溶液、5重量部を仕込み、80℃に加熱した状態で3時間攪拌した。攪拌を止め、冷却した後、1重量%濃度の水酸化ナトリウム水溶液、370重量部を加え、モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)を重合した。
Details will be described below.
Example 1
(Preparation of coating solution for coating glass fiber of the present invention)
First, synthesis of the monohydroxybenzene-formaldehyde resin (A) will be described. In a three-necked separable flask equipped with a reflux condenser, a thermometer, and a stirrer, monohydroxybenzene (D), 100 parts by weight, 37.0% by weight formaldehyde (E) aqueous solution, 157 parts by weight (molar ratio) E / D = 1.8), 5 parts by weight of a 10% strength by weight aqueous sodium hydroxide solution was charged, and the mixture was stirred at 80 ° C. for 3 hours. After stirring was stopped and the mixture was cooled, 370 parts by weight of a 1 wt% aqueous sodium hydroxide solution was added to polymerize the monohydroxybenzene-formaldehyde resin (A).

次いで、前述の手順で合成したモノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)を用い、市販のビニルピリジン−スチレン−ブタジエン共重合体(B)エマルジョンと、クロロスルフォン化ポリエチレン(C)エマルジョンとにアンモニア水と水を添加し、本発明のガラス繊維被覆用塗布液を調製した。   Next, using the monohydroxybenzene-formaldehyde resin (A) synthesized by the above procedure, aqueous vinylpyridine-styrene-butadiene copolymer (B) emulsion, chlorosulfonated polyethylene (C) emulsion, Water was added to prepare a glass fiber coating coating solution of the present invention.

詳しくは、モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)、42重量部と、ビニルピリジン、スチレン、ブタジエンを、ビニルピリジン:スチレン:ブタジエン=15:15:70重量比となるように重合したビニルピリジン−スチレン−ブタジエン重合体(B)エマルジョンとしての日本エイアンドエル株式会社製、商品名、ピラテックス(固形分濃度、41.0重量%)476重量部と、クロロスルフォン化ポリエチレン(C)エマルジョンとしての住友精化株式会社製、商品名、CSM450(固形分濃度、40.0重量%)206重量部と、PH調整剤としてアンモニア水(濃度、25.0重量%)22重量部とに、全体として1000重量部になるように水を添加して、本発明のガラス繊維被覆用塗布液を調製した。   Specifically, vinylpyridine-styrene obtained by polymerizing monohydroxybenzene-formaldehyde resin (A), 42 parts by weight, vinylpyridine, styrene, and butadiene so that a ratio of vinylpyridine: styrene: butadiene = 15: 15: 70 is obtained. -Nippon A & L Co., Ltd., trade name as butadiene polymer (B) emulsion, 476 parts by weight of pilatex (solid content concentration, 41.0% by weight), and Sumitomo Seika as chlorosulfonated polyethylene (C) emulsion Product name, CSM450 (solid content concentration, 40.0% by weight) 206 parts by weight and ammonia water (concentration, 25.0% by weight) 22 parts by weight as a PH regulator, 1000 parts by weight as a whole Water was added so that the coating solution for coating glass fiber of the present invention was prepared.

ガラス繊維被覆用塗布液中の各成分の含有割合は、モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)を合わせた重量を100%基準として、重量百分率で表して、モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)が3.6%、ビニルピリジン−スチレン−ブタジエン共重合体(B)が67.8%、クロロスルフォン化ポリエチレン(C)が28.6%である。尚、ガラス繊維被覆用塗布液中のビニルピリジン−スチレン−ブタジエン共重合体(B)、クロロスルフォン化ポリエチレン(C)の重量は、前記ピラテックスおよびCSM450の固形分濃度から、固形分に換算して求めた。
(本発明のゴム補強用ガラス繊維の作製)
次いで、クロロスルフォン化ポリエチレン(C)と、p−ジニトロベンゼンと、ビスアリルナジイミド(G)に属するヘキサメチレンジアリルナジイミドとに、カーボンブラックを加え、キシレンに分散させた、本発明のゴム補強用ガラス繊維に2次被覆層を設けるためのガラス繊維2次被覆用塗布液を調製した。
The content ratio of each component in the coating solution for glass fiber coating is the total weight of monohydroxybenzene-formaldehyde resin (A), vinylpyridine-styrene-butadiene copolymer (B) and chlorosulfonated polyethylene (C). Expressed as a percentage by weight based on 100%, monohydroxybenzene-formaldehyde resin (A) is 3.6%, vinylpyridine-styrene-butadiene copolymer (B) is 67.8%, chlorosulfonated polyethylene (C ) Is 28.6%. The weights of vinylpyridine-styrene-butadiene copolymer (B) and chlorosulfonated polyethylene (C) in the coating solution for glass fiber coating are converted into solid content from the solid content concentration of the above-mentioned pyrexate and CSM450. Asked.
(Preparation of glass fiber for rubber reinforcement of the present invention)
Next, the rubber reinforcement of the present invention, in which carbon black was added to chlorosulfonated polyethylene (C), p-dinitrobenzene, and hexamethylene diallyl nadiimide belonging to bisallyl nadiimide (G) and dispersed in xylene. A glass fiber secondary coating coating solution for providing a secondary coating layer on the glass fiber was prepared.

詳しくは、クロロスルフォン化ポリエチレン(C)としての東ソー株式会社製、商品名、TS−430、100重量部と、p−ジニトロベンゼン、40重量部と、N−N'−ヘキサメチレンジアリルナジイミドとしての丸善石油化学株式会社製、商品名、BANI−H、0.3重量部とに、カーボンブラック、30重量部を加え、キシレン、1315重量部に分散させてガラス繊維2次被覆用塗布液を調製した。即ち、クロロスルフォン化ポリエチレン(C)の重量に対して、ビスアリルナジイミド(G)に属するN−N'−ヘキサメチレンジアリルナジイミドをH/G=0.3重量%、加硫剤であるp−ジニトロベンゼンを40重量%、無機充填材であるカーボンブラックを30.0重量%となるようにしてガラス繊維2次被覆用塗布液を調製した。   Specifically, as Tosoh Co., Ltd. as chlorosulfonated polyethylene (C), trade name, TS-430, 100 parts by weight, p-dinitrobenzene, 40 parts by weight, and NN′-hexamethylene diallyl nadiimide Made by Maruzen Petrochemical Co., Ltd., trade name, BANI-H, 0.3 parts by weight, carbon black, 30 parts by weight, and xylene, 1315 parts by weight, are dispersed in glass fiber secondary coating solution. Prepared. That is, NN′-hexamethylenediallylnadiimide belonging to bisallylnadiimide (G) is H / G = 0.3% by weight and a vulcanizing agent with respect to the weight of chlorosulfonated polyethylene (C). A glass fiber secondary coating coating solution was prepared such that p-dinitrobenzene was 40 wt% and carbon black as an inorganic filler was 30.0 wt%.

径9μmのガラス繊維フィラメントを200本集束したガラス繊維コード3本を引き揃えた後、前述の手順で作製したガラス繊維被覆用塗布液を塗布し、その後、温度、280℃下で、22秒間乾燥させて被覆層を設けた。   After aligning three glass fiber cords of 200 glass fiber filaments having a diameter of 9 μm, the glass fiber coating coating solution prepared in the above procedure is applied, and then dried at a temperature of 280 ° C. for 22 seconds. To provide a coating layer.

この時の固形分付着率、即ち、被覆層の重量割合は、被覆層を設けたガラス繊維束の全重量に対して19.0重量%であった。   The solid content adhesion rate at this time, that is, the weight ratio of the coating layer was 19.0% by weight with respect to the total weight of the glass fiber bundle provided with the coating layer.

前記被覆層を設けたガラス繊維コードを、2.54cm当たり2.0回の下撚りを与え、更に13本引き揃えて下撚りと逆方向に2.54cm当たり2.0回の上撚りをする作業を施した。その後、前述の手順で作製したガラス繊維2次被覆用塗布液を塗布した後、110℃で1分間の乾燥を行い、2次被覆層を設け、本発明のゴム補強用ガラス繊維(実施例1)を作製した。このようにして、下練りと上練りの方向を各々逆方向とした2種類のゴム補強用ガラス繊維を作製した。各々、S練り、Z練りと称する。   The glass fiber cord provided with the coating layer is given a twist of 2.0 times per 2.54 cm, and is further drawn 13 times to twist 2.0 times per 2.54 cm in the opposite direction to the twist. Worked. Then, after applying the glass fiber secondary coating coating solution prepared in the above-described procedure, drying was performed at 110 ° C. for 1 minute to provide a secondary coating layer, and the glass fiber for rubber reinforcement of the present invention (Example 1) ) Was produced. In this way, two types of glass fibers for reinforcing rubber were prepared in which the directions of lower kneading and upper kneading were reversed. These are called S-kneading and Z-kneading, respectively.

