JP4522279B2 - Glass fiber coating solution and rubber fiber reinforcing glass fiber using the same - Google Patents

Glass fiber coating solution and rubber fiber reinforcing glass fiber using the same Download PDF

Info

Publication number
JP4522279B2
JP4522279B2 JP2005029637A JP2005029637A JP4522279B2 JP 4522279 B2 JP4522279 B2 JP 4522279B2 JP 2005029637 A JP2005029637 A JP 2005029637A JP 2005029637 A JP2005029637 A JP 2005029637A JP 4522279 B2 JP4522279 B2 JP 4522279B2
Authority
JP
Japan
Prior art keywords
glass fiber
coating
rubber
resorcin
monohydroxybenzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005029637A
Other languages
Japanese (ja)
Other versions
JP2006214046A (en
Inventor
克彦 大柿
俊哉 門田
弘行 百武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2005029637A priority Critical patent/JP4522279B2/en
Publication of JP2006214046A publication Critical patent/JP2006214046A/en
Application granted granted Critical
Publication of JP4522279B2 publication Critical patent/JP4522279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

本発明は、各種ゴム製品の補強用に用いるガラス繊維と母材ゴムとの接着を高めるための被覆層を設けるためのガラス繊維被覆用塗布液およびそれを用いたゴム補強用ガラス繊維に関する。   The present invention relates to a glass fiber coating coating solution for providing a coating layer for enhancing the adhesion between glass fibers used for reinforcing various rubber products and a base rubber, and a rubber reinforcing glass fiber using the same.

伝動ベルト、タイヤ等のゴム製品に引っ張り強さおよび寸法安定性を付与するために、ガラス繊維、ナイロン繊維およびポリエステル繊維等の強度の高い繊維を母材ゴムに補強材として埋設することは一般的に行われ、母材ゴムに埋設するゴム補強用繊維には、母材であるゴムとの密着性がよく、界面が強固で剥離しないことが必要とされる。しかしながら、ガラス繊維をそのまま使用しても全く密着しないか、密着したとしても密着性が弱く界面が剥離してしまい補強材としての要をなさない。   In order to provide tensile strength and dimensional stability to rubber products such as transmission belts and tires, it is common to embed high-strength fibers such as glass fibers, nylon fibers, and polyester fibers as a reinforcing material in the base rubber. The rubber reinforcing fiber embedded in the base rubber is required to have good adhesion to the base rubber and have a strong interface and not peel off. However, even if the glass fiber is used as it is, it does not adhere at all, or even if it adheres, the adhesiveness is weak and the interface peels off, so that it is not necessary as a reinforcing material.

そのため、伝動ベルトを製造する際に母材ゴムに埋設して使用するゴム補強用ガラス繊維には、母材ゴムとの接着性を改善するための被覆材がガラス繊維コードに塗布被覆されたものが用いられる。詳しくは、例えば、母材ゴムとガラス繊維の密着性を向上させ、界面の剥離を防止するために、通常、フィラメントをより合わせてヤーンとしたガラス繊維コード゛に、レゾルシン−ホルムアルデヒド樹脂と各種ラテックスとを水に分散させたガラス繊維被覆用塗布液を塗布した後、乾燥させ被覆層としたゴム補強用ガラス繊維が用いられる。該被覆層は、高温下で、ゴム補強用ガラス繊維を母材ゴムに埋め込んで伝動ベルトに成形する際、母材ゴムとガラス繊維とを接着させる効果を有するが、接着力、即ち、接着強さは必ずしも十分な強さではない。例えば、自動車用伝動ベルトはエンジンル−ム内の高温の環境下で使用されるため、母材ゴムには、耐熱ゴムである、硫黄により、または過酸化物により架橋された水素化ニトリルゴム(以下、HNBRと略する)等が用いられる。前記被覆処理のみを行ったゴム補強用ガラス繊維を埋設した伝動ベルトは、高温下において屈曲し続ける走行状況下において、初期の接着強さが持続されず、長時間の走行においては、ゴム補強用ガラス繊維と母材ゴムとの界面の剥離をきたすこともある。   Therefore, the glass fiber cord is coated with a coating material for improving the adhesion to the base rubber for the glass fiber for rubber reinforcement that is embedded in the base rubber when using the transmission belt. Is used. Specifically, for example, in order to improve the adhesion between the base rubber and the glass fiber and prevent the separation of the interface, the glass fiber cord is usually made by combining the filaments into a yarn, and resorcin-formaldehyde resin and various latexes. After the glass fiber coating coating solution in which the above is dispersed in water is applied, the glass fiber for rubber reinforcement used as a coating layer is dried. The coating layer has an effect of adhering the base rubber and the glass fiber at a high temperature when the rubber reinforcing glass fiber is embedded in the base rubber and molded into a transmission belt. Is not necessarily strong enough. For example, since a power transmission belt for an automobile is used in a high-temperature environment in an engine room, the base rubber is a heat-resistant rubber, a hydrogenated nitrile rubber cross-linked with sulfur or peroxide ( Hereinafter, it is abbreviated as HNBR). The transmission belt embedded with the glass fiber for rubber reinforcement that has been subjected only to the coating treatment does not maintain the initial adhesive strength under running conditions that continue to bend at high temperatures. The interface between the glass fiber and the base rubber may be peeled off.

架橋されたHNBRとゴム補強用ガラス繊維との接着強さを持続し界面の剥離をきたさず、高温の環境下の走行においても長期信頼性のある伝動ベルトを提供するためのゴム補強ガラス繊維として、ガラス繊維コードに上述の被覆処理を行った後に得られた被覆を1次被覆層として、該2次被覆層上に異なる組成の第2液を塗布し乾燥させて2次被覆層としたゴム補強用ガラス繊維が特許文献1〜4に開示されている。   As a rubber-reinforced glass fiber for providing a transmission belt that maintains the bond strength between the cross-linked HNBR and the glass fiber for rubber reinforcement, does not cause separation of the interface, and is reliable for a long time even in a high temperature environment. The rubber obtained by applying the above-mentioned coating treatment to the glass fiber cord as a primary coating layer, applying a second liquid having a different composition on the secondary coating layer, and drying it to form a secondary coating layer Reinforcing glass fibers are disclosed in Patent Documents 1 to 4.

例えば、特許文献1において、ハロゲン含有ポリマーとイソシアネートを含む第2液で処理する方法が開示されている。   For example, Patent Document 1 discloses a method of treating with a second liquid containing a halogen-containing polymer and an isocyanate.

また、特許文献2には、ゴム補強用ガラス繊維に、レゾルシン−ホルマリン縮合物とゴムラテックスを含む処理剤を塗布し乾燥硬化させ第1被覆層とし、当該第1被覆層上にさらに異なる処理剤を塗布し乾燥硬化させ形成させた第2被覆層を有するゴム補強用ガラス繊維コードであって、当該第2被覆層用の処理剤が、ゴム配合物、加硫剤およびマレイミド系加硫助剤を主成分とすることを特徴とするゴム補強用コードが開示されている。   In Patent Document 2, a processing agent containing a resorcin-formalin condensate and a rubber latex is applied to a glass fiber for rubber reinforcement, dried and cured to form a first coating layer, and a different processing agent is further formed on the first coating layer. A glass fiber cord for reinforcing rubber having a second coating layer formed by applying and drying and curing, wherein the treating agent for the second coating layer is a rubber compound, a vulcanizing agent, and a maleimide vulcanizing aid A cord for reinforcing rubber is disclosed which is characterized by having a main component.

また、本出願人の特許出願に関わる特許文献3には、ガラス繊維にアクリル酸エステル系樹脂とビニルピリジン−スチレン−ブタジエン共重合体とレゾルシン−ホルムアルデヒド樹脂とを水に分散させエマルジョンとしたガラス繊維被覆用塗布液を塗布した後、乾燥させてなる被覆層を設け、ハロゲン含有ポリマーの重量に対して0.3重量%〜10.0重量%のビスアリルナジイミドとを有機溶剤に分散させたガラス繊維被覆用塗布液を塗布し、更なる被覆層を設けてなることを特徴とするゴム補強用ガラス繊維が開示されている。該ゴム補強用ガラス繊維は、架橋されたHNBRとの接着において、好ましい接着強さを示した。   In addition, Patent Document 3 relating to the applicant's patent application describes glass fiber in which an acrylic ester resin, a vinylpyridine-styrene-butadiene copolymer, and a resorcin-formaldehyde resin are dispersed in water to form an emulsion. After the coating coating solution is applied, a coating layer is provided by drying, and 0.3% by weight to 10.0% by weight of bisallylnadiimide is dispersed in an organic solvent with respect to the weight of the halogen-containing polymer. A glass fiber for reinforcing rubber is disclosed, which is obtained by applying a glass fiber coating coating solution and providing a further coating layer. The rubber reinforcing glass fiber showed a preferable adhesive strength in bonding with a cross-linked HNBR.

また、本出願人の特許出願に関わる特許文献4には、レゾルシン−ホルムアルデヒド樹脂とゴムラテックスとを水に分散させてなるガラス繊維被覆用第1液をガラス繊維に塗布し塗膜を形成した後に乾燥硬化させ1次被覆層とした後で、該1次被覆層上に異なる組成のガラス繊維被覆用第2液を塗布し塗膜を形成した後に乾燥硬化させて2次被覆層としたゴム補強用ガラス繊維において、ガラス繊維被覆用第2液がビスアリルナジイミドとゴムエラストマーと加硫剤と無機充填材とを有機溶剤に分散させてなることを特徴とするゴム補強用ガラス繊維が記載されている。該ゴム補強用ガラス繊維は、架橋されたHNBRとの接着において、好ましい接着強さを示し、架橋されたHNBRに埋設し伝動ベルトとして、高温下、長時間走行後も、引張り強さの低下がなく優れた耐熱性を有するものであった。   Further, in Patent Document 4 relating to the applicant's patent application, a glass fiber coating first liquid obtained by dispersing a resorcin-formaldehyde resin and a rubber latex in water is applied to glass fibers to form a coating film. After drying and curing to form a primary coating layer, a glass fiber coating second liquid having a different composition is applied onto the primary coating layer to form a coating film, followed by drying and curing to form a secondary coating layer. A glass fiber for reinforcing rubber, characterized in that the second liquid for glass fiber coating is obtained by dispersing bisallylnadiimide, a rubber elastomer, a vulcanizing agent, and an inorganic filler in an organic solvent. ing. The glass fiber for rubber reinforcement exhibits a preferable adhesive strength in bonding with a cross-linked HNBR, and the tensile strength is lowered even after running for a long time at high temperature as a transmission belt embedded in the cross-linked HNBR. And had excellent heat resistance.