この時の固形分付着率、即ち、2次被覆層の重量割合は、1次および2次被覆層を設けたガラス繊維束の重量に対して、3.5重量%であった。
実施例2
実施例1のガラス繊維被覆用塗布液に対して、前記モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)の添加量を83重量部、ビニルピリジンとスチレンとブタジエンとを、15:15:70の重量割合となるように重合してなるビニルピリジン−スチレン−ブタジエン共重合体(B)エマルジョン(日本エイアンドエル株式会社製、商品名、ピラテックス、固形分、41.0重量%)の添加量を451重量部に変えた以外は、実施例1と同様に本発明のガラス繊維被覆用塗布液を調製した。即ち、ガラス繊維被覆用塗布液中のモノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)を合わせた重量を100%基準として、重量百分率で表して、モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)が7.2%、ビニルピリジン−スチレン−ブタジエン共重合体(B)が64.2%、クロロスルフォン化ポリエチレン(C)が28.6%とした。
At this time, the solid content adhesion rate, that is, the weight ratio of the secondary coating layer was 3.5% by weight with respect to the weight of the glass fiber bundle provided with the primary and secondary coating layers.
Example 2
83 parts by weight of the monohydroxybenzene-formaldehyde resin (A) is added to the coating solution for coating glass fibers of Example 1, vinyl pyridine, styrene, and butadiene at a weight ratio of 15:15:70. The added amount of vinylpyridine-styrene-butadiene copolymer (B) emulsion (trade name, pilatex, solid content, 41.0% by weight, manufactured by Nippon A & L Co., Ltd.) is 451 parts by weight. A glass fiber coating coating solution of the present invention was prepared in the same manner as in Example 1 except that this was changed. That is, based on the total weight of monohydroxybenzene-formaldehyde resin (A), vinylpyridine-styrene-butadiene copolymer (B) and chlorosulfonated polyethylene (C) in the coating solution for glass fiber coating as 100%, Expressed in weight percentage, the monohydroxybenzene-formaldehyde resin (A) is 7.2%, the vinylpyridine-styrene-butadiene copolymer (B) is 64.2%, and the chlorosulfonated polyethylene (C) is 28.6. %.

次いで、実施例1に示した手順で、実施例1と同様のガラス繊維被覆用2次液を調製し、実施例1と同様の手順で作業を行い、ガラス繊維コードに更なる2次被覆層を設け本発明のゴム補強用ガラス繊維(実施例2)を作製した。
実施例3
実施例1のガラス繊維被覆用塗布液に対して、前記モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)の添加量を124重量部、ビニルピリジンとスチレンとブタジエンとを、15:15:70の重量割合となるように重合してなるビニルピリジン−スチレン−ブタジエン共重合体(B)エマルジョン(日本エイアンドエル株式会社製、商品名、ピラテックス、固形分、41.0重量%)の添加量を426重量部に変えた以外は、実施例1と同様に、本発明のガラス繊維被覆用塗布液を調製した。即ち、ガラス繊維被覆用塗布液中のモノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(C)とクロロスルフォン化ポリエチレンを合わせた重量を100%基準として、重量百分率で表して、モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)が10.8%、ビニルピリジン−スチレン−ブタジエン共重合体(B)が60.6%、クロロスルフォン化ポリエチレン(C)が28.6%となるよう調整した。
Next, a secondary solution for glass fiber coating similar to that in Example 1 is prepared by the procedure shown in Example 1, and the operation is performed in the same procedure as in Example 1 to further add a secondary coating layer to the glass fiber cord. A glass fiber for reinforcing rubber of the present invention (Example 2) was produced.
Example 3
124 parts by weight of the monohydroxybenzene-formaldehyde resin (A) is added to the coating solution for coating glass fibers of Example 1, vinyl pyridine, styrene, and butadiene at a weight ratio of 15:15:70. The added amount of vinylpyridine-styrene-butadiene copolymer (B) emulsion (trade name, pilatex, solid content, 41.0% by weight, manufactured by Nippon A & L Co., Ltd.) is 426 parts by weight. A glass fiber coating coating solution of the present invention was prepared in the same manner as in Example 1 except that the amount was changed. That is, in terms of weight percentage, the total weight of monohydroxybenzene-formaldehyde resin (A), vinylpyridine-styrene-butadiene copolymer (C) and chlorosulfonated polyethylene in the coating solution for glass fiber coating is 100%. In other words, the monohydroxybenzene-formaldehyde resin (A) is 10.8%, the vinylpyridine-styrene-butadiene copolymer (B) is 60.6%, and the chlorosulfonated polyethylene (C) is 28.6%. Adjusted as follows.

次いで、実施例1に示した手順で、実施例1と同様のガラス繊維被覆用2次液を調製し、実施例1と同様の手順で作業を行い、ガラス繊維コードに更なる2次被覆層を設け本発明のゴム補強用ガラス繊維(実施例3)を作製した。
実施例4
モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)に市販のモノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)(群栄化学工業社製、商品名、レジトップ、型番PL−4667、固形分、50重量%)を1重量%濃度の水酸化ナトリウム水溶液で2倍の重量割合で希釈したものを用いた。
Next, a secondary solution for glass fiber coating similar to that in Example 1 is prepared by the procedure shown in Example 1, and the operation is performed in the same procedure as in Example 1 to further add a secondary coating layer to the glass fiber cord. A glass fiber for reinforcing rubber of the present invention (Example 3) was prepared.
Example 4
1 weight of commercially available monohydroxybenzene-formaldehyde resin (A) (manufactured by Gunei Chemical Industry Co., Ltd., trade name, cash register top, model number PL-4667, solid content, 50% by weight) to monohydroxybenzene-formaldehyde resin (A) What was diluted with a sodium hydroxide aqueous solution with a concentration of 2% at a weight ratio of 2% was used.

実施例1のガラス繊維被覆用塗布液に対してモノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)としての前記レジトップ、型番PL−4667の添加量を83重量部、ビニルピリジンとスチレンとブタジエンとを、15:15:70の重量割合となるように重合したビニルピリジン−スチレン−ブタジエン共重合体(B)エマルジョン(日本エイアンドエル株式会社製、商品名、ピラテックス、固形分、41重量%)の添加量を451重量部に変えた以外は、実施例1と同様に本発明のガラス繊維被覆用塗布液を調製した。即ち、ガラス繊維被覆用塗布液中のモノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)を合わせた重量を100%基準としてとして、重量百分率で表して、モノヒドロキシベンゼン−ホルムアルデヒド樹脂が7.2%、ビニルピリジン−スチレン−ブタジエン共重合体が64.2%、クロロスルフォン化ポリエチレンが28.6%、となるように調整した。   83 parts by weight of the registration top, model number PL-4667 as the monohydroxybenzene-formaldehyde resin (A), 83 parts by weight of vinyl pyridine, styrene, and butadiene are added to the glass fiber coating coating solution of Example 1; : Addition amount of vinylpyridine-styrene-butadiene copolymer (B) emulsion polymerized to a weight ratio of 15:70 (trade name, pilatex, solid content, 41% by weight, manufactured by Nippon A & L Co., Ltd.) A glass fiber coating coating solution of the present invention was prepared in the same manner as in Example 1 except that the amount was changed to 451 parts by weight. That is, based on the total weight of monohydroxybenzene-formaldehyde resin (A), vinylpyridine-styrene-butadiene copolymer (B) and chlorosulfonated polyethylene (C) in the coating solution for glass fiber coating as 100% standard The monohydroxybenzene-formaldehyde resin was adjusted to 7.2%, the vinylpyridine-styrene-butadiene copolymer was 64.2%, and the chlorosulfonated polyethylene was adjusted to 28.6%. .

次いで、実施例1に示した手順で、実施例1と同様のガラス繊維被覆用2次液を調製し、実施例1と同様の手順で作業を行い、ガラス繊維コードに更なる2次被覆層を設け本発明のゴム補強用ガラス繊維(実施例4)を作製した。
比較例1
従来のレゾルシン−ホルムアルデヒド樹脂とビニルピリジン−スチレン−ブタジエン共重合体エマルジョンとクロロスルフォン化ポリエチレンとからなるゴム補強用ガラス繊維塗布液を調製した。
Next, a secondary solution for glass fiber coating similar to that in Example 1 is prepared by the procedure shown in Example 1, and the operation is performed in the same procedure as in Example 1 to further add a secondary coating layer to the glass fiber cord. A glass fiber for reinforcing rubber of the present invention (Example 4) was prepared.
Comparative Example 1
A glass fiber coating solution for rubber reinforcement comprising a conventional resorcin-formaldehyde resin, vinylpyridine-styrene-butadiene copolymer emulsion and chlorosulfonated polyethylene was prepared.

実施例1と異なり、モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)に替えてレゾルシン−ホルムアルデヒド樹脂(レゾルシンとホルムアルデヒドとのモル比、1.0:1.0で反応させたもの、固形分、8.7重量%)を239重量部使用し、ビニルピリジンとスチレンとブタジエンとを、15:15:70の重量割合で含有するビニルピリジン−スチレン−ブタジエンエマルジョン(日本エイアンドエル株式会社製、商品名、ピラテックス、固形分、41.0重量%)の添加量を451重量部に変えた以外は、実施例1と同様にガラス繊維被覆用塗布液を調製し、実施例1に示した手順で、従来のガラス繊維被覆用塗布液を調製した。即ち、ガラス繊維被覆用塗布液中のレゾルシン−ホルムアルデヒド樹脂とビニルピリジン−スチレン−ブタジエン共重合体とクロロスルフォン化ポリエチレン合わせた重量を100%基準として、重量百分率で表して、レゾルシン−ホルムアルデヒド樹脂が7.2%、ビニルピリジン−スチレン−ブタジエン共重合体が64.2%、クロロスルフォン化ポリエチレンが28.6%、となるように調整した。   Unlike Example 1, instead of monohydroxybenzene-formaldehyde resin (A), resorcin-formaldehyde resin (molar ratio of resorcin to formaldehyde, reacted at 1.0: 1.0, solid content, 8.7 239 parts by weight of vinyl pyridine, styrene, and butadiene in a weight ratio of 15:15:70 (made by Nippon A & L Co., Ltd., trade name, pilatex, A glass fiber coating coating solution was prepared in the same manner as in Example 1 except that the addition amount of the solid content (41.0% by weight) was changed to 451 parts by weight. A coating solution for fiber coating was prepared. That is, the resorcin-formaldehyde resin is expressed as a percentage by weight based on the total weight of the resorcin-formaldehyde resin, vinylpyridine-styrene-butadiene copolymer and chlorosulfonated polyethylene in the coating solution for glass fiber coating. 0.2%, vinylpyridine-styrene-butadiene copolymer 64.2%, and chlorosulfonated polyethylene 28.6%.

次いで、実施例1に示した手順で、実施例1と同様のガラス繊維被覆用2次液を調製し、実施例1と同様の手順で作業を行い、ガラス繊維コードに更なる2次被覆層を設けゴム補強用ガラス繊維(比較例1)を作製した。
比較例2
実施例1と同じガラス繊維被覆用塗布液を用い、次いで、クロロスルフォン化ポリエチレン(東ソー株式会社製、商品名、TS−430)、100重量部と、4、4'−ジフェニルメタンジイソシアネート、40重量部と、カーボンブラック、30重量部と、キシレン、1315重量部からなるガラス繊維二次被覆用塗布液を用い、実施例1に示した手順で作業を行い、被覆層および2次被覆層を設けたゴム補強用ガラス繊維(比較例2)を作製した。即ち、ガラス繊維2次被覆用塗布液中のクロロスルフォン化ポリエチレンの重量に対して、40重量%の4、4'−ジフェニルメタンジイソシアネート、30重量%のカーボンブラックを用いた。
比較例3
実施例2と同じガラス繊維被覆用塗布液を用い、次いで、比較例2と同じガラス繊維2次被覆用塗布液を調製し、実施例1に示した手順で、1次被覆層および2次被覆層を設けたゴム補強用ガラス繊維(比較例3)を作製した。
(接着強さの評価試験)
接着強さの評価試験を説明する前に、試験に使用した耐熱ゴムを説明する。
Next, a secondary solution for glass fiber coating similar to that in Example 1 is prepared by the procedure shown in Example 1, and the operation is performed in the same procedure as in Example 1 to further add a secondary coating layer to the glass fiber cord. A glass fiber for rubber reinforcement (Comparative Example 1) was prepared.
Comparative Example 2
Using the same glass fiber coating coating solution as in Example 1, then chlorosulfonated polyethylene (trade name, TS-430, manufactured by Tosoh Corporation), 100 parts by weight, 4,4′-diphenylmethane diisocyanate, 40 parts by weight Then, using a glass fiber secondary coating coating solution composed of 30 parts by weight of carbon black, 1315 parts by weight of xylene, and 1315 parts by weight, the procedure was performed in accordance with the procedure shown in Example 1 to provide a coating layer and a secondary coating layer. A glass fiber for rubber reinforcement (Comparative Example 2) was produced. That is, 40% by weight of 4,4′-diphenylmethane diisocyanate and 30% by weight of carbon black were used with respect to the weight of chlorosulfonated polyethylene in the glass fiber secondary coating solution.
Comparative Example 3
The same glass fiber coating coating solution as in Example 2 was used, then the same glass fiber secondary coating coating solution as in Comparative Example 2 was prepared, and the primary coating layer and the secondary coating were prepared according to the procedure shown in Example 1. A glass fiber for rubber reinforcement (Comparative Example 3) provided with a layer was produced.
(Adhesion strength evaluation test)
Before describing the adhesive strength evaluation test, the heat resistant rubber used in the test will be described.

母材ゴムとしてのHNBR(日本ゼオン株式会社製、型番、2020)、100重量部に対して、カーボンブラック、40重量部と、亜鉛華、5重量部と、ステアリン酸、0.5重量部と、硫黄、0.4重量部と、加硫促進剤、2.5重量部と、老化防止剤、1.5重量部とを配合してなるHNBRを架橋した耐熱ゴム(以後、耐熱ゴムAとする)、またHNBR(日本ゼオン株式会社製、型番、2010)、100重量部に対して、カーボンブラック、40重量部と、亜鉛華、5重量部と、ステアリン酸、0.5重量部と、1、3−ジ(t−ブチルペロキシイソプロピル)ベンゼン、5重量部と、老化防止剤、1.5重量部とを配合してなるHNBRを架橋した耐熱ゴム(以後、耐熱ゴムBとする)を接着強さの評価試験に使用した。   HNBR (made by Nippon Zeon Co., Ltd., model number, 2020) as a base rubber, 100 parts by weight, carbon black, 40 parts by weight, zinc white, 5 parts by weight, stearic acid, 0.5 parts by weight , Sulfur, 0.4 parts by weight, vulcanization accelerator, 2.5 parts by weight, antiaging agent, 1.5 parts by weight of HNBR cross-linked heat resistant rubber (hereinafter referred to as heat resistant rubber A) And HNBR (manufactured by Nippon Zeon Co., Ltd., model number, 2010), 100 parts by weight, carbon black, 40 parts by weight, zinc white, 5 parts by weight, stearic acid, 0.5 parts by weight, Heat-resistant rubber obtained by crosslinking HNBR containing 5 parts by weight of 1,3-di (t-butylperoxyisopropyl) benzene, an antioxidant and 1.5 parts by weight (hereinafter referred to as heat-resistant rubber B) Was used for the adhesive strength evaluation test.

試験片は耐熱ゴムAまたは耐熱ゴムBからなる3mm厚、25mm幅のゴムシート上に前記ゴム補強用ガラス繊維コード(実施例1〜4、比較例1〜3)を20本並べ、その上から布をかぶせ、耐熱ゴムAについては、温度、150℃下、196ニュートン/cm2(以後、ニュートンをNと略す)、また耐熱ゴムBについては、温度、170℃下、196N/cm2の条件で端部を除き押圧し、30分間加硫させつつ成形して、接着強さ評価のための試験片、言い換えればゴムシートを得た。この試験片の接着強さの測定を、端部において各々のゴムシートとゴム補強用ガラス繊維を個別にクランプにて挟み、剥離速度を50mm/minとし、ゴムシートからゴム補強用ガラス繊維を剥がす際の最大の抵抗値を測定し、剥離強さとした。剥離強さが大きいほど接着強さに優れる。
(接着強さの評価結果)
接着強さの評価結果を表1に示す。
The test pieces are arranged on a 3 mm thick and 25 mm wide rubber sheet made of heat resistant rubber A or heat resistant rubber B, and 20 glass fiber cords for rubber reinforcement (Examples 1 to 4 and Comparative Examples 1 to 3) are arranged from above. Cover with cloth, heat resistant rubber A, temperature, 150 ° C., 196 Newton / cm 2 (hereinafter Newton is abbreviated as N), and heat resistant rubber B, temperature, 170 ° C., 196 N / cm 2 The test piece for pressing the adhesive strength evaluation, in other words, a rubber sheet was obtained. For the measurement of the adhesive strength of the test piece, each rubber sheet and rubber reinforcing glass fiber are individually clamped at the end, the peeling speed is 50 mm / min, and the rubber reinforcing glass fiber is peeled off from the rubber sheet. The maximum resistance value at the time was measured to determine the peel strength. The greater the peel strength, the better the adhesive strength.
(Adhesion strength evaluation results)
Table 1 shows the evaluation results of the adhesive strength.