従来、ゴム補強用ガラス繊維で補強された耐熱性の伝動ベルトとしての自動車のタイミングベルトには、レゾルシン−ホルムアルデヒド樹脂を必須の組成物としたガラス繊維被覆用塗布液を用い、ガラス繊維コードに塗布乾燥させ被覆層となし、続いて、これとは異なる組成のガラス繊維被覆用塗布液を用い塗布乾燥させ、更なる2次被覆層を設けたゴム補強用ガラス繊維を、耐熱ゴムとしての架橋されたHNBRに埋設し作製されたものが用いられてきた。
特公平2−4715号公報 特許第3201330号公報 特開2004−203730号公報 特開2004-244785号公報
Conventionally, an automotive timing belt as a heat-resistant transmission belt reinforced with glass fibers for reinforcing rubber is applied to glass fiber cords using a coating solution for coating glass fibers made of resorcin-formaldehyde resin as an essential composition. Drying to form a coating layer, followed by coating and drying using a glass fiber coating coating solution having a composition different from this, the rubber reinforcing glass fiber provided with a further secondary coating layer is crosslinked as a heat-resistant rubber. Those embedded in HNBR have been used.
Japanese Examined Patent Publication No. 2-4715 Japanese Patent No. 3201330 JP 2004-203730 A JP 2004-244785 A

しかし、レゾルシン−ホルムアルデヒド樹脂とゴムラテックスとを水に混合させたガラス繊維被覆用塗布液は、レゾルシン−ホルムアルデヒド樹脂の反応性が高く、塗布液としての寿命が短い。詳しくは、前記塗布液を調製してから24時間以内に使用しないと、ガラス繊維コードに前記塗布液を塗布し1次被覆層を得て、更に、ハロゲン含有ポリマー(H)とビスアリルナジイミド(I)を有機溶剤に分散させたガラス繊維2次被覆用塗布液等を塗布し2次被覆層を設けゴム補強用ガラス繊維を得たとしても、該ゴム補強用ガラス繊維を伝動ベルトに使用した際に母材ゴムとの所望の接着強さは得られなくなる。つまり、塗布液を調製後、ガラス繊維コードに塗布するまでの時間が短いという時間の制約があり、多量の塗布液を調製後、ガラス繊維コードに連続的に長時間塗布し、塗布工程の連続操業時間を長くすることができなく、生産性が低いと言う問題があった。また、レゾルシンの単価は、1000〜2000円/kgであり、ゴム補強用ガラス繊維の製造コストが高いと言う問題があった。   However, a glass fiber coating coating liquid in which a resorcin-formaldehyde resin and a rubber latex are mixed with water has a high reactivity of the resorcin-formaldehyde resin and has a short life as a coating liquid. Specifically, if the coating solution is not used within 24 hours after it is prepared, the coating solution is applied to a glass fiber cord to obtain a primary coating layer. Further, the halogen-containing polymer (H) and bisallyl nadiimide are obtained. Even if a glass fiber secondary coating coating solution in which (I) is dispersed in an organic solvent is applied to provide a secondary coating layer to obtain a rubber reinforcing glass fiber, the rubber reinforcing glass fiber is used for the transmission belt. In this case, the desired adhesive strength with the base rubber cannot be obtained. In other words, there is a time limitation that the time until the coating solution is prepared and then applied to the glass fiber cord is short. After preparing a large amount of coating solution, it is continuously applied to the glass fiber cord for a long time, and the coating process is continued. There was a problem that the operation time could not be extended and the productivity was low. Moreover, the unit price of resorcin was 1000 to 2000 yen / kg, and there was a problem that the manufacturing cost of the glass fiber for rubber reinforcement was high.

前述の特許文献1、特許文献2、特許文献3または特許文献4に記載されているレゾルシン−ホルムアルデヒド樹脂を必須の組成物としたガラス繊維被覆用塗布液に比較して、ガラス繊維コードに塗布して被覆層としゴム補強用繊維とした際に、従来のガラス繊維被覆用塗布液を用いた場合と同等以上のゴム補強用ガラス繊維と耐熱ゴムの接着強さを有し、且つ塗布液調製後、長時間経過した後にガラス繊維コードに塗布被覆したとしても、ゴム補強用ガラス繊維と耐熱ベルトの接着強さが低下せず性能を維持する時間が長い、即ち、寿命が長いゴム補強用ガラス繊維の長時間の連続生産が可能なガラス繊維被覆用塗布液の開発が待たれている。   Compared to the coating solution for coating glass fiber using the resorcin-formaldehyde resin described in Patent Document 1, Patent Document 2, Patent Document 3 or Patent Document 4 as an essential composition, it is applied to a glass fiber cord. When the coating layer is made into a rubber reinforcing fiber, it has an adhesive strength between the glass fiber for rubber reinforcement and heat-resistant rubber that is equal to or higher than that of the conventional glass fiber coating coating solution, and after the coating solution is prepared Even if the glass fiber cord is coated and coated after a long time, the glass fiber cord for rubber reinforcement has a long time to maintain the performance without decreasing the adhesive strength between the glass fiber for rubber reinforcement and the heat-resistant belt, that is, a long life. Development of a coating solution for glass fiber coating that can be continuously produced for a long time is awaited.

本発明者らが鋭意検討した結果、ビニルピリジン−スチレン−ブタジエン共重合体とクロロスルフォン化ポリエチレンに、モノヒドロキシベンゼンとレゾルシンとホルムアルデヒドとを反応させてなるモノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)を組成物として加えガラス繊維被覆用塗布液とし、ガラス繊維被覆用塗布液をガラス繊維コードに塗布した後に乾燥させて被覆層とし、その上に更なる2次被覆層を設けてなるゴム補強用ガラス繊維を作製とすると、従来のレゾルシン−ホルムアルデヒド樹脂を用いた際のゴム補強用ガラス繊維と耐熱ゴムとの接着強さは低下することなく、ガラス繊維被覆用塗布液調製後の寿命が長くなることが判った。   As a result of intensive studies by the present inventors, a monohydroxybenzene-resorcin-formaldehyde resin (A) obtained by reacting a vinylpyridine-styrene-butadiene copolymer and chlorosulfonated polyethylene with monohydroxybenzene, resorcin and formaldehyde (A) Is added to the composition as a coating solution for glass fiber coating, and the coating solution for coating glass fiber is applied to the glass fiber cord and then dried to form a coating layer, on which a further secondary coating layer is provided. When glass fiber is prepared, the adhesive strength between the glass fiber for reinforcing rubber and the heat-resistant rubber when using the conventional resorcin-formaldehyde resin is not lowered, and the life after preparation of the coating solution for glass fiber coating is extended. I found out.

レゾルシン−ホルムアルデヒド樹脂を用い、従来のガラス繊維被覆用塗布液を調製した後に、24時間以内にガラス繊維コードに塗布被覆しゴム補強用ガラス繊維としないと所望の耐熱ゴムとの接着強さが得られない、言い換えれば、ガラス繊維被覆用塗布液としての寿命が短かった。しかしながら、レゾルシン−ホルムアルデヒド樹脂を、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)に替えて調製した本発明のガラス繊維被覆用塗布液を用いたゴム補強用ガラス繊維は、ガラス繊維被覆用塗布液調製後ガラス繊維コードに被覆する際、調製後の耐熱ゴムとの接着強さが得られる寿命が長い。このことは、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂の反応性より、レゾルシン−ホルムアルデヒド樹脂の反応性の方が高いため、従来のガラス繊維被覆用塗布液の方が調整後、時間の経過とともにゲル化し易く、本発明のガラス繊維被覆用塗布液に比べ液安定性に劣るためと考えられる。   After preparing a conventional glass fiber coating coating solution using resorcinol-formaldehyde resin, if it is not coated and coated on a glass fiber cord within 24 hours to make a glass fiber for rubber reinforcement, the desired strength of heat-resistant rubber can be obtained. In other words, the lifetime as a glass fiber coating solution was short. However, the glass fiber for rubber reinforcement using the coating liquid for glass fiber coating of the present invention prepared by replacing the resorcin-formaldehyde resin with the monohydroxybenzene-resorcin-formaldehyde resin (A) is prepared as a coating liquid for glass fiber coating. When coated on the rear glass fiber cord, the life of obtaining the adhesive strength with the heat-resistant rubber after preparation is long. This is because the reactivity of resorcin-formaldehyde resin is higher than the reactivity of monohydroxybenzene-resorcin-formaldehyde resin, so that the conventional glass fiber coating coating solution gels with time after adjustment. This is presumably because the liquid stability is inferior to the glass fiber coating coating liquid of the present invention.

即ち、本発明は、フェノール樹脂とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)とを水に分散させエマルジョンとしたガラス繊維コードに被覆乾燥させゴム補強用ガラス繊維とし架橋された水素化ニトリルゴムと接着させるためのガラス繊維被覆用塗布液であって、前記フェノール樹脂が、モノヒドロキシベンゼン(D)およびレゾルシン(F)とホルムアルデヒド(E)とを反応させてなるモノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)であり、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)が、モノヒドロキシベンゼン(D)とレゾルシン(F)とに対するホルムアルデヒド(E)のモル比を、E/(D+F)=0.5〜3.0とし塩基性の触媒で反応させたレゾール型樹脂であり、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)におけるモノヒドロキシベンゼン(D)とレゾルシン(F)とに対するモノヒドロキシベンゼンの含有率をモル百分率で表して、D/(D+F)=30.0%〜70.0%であり、重量百分率で表して、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)がA/(A+B+C)=1.0%〜15.0%、ビニルピリジン−スチレン−ブタジエン共重合体(B)がB/(A+B+C)=45.0%〜82.0%、クロロスルフォン化ポリエチレン(C)がC/(A+B+C)=3.0%〜40.0%の範囲に含まれてなることを特徴とするガラス繊維被覆用塗布液である。
That is, the present invention relates to a glass for reinforcing rubber by coating and drying a glass fiber cord in which a phenol resin, a vinylpyridine-styrene-butadiene copolymer (B) and a chlorosulfonated polyethylene (C) are dispersed in water to form an emulsion. A glass fiber coating coating solution for bonding to a hydrogenated nitrile rubber crosslinked as a fiber, wherein the phenol resin reacts monohydroxybenzene (D) and resorcin (F) with formaldehyde (E). A monohydroxybenzene-resorcin-formaldehyde resin (A), wherein the monohydroxybenzene-resorcin-formaldehyde resin (A) has a molar ratio of formaldehyde (E) to monohydroxybenzene (D) and resorcin (F), E / (D + F) = 0.5 to 3.0 and basic It is a resole type resin reacted with a catalyst, and the monohydroxybenzene content in the monohydroxybenzene-resorcin-formaldehyde resin (A) with respect to the monohydroxybenzene (D) and resorcin (F) is expressed in mole percentage, and D /(D+F)=30.0%-70.0%, expressed as a percentage by weight, the monohydroxybenzene-resorcin-formaldehyde resin (A) is A / (A + B + C) = 1.0% -15.0% , Vinylpyridine-styrene-butadiene copolymer (B) is B / (A + B + C) = 45.0% to 82.0%, chlorosulfonated polyethylene (C) is C / (A + B + C) = 3.0% to 40 A glass fiber coating coating solution characterized by being contained in a range of 0.0% .

更に、本発明は、前記ビニルピリジン−スチレン−ブタジエン共重合体(B)を、スチレン−ブタジエン共重合体(G)に、重量百分率で表して、G/B=5.0%〜80.0%の範囲で替えてなることを特徴とする上記のガラス繊維被覆用塗布液である。   Furthermore, this invention represents the said vinylpyridine-styrene-butadiene copolymer (B) to a styrene-butadiene copolymer (G) by weight percentage, G / B = 5.0%-80.0. % Glass fiber coating coating liquid, characterized in that it is changed within a range of%.

更に、本発明は、上記のガラス繊維被覆用塗布液を塗布後、乾燥させたゴム補強用ガラス繊維に、ハロゲン含有ポリマー(H)と、重量百分率で表してI/H=0.3%〜10.0%のビスアリルナジイミド(I)を有機溶剤に分散させたガラス繊維2次被覆用塗布液を塗布し、更なる2次被覆層を設けてなることを特徴とするゴム補強用ガラス繊維である。   Furthermore, the present invention provides a glass fiber for reinforcing rubber that has been dried after coating the above-mentioned coating solution for coating glass fiber, and the halogen-containing polymer (H) and I / H = 0.3% to A glass for reinforcing rubber characterized by applying a glass fiber secondary coating coating solution in which 10.0% of bisallylnadiimide (I) is dispersed in an organic solvent, and further providing a secondary coating layer. Fiber.

更に、本発明は上記のゴム補強用繊維を架橋された水素化ニトリルゴムに埋設させてなることを特徴とする伝動ベルトである。
Furthermore, the present invention is a transmission belt characterized in that the rubber reinforcing fiber is embedded in a crosslinked hydrogenated nitrile rubber.

本発明の、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)とを水に分散させエマルジョンとしたガラス繊維コードに被覆するためのガラス繊維被覆用塗布液は、ガラス繊維コードに被覆乾燥させゴム補強用ガラス繊維とし耐熱ゴムと接着させる場合、調製後、ゴム補強用ガラス繊維と耐熱ベルトの接着強さが低下せず性能を維持する時間、言い換えれば、寿命が長い。本発明のガラス繊維被覆用塗布液を使用することで、より、ゴム補強用ガラス繊維の長時間の連続生産が可能となった。   A glass fiber cord coated with a monohydroxybenzene-resorcin-formaldehyde resin (A), vinylpyridine-styrene-butadiene copolymer (B), and chlorosulfonated polyethylene (C) dispersed in water as an emulsion according to the present invention. When the glass fiber coating coating liquid is coated and dried on a glass fiber cord and bonded to a heat-resistant rubber as a glass fiber for rubber reinforcement, the adhesive strength between the glass fiber for rubber reinforcement and the heat-resistant belt does not decrease after preparation. Time to maintain performance, in other words, long life. By using the glass fiber coating coating solution of the present invention, it has become possible to produce rubber reinforcing glass fibers continuously for a long time.

本発明のガラス繊維被覆用塗布液を塗布しガラス繊維コードに被覆層を設けてなるゴム補強用ガラス繊維は、耐熱ゴムである、例えば、硫黄により、または過酸化物により架橋されたHNBRへ埋設した際に、従来のレゾルシン−ホルムアルデヒド樹脂とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)とを水に分散させエマルジョンとしたガラス繊維被覆用塗布液を用いた場合と同等のゴム補強用ガラス繊維と架橋されたHNBRとの優れた接着強さを有する。   The glass fiber for rubber reinforcement formed by applying the coating solution for coating glass fiber of the present invention and providing a coating layer on the glass fiber cord is a heat-resistant rubber, for example, embedded in HNBR crosslinked with sulfur or with peroxide. When using a conventional glass fiber coating coating solution in which a resorcin-formaldehyde resin, a vinylpyridine-styrene-butadiene copolymer (B) and a chlorosulfonated polyethylene (C) are dispersed in water to form an emulsion It has excellent adhesive strength between rubber reinforcing glass fiber equivalent to HNBR and crosslinked HNBR.

また、従来のガラス繊維被覆用塗布液に比べ、本発明のガラス繊維被覆用塗布液は、原料に高価なレゾルシン(単価、1000〜2000円/kg)に替えて安価なモノヒドロキシベンゼン(単価、120〜140円/kg)を用いるため安価となる。   In addition, compared with the conventional glass fiber coating coating solution, the glass fiber coating coating solution of the present invention is cheaper monohydroxybenzene (unit price, unit price, 1000 to 2000 yen / kg) instead of expensive resorcin (raw unit price, 120 to 140 yen / kg) is used, so the cost is low.

本発明は、フェノール樹脂に属するモノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)とを水に分散させたガラス繊維被覆用塗布液である。   The present invention relates to a glass fiber coating in which a monohydroxybenzene-resorcin-formaldehyde resin (A) belonging to a phenol resin, a vinylpyridine-styrene-butadiene copolymer (B), and a chlorosulfonated polyethylene (C) are dispersed in water. Coating solution.

更に、本発明は、前期ガラス繊維被覆用塗布液をガラス繊維コードに塗布後、乾燥させて、被覆層を設けた後、別のガラス繊維2次被覆用塗布液を塗布し乾燥させて更なる2次被覆層を設け乾燥させてなるゴム補強用ガラス繊維である。   Furthermore, the present invention further includes applying a glass fiber cord coating solution to the glass fiber cord and drying it, providing a coating layer, and then applying and drying another glass fiber secondary coating solution. It is a glass fiber for rubber reinforcement formed by providing a secondary coating layer and drying it.

モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)におけるモノヒドロキシベンゼン(D)とレゾルシン(F)とを合わせたモル数に対しての、モノヒドロキシベンゼン(D)のモル数により、モノヒドロキシベンゼン(D)とレゾルシン(F)とに対する、モノヒドロキシベンゼン(D)の組成割合をモル百分率で表して、0.1%より小さいと、ガラス繊維被覆用塗布液の液寿命が短くなり、0.1%以上であることが好ましい。モノヒドロキシベンゼン(D)を加えるほどに液寿命が長くなる傾向があり、より好ましくは、10.0%以上であり、更に好ましくは30.0%以上である。99.9%を超えるとゴム補強用ガラス繊維とした際に、耐熱ゴムとの接着強さが低下する。レゾルシン(F)を加えるほどに、接着強さが増す傾向があり、好ましくは、90.0%以下、より好ましくは70.0%以下である。モノヒドロキシベンゼン(D)/(モノヒドロキシベンゼン(D)+レゾルシン(F))のモル%比は、D/(D+F)=0.1%〜99.9%の範囲であり、好ましくは、10.0%〜90.0%の範囲、更に好ましくは、30.0〜70.0%の範囲である。   According to the number of moles of monohydroxybenzene (D) relative to the number of moles of monohydroxybenzene (D) and resorcin (F) in monohydroxybenzene-resorcin-formaldehyde resin (A), monohydroxybenzene (D ) And resorcinol (F), the composition ratio of monohydroxybenzene (D) is expressed in mole percentage, and if it is less than 0.1%, the liquid life of the coating solution for glass fiber coating is shortened to 0.1% The above is preferable. As the monohydroxybenzene (D) is added, the liquid life tends to be longer, more preferably 10.0% or more, and still more preferably 30.0% or more. If it exceeds 99.9%, the adhesive strength with the heat-resistant rubber is lowered when the glass fiber for rubber reinforcement is used. As resorcin (F) is added, the adhesion strength tends to increase, and is preferably 90.0% or less, more preferably 70.0% or less. The molar ratio of monohydroxybenzene (D) / (monohydroxybenzene (D) + resorcin (F)) is in the range of D / (D + F) = 0.1% to 99.9%, preferably 10 The range is from 0.0% to 90.0%, and more preferably from 30.0 to 70.0%.

また、本発明のガラス繊維被覆用塗布液の組成物とするモノヒドロキシベンゼン−とレゾルシン−ホルムアルデヒド樹脂(A)としては、モノヒドロキシベンゼン(D)とレゾルシン(F)に対するホルムアルデヒド(E)のモル比が0.5以上、3.0以下、即ち、E/(D+F)=0.5〜3.0で、塩基性の触媒で反応させた水溶性もしくは水溶媒レゾール型樹脂が挙げられる。ホルムアルデヒド(E)のモル比が0.5未満では、ゴム補強用ガラス繊維と耐熱ゴムとの接着強さに劣り、3.0を越えるとガラス繊維被覆用塗布液が、ゲル化し易い。好ましくは、0.5〜1.3の範囲である。   Moreover, as monohydroxybenzene-resorcin-formaldehyde resin (A) used as the composition of the coating solution for glass fiber coating of the present invention, the molar ratio of formaldehyde (E) to monohydroxybenzene (D) and resorcin (F) Is 0.5 or more and 3.0 or less, that is, E / (D + F) = 0.5 to 3.0, and water-soluble or water-solvent resol type resin reacted with a basic catalyst. If the molar ratio of formaldehyde (E) is less than 0.5, the adhesive strength between the glass fiber for reinforcing rubber and the heat-resistant rubber is inferior, and if it exceeds 3.0, the glass fiber coating solution is easily gelled. Preferably, it is the range of 0.5-1.3.

尚、前記塩基性の触媒としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムおよび水酸化バリウム等が挙げられる。   Examples of the basic catalyst include lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, and barium hydroxide.

本発明のガラス繊維被覆用塗布液の組成物として用いるビニルピリジン−スチレン−ブタジエン共重合体(B)には、ビニルピリジン:スチレン:ブタジエンの比が、重量比で10〜20:10〜20:80〜60の範囲で重合させてなるビニルピリジン−スチレン−ブタジエン共重合体(B)を用いることが好ましく、市販の日本エイアンドエル株式会社製、商品名、ピラテクス、JSR株式会社製、商品名、0650、および日本ゼオン株式会社製、商品名、Nipol、型番、1218FS等が挙げられる。尚、前記重量比を外れたビニルピリジン−スチレン−ブタジエン共重合体(B)を用いたガラス繊維被覆用塗布液を使用した後、塗布後乾燥させてガラス繊維コードに被覆を施し作製したゴム補強用ガラス繊維は、母材ゴムとの接着強さに劣る。   In the vinylpyridine-styrene-butadiene copolymer (B) used as the composition for the coating solution for coating glass fibers of the present invention, the ratio of vinylpyridine: styrene: butadiene is 10-20: 10-20: It is preferable to use a vinylpyridine-styrene-butadiene copolymer (B) polymerized in the range of 80 to 60, and commercially available Nippon A & L Co., Ltd., trade name, Pilatex, JSR Corporation, trade name, 0650. And Nippon Zeon Co., Ltd., trade name, Nipol, model number, 1218FS, and the like. In addition, after using the coating solution for glass fiber coating using the vinylpyridine-styrene-butadiene copolymer (B) deviating from the above weight ratio, it was dried after coating, and the rubber reinforcement produced by coating the glass fiber cord. Glass fiber for use is inferior in adhesive strength with the base rubber.

本発明のガラス繊維被覆用塗布液の組成物として用いるクロロスルフォン化ポリエチレン(C)は、重量百分率で表して、塩素含有量が20.0%〜40.0%、スルフォン基中の硫黄含有量が0.5%〜2.0%のものが好適に用いられ、例えば、固形分約40重量%のラテックスとして、住友精化株式会社製、商品名、CSM−450が市販されており、本発明のガラス繊維被覆用塗布液に使用される。尚、前述の塩素含有量及びスルフォン基中の硫黄含有量を外れたクロロスルフォン化ポリエチレン(C)を用いたガラス繊維被覆用塗布液を使用し、ガラス繊維コードに被覆を施し作製したゴム補強用ガラス繊維は、母材である架橋されたHNBRとの接着性に劣る。   The chlorosulfonated polyethylene (C) used as a composition for the coating solution for coating glass fibers of the present invention is expressed in terms of weight percentage, the chlorine content is 20.0% to 40.0%, and the sulfur content in the sulfone group Of 0.5% to 2.0% is preferably used. For example, as a latex having a solid content of about 40% by weight, a product name, CSM-450, manufactured by Sumitomo Seika Co., Ltd. is commercially available. It is used for the coating liquid for glass fiber coating of the invention. In addition, for the reinforcement of rubber produced by coating the glass fiber cord using the coating liquid for coating the glass fiber using the chlorosulfonated polyethylene (C) deviating from the chlorine content and the sulfur content in the sulfone group. Glass fiber is inferior in adhesiveness with the cross-linked HNBR which is a base material.