Figure 2006104595
Figure 2006104595

表1において、ガラス繊維とゴムが界面から剥離していない破壊状態をゴム破壊とし、界面から一部のみでも剥離している破壊状態を界面剥離とした。ゴム破壊の方が、界面剥離より接着強さに優れる。   In Table 1, the destruction state in which the glass fiber and the rubber were not separated from the interface was defined as rubber failure, and the destruction state in which only a part was separated from the interface was defined as interface separation. Rubber destruction is superior in adhesion strength to interfacial peeling.

実施例1の本発明のゴム補強用ガラス繊維は、表1に示すように、剥離強さを測定したところ、耐熱ゴムAについては314Nであり、耐熱ゴムBについては284Nであり、双方のゴムに対して接着性は良好であり、接着強さに優れていた。   As shown in Table 1, the glass fiber for reinforcing rubber of the present invention of Example 1 was measured for peel strength. As a result, the heat resistant rubber A was 314N and the heat resistant rubber B was 284N. On the other hand, the adhesiveness was good and the adhesive strength was excellent.

実施例2の本発明のゴム補強用ガラス繊維は、表1に示すように、剥離強さを測定したところ、耐熱ゴムAについては333Nであり、耐熱ゴムBについては304Nであり、双方のゴムに対して接着性は良好であり、接着強さに優れていた。   As shown in Table 1, the glass fiber for reinforcing rubber of the present invention of Example 2 was measured for peel strength. As a result, the heat resistant rubber A was 333 N, the heat resistant rubber B was 304 N, both rubbers On the other hand, the adhesiveness was good and the adhesive strength was excellent.

実施例3の本発明のゴム補強用ガラス繊維は、表1に示すように、剥離強さを測定したところ、耐熱ゴムAについては323Nであり、耐熱ゴムBについては309Nであり、双方のゴムに対して接着性は良好であり、接着強さに優れていた。   As shown in Table 1, the glass fiber for rubber reinforcement of Example 3 of the present invention was measured for peel strength. As a result, the heat resistant rubber A was 323N and the heat resistant rubber B was 309N. On the other hand, the adhesiveness was good and the adhesive strength was excellent.

実施例4の本発明のゴム補強用ガラス繊維は、表1の実施例4に示すように、耐熱ゴムAについては343Nであり、耐熱ゴムBについては345Nであり、双方のゴムに対して接着性は良好であり、接着強さに優れていた。   As shown in Example 4 of Table 1, the glass fiber for reinforcing rubber of the present invention of Example 4 is 343N for the heat-resistant rubber A and 345N for the heat-resistant rubber B, and is bonded to both rubbers. The properties were good and the adhesive strength was excellent.

また、破壊状態は、本発明の実施例1〜4のゴム補強用ガラス繊維は、表1の実施例1〜4に示すように、耐熱ゴムAを使用した場合、耐熱ゴムBを使用した場合ともにゴム破壊であり、接着強さに優れていた。   Moreover, when the heat-resistant rubber A is used for the glass fiber for rubber reinforcement of Examples 1-4 of this invention as shown in Examples 1-4 of Table 1, when the destruction state uses heat-resistant rubber B Both were rubber breaks and had excellent adhesive strength.

比較例1の本発明の範疇に属さないゴム補強用ガラス繊維は、実施例1と同様の手順で、試験片をつくり、接着強さの評価を行ったところ、表1の比較例1に示すように、耐熱ゴムAについては323N、耐熱ゴムBについては314Nであり、双方のゴムに対して接着特性は良好でであり、接着強さに優れていた。破壊状態は、耐熱ゴムAを使用した場合、耐熱ゴムBを使用した場合、ともに破壊状態はゴム破壊であり、接着強さに優れていた。   A glass fiber for rubber reinforcement that does not belong to the category of the present invention in Comparative Example 1 was prepared in the same manner as in Example 1 and a test piece was prepared and evaluated for adhesive strength. Thus, the heat resistant rubber A was 323N and the heat resistant rubber B was 314N, and the adhesive properties were good for both rubbers and the adhesive strength was excellent. When the heat-resistant rubber A was used and the heat-resistant rubber B was used, the broken state was rubber breakage and the adhesive strength was excellent.

比較例2の本発明の範疇に属さないゴム補強用ガラス繊維は、実施例1と同様の手順で、試験片をつくり、接着強さの評価を行ったところ、表1の比較例2に示すように、耐熱ゴムAについては294Nで良好な接着強さであったが、耐熱ゴムBについては127Nであり、接着力が弱く接着強さに劣っていた。   The glass fiber for rubber reinforcement that does not belong to the category of the present invention in Comparative Example 2 was prepared in the same procedure as in Example 1 and a test piece was prepared and the adhesion strength was evaluated. As described above, the heat resistant rubber A had a good adhesive strength of 294N, whereas the heat resistant rubber B had a good adhesive strength of 127N, and the adhesive strength was weak and the adhesive strength was poor.

比較例3の本発明の範疇に属さないゴム補強用ガラス繊維は、実施例1と同様の手順で、試験片をつくり、接着強さの評価を行ったところ、表1の比較例3に示すように、耐熱ゴムAについては319Nで良好な接着強さであったが、耐熱ゴムBについては118Nであり、接着力が弱く接着強さに劣っていた。
(耐水性評価)
実施例1、2、4および比較例1〜3で作製したゴム補強用ガラス繊維を補強材として、母材ゴムに前記耐熱ゴムBを用い、巾19mm、長さ876mmの伝動ベルトを各々作製し、耐水性を評価するための耐水走行疲労試験を実施した。耐水性は、注水下、伝動ベルトを、歯車、即ち、プーリーを用いて走行させ、一定時間経過の引っ張り強さ保持率、即ち、耐水走行疲労性能で評価する。
A glass fiber for reinforcing rubber that does not belong to the category of the present invention in Comparative Example 3 was prepared in the same procedure as in Example 1 and a test piece was evaluated. As described above, the heat resistant rubber A had a good adhesive strength of 319N, but the heat resistant rubber B had a good adhesive strength of 118N, and the adhesive strength was weak and the adhesive strength was poor.
(Water resistance evaluation)
Using the glass fiber for rubber reinforcement produced in Examples 1, 2, and 4 and Comparative Examples 1 to 3 as a reinforcing material, the heat-resistant rubber B was used as a base rubber, and a transmission belt having a width of 19 mm and a length of 876 mm was produced. A water resistance running fatigue test for evaluating water resistance was conducted. The water resistance is evaluated based on the tensile strength retention rate after a certain period of time, that is, the water resistance running fatigue performance, by running the transmission belt using gears, that is, pulleys, under water injection.

図1は、ゴム補強用ガラス繊維を耐熱ゴムに埋設させて作製した伝動ベルトを切断した際の斜視図である。   FIG. 1 is a perspective view when a transmission belt produced by embedding rubber reinforcing glass fibers in heat-resistant rubber is cut.

伝動ベルト1はプーリーに噛み合わせるための高さ3.2mmの突起部1Aを多数有し、突起部を除く背部1Bの厚みが2.0mmで、伝動ベルトの該背部1Bには、断面に見られるように上撚りと下撚りの練り方向が異なるS撚り、6本Z撚り、6本、合わせて12本の各ゴム補強用ガラス繊維2が、S撚りとZ撚りとが交互になるように埋設されている。   The transmission belt 1 has many protrusions 1A having a height of 3.2 mm for meshing with pulleys, and the thickness of the back part 1B excluding the protrusions is 2.0 mm. So that the twisting directions of the upper twist and the lower twist are different, S twist, 6 Z twist, 6 and 12 glass fibers for rubber reinforcement 2 in total, S twist and Z twist alternately Buried.