伝動ベルトに使用した際のゴム補強用ガラス繊維と母材ゴムに、所望の接着強さを得るには、ガラス繊維被覆用塗布液に含まれるモノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)とを合わせた重量を100%基準として、重量百分率で表して、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)が1.0%以上、15.0%以下、即ち、A/(A+B+C)=1.0%〜15.0%、ビニルピリジン−スチレン−ブタジエン共重合体(B)が45.0%以上、82.0%以下、即ち、B/(A+B+C)=45.0%〜82.0%、クロロスルフォン化ポリエチレン(C)が3.0%以上、40.0%以下、即ち、C/(A+B+C)=3.0%〜40.0%の範囲で含まれることが好ましい。   Monohydroxybenzene-resorcin-formaldehyde resin (A) and vinyl contained in the coating solution for glass fiber coating, in order to obtain the desired adhesive strength to the glass fiber for rubber reinforcement and the base rubber when used in the transmission belt The monohydroxybenzene-resorcin-formaldehyde resin (A) is 1. expressed as a percentage by weight based on the total weight of the pyridine-styrene-butadiene copolymer (B) and the chlorosulfonated polyethylene (C) as 100%. 0% or more, 15.0% or less, that is, A / (A + B + C) = 1.0% to 15.0%, vinylpyridine-styrene-butadiene copolymer (B) is 45.0% or more, 82.0 % Or less, that is, B / (A + B + C) = 45.0% to 82.0%, chlorosulfonated polyethylene (C) is 3.0% or more and 40.0% or less , I.e., it is preferably contained in C / (A + B + C) = 3.0% ~40.0% range.

ガラス繊維被覆用塗布液中の、モノヒドロキシベンゼン−とレゾルシン−ホルムアルデヒド樹脂(A)の含有が1.0%より少ないと、ガラス繊維コードの被覆材とした際に、ガラス繊維と母材ゴムの接着強さが弱くなり、伝動ベルトにした際に好ましい耐水性、耐熱性が得難い。モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)の含有が15.0%を超えると、ガラス繊維被覆用塗布液が凝集沈殿を起こし易く使用不能となる。よって、本発明のガラス繊維被覆用塗布液における好適なモノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)の含有範囲は、ガラス繊維被覆用塗布液に含まれるモノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)とを合わせた重量を100%基準として、A/(A+B+C)=1.0%〜15.0%である。   When the content of monohydroxybenzene and resorcin-formaldehyde resin (A) in the coating solution for glass fiber coating is less than 1.0%, when the glass fiber cord coating material is used, Adhesive strength becomes weak, and it is difficult to obtain preferable water resistance and heat resistance when using a transmission belt. When the content of the monohydroxybenzene-resorcin-formaldehyde resin (A) exceeds 15.0%, the coating solution for coating glass fibers is liable to cause aggregation and precipitation and cannot be used. Therefore, the preferable content range of the monohydroxybenzene-resorcin-formaldehyde resin (A) in the coating solution for glass fiber coating of the present invention is the monohydroxybenzene-resorcin-formaldehyde resin (A) contained in the coating solution for glass fiber coating. A / (A + B + C) = 1.0% to 15.0%, based on 100% of the combined weight of vinyl pyridine-styrene-butadiene copolymer (B) and chlorosulfonated polyethylene (C).

また、ガラス繊維被覆用塗布液中の、ビニルピリジン−スチレン−ブタジエン共重合体(B)の含有が45.0%より少ないと、ガラス繊維と架橋されたHNBRとの接着強さが弱くなり、伝動ベルトにした際に好ましい耐熱性が得難い。ビニルピリジン−スチレン−ブタジエン共重合体(B)の含有が82.0%を超えると、ガラス繊維コードの被覆とした際に、被覆に粘着性が生じ被覆層が転写し易くなり、工程が汚れる等の不具合が生じる。よって、本発明のガラス繊維被覆用塗布液におけるビニルピリジン−スチレン−ブタジエン共重合体(B)の好適な含有範囲は、ガラス繊維被覆用塗布液に含まれるモノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)とを合わせた重量を100%基準として、B/(A+B+C)=45.0%〜82.0%である。   Further, when the content of the vinylpyridine-styrene-butadiene copolymer (B) in the coating solution for coating glass fiber is less than 45.0%, the adhesive strength between the glass fiber and the crosslinked HNBR is weakened, It is difficult to obtain preferable heat resistance when using a transmission belt. When the content of the vinylpyridine-styrene-butadiene copolymer (B) exceeds 82.0%, when the glass fiber cord is coated, the coating becomes sticky and the coating layer is easily transferred, and the process becomes dirty. Such problems occur. Therefore, the suitable content range of the vinylpyridine-styrene-butadiene copolymer (B) in the coating solution for glass fiber coating of the present invention is a monohydroxybenzene-resorcin-formaldehyde resin (A) contained in the coating solution for glass fiber coating. ), Vinylpyridine-styrene-butadiene copolymer (B), and chlorosulfonated polyethylene (C), based on 100%, B / (A + B + C) = 45.0% to 82.0% .

前記被覆層中のクロロスルフォン化ポリエチレン(C)が、3.0%より少ないと、伝動ベルトにした際に所望の耐熱性が得難く、クロロスルフォン化ポリエチレン(C)が40.0%より多いと、ガラス繊維と母材ゴムの接着強さが弱くなり、伝動ベルトにした際に好ましい耐熱性が得難い。本発明のガラス繊維被覆用塗布液において、好適なクロロスルフォン化ポリエチレン(C)の含有範囲は、ガラス繊維被覆用塗布液に含まれるモノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)とを合わせた重量を100%基準として、A/(A+B+C)=3.0%〜40.0%である。   When the chlorosulfonated polyethylene (C) in the coating layer is less than 3.0%, it is difficult to obtain desired heat resistance when the transmission belt is formed, and the chlorosulfonated polyethylene (C) is more than 40.0%. In addition, the adhesive strength between the glass fiber and the base rubber becomes weak, and it is difficult to obtain preferable heat resistance when a transmission belt is used. In the coating solution for glass fiber coating of the present invention, the preferred range of chlorosulfonated polyethylene (C) is monohydroxybenzene-resorcin-formaldehyde resin (A) and vinylpyridine-styrene contained in the coating solution for glass fiber coating. -A / (A + B + C) = 3.0% to 40.0% on the basis of the weight of the total of the butadiene copolymer (B) and the chlorosulfonated polyethylene (C) as 100%.

本発明のゴム補強用ガラス繊維に用いるガラス繊維被覆用塗布液の組成物の一つであるビニルピリジン−スチレン−ブタジエン共重合体(B)の一部を、他のゴムエラストマーに替えても良い。ビニルピリジン−スチレン−ブタジエン共重合体のみでは、ゴム補強用ガラス繊維の被覆に粘着性が生じ被覆層が転写し易くなり、工程が汚れたりして作業性が悪くなる。他のゴムエラストマーとしてカルボキシル基変性スチレン−ブタジエンゴム、アクリロニトリルーブタジエンゴム等も挙げられるが、ビニルピリジン−スチレン−ブタジエン共重合体(B)との相性が良いスチレン−ブタジエン共重合体(G)が特に好適に使用され、本発明のゴム補強用ガラス繊維の特徴である母材ゴムとの接着性、および母材ゴムとしての耐熱ゴムに埋設し伝動ベルトとした際の耐熱性を損なわない。   A part of the vinylpyridine-styrene-butadiene copolymer (B), which is one of the compositions of the glass fiber coating liquid used for the rubber reinforcing glass fiber of the present invention, may be replaced with another rubber elastomer. . With only the vinylpyridine-styrene-butadiene copolymer, the coating of the glass fiber for rubber reinforcement becomes sticky, the coating layer is easily transferred, the process becomes dirty, and the workability deteriorates. Other rubber elastomers include carboxyl group-modified styrene-butadiene rubber, acrylonitrile-butadiene rubber, etc., but styrene-butadiene copolymer (G) having good compatibility with vinylpyridine-styrene-butadiene copolymer (B). It is particularly preferably used and does not impair the adhesiveness with the base rubber, which is a feature of the glass fiber for reinforcing rubber of the present invention, and the heat resistance when embedded in a heat-resistant rubber as the base rubber to form a transmission belt.

ビニルピリジン−スチレン−ブタジエン共重合体(B)の重量を100%基準として、重量%で表して、スチレン−ブタジエン共重合体(G)を、G/B=5.0%〜80.0%の範囲で、ビニルピリジン−スチレン−ブタジエン共重合体(B)に替えて使用できる。5.0%未満では、ゴム補強用ガラス繊維の被覆に粘着性が生じ、被覆層が転写し易くなることを抑制する効果がない。好ましくは、25.0%以上である。80.0%を超えると、母材ゴムとの接着性および母材ゴムとしての耐熱ゴムに埋設し、伝動ベルトとした際の耐熱性が失われる。好ましくは、55.0%以下である。   Based on the weight of the vinylpyridine-styrene-butadiene copolymer (B) as 100%, expressed in weight%, the styrene-butadiene copolymer (G) is G / B = 5.0% to 80.0%. In this range, it can be used instead of the vinylpyridine-styrene-butadiene copolymer (B). If it is less than 5.0%, the coating of the glass fiber for reinforcing rubber has an adhesive effect, and there is no effect of suppressing the coating layer from being easily transferred. Preferably, it is 25.0% or more. If it exceeds 80.0%, the adhesiveness to the base rubber and the heat resistance when embedded in the heat-resistant rubber as the base rubber to form a transmission belt are lost. Preferably, it is 55.0% or less.

このようなスチレン−ブタジエン共重合体(G)として、例えば、日本エイアンドエル株式会社から、商品名、J−9049が市販されており、本発明のゴム補強用ガラス繊維の被覆層を形成するためのガラス繊維被覆用塗布液に使用される。   As such a styrene-butadiene copolymer (G), for example, a trade name, J-9049, is commercially available from Nippon A & L Co., Ltd., for forming the coating layer of the glass fiber for rubber reinforcement of the present invention. Used in glass fiber coating solution.

本発明のガラス繊維被覆用塗布液には、老化防止剤、pH調製剤、安定剤等を含有させても良い。老化防止剤にはジフェニルアミン系化合物、pH調製剤にはアンモニアが挙げられる。   The glass fiber coating coating solution of the present invention may contain an antioxidant, a pH adjuster, a stabilizer and the like. Examples of the anti-aging agent include diphenylamine compounds, and examples of the pH adjusting agent include ammonia.

本発明のガラス繊維被覆用塗布液をガラス繊維コードに塗布後、乾燥させて被覆層としたゴム補強用ガラス繊維に、更にハロゲン含有ポリマー(H)とビスアリルナジイミド(I)とを有機溶剤に分散させたガラス繊維2次被覆用塗布液を塗布し、2次被覆層を設けることが好ましい。2次被覆層を設け、種々の母材ゴム、特に架橋されたHNBR等の耐熱ゴムに埋設し伝動ベルトとすると、ガラス繊維コードと母材ゴムの優れた接着性が得られ、本発明のゴム補強用ガラス繊維は伝動ベルトの補強材として有効に働く。更に、前記伝動ベルトは、高温多湿の環境下における長時間の使用において、被覆層が初期の接着強さを持続し且つ寸法安定性に優れ、即ち、耐熱性および耐水性に優れる。有機溶剤としては、例えば、キシレンが挙げられる。   The glass fiber cord coating solution of the present invention is coated on a glass fiber cord and then dried to form a coating layer. The rubber reinforcing glass fiber is further coated with a halogen-containing polymer (H) and bisallylnadiimide (I) as an organic solvent. It is preferable to apply a coating solution for secondary coating of glass fiber dispersed in to provide a secondary coating layer. When a secondary coating layer is provided and embedded in various base rubbers, particularly heat-resistant rubbers such as cross-linked HNBR, as a transmission belt, excellent adhesion between the glass fiber cord and the base rubber is obtained, and the rubber of the present invention The reinforcing glass fiber works effectively as a reinforcing material for the transmission belt. Further, in the power transmission belt, the coating layer maintains the initial adhesive strength and is excellent in dimensional stability, that is, excellent in heat resistance and water resistance when used for a long time in a high temperature and humidity environment. Examples of the organic solvent include xylene.