図2は、伝動ベルトの耐水走行疲労試験機の概略側面図である。   FIG. 2 is a schematic side view of a water resistance running fatigue tester for a transmission belt.

図2に示すように、各々の伝動ベルト1を図示しない駆動モーターと発電機を備えた耐水走行疲労試験機に装着し耐水性を測定する。   As shown in FIG. 2, each transmission belt 1 is attached to a water resistance running fatigue tester equipped with a drive motor and a generator (not shown) to measure water resistance.

伝動ベルト1は駆動モーターにより回転駆動される駆動プーリー3の駆動力により、従動プーリー4および5を回転させつつ走行する。従動プーリー5には図示しない発電機に連結されており、発電機を駆動し1kwの電力を発生させる。アイドラー6は、耐水走行疲労試験における走行中に回転しつつ伝動ベルト1を張る役割を有し、伝動ベルト1を張るための荷重として500Nを伝動ベルト1に与える。従動プーリー4、5は、径、60mm、歯数、20Tであり、駆動プーリー3は、径120mmであり、歯数、40Tである。耐水走行疲労試験中の駆動プーリ3の1分間あたりの回転数は、3000rpm、従動プーリー4、5の1分間あたりの回転数は、6000rpmである。回転方向は、伝動ベルト1に平行な矢印で示す。   The transmission belt 1 travels while the driven pulleys 4 and 5 are rotated by the driving force of the driving pulley 3 that is rotationally driven by the driving motor. The driven pulley 5 is connected to a generator (not shown), and drives the generator to generate 1 kW of power. The idler 6 has a role of tensioning the transmission belt 1 while rotating during traveling in the water resistance traveling fatigue test, and applies 500 N to the transmission belt 1 as a load for tensioning the transmission belt 1. The driven pulleys 4 and 5 have a diameter, 60 mm, the number of teeth, and 20T, and the driving pulley 3 has a diameter of 120 mm, and the number of teeth, 40T. The rotational speed per minute of the driving pulley 3 during the water-resistant running fatigue test is 3000 rpm, and the rotational speed per minute of the driven pulleys 4 and 5 is 6000 rpm. The direction of rotation is indicated by an arrow parallel to the transmission belt 1.

常温において、図2に示すように、1時間当たり6000mlの水7を、駆動プーリー3と従動プーリー4の間のにおいて、伝動ベルト1に均等に滴下させつつ、駆動プーリー3を3000rpmで回転させ、伝動ベルト1を従動プーリー4および5、アイドラー6を用いて走行させた。このようにして、36時間、伝動ベルト1を走行させる耐水走行疲労試験を実施した。耐水走行疲労試験前の伝動ベルト1の引っ張り強さ、および耐水走行疲労試験後の引っ張り強さを測定し、数1の式により試験前に対する試験後の伝動ベルト1の引っ張り強さ保持率を求め、実施例1、2、4及び比較例1〜3のゴム補強用ガラス2を用いて作製した伝動ベルト1の耐水性を比較評価した。
(引張り強さ測定)
引張り強さ測定に供する試験片の長さは257mmであり、1本の伝動ベルトから3本切り取り得られる。これら試験片の端部各々をクランプ間距離145mmのクランプにてはさみ、引張り速度を50mm/分とし、ベルトが破壊されるまでの最大の抵抗値を引張り強さとした。1本のベルトから3回、抵抗値を測定し、その平均値を伝動ベルトの引張り強さとした。
At room temperature, as shown in FIG. 2, 6000 ml of water 7 per hour is uniformly dropped on the transmission belt 1 between the drive pulley 3 and the driven pulley 4 while rotating the drive pulley 3 at 3000 rpm. The transmission belt 1 was run using driven pulleys 4 and 5 and an idler 6. Thus, the water-resistant running fatigue test which runs the transmission belt 1 for 36 hours was implemented. The tensile strength of the transmission belt 1 before the water-resistant running fatigue test and the tensile strength after the water-resistant running fatigue test are measured, and the tensile strength retention rate of the transmission belt 1 after the test with respect to the test before the test is obtained by the equation (1). The water resistance of the transmission belt 1 manufactured using the rubber reinforcing glass 2 of Examples 1, 2, 4 and Comparative Examples 1 to 3 was comparatively evaluated.
(Tensile strength measurement)
The length of the test piece used for measuring the tensile strength is 257 mm, and three pieces can be cut out from one transmission belt. Each end of these test pieces was clamped with a clamp having a distance of 145 mm between the clamps, the tensile speed was 50 mm / min, and the maximum resistance value until the belt was broken was the tensile strength. The resistance value was measured three times from one belt, and the average value was taken as the tensile strength of the transmission belt.

Figure 2006104595
Figure 2006104595

引っ張り強さ保持率(%)=試験後の引っ張り強さ÷試験前の引っ張り強さ×100
各々の伝動ベルトの耐水走行疲労試験後の引張り強さ保持率を表2に示す。
Tensile strength retention rate (%) = Tensile strength after test ÷ Tensile strength before test × 100
Table 2 shows the tensile strength retention ratio of each transmission belt after the water-resistant running fatigue test.

Figure 2006104595
Figure 2006104595

表2に示すように、実施例1、2、4及び比較例3のモノヒドロキシベンゼン−ホルムアルデヒド樹脂、ビニルピリジン−スチレン−ブタジエン共重合体とクロロスルフォン化ポリエチレンとを組成物としたガラス繊維被覆用塗布液をガラス繊維コードに塗布乾燥させた被覆層および更なる2次被覆層を有するのゴム補強用ガラス繊維2を用いた伝動ベルト1の走行試験後の引っ張り強さ保持率は、実施例1のゴム補強用ガラス繊維2を用いた場合は56%であり、実施例2のゴム補強用ガラス繊維2を用いた場合は61%であり、実施例4のゴム補強用ガラス繊維2を用いた場合は63%であり、比較例3のゴム補強用ガラス繊維2を用いた場合は51%であった。   As shown in Table 2, for glass fiber coating comprising the compositions of Examples 1, 2, 4 and Comparative Example 3 monohydroxybenzene-formaldehyde resin, vinylpyridine-styrene-butadiene copolymer and chlorosulfonated polyethylene. The tensile strength retention after the running test of the transmission belt 1 using the glass fiber 2 for rubber reinforcement having a coating layer obtained by coating and drying the coating liquid on the glass fiber cord and a further secondary coating layer is shown in Example 1. When the rubber reinforcing glass fiber 2 was used, it was 56%, and when the rubber reinforcing glass fiber 2 of Example 2 was used, it was 61%, and the rubber reinforcing glass fiber 2 of Example 4 was used. The ratio was 63%, and 51% when the glass fiber 2 for rubber reinforcement of Comparative Example 3 was used.

それに対して、比較例1および比較例2に示すように、モノヒドロキシベンゼン−ホルムアルデヒド樹脂を用いない替わりにレゾルシン−ホルムアルデヒド樹脂を用いて作製した、レゾルシン−ホルムアルデヒド樹脂、ビニルピリジン−スチレン−ブタジエン共重合体とクロロスルフォン化ポリエチレンとを組成物としたガラス繊維被覆用塗布液をガラス繊維コードに塗布乾燥させた被覆層および更なる2次被覆層を有するゴム補強用ガラス繊維2の引っ張り強さ保持率は、比較例1のゴム補強用ガラス繊維2を用いた場合は47%であり、比較例2のゴム補強用ガラス繊維2を用いた場合は39%であり、耐水性に劣っていた。尚、実施例2のゴム補強用ガラス繊維2を用いた場合には引っ張り強さ保持率は61%であって、比較例3のゴム補強用ガラス繊維2を用いた場合の51%に比較して大きい。   On the other hand, as shown in Comparative Example 1 and Comparative Example 2, resorcin-formaldehyde resin, vinylpyridine-styrene-butadiene copolymer prepared using resorcin-formaldehyde resin instead of not using monohydroxybenzene-formaldehyde resin Tensile strength retention of rubber-reinforced glass fiber 2 having a coating layer obtained by coating a glass fiber cord with a coating solution for coating glass fiber comprising merging and chlorosulfonated polyethylene on a glass fiber cord and a further secondary coating layer When the rubber reinforcing glass fiber 2 of Comparative Example 1 was used, it was 47%, and when the rubber reinforcing glass fiber 2 of Comparative Example 2 was used, it was 39%, which was inferior in water resistance. When the rubber reinforcing glass fiber 2 of Example 2 was used, the tensile strength retention was 61%, compared with 51% when using the rubber reinforcing glass fiber 2 of Comparative Example 3. Big.