その際、ガラス繊維2次被覆層用塗布液中のビスアリルナジイミド(I)は、ハロゲン含有ポリマー(H)の重量を100%基準として、重量百分率で表して、0.3%以上、10.0%以下、即ち、H/G=0.3%〜10.0%であることが好ましい。ビスアリルナジイミド(I)の含有が、0.3%より少ないと、前述の優れた耐熱性が得難い。10.0%を超えると、ガラス繊維コードと母材ゴムとの接着強さが弱くなり作製した伝動ベルトは、耐久性に劣る。   At that time, the bisallyl nadiimide (I) in the coating solution for the glass fiber secondary coating layer is expressed as a percentage by weight based on the weight of the halogen-containing polymer (H) as 100%. 0.0% or less, that is, H / G = 0.3% to 10.0% is preferable. When the content of bisallylnadiimide (I) is less than 0.3%, the above-described excellent heat resistance is difficult to obtain. If it exceeds 10.0%, the adhesive strength between the glass fiber cord and the base rubber becomes weak, and the produced transmission belt is inferior in durability.

ビスアリルナジイミド(I)は熱硬化性イミド樹脂の一種であり、低分子量のビスアリルナジイミド(I)は他の樹脂との相溶性に優れており、硬化後のビスアリルナジイミド樹脂は、ガラス転移点が300℃以上で、前記伝動ベルトの耐熱性を高める効果があり、丸善石油化学株式会社よりBANI−M、BANI−H、BANI−X等の商品名で市販され、本発明のゴム補強用ガラス繊維に好適に用いられる。   Bisallyl nadiimide (I) is a kind of thermosetting imide resin, and low molecular weight bisallyl nadiimide (I) is excellent in compatibility with other resins. The glass transition point is 300 ° C. or higher, and has the effect of increasing the heat resistance of the transmission belt, and is commercially available from Maruzen Petrochemical Co., Ltd. under trade names such as BANI-M, BANI-H, and BANI-X. It is suitably used for rubber reinforcing glass fibers.

ビスアリルナジイミドの替わりに使用されるものとして、マレイミド、アクリル酸塩、トリアジンチオール、イソシアネート、イソシアヌレート等、挙げられるが、ビスアリルナジイミドは、伝動ベルトの耐熱性を高める効果があり、本発明のゴム補強用ガラス繊維に用いるに好ましい。   Maleimide, acrylate, triazine thiol, isocyanate, isocyanurate, etc. can be used instead of bisallylnadiimide, but bisallylnadiimide has the effect of increasing the heat resistance of the transmission belt. It is preferable to use for the glass fiber for rubber reinforcement of the invention.

耐熱性のためには、前記ハロゲン含有ポリマー(H)には、クロロスルフォン化ポリエチレン(C)を用いることが好ましい。更に、加硫剤としてのニトロソ化合物、例えば、p−ニトロソベンゼン、無機充填剤、例えばカーボンブラックまたは酸化マグネシウムを前記ガラス繊維2次被覆用塗布液に添加し、ゴム補強用ガラス繊維に2次被覆層に加えることは、該ゴム補強用ガラス繊維をゴムに埋設して作製した伝動ベルトの耐熱性を高める一層の効果がある。ガラス繊維2次被覆用塗布液に、塗布液中のハロゲン含有ポリマー(H)の重量を100%基準として、重量百分率で表して、加硫剤を0.5%以上、20.0%以下、無機充填材を10.0%以上、70.0%以下の範囲で添加すると、作製した伝動ベルトは、いっそうの耐熱性を発揮する。加硫剤の含有が0.5%より少ない、無機充填材の含有が10.0%より少ないと耐熱性を向上させる効果が発揮されず、加硫剤を、20.0%を超えて、無機充填材を、70.0%を超えて加える必要はない。   For heat resistance, it is preferable to use chlorosulfonated polyethylene (C) for the halogen-containing polymer (H). Furthermore, a nitroso compound as a vulcanizing agent such as p-nitrosobenzene, an inorganic filler such as carbon black or magnesium oxide is added to the glass fiber secondary coating solution, and the rubber reinforcing glass fiber is secondary coated. Adding to the layer has a further effect of increasing the heat resistance of the transmission belt produced by embedding the rubber reinforcing glass fiber in rubber. The glass fiber secondary coating coating solution is expressed as a percentage by weight based on the weight of the halogen-containing polymer (H) in the coating solution as 100%. When the inorganic filler is added in the range of 10.0% or more and 70.0% or less, the produced transmission belt exhibits further heat resistance. When the content of the vulcanizing agent is less than 0.5% and the content of the inorganic filler is less than 10.0%, the effect of improving the heat resistance is not exhibited, and the vulcanizing agent exceeds 20.0%, It is not necessary to add more than 70.0% inorganic filler.

尚、本発明において、伝動ベルトとは、エンジン、その他機械を運転するために、エンジン、モーター等の駆動源の駆動力を伝えるベルトのことであり、かみ合い伝動で駆動力を伝える歯付きベルト、摩擦伝動で駆動力を伝えるVベルトが挙げられる。自動車用伝動ベルトとは自動車のエンジンルーム内で用いられる耐熱性の前記伝動ベルトのことである。タイミングベルトとは、前記自動車用伝動ベルトの中で、カムシャフトを有するエンジンにおいて、クランクシャフトの回転をタイミングギヤに伝えカムシャフト駆動させバルブの開閉を設定されたタイミングで行うための、プーリーの歯とかみ合う歯を設けた歯付きベルトのことである。自動車用伝動ベルトには、エンジンの熱に対する耐熱性と雨天走行における耐水性が必要であり、高温下および多湿下での長時間の走行後において、引っ張り強さを持続し寸法安定性に優れていること、即ち、耐熱性、耐水性が要求される。   In the present invention, the transmission belt refers to a belt that transmits the driving force of a driving source such as an engine or a motor in order to operate an engine or other machine, and a toothed belt that transmits the driving force by meshing transmission, A V-belt that transmits the driving force by frictional transmission can be mentioned. The transmission belt for automobiles is the heat-resistant transmission belt used in the engine room of automobiles. A timing belt is a pulley tooth used in an engine having a camshaft to transmit the crankshaft to the timing gear and drive the camshaft to open and close the valve in the automobile transmission belt. It is a toothed belt provided with meshing teeth. Power transmission belts for automobiles must have heat resistance against engine heat and water resistance in rainy weather, and maintain tensile strength and excellent dimensional stability after running for a long time under high temperature and high humidity. That is, heat resistance and water resistance are required.

本発明のガラス繊維被覆用塗布液であるモノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)とを水に分散させてエマルジョンとした本発明のガラス繊維被覆用塗布液をガラス繊維コードに塗布後乾燥させ、更に、ハロゲン含有ポリマー(H)とビスアリルナジイミド(I)とを有機溶剤に分散させたガラス繊維2次被覆用塗布液を塗布し被覆層としたゴム補強用ガラス繊維を作製した。(実施例1〜4)
次いで、本発明の範疇にないゴム補強用ガラス繊維を作製した。(比較例1〜3)。これら本発明のゴム補強用ガラス繊維(実施例1〜4)、本発明の範疇にないゴム補強用ガラス繊維(比較例1〜3)の耐熱ゴムに対する接着強さ評価試験を行い、評価結果を比較した。
A monohydroxybenzene-resorcin-formaldehyde resin (A), a vinylpyridine-styrene-butadiene copolymer (B) and a chlorosulfonated polyethylene (C), which are coating solutions for glass fiber coating of the present invention, are dispersed in water. A glass fiber secondary solution in which the glass fiber coating coating solution of the present invention in the form of an emulsion is applied to a glass fiber cord and then dried, and further, a halogen-containing polymer (H) and bisallylnadiimide (I) are dispersed in an organic solvent. A glass fiber for reinforcing rubber was formed by applying a coating solution for coating to form a coating layer. (Examples 1-4)
Subsequently, a glass fiber for rubber reinforcement not within the scope of the present invention was produced. (Comparative Examples 1-3). These rubber reinforcing glass fibers of the present invention (Examples 1 to 4) and rubber reinforcing glass fibers not in the category of the present invention (Comparative Examples 1 to 3) were subjected to an adhesive strength evaluation test for heat-resistant rubber, and the evaluation results were obtained. Compared.

以下、詳細に述べる。
実施例1
(本発明のガラス繊維被覆用塗布液の調製)
最初に、モノヒドロキシベンゼンーレゾルシン−ホルムアルデヒド樹脂(A)の合成について述べる。還流冷却器、温度計、攪拌機をつけた三つ口セパラブルフラスコに、モノヒドロキシベンゼン(D)、80重量部、レゾルシン(F)20重量部、37.0重量%の濃度のホルムアルデヒド(E)水溶液、157重量部(モル比で表せば、E/(D+F)=1.8)、10重量%の濃度の水酸化ナトリウム水溶液、5重量部を仕込み、80℃に加熱した状態で3時間攪拌した。攪拌を止め、冷却した後、1.0重量%濃度の水酸化ナトリウム水溶液、370重量部を加え、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)を重合した。
Details will be described below.
Example 1
(Preparation of coating solution for coating glass fiber of the present invention)
First, the synthesis of monohydroxybenzene-resorcin-formaldehyde resin (A) will be described. In a three-necked separable flask equipped with a reflux condenser, a thermometer, and a stirrer, monohydroxybenzene (D), 80 parts by weight, 20 parts by weight of resorcin (F), formaldehyde (E) having a concentration of 37.0% by weight Aqueous solution, 157 parts by weight (expressed in terms of molar ratio, E / (D + F) = 1.8), 5 parts by weight of a 10% strength by weight sodium hydroxide aqueous solution was charged and stirred at 80 ° C. for 3 hours. did. After stirring was stopped and the mixture was cooled, 370 parts by weight of a 1.0% by weight aqueous sodium hydroxide solution was added to polymerize the monohydroxybenzene-resorcin-formaldehyde resin (A).

次いで、前述の手順で合成したモノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)を用い、市販のビニルピリジン−スチレン−ブタジエン共重合体(B)エマルジョンと、クロロスルフォン化ポリエチレン(C)エマルジョンとにアンモニア水と水を添加し、本発明のガラス繊維被覆用塗布液を調製した。   Next, using the monohydroxybenzene-resorcin-formaldehyde resin (A) synthesized by the above procedure, ammonia was added to a commercially available vinylpyridine-styrene-butadiene copolymer (B) emulsion and a chlorosulfonated polyethylene (C) emulsion. Water and water were added to prepare a glass fiber coating coating solution of the present invention.

詳しくは、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)、42重量部と、ビニルピリジン、スチレン、ブタジエンを、ビニルピリジン:スチレン:ブタジエン=15:15:70重量比となるように重合したビニルピリジン−スチレン−ブタジエン重合体(B)エマルジョンとしての日本エイアンドエル株式会社製、商品名、ピラテックス(固形分濃度、41.0重量%)476重量部と、クロロスルフォン化ポリエチレン(C)エマルジョンとしての住友精化株式会社製、商品名、CSM450(固形分濃度、40.0重量%)206重量部と、PH調製剤としてアンモニア水(濃度、25.0重量%)22重量部とに、全体として1000重量部になるように水を添加して、本発明のガラス繊維被覆用塗布液を調製した。   Specifically, the monohydroxybenzene-resorcin-formaldehyde resin (A), 42 parts by weight, vinylpyridine, styrene, and butadiene are polymerized so that the ratio of vinylpyridine: styrene: butadiene = 15: 15: 70 is obtained. -Nippon A & L Co., Ltd. as a styrene-butadiene polymer (B) emulsion, trade name, 476 parts by weight of pilatex (solid content concentration, 41.0% by weight), and Sumitomo as a chlorosulfonated polyethylene (C) emulsion Made by Seika Co., Ltd., trade name, 206 parts by weight of CSM450 (solid content concentration, 40.0% by weight) and 22 parts by weight of aqueous ammonia (concentration, 25.0% by weight) as a PH preparation agent Water is added so as to be part by weight, and the glass fiber coating coating solution of the present invention is prepared. It was.

ガラス繊維被覆用塗布液中の各成分の含有割合は、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)を合わせた重量を100%基準として、重量百分率で表して、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)が3.6%、ビニルピリジン−スチレン−ブタジエン共重合体(B)が67.8%、クロロスルフォン化ポリエチレン(C)が28.6%である。尚、ガラス繊維被覆用塗布液中のビニルピリジン−スチレン−ブタジエン共重合体(B)、クロロスルフォン化ポリエチレン(C)の重量は、前記ピラテックスおよびCSM450の固形分濃度から、固形分に換算して求めた。
(本発明のゴム補強用ガラス繊維の作製)
次いで、ハロゲン含有ポリマー(H)としてのクロロスルフォン化ポリエチレンと、p−ジニトロベンゼンと、ビスアリルナジイミド(I)に属するヘキサメチレンジアリルナジイミドとに、カーボンブラックを加え、キシレンに分散させた、本発明のゴム補強用ガラス繊維に2次被覆層を設けるためのガラス繊維2次被覆用塗布液を調製した。
The content ratio of each component in the coating solution for glass fiber coating is a combination of monohydroxybenzene-resorcin-formaldehyde resin (A), vinylpyridine-styrene-butadiene copolymer (B), and chlorosulfonated polyethylene (C). Monohydroxybenzene-resorcin-formaldehyde resin (A) 3.6%, vinylpyridine-styrene-butadiene copolymer (B) 67.8%, chlorosulfone The polyethylene (C) content is 28.6%. The weights of vinylpyridine-styrene-butadiene copolymer (B) and chlorosulfonated polyethylene (C) in the coating solution for glass fiber coating are converted into solid content from the solid content concentration of the above-mentioned pyrexate and CSM450. Asked.
(Preparation of glass fiber for rubber reinforcement of the present invention)
Subsequently, carbon black was added to chlorosulfonated polyethylene as the halogen-containing polymer (H), p-dinitrobenzene, and hexamethylene diallyl nadiimide belonging to bisallyl nadiimide (I), and dispersed in xylene. A coating solution for glass fiber secondary coating for providing a secondary coating layer on the glass fiber for rubber reinforcement of the present invention was prepared.

詳しくは、ハロゲン含有ポリマー(H)としてのクロロスルフォン化ポリエチレン)としての東ソー株式会社製、商品名、TS−430、100重量部と、p−ジニトロベンゼン、40重量部と、N−N'−ヘキサメチレンジアリルナジイミドとしての丸善石油化学株式会社製、商品名、BANI−H、0.3重量部とに、カーボンブラック、30重量部を加え、キシレン、1315重量部に分散させてガラス繊維2次被覆用塗布液を調製した。即ち、ハロゲン含有ポリマー(H)としてのクロロスルフォン化ポリエチレンの重量に対して、ビスアリルナジイミド(I)に属するN−N'−ヘキサメチレンジアリルナジイミドをI/H=0.3重量%、加硫剤であるp−ジニトロベンゼンを40.0重量%、無機充填材であるカーボンブラックを30.0重量%となるようにしてガラス繊維2次被覆用塗布液を調製した。   Specifically, Tosoh Co., Ltd., trade name, TS-430, 100 parts by weight, p-dinitrobenzene, 40 parts by weight, and NN′—, as chlorosulfonated polyethylene as the halogen-containing polymer (H). Made by Maruzen Petrochemical Co., Ltd., trade name, BANI-H, 0.3 parts by weight as hexamethylene diallyl nadiimide, added 30 parts by weight of carbon black, dispersed in 1315 parts by weight of xylene, glass fiber 2 A coating solution for the next coating was prepared. That is, NN′-hexamethylenediallylnadiimide belonging to bisallylnadiimide (I) is I / H = 0.3% by weight with respect to the weight of chlorosulfonated polyethylene as the halogen-containing polymer (H). A glass fiber secondary coating coating solution was prepared so that p-dinitrobenzene as a vulcanizing agent was 40.0% by weight and carbon black as an inorganic filler was 30.0% by weight.

径9μmのガラス繊維フィラメントを200本集束したガラス繊維コード3本を引き揃えた後、前述の手順で作製したガラス繊維被覆用塗布液を塗布し、その後、温度、280℃下で、22秒間乾燥させて被覆層を設けた。   After aligning three glass fiber cords of 200 glass fiber filaments having a diameter of 9 μm, the glass fiber coating coating solution prepared in the above procedure is applied, and then dried at a temperature of 280 ° C. for 22 seconds. To provide a coating layer.

この時の固形分付着率、即ち、被覆層の重量割合は、被覆層を設けたガラス繊維束の全重量に対して19.0重量%であった。   The solid content adhesion rate at this time, that is, the weight ratio of the coating layer was 19.0% by weight with respect to the total weight of the glass fiber bundle provided with the coating layer.

前記被覆層を設けたガラス繊維コードを、2.54cm当たり2.0回の下撚りを与え、更に13本引き揃えて下撚りと逆方向に2.54cm当たり2.0回の上撚りをする作業を施した。その後、前述の手順で作製したガラス繊維2次被覆用塗布液を塗布した後、110℃で1分間の乾燥を行い、2次被覆層を設け、本発明のゴム補強用ガラス繊維(実施例1)を作製した。このようにして、下練りと上練りの方向を各々逆方向とした2種類のゴム補強用ガラス繊維を作製した。各々、S練り、Z練りと称する。   The glass fiber cord provided with the coating layer is given a twist of 2.0 times per 2.54 cm, and is further drawn 13 times to twist 2.0 times per 2.54 cm in the opposite direction to the twist. Worked. Then, after applying the glass fiber secondary coating coating solution prepared in the above-described procedure, drying was performed at 110 ° C. for 1 minute to provide a secondary coating layer, and the glass fiber for rubber reinforcement of the present invention (Example 1) ) Was produced. In this way, two types of glass fibers for reinforcing rubber were prepared in which the directions of lower kneading and upper kneading were reversed. These are called S-kneading and Z-kneading, respectively.

この時の固形分付着率、即ち、2次被覆層の重量割合は、1次および2次被覆層を設けたガラス繊維束の重量に対して、3.5重量%であった。
実施例2
実施例1のガラス繊維被覆用塗布液に対して、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)の合成時にモノヒドロキシベンゼン(D)50重量部、レゾルシン(F)50重量部にした以外は、実施例1と同様に本発明のガラス繊維被覆用塗布液を調製した。即ち、ガラス繊維被覆用塗布液中のモノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)を合わせた重量を100%基準として、重量百分率で表して、モノヒドロキシベンゼン−ホルムアルデヒド樹脂(A)が7.2%、ビニルピリジン−スチレン−ブタジエン共重合体(B)が64.2%、クロロスルフォン化ポリエチレン(C)が28.6%とした。
At this time, the solid content adhesion rate, that is, the weight ratio of the secondary coating layer was 3.5% by weight with respect to the weight of the glass fiber bundle provided with the primary and secondary coating layers.
Example 2
For the glass fiber coating coating solution of Example 1, except that the monohydroxybenzene (D) was 50 parts by weight and the resorcin (F) was 50 parts by weight during the synthesis of the monohydroxybenzene-resorcin-formaldehyde resin (A). A glass fiber coating coating solution of the present invention was prepared in the same manner as in Example 1. That is, the total weight of monohydroxybenzene-resorcin-formaldehyde resin (A), vinylpyridine-styrene-butadiene copolymer (B) and chlorosulfonated polyethylene (C) in the coating solution for glass fiber coating is based on 100%. As a percentage by weight, the monohydroxybenzene-formaldehyde resin (A) is 7.2%, the vinylpyridine-styrene-butadiene copolymer (B) is 64.2%, and the chlorosulfonated polyethylene (C) is 28%. .6%.

次いで、実施例1に示した手順で、実施例1と同様のガラス繊維被覆用2次液を調製し、実施例1と同様の手順で作業を行い、ガラス繊維コードに更なる2次被覆層を設け本発明のゴム補強用ガラス繊維(実施例2)を作製した。
実施例3
実施例1のガラス繊維被覆用塗布液に対して、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)の合成時モノヒドロキシベンゼン(D)10重量部、レゾルシン(F)90重量部にした以外は、実施例1と同様に本発明のガラス繊維被覆用塗布液を調製した。即ち、ガラス繊維被覆用塗布液中のモノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)を合わせた重量を100%基準として、重量百分率で表して、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)が7.2%、ビニルピリジン−スチレン−ブタジエン共重合体(B)が64.2%、クロロスルフォン化ポリエチレン(C)が28.6%とした。
Next, a secondary solution for glass fiber coating similar to that in Example 1 is prepared by the procedure shown in Example 1, and the operation is performed in the same procedure as in Example 1 to further add a secondary coating layer to the glass fiber cord. A glass fiber for reinforcing rubber of the present invention (Example 2) was produced.
Example 3
With respect to the coating solution for coating glass fiber of Example 1, monohydroxybenzene-resorcin-formaldehyde resin (A) was synthesized except for 10 parts by weight of monohydroxybenzene (D) and 90 parts by weight of resorcin (F). A glass fiber coating coating solution of the present invention was prepared in the same manner as in Example 1. That is, the total weight of monohydroxybenzene-resorcin-formaldehyde resin (A), vinylpyridine-styrene-butadiene copolymer (B) and chlorosulfonated polyethylene (C) in the coating solution for glass fiber coating is based on 100%. As a percentage by weight, monohydroxybenzene-resorcin-formaldehyde resin (A) is 7.2%, vinylpyridine-styrene-butadiene copolymer (B) is 64.2%, chlorosulfonated polyethylene (C) Was 28.6%.

次いで、実施例1に示した手順で、実施例1と同様のガラス繊維被覆用2次液を調製し、実施例1と同様の手順で作業を行い、ガラス繊維コードに更なる2次被覆層を設け本発明のゴム補強用ガラス繊維(実施例3)を作製した。
比較例1
従来のレゾルシン−ホルムアルデヒド樹脂とビニルピリジン−スチレン−ブタジエン共重合体エマルジョンとクロロスルフォン化ポリエチレンとからなるゴム補強用ガラス繊維塗布液を調製した。
Next, a secondary solution for glass fiber coating similar to that in Example 1 is prepared by the procedure shown in Example 1, and the operation is performed in the same procedure as in Example 1 to further add a secondary coating layer to the glass fiber cord. A glass fiber for reinforcing rubber of the present invention (Example 3) was prepared.
Comparative Example 1
A glass fiber coating solution for rubber reinforcement comprising a conventional resorcin-formaldehyde resin, vinylpyridine-styrene-butadiene copolymer emulsion and chlorosulfonated polyethylene was prepared.