この耐水走行疲労試験の結果より、従来のゴム補強用ガラス繊維2に比較して、モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)と、ビニルピリジン−スチレン−ブタジエン共重合体(B)と、クロロスルフォン化ポリエチレン(C)とを組成物とした本発明のガラス繊維被覆用塗布液を塗布後乾燥させてなる被覆被覆層を有し、ビスアリルナジイミド(H)に属するN−N'−ヘキサメチレンジアリルナジイミド、ハロゲン含有ポリマー(G)としてのクロロスルフォン化ポリエチレンと、p−ジニトロベンゼンとを組成物とした更なる2次被覆層を有した本発明のゴム補強用ガラス繊維2を用いた伝動ベルト1が優れた耐水性を有することが判った。
(耐熱性評価)
次いで、実施例2、4及び比較例1、2で作製したゴム補強用ガラス繊維コードを補強材として、母材ゴムに前記耐熱ゴムBを用い、前述の耐水性評価と同様に、巾19mm、長さ876mmの伝動ベルトを各々作製し、耐熱性を評価するための耐熱耐屈曲走行疲労試験を実施した。耐熱性は、高温下、伝動ベルトを、複数の歯車、即ち、プーリーを用いて、屈曲させつつ走行させ、一定時間経過の引っ張り強さ保持率、即ち、耐熱耐屈曲走行疲労性能で評価する。
From the results of this water resistance running fatigue test, compared with the conventional glass fiber 2 for rubber reinforcement, monohydroxybenzene-formaldehyde resin (A), vinylpyridine-styrene-butadiene copolymer (B), and chlorosulfonation. NN′-hexamethylene diallyl belonging to bisallylnadiimide (H), which has a coating coating layer formed by applying and drying the glass fiber coating coating solution of the present invention comprising polyethylene (C) as a composition Transmission belt using the glass fiber 2 for reinforcing rubber of the present invention having a further secondary coating layer composed of nadiimide, chlorosulfonated polyethylene as the halogen-containing polymer (G), and p-dinitrobenzene. 1 was found to have excellent water resistance.
(Heat resistance evaluation)
Then, using the heat-resistant rubber B as a base rubber, using the glass fiber cord for reinforcing rubber produced in Examples 2 and 4 and Comparative Examples 1 and 2 as a reinforcing material, a width of 19 mm, A transmission belt having a length of 876 mm was produced, respectively, and a heat-resistant, bending-resistant running fatigue test for evaluating heat resistance was performed. The heat resistance is evaluated by using a plurality of gears, that is, pulleys, while the power transmission belt is bent while being bent at a high temperature, and the tensile strength retention rate after a certain period of time, that is, the heat resistance bending resistance fatigue resistance performance.

図3は、伝動ベルトの耐熱耐屈曲走行疲労試験機の概略側面図である。   FIG. 3 is a schematic side view of a heat-resistant bending-resistant running fatigue tester for a transmission belt.

図3に示すように、各々の伝動ベルト1を図示しない駆動モーターを備えた耐熱耐屈曲走行疲労試験機に装着し耐熱性を測定する。伝動ベルト1は駆動モーターにより回転駆動される駆動プーリー8の駆動力により、3個の従動プーリー9、9´、9を回転させつつ走行する。アイドラー10は、耐熱耐屈曲走行疲労試験における走行中に伝動ベルト1を張るためのもので、伝動ベルト1を張る役割を有し、伝動ベルト1を張るための荷重として500Nを伝動ベルト1に与える。駆動プーリー8は、径、120mm、歯数、40Tであり、従動プーリー9、9´、9は、径60mmであり、歯数、20Tである。耐熱耐屈曲走行疲労試験中の駆動プーリー8の1分間あたりの回転数は、3000rpm、従動プーリー9、9´、9の1分間あたりの回転数は、6000rpmである。回転方向は、伝動ベルト1に平行な矢印で示す。 As shown in FIG. 3, each transmission belt 1 is mounted on a heat-resistant and bending-resistant running fatigue tester equipped with a drive motor (not shown) to measure heat resistance. Transmission belt 1 by the driving force of the driving pulley 8, which is rotated by a driving motor, three driven pulleys 9, 9 ', travels while rotating the 9 〃. The idler 10 is for tensioning the transmission belt 1 during traveling in the heat resistance and bending resistance fatigue test, has a role of tensioning the transmission belt 1, and gives 500 N to the transmission belt 1 as a load for tensioning the transmission belt 1. . Driving pulley 8, the diameter, 120 mm, number of teeth, a 40T, driven pulley 9 and 9 ', 9 is diameter 60 mm, number of teeth, it is 20T. Revolutions per minute of the driving pulley 8 in the heat bending running fatigue test, 3000 rpm, driven pulley 9 and 9 ', 9 revolutions per minute is 6000 rpm. The direction of rotation is indicated by an arrow parallel to the transmission belt 1.

温度、130℃の環境下で、図3に示すように、駆動プーリー8を、3000rpmで回転させ、伝動ベルト1を従動プーリー9、9´、9、アイドラー10を用いて屈曲させつつ走行させた。このようにして、500時間、伝動ベルト1を走行させ耐熱耐屈曲走行疲労試験を実施した。耐熱耐屈曲走行疲労試験前の伝動ベルト1の引っ張り強さ、および耐熱耐屈曲走行疲労試験後の引っ張り強さを測定し、数2の式より試験前に対する試験後の伝動ベルト1の引っ張り強さ保持率を求め、実施例1〜2、比較例2のゴム補強用ガラス繊維2を用いて作製した伝動ベルト1の耐熱耐屈曲走行疲労性能、即ち、耐熱性を比較評価した。
各々の伝動ベルトの耐熱耐屈曲走行疲労試験後の引っ張り強さ保持率を表2に示す。
Temperature, under 130 ° C. of environment, as shown in FIG. 3, the drive pulley 8, is rotated at 3000 rpm, the transmission belt 1 driven pulley 9 and 9 ', 9 〃, was run while bending with the idler 10 It was. In this manner, the transmission belt 1 was run for 500 hours, and a heat-resistant and bending-resistant running fatigue test was performed. The tensile strength of the transmission belt 1 before the heat-resistant bending resistance running fatigue test and the tensile strength after the heat-resistant bending resistance fatigue test are measured. The retention rate was determined, and the heat resistance, bending resistance, and fatigue resistance of the transmission belt 1 produced using the glass fibers 2 for rubber reinforcement of Examples 1 and 2 and Comparative Example 2 were compared and evaluated.
Table 2 shows the tensile strength retention ratio of each transmission belt after the heat-resistant and bending-resistant running fatigue test.

Figure 2006104595
Figure 2006104595

表3に示すように、実施例2、4のゴム補強用ガラス繊維2を用い作製した伝動ベルト1の耐熱耐屈曲走行疲労試験後の引っ張り強さ保持率は、各々91%、93%であり、比較例1、2のゴム補強用ガラス繊維2を用いた伝動ベルト1の、耐熱耐屈曲走行疲労試験後の引っ張り強さ保持率、各々90%、80%より優れており、優れた耐熱性を有する。   As shown in Table 3, the tensile strength retention ratios of the transmission belt 1 manufactured using the glass fibers 2 for rubber reinforcement of Examples 2 and 4 after the heat and bending resistance fatigue test are 91% and 93%, respectively. The transmission belts 1 using the rubber fibers 2 for reinforcing rubber of Comparative Examples 1 and 2 are superior to the tensile strength retention after the heat and bending resistance running fatigue test, respectively 90% and 80%, and have excellent heat resistance. Have

この耐熱耐屈曲走行疲労試験の結果より、モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)と、ビニルピリジン−スチレン−ブタジエン共重合体(B)と、クロロスルフォン化ポリエチレン(C)とを組成物とした本発明のガラス繊維被覆用塗布液を塗布後乾燥させてなる被覆被覆層を有し、ビスアリルナジイミド(H)に属するN−N'−ヘキサメチレンジアリルナジイミド、ハロゲン含有ポリマー(G)に属するクロロスルフォン化ポリエチレンと、p−ジニトロベンゼンとを組成物とした更なる2次被覆層を有した本発明のゴム補強用ガラス繊維2を用いた伝動ベルト1が、優れた耐熱性を有することが判った。   Based on the results of this heat resistance and bending resistance fatigue test, a composition comprising a monohydroxybenzene-formaldehyde resin (A), a vinylpyridine-styrene-butadiene copolymer (B), and a chlorosulfonated polyethylene (C). It has a coating coating layer formed by applying and drying the coating solution for coating glass fibers of the invention, and belongs to NN'-hexamethylenediallylnadiimide belonging to bisallylnadiimide (H) and halogen-containing polymer (G) The power transmission belt 1 using the glass fiber 2 for rubber reinforcement of the present invention having a further secondary coating layer composed of chlorosulfonated polyethylene and p-dinitrobenzene has excellent heat resistance. understood.