実施例1と異なり、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)に替えてレゾルシン−ホルムアルデヒド樹脂(レゾルシンとホルムアルデヒドとのモル比、1.0:1.0で反応させたもの、固形分、8.7重量%)を239重量部使用し、ビニルピリジンとスチレンとブタジエンとを、15:15:70の重量割合で含有するビニルピリジン−スチレン−ブタジエンエマルジョン(日本エイアンドエル株式会社製、商品名、ピラテックス、固形分、41.0重量%)の添加量を451重量部に変えた以外は、実施例1と同様に、ガラス繊維被覆用塗布液を調製し、実施例1に示した手順で、従来のガラス繊維被覆用塗布液を調製した。即ち、ガラス繊維被覆用塗布液中のレゾルシン−ホルムアルデヒド樹脂とビニルピリジン−スチレン−ブタジエン共重合体とクロロスルフォン化ポリエチレン合わせた重量を100%基準として、重量百分率で表して、レゾルシン−ホルムアルデヒド樹脂が7.2%、ビニルピリジン−スチレン−ブタジエン共重合体が64.2%、クロロスルフォン化ポリエチレンが28.6%、となるように調製した。   Unlike Example 1, in place of monohydroxybenzene-resorcin-formaldehyde resin (A), resorcin-formaldehyde resin (molar ratio of resorcin to formaldehyde, reacted at 1.0: 1.0, solid content, 8 0.7 wt.%) And vinyl pyridine-styrene-butadiene emulsion containing 15 parts by weight of vinylpyridine, styrene, and butadiene in a weight ratio of 15:15:70 (trade name, PI A coating solution for coating glass fiber was prepared in the same manner as in Example 1 except that the addition amount of latex, solid content (41.0% by weight) was changed to 451 parts by weight. A conventional glass fiber coating coating solution was prepared. That is, the resorcin-formaldehyde resin is expressed as a percentage by weight based on the total weight of the resorcin-formaldehyde resin, vinylpyridine-styrene-butadiene copolymer and chlorosulfonated polyethylene in the coating solution for glass fiber coating. 2%, vinylpyridine-styrene-butadiene copolymer 64.2%, and chlorosulfonated polyethylene 28.6%.

次いで、実施例1に示した手順で、実施例1と同様のガラス繊維被覆用2次液を調製し、実施例1と同様の手順で作業を行い、ガラス繊維コードに更なる2次被覆層を設けゴム補強用ガラス繊維(比較例1)を作製した。
(接着強さの評価試験)
接着強さの評価試験を説明する前に、試験に使用した耐熱ゴムを説明する。
Next, a secondary solution for glass fiber coating similar to that in Example 1 is prepared by the procedure shown in Example 1, and the operation is performed in the same procedure as in Example 1 to further add a secondary coating layer to the glass fiber cord. A glass fiber for rubber reinforcement (Comparative Example 1) was prepared.
(Adhesion strength evaluation test)
Before describing the adhesive strength evaluation test, the heat resistant rubber used in the test will be described.

母材ゴムとしてのHNBR(日本ゼオン株式会社製、型番、2020)、100重量部に対して、カーボンブラック、40重量部と、亜鉛華、5重量部と、ステアリン酸、0.5重量部と、硫黄、0.4重量部と、加硫促進剤、2.5重量部と、老化防止剤、1.5重量部とを配合してなるHNBRを架橋した耐熱ゴム(以後、耐熱ゴムAとする)、またHNBR(日本ゼオン株式会社製、型番、2010)、100重量部に対して、カーボンブラック、40重量部と、亜鉛華、5重量部と、ステアリン酸、0.5重量部と、1、3−ジ(t−ブチルペロキシイソプロピル)ベンゼン、5重量部と、老化防止剤、1.5重量部とを配合してなるHNBRを架橋した耐熱ゴム(以後、耐熱ゴムBとする)を接着強さの評価試験に使用した。   HNBR (made by Nippon Zeon Co., Ltd., model number, 2020) as a base rubber, 100 parts by weight, carbon black, 40 parts by weight, zinc white, 5 parts by weight, stearic acid, 0.5 parts by weight , Sulfur, 0.4 parts by weight, vulcanization accelerator, 2.5 parts by weight, antiaging agent, 1.5 parts by weight of HNBR cross-linked heat resistant rubber (hereinafter referred to as heat resistant rubber A) And HNBR (manufactured by Nippon Zeon Co., Ltd., model number, 2010), 100 parts by weight, carbon black, 40 parts by weight, zinc white, 5 parts by weight, stearic acid, 0.5 parts by weight, Heat-resistant rubber obtained by crosslinking HNBR containing 5 parts by weight of 1,3-di (t-butylperoxyisopropyl) benzene, an antioxidant and 1.5 parts by weight (hereinafter referred to as heat-resistant rubber B) Was used for the adhesive strength evaluation test.

試験片は耐熱ゴムAまたは耐熱ゴムBからなる3mm厚、25mm幅のゴムシート上に前記ゴム補強用ガラス繊維コード(実施例1〜3、比較例1)を20本並べ、その上から布をかぶせ、耐熱ゴムAについては、温度、150℃下、196ニュートン/cm2(以後、ニュートンをNと略す)、また耐熱ゴムBについては、温度、170℃下、196N/cm2の条件で端部を除き押圧し、30分間加硫させつつ成形して、接着強さ評価のための試験片、言い換えればゴムシートを得た。この試験片の接着強さの測定を、端部において各々のゴムシートとゴム補強用ガラス繊維を個別にクランプにて挟み、剥離速度を50mm/minとし、ゴムシートからゴム補強用ガラス繊維を剥がす際の最大の抵抗値を測定し、剥離強さとした。剥離強さが大きいほど接着強さに優れる。
(接着強さの評価結果)
接着強さの評価結果を表1、表2に示す。
Test specimens were made of 20 glass fiber cords for rubber reinforcement (Examples 1 to 3 and Comparative Example 1) on a 3 mm thick and 25 mm wide rubber sheet made of heat resistant rubber A or heat resistant rubber B, and a cloth was placed thereon. For heat-resistant rubber A, the temperature is 150 ° C. under 196 Newton / cm 2 (hereinafter Newton is abbreviated as N). For heat-resistant rubber B, the temperature is 170 ° C. under the condition of 196 N / cm 2. Except for the part, it was pressed and molded while being vulcanized for 30 minutes to obtain a test piece for evaluating the adhesive strength, in other words, a rubber sheet. For the measurement of the adhesive strength of the test piece, each rubber sheet and rubber reinforcing glass fiber are individually clamped at the end, the peeling speed is 50 mm / min, and the rubber reinforcing glass fiber is peeled off from the rubber sheet. The maximum resistance value at the time was measured to determine the peel strength. The greater the peel strength, the better the adhesive strength.
(Adhesion strength evaluation results)
The evaluation results of the adhesive strength are shown in Tables 1 and 2.

Figure 0004522279
Figure 0004522279

Figure 0004522279
Figure 0004522279

表1において、ガラス繊維とゴムが界面から剥離していない破壊状態をゴム破壊とし、界面から一部のみでも剥離している破壊状態を界面剥離とした。ゴム破壊の方が、界面剥離より接着強さに優れる。   In Table 1, the destruction state in which the glass fiber and the rubber were not separated from the interface was defined as rubber failure, and the destruction state in which only a part was separated from the interface was defined as interface separation. Rubber destruction is superior in adhesion strength to interfacial peeling.

実施例1の本発明のゴム補強用ガラス繊維は、表1に示すように、耐熱ゴムAについて剥離強さを測定したところ、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)を組成物とする本発明のガラス繊維被覆用塗布液調製直後、ガラス繊維コードに塗布し被覆層を設け、更なる被覆2次被覆層を設けた場合は、314Nであり、調整後5日後に塗布し更なる2次被覆層を設けた場合は315Nであり、双方、耐熱ゴムAに対して接着性は良好であり接着強さに優れていた。   As shown in Table 1, the glass fiber for rubber reinforcement of Example 1 of the present invention was measured by measuring the peel strength of the heat-resistant rubber A. As a result, the composition comprising a monohydroxybenzene-resorcin-formaldehyde resin (A) as a composition. Immediately after preparation of the coating solution for coating glass fiber according to the invention, when a coating layer is provided on a glass fiber cord and a further coating secondary coating layer is provided, it is 314 N, and it is applied five days after the adjustment and further secondary is applied. When the coating layer was provided, it was 315 N, and both had good adhesiveness to the heat resistant rubber A and excellent adhesive strength.

実施例2の本発明のゴム補強用ガラス繊維は、表1に示すように、耐熱ゴムAについて剥離強さを測定したところ、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)を組成物とする本発明のガラス繊維被覆用塗布液調製直後、ガラス繊維コードに塗布し被覆層を設け、更なる被覆2次被覆層を設けた場合は320Nであり、調製5日後に塗布し更なる2次被覆層を設けた場合は318Nであり、双方、耐熱ゴムAに対して接着性は良好であり接着強さに優れていた。   As shown in Table 1, the glass fiber for rubber reinforcement of Example 2 of the present invention was measured by measuring the peel strength of the heat-resistant rubber A. As a result, the monohydroxybenzene-resorcin-formaldehyde resin (A) was used as the composition. Immediately after preparation of the coating solution for coating glass fiber of the present invention, it is applied to the glass fiber cord to provide a coating layer, and when a further coating secondary coating layer is provided, it is 320 N. 318N, both had good adhesion to heat resistant rubber A and excellent adhesion strength.

実施例3の本発明のゴム補強用ガラス繊維は、表1に示すように、耐熱ゴムAについて剥離強さを測定したところ、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)を組成物とする本発明のガラス繊維被覆用塗布液調製直後、ガラス繊維コードに塗布し被覆層を設け、更なる被覆2次被覆層を設けた場合は318Nであり、調製5日後に塗布し更なる2次被覆層を設けた場合は301Nであり、双方、耐熱ゴムAに対して接着性は良好であり接着強さに優れていた。   As shown in Table 1, the glass fiber for rubber reinforcement of Example 3 of the present invention was measured by measuring the peel strength of the heat-resistant rubber A, and the composition comprising a monohydroxybenzene-resorcin-formaldehyde resin (A) as a composition. Immediately after preparation of the coating solution for coating glass fiber of the invention, it is 318N when coated on a glass fiber cord and provided with a coating layer, and further coated secondary coating layer is provided. When it was provided, it was 301 N, and both had good adhesion to heat-resistant rubber A and excellent adhesion strength.

実施例1の本発明のゴム補強用ガラス繊維は、表2に示すように、耐熱ゴムBについて剥離強さを測定したところ、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)を組成物とする本発明のガラス繊維被覆用塗布液調製直後、ガラス繊維コードに塗布し被覆層を設け、更なる被覆2次被覆層を設けた場合は300Nであり、調製5日後に塗布し更なる2次被覆層を設けた場合は301Nであり、双方、耐熱ゴムBに対して接着性は良好であり接着強さに優れていた。   As shown in Table 2, the glass fiber for rubber reinforcement of Example 1 of the present invention was measured by measuring the peel strength of the heat-resistant rubber B. As a result, the monohydroxybenzene-resorcin-formaldehyde resin (A) was used as the composition. Immediately after preparation of the coating solution for glass fiber coating of the invention, it is applied to the glass fiber cord to provide a coating layer, and when a further coating secondary coating layer is provided, it is 300 N, and it is applied 5 days after the preparation and further secondary coating layer When it was provided, it was 301 N, and both had good adhesion to heat-resistant rubber B and excellent adhesion strength.

実施例2の本発明のゴム補強用ガラス繊維は、表2に示すように、耐熱ゴムBについて剥離強さを測定したところ、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)を組成物とする本発明のガラス繊維被覆用塗布液調製直後、ガラス繊維コードに塗布し被覆層を設け、更なる被覆2次被覆層を設けた場合は305Nであり、調製5日後に塗布し更なる2次被覆層を設けた場合は308Nであり、双方、耐熱ゴムBに対して接着性は良好であり接着強さに優れていた。   As shown in Table 2, the glass fiber for reinforcing rubber of the present invention of Example 2 was measured by measuring the peel strength of the heat-resistant rubber B. As a result, the monohydroxybenzene-resorcin-formaldehyde resin (A) was used as the composition. Immediately after preparation of the coating solution for glass fiber coating of the present invention, it is applied to the glass fiber cord to provide a coating layer, and when a further coating secondary coating layer is provided, it is 305 N, and it is applied 5 days after the preparation and further secondary coating layer In the case of the heat-resistant rubber B, the adhesiveness was good and the adhesive strength was excellent.