実施例1〜4のゴム補強用ガラス繊維2は架橋されたHNBRとの優れた接着強さを有し、実施例1〜4のゴム補強用ガラス繊維2を用い作製した伝動ベルトは、優れた耐水性、耐熱性を有することより、高温多湿下で長時間使用するタイミングベルト等の自動車用伝動ベルトの芯線として使用するに好適である。   The rubber reinforcing glass fibers 2 of Examples 1 to 4 have excellent adhesive strength with the cross-linked HNBR, and the power transmission belts produced using the rubber reinforcing glass fibers 2 of Examples 1 to 4 were excellent. Since it has water resistance and heat resistance, it is suitable for use as a core wire of a transmission belt for automobiles such as a timing belt used for a long time under high temperature and high humidity.

本発明により、ガラス繊維コードと前記母材ゴムとしての架橋されたHNBRの接着に対し、好ましい接着強さを与えるガラス繊維コードの被覆層を設けるためのガラス繊維被覆用塗布液を得て、更に、ガラス繊維コードに該ガラス繊維塗布液を塗布後乾燥させて被覆し被覆層としたゴム補強用ガラス繊維を、架橋されたHNBRに埋設し伝動ベルトとした際に優れた耐水性を与え、伝動ベルトに優れた耐水性と耐熱性を併せ持たせた。よって、エンジン、モーター等の駆動源の駆動力を伝えるための伝動ベルトに補強用として埋設し、特にタイミングベルト等の自動車用伝動ベルトに使用するために、HNBRに埋め込み、自動車用伝動ベルトとしての多湿高温下における引っ張り強さの維持および寸法安定性を与えるゴム補強用ガラス繊維として使用される。   According to the present invention, there is obtained a glass fiber coating coating solution for providing a glass fiber cord coating layer that gives a preferable adhesion strength to the glass fiber cord and the crosslinked HNBR as the base rubber. When the glass fiber cord is applied to the glass fiber cord and then dried and covered to form a coating layer, the rubber reinforcing glass fiber is embedded in a cross-linked HNBR to give excellent water resistance and transmission. The belt has excellent water resistance and heat resistance. Therefore, it is embedded as a reinforcement in a transmission belt for transmitting the driving force of a drive source such as an engine or a motor, and is embedded in HNBR for use in an automobile transmission belt such as a timing belt. Used as a rubber reinforcing glass fiber that provides tensile strength maintenance and dimensional stability under high humidity and high temperatures.

ゴム補強用ガラス繊維を耐熱ゴムに埋設させて作製した伝動ベルトを切断した際の斜視図である。It is a perspective view at the time of cut | disconnecting the power transmission belt produced by embedding the rubber fiber for rubber reinforcement in heat-resistant rubber. 伝動ベルトの耐水走行疲労性能試験機の概略側面図である。It is a schematic side view of the water-resistant running fatigue performance tester of a transmission belt. 伝動ベルトの耐熱耐屈曲走行疲労性能試験機の概略側面図である。It is a schematic side view of the heat-resistant bending-proof running fatigue performance testing machine of a transmission belt.

符号の説明Explanation of symbols

1 伝動ベルト
1A 突起部
1B 背部
2 ゴム補強用ガラス繊維コード
3 駆動プーリー(駆動モーターに連結)
4 従動プーリー
5 従動プーリー(発電機に連結)
6 アイドラ−
7 水
8 駆動プーリー
9、9´、9 従動プーリー
10 アイドラ−
DESCRIPTION OF SYMBOLS 1 Transmission belt 1A Protrusion part 1B Back part 2 Glass fiber cord for rubber reinforcement 3 Drive pulley (connected to drive motor)
4 Driven pulley 5 Driven pulley (connected to generator)
6 Idler
7 Water 8 Drive pulley 9, 9 ', 9 Follow pulley 10 Idler

Claims (7)

フェノール樹脂とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)とを水に分散させエマルジョンとしたガラス繊維コードに被覆するためのガラス繊維被覆用塗布液であって、前記フェノール樹脂が、モノヒドロキシベンゼン(D)とホルムアルデヒド(E)を反応させてなるモノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)であることを特徴とするガラス繊維被覆用塗布液。 A glass fiber coating coating solution for coating a glass fiber cord in which a phenol resin, a vinylpyridine-styrene-butadiene copolymer (B) and a chlorosulfonated polyethylene (C) are dispersed in water to form an emulsion, A glass fiber coating coating solution, wherein the phenol resin is a monohydroxybenzene-formaldehyde resin (A) obtained by reacting monohydroxybenzene (D) and formaldehyde (E). モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)が、モノヒドロキシベンゼン(D)に対するホルムアルデヒド(E)のモル比を、E/D=0.5〜3.0とし塩基性の触媒で反応させたレゾール型樹脂であることを特徴とする請求項1に記載のガラス繊維被覆用塗布液。 Resole type resin in which monohydroxybenzene-formaldehyde resin (A) is reacted with a basic catalyst at a molar ratio of formaldehyde (E) to monohydroxybenzene (D) of E / D = 0.5 to 3.0 The coating solution for coating glass fibers according to claim 1, wherein 重量100%で表して、モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)がA/(A+B+C)=1.0%〜15.0%、ビニルピリジン−スチレン−ブタジエン共重合体(B)がB/(A+B+C)=45.0%〜82.0%、クロロスルフォン化ポリエチレン(C)がC/(A+B+C)=3.0%〜40.0%の範囲に含まれてなることを特徴とする請求項1または請求項2に記載のガラス繊維被覆用塗布液。 Expressed by weight of 100%, monohydroxybenzene-formaldehyde resin (A) is A / (A + B + C) = 1.0% to 15.0%, vinylpyridine-styrene-butadiene copolymer (B) is B / (A + B + C) ) = 45.0% to 82.0%, and chlorosulfonated polyethylene (C) is contained in the range of C / (A + B + C) = 3.0% to 40.0%. Or the coating liquid for glass fiber coating of Claim 2. 前記ビニルピリジン−スチレン−ブタジエン共重合体(B)を、スチレン−ブタジエン共重合体(F)に、重量百分率で表して、F/B=5.0%〜80.0%の範囲で替えてなることを特徴とする請求項1乃至請求項3のいずれか1項に記載のガラス繊維被覆用塗布液。 The vinylpyridine-styrene-butadiene copolymer (B) is expressed as a percentage by weight with respect to the styrene-butadiene copolymer (F), and F / B = 5.0% to 80.0%. The coating liquid for glass fiber coating according to any one of claims 1 to 3, wherein: 請求項1乃至請求項4のいずれか1項に記載のガラス繊維被覆用塗布液を塗布後、乾燥させたゴム補強用ガラス繊維に、ハロゲン含有ポリマー(G)と、重量百分率で表してH/G=0.3%〜10.0%のビスアリルナジイミド(H)を有機溶剤に分散させたガラス繊維2次被覆用塗布液を塗布し、更なる2次被覆層を設けてなることを特徴とするゴム補強用ガラス繊維。 After applying the glass fiber coating coating solution according to any one of claims 1 to 4, the glass fiber for rubber reinforcement dried and applied to the halogen-containing polymer (G) and expressed in weight percentage as H / G = 0.3% to 10.0% of bisallylnadiimide (H) dispersed in an organic solvent is applied to a glass fiber secondary coating solution, and a further secondary coating layer is provided. Characteristic glass fiber for rubber reinforcement. 請求項5に記載のゴム補強用繊維を耐熱ゴムに埋設させてなることを特徴とする伝動ベルト。 A power transmission belt comprising the rubber reinforcing fiber according to claim 5 embedded in a heat resistant rubber. 上記の耐熱ゴムが架橋された水素化ニトリルゴムであることを特徴とする請求項6に記載の伝動ベルト。 The power transmission belt according to claim 6, wherein the heat-resistant rubber is a crosslinked hydrogenated nitrile rubber.
JP2004290183A 2004-10-01 2004-10-01 Glass fiber coating solution and rubber fiber reinforcing glass fiber using the same Active JP4410648B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004290183A JP4410648B2 (en) 2004-10-01 2004-10-01 Glass fiber coating solution and rubber fiber reinforcing glass fiber using the same
CNB2005800335536A CN100516350C (en) 2004-10-01 2005-09-27 Coating liquid for covering glass fiber and rubber-reinforcing glass fiber using same
CA 2581748 CA2581748C (en) 2004-10-01 2005-09-27 Coating liquid for covering glass fiber and rubber-reinforcing glass fiber using same
EP05788382.9A EP1795645B1 (en) 2004-10-01 2005-09-27 Coating liquid for covering glass fiber and rubber-reinforcing glass fiber using same
PCT/JP2005/017725 WO2006038490A1 (en) 2004-10-01 2005-09-27 Coating liquid for covering glass fiber and rubber-reinforcing glass fiber using same
US11/664,114 US8455097B2 (en) 2004-10-01 2005-09-27 Coating liquid for covering glass fiber and rubber-reinforcing glass fiber using same
PL05788382T PL1795645T3 (en) 2004-10-01 2005-09-27 Coating liquid for covering glass fiber and rubber-reinforcing glass fiber using same
US13/790,928 US9091325B2 (en) 2004-10-01 2013-03-08 Coating liquid for covering glass fiber and rubber-reinforcing glass fiber using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290183A JP4410648B2 (en) 2004-10-01 2004-10-01 Glass fiber coating solution and rubber fiber reinforcing glass fiber using the same

Publications (2)

Publication Number Publication Date
JP2006104595A true JP2006104595A (en) 2006-04-20
JP4410648B2 JP4410648B2 (en) 2010-02-03

Family

ID=36374661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290183A Active JP4410648B2 (en) 2004-10-01 2004-10-01 Glass fiber coating solution and rubber fiber reinforcing glass fiber using the same

Country Status (2)

Country Link
JP (1) JP4410648B2 (en)
CN (1) CN100516350C (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114228A1 (en) 2006-03-31 2007-10-11 Central Glass Company, Limited Coating liquid for coating glass fiber and rubber-reinforcing glass fiber using the same
JP2007314896A (en) * 2006-05-23 2007-12-06 Central Glass Co Ltd Coating liquid for fiber coating and rubber reinforcing fiber using the same
JP2008137881A (en) * 2006-11-02 2008-06-19 Central Glass Co Ltd Glass fiber for reinforcing rubber and transmission belt using the same
JP2010138535A (en) * 2008-11-13 2010-06-24 Central Glass Co Ltd Coating liquid for coating glass fiber and rubber-reinforcing glass fiber using the same
JP2010222734A (en) * 2009-03-24 2010-10-07 Central Glass Co Ltd Rubber-reinforcing glass fiber, and transmission belt using the same
JP2012066967A (en) * 2010-09-24 2012-04-05 Central Glass Co Ltd Coating solution for covering glass fiber and rubber-reinforcing glass fiber using the same
JP2012067410A (en) * 2010-09-24 2012-04-05 Central Glass Co Ltd Coating liquid for coating glass fiber and glass fiber for reinforcing rubber using the same
US8455097B2 (en) * 2004-10-01 2013-06-04 Central Glass Company, Limited Coating liquid for covering glass fiber and rubber-reinforcing glass fiber using same
US9091325B2 (en) 2004-10-01 2015-07-28 Central Glass Company, Limited Coating liquid for covering glass fiber and rubber-reinforcing glass fiber using same
WO2019103133A1 (en) * 2017-11-27 2019-05-31 住友精化株式会社 Anionic aqueous dispersion, production method therefor, moulded article, adhesive liquid, rubber-reinforcing fibres, and rubber-reinforcing fibre composite

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608037B (en) * 2018-12-10 2022-01-07 南通瑞隆新材料有限公司 Glass fiber processing device for modified plastics
CN113668247B (en) * 2021-09-26 2023-09-15 青岛天邦新材料有限公司 Formaldehyde-free glass fiber rope dipping liquid and preparation method and use method thereof
CN116622289A (en) * 2023-04-14 2023-08-22 国网新源集团有限公司 Waterproof bonding type spray-coating quick-setting liquid rubber waterproof composite coating and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4030499B2 (en) * 2003-01-22 2008-01-09 セントラル硝子株式会社 Glass fiber for rubber reinforcement

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8455097B2 (en) * 2004-10-01 2013-06-04 Central Glass Company, Limited Coating liquid for covering glass fiber and rubber-reinforcing glass fiber using same
US9091325B2 (en) 2004-10-01 2015-07-28 Central Glass Company, Limited Coating liquid for covering glass fiber and rubber-reinforcing glass fiber using same
WO2007114228A1 (en) 2006-03-31 2007-10-11 Central Glass Company, Limited Coating liquid for coating glass fiber and rubber-reinforcing glass fiber using the same
US8956723B2 (en) 2006-03-31 2015-02-17 Central Glass Company, Limited Coating liquid for coating glass fiber and rubber-reinforcing glass fiber using the same
JP2007314896A (en) * 2006-05-23 2007-12-06 Central Glass Co Ltd Coating liquid for fiber coating and rubber reinforcing fiber using the same
JP2008137881A (en) * 2006-11-02 2008-06-19 Central Glass Co Ltd Glass fiber for reinforcing rubber and transmission belt using the same
JP2010138535A (en) * 2008-11-13 2010-06-24 Central Glass Co Ltd Coating liquid for coating glass fiber and rubber-reinforcing glass fiber using the same
JP2010222734A (en) * 2009-03-24 2010-10-07 Central Glass Co Ltd Rubber-reinforcing glass fiber, and transmission belt using the same
JP2012066967A (en) * 2010-09-24 2012-04-05 Central Glass Co Ltd Coating solution for covering glass fiber and rubber-reinforcing glass fiber using the same
JP2012067410A (en) * 2010-09-24 2012-04-05 Central Glass Co Ltd Coating liquid for coating glass fiber and glass fiber for reinforcing rubber using the same
WO2019103133A1 (en) * 2017-11-27 2019-05-31 住友精化株式会社 Anionic aqueous dispersion, production method therefor, moulded article, adhesive liquid, rubber-reinforcing fibres, and rubber-reinforcing fibre composite

Also Published As

Publication number Publication date
JP4410648B2 (en) 2010-02-03
CN101035947A (en) 2007-09-12
CN100516350C (en) 2009-07-22

Similar Documents

Publication Publication Date Title
WO2006038490A1 (en) Coating liquid for covering glass fiber and rubber-reinforcing glass fiber using same
CN100516350C (en) Coating liquid for covering glass fiber and rubber-reinforcing glass fiber using same
JP4440190B2 (en) Glass fiber for rubber reinforcement and transmission belt using the same.
JP4410740B2 (en) Glass fiber for rubber reinforcement and transmission belt using the same.
WO2007114228A1 (en) Coating liquid for coating glass fiber and rubber-reinforcing glass fiber using the same
JP4030499B2 (en) Glass fiber for rubber reinforcement
JP4876858B2 (en) Glass fiber coating solution and rubber fiber reinforcing glass fiber using the same
JP5262253B2 (en) Glass fiber coating solution and rubber fiber reinforcing glass fiber using the same
JP2012052262A (en) Glass fiber cord for rubber reinforcement
JP4985036B2 (en) Glass fiber for rubber reinforcement and conductive belt using the same
JP4410738B2 (en) Glass fiber for rubber reinforcement and transmission belt using the same.
JP4522279B2 (en) Glass fiber coating solution and rubber fiber reinforcing glass fiber using the same
JP4410739B2 (en) Glass fiber for rubber reinforcement and transmission belt using the same.
US9091325B2 (en) Coating liquid for covering glass fiber and rubber-reinforcing glass fiber using same
JP4876971B2 (en) Glass fiber coating solution and rubber fiber reinforcing glass fiber using the same
JP2008137882A (en) Glass fiber for reinforcing rubber and transmission belt using the same
JP2010222178A (en) Glass fiber for reinforcing rubber and transmission belt using the same
JP5146146B2 (en) Glass fiber for rubber reinforcement and transmission belt using the same
JP2008137883A (en) Glass fiber for reinforcing rubber and transmission belt using the same
JP5087969B2 (en) Glass fiber for rubber reinforcement and transmission belt using the same
JP5151730B2 (en) Glass fiber for rubber reinforcement and transmission belt using the same
JP5262252B2 (en) Glass fiber for rubber reinforcement and transmission belt using the same
JP5212255B2 (en) Power transmission belt using glass fiber for rubber reinforcement
JP5212209B2 (en) Power transmission belt using glass fiber for rubber reinforcement
JP2014043656A (en) Coating liquid for coating glass fiber and rubber-reinforcing glass fiber using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091113

R150 Certificate of patent or registration of utility model

Ref document number: 4410648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250