実施例3の本発明のゴム補強用ガラス繊維は、表2に示すように、耐熱ゴムBについて剥離強さを測定したところ、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)を組成物とする本発明のガラス繊維被覆用塗布液調製直後、ガラス繊維コードに塗布し被覆層を設け、更なる被覆2次被覆層を設けた場合は283Nであり、調製5日後に塗布し更なる2次被覆層を設けた場合は282Nであり、双方、耐熱ゴムBに対して接着性は良好であり、接着強さに優れていた。   As shown in Table 2, the glass fiber for rubber reinforcement of Example 3 of the present invention was measured by measuring the peel strength of the heat-resistant rubber B. As a result, the monohydroxybenzene-resorcin-formaldehyde resin (A) was used as the composition. Immediately after preparation of the coating solution for glass fiber coating of the invention, it is applied to the glass fiber cord to provide a coating layer, and when a further coating secondary coating layer is provided, it is 283N, and it is applied 5 days after the preparation and further secondary coating layer When it was provided, it was 282 N, and both had good adhesion to the heat-resistant rubber B and excellent adhesion strength.

また、破壊状態は、本発明の実施例1〜3のゴム補強用ガラス繊維は、表1と表2の実施例1〜3に示すように、耐熱ゴムAを使用した場合、耐熱ゴムBを使用した場合ともにゴム破壊であり、接着強さに優れていた。   Moreover, as for the glass fiber for rubber reinforcement of Examples 1-3 of this invention, as shown in Examples 1-3 of Table 1 and Table 2, when the heat-resistant rubber A is used for the destruction state, heat-resistant rubber B is used. When used, the rubber was broken and the adhesive strength was excellent.

比較例1の本発明の範疇に属さないゴム補強用ガラス繊維は、実施例1と同様の手順で、試験片をつくり、耐熱ゴムAについて接着強さの評価を行ったところ、表1の比較例1に示すように、レゾルシン−ホルムアルデヒド樹脂を組成物とする本発明の範疇に属さないガラス繊維被覆用塗布液を調製直後、ガラス繊維コードに塗布し被覆層を設け、更なる被覆2次被覆層を設けた場合は323Nであるが、調製5日後に塗布し更なる2次被覆層を設けた場合は、152Nとなり、ガラス繊維被覆用塗布液調製後の時間経過と共に接着強度が低下した。また、破壊状態については、5日経過後のガラス繊維被覆用塗布液を用いた場合は界面破壊を起こした。   A glass fiber for reinforcing rubber that does not belong to the category of the present invention in Comparative Example 1 was prepared in the same procedure as in Example 1, and the adhesion strength of heat resistant rubber A was evaluated. As shown in Example 1, immediately after the preparation of a coating solution for coating glass fibers not belonging to the scope of the present invention comprising a resorcin-formaldehyde resin as a composition, it was applied to a glass fiber cord to provide a coating layer, and further coated secondary coating When the layer was provided, it was 323N, but when it was applied 5 days after the preparation and a further secondary coating layer was provided, it was 152N, and the adhesive strength decreased with the passage of time after the preparation of the coating solution for glass fiber coating. Moreover, about the fracture | rupture state, when the coating liquid for glass fiber coating after 5 days passed was used, interface fracture | rupture was raise | generated.

比較例1の本発明の範疇に属さないゴム補強用ガラス繊維について、実施例1と同様の手順で、試験片をつくり、耐熱ゴムBについて接着強さの評価を行ったところ、表2の比較例1に示すように、レゾルシン−ホルムアルデヒド樹脂を組成物とする本発明の範疇に属さないガラス繊維被覆用塗布液調製直後、ガラス繊維コードに塗布し被覆層を設け、更なる被覆2次被覆層を設けた場合は314Nであるが、調製5日後に塗布し更なる2次被覆層を設けた場合は116Nとなり、ガラス繊維被覆用塗布液調製後の時間経過と共に接着強度は低下した。また、破壊状態については、5日経過後のガラス繊維被覆用塗布液を用いた場合は界面破壊を起こした。   About the glass fiber for rubber reinforcement which does not belong to the category of the present invention of comparative example 1, a test piece was made in the same procedure as in example 1, and the heat resistance rubber B was evaluated for adhesive strength. As shown in Example 1, immediately after the preparation of a coating solution for coating glass fibers not belonging to the scope of the present invention, which comprises a resorcin-formaldehyde resin as a composition, a coating layer is provided by coating on a glass fiber cord, and a further coating secondary coating layer Was 314N, but it was 116N when it was applied 5 days after preparation and a further secondary coating layer was provided, and the adhesive strength decreased with the lapse of time after preparation of the coating solution for glass fiber coating. Moreover, about the fracture | rupture state, when the coating liquid for glass fiber coating after 5 days passed was used, the interface fracture | rupture was raise | generated.

このように、本発明のガラス繊維被覆用塗布液を用い、ガラス繊維コードに塗布乾燥させ被覆層を設けた後、ハロゲン含有ポリマー(H)と、ハロゲン含有ポリマー(H)を100%基準として、ビスアリルナジイミド(I)を、重量百分率で表して、0.3%以上、10.0%以下、即ち、G/I=0.3%〜10.0%の範囲で加え、有機溶剤に分散させたガラス繊維2次被覆用塗布液を塗布乾燥させて、更なる2次被覆層を設けてなる本発明のゴム補強用ガラス繊維を、架橋されたHNBRゴムに埋設し作製した伝動ベルトした際のHNBRとの初期の接着強さ、引っ張り強さを測定した結果、本発明のガラス繊維被覆用塗布液を調製後、24時間(1日)以内にガラス繊維コードに塗布し更なる2次被覆を伝動ベルトと、120時間(5日)経過後に作製した伝動ベルトは、HNBRとの初期の接着強さが同じで、引っ張り強さを持続し安定性に優れていた。   Thus, using the glass fiber coating coating solution of the present invention, after coating and drying the glass fiber cord to provide a coating layer, the halogen-containing polymer (H) and the halogen-containing polymer (H) as 100% standard, Add bisallylnadiimide (I) in terms of weight percentage in the range of 0.3% to 10.0%, that is, G / I = 0.3% to 10.0%. The dispersed glass fiber coating solution was applied and dried, and a transmission belt produced by embedding the rubber reinforcing glass fiber of the present invention provided with a further secondary coating layer in a crosslinked HNBR rubber. As a result of measuring the initial adhesive strength and tensile strength with HNBR, the glass fiber cord was applied to the glass fiber cord within 24 hours (one day) after the preparation of the coating solution for coating glass fiber of the present invention. Cover with transmission belt, 120 hours 5 days) the transmission belt produced after lapse of the same initial adhesion strength of the HNBR, was excellent in stability to sustain tensile strength.

更に、本発明のゴム補強用ガラス繊維は、従来のゴム補強用ガラス繊維に比較して、耐熱ゴム、例えば架橋されたHNBRに埋設して伝動ベルトとし、屈曲走行試験を行ったところ、伝動ベルトは優れた耐水性および耐熱性を併せ持っていた。このことは、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)は、レゾルシン−ホルムアルデヒド樹脂に比較して、ガラス繊維被覆用塗布液の組成物として用いガラス繊維コードへ塗布し被膜とした際に、ガラス繊維コードへの水の浸透を防ぐ働きに優れることによると考えられる。   Furthermore, the glass fiber for rubber reinforcement of the present invention was compared with the conventional glass fiber for rubber reinforcement, when it was embedded in a heat-resistant rubber, for example, a cross-linked HNBR, as a transmission belt, and a bending running test was conducted. Had both excellent water resistance and heat resistance. This is because when monohydroxybenzene-resorcin-formaldehyde resin (A) is used as a composition for a coating solution for coating glass fiber and applied to a glass fiber cord as a film, compared with resorcin-formaldehyde resin, This is thought to be due to the excellent function of preventing water penetration into the fiber cord.

Claims (4)

フェノール樹脂とビニルピリジン−スチレン−ブタジエン共重合体(B)とクロロスルフォン化ポリエチレン(C)とを水に分散させエマルジョンとしたガラス繊維コードに被覆乾燥させゴム補強用ガラス繊維とし架橋された水素化ニトリルゴムと接着させるためのガラス繊維被覆用塗布液であって、前記フェノール樹脂が、モノヒドロキシベンゼン(D)およびレゾルシン(F)とホルムアルデヒド(E)とを反応させてなるモノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)であり、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)が、モノヒドロキシベンゼン(D)とレゾルシン(F)とに対するホルムアルデヒド(E)のモル比を、E/(D+F)=0.5〜3.0とし塩基性の触媒で反応させたレゾール型樹脂であり、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)におけるモノヒドロキシベンゼン(D)とレゾルシン(F)とに対するモノヒドロキシベンゼンの含有率をモル百分率で表して、D/(D+F)=30.0%〜70.0%であり、重量百分率で表して、モノヒドロキシベンゼン−レゾルシン−ホルムアルデヒド樹脂(A)がA/(A+B+C)=1.0%〜15.0%、ビニルピリジン−スチレン−ブタジエン共重合体(B)がB/(A+B+C)=45.0%〜82.0%、クロロスルフォン化ポリエチレン(C)がC/(A+B+C)=3.0%〜40.0%の範囲に含まれてなることを特徴とするガラス繊維被覆用塗布液。 Phenolic resin and vinyl pyridine - styrene - butadiene copolymer (B) and chlorosulfonated polyethylene and (C) was an emulsion dispersed in water, the rubber-reinforcing glass fiber is coated dry glass fiber cord crosslinked hydrogen Monohydroxybenzene-resorcin, which is a coating solution for glass fiber coating for bonding to a nitrified rubber , wherein the phenol resin is a reaction of monohydroxybenzene (D) and resorcin (F) with formaldehyde (E) -Formaldehyde resin (A), where monohydroxybenzene-resorcin-formaldehyde resin (A) has a molar ratio of formaldehyde (E) to monohydroxybenzene (D) and resorcin (F), E / (D + F) = 0.5 ~ 3.0 and react with basic catalyst It is a resole type resin, and the content of monohydroxybenzene relative to monohydroxybenzene (D) and resorcin (F) in monohydroxybenzene-resorcin-formaldehyde resin (A) is expressed in mole percentage, and D / (D + F) = The monohydroxybenzene-resorcin-formaldehyde resin (A) is A / (A + B + C) = 1.0% to 15.0%, vinylpyridine-styrene. -Butadiene copolymer (B) is in the range of B / (A + B + C) = 45.0% -82.0%, chlorosulfonated polyethylene (C) is in the range of C / (A + B + C) = 3.0% -40.0% A coating solution for coating glass fibers, which is contained in 前記ビニルピリジン−スチレン−ブタジエン共重合体(B)を、スチレン−ブタジエン共重合体(G)に、重量百分率で表して、G/B=5.0%〜80.0%の範囲で替えてなることを特徴とする請求項1に記載のガラス繊維被覆用塗布液。 The vinylpyridine-styrene-butadiene copolymer (B) is expressed as a percentage by weight with respect to the styrene-butadiene copolymer (G), and G / B is changed in the range of 5.0% to 80.0%. The coating liquid for glass fiber coating according to claim 1, wherein 請求項1または請求項2に記載のガラス繊維被覆用塗布液を塗布後、乾燥させたゴム補強用ガラス繊維に、ハロゲン含有ポリマー(H)と、重量百分率で表してI/H=0.3%〜10.0%のビスアリルナジイミド(I)を有機溶剤に分散させたガラス繊維2次被覆用塗布液を塗布し、更なる2次被覆層を設けてなることを特徴とするゴム補強用ガラス繊維。 After applying the glass fiber coating coating solution according to claim 1 or 2, the dried glass fiber for reinforcing rubber is added to the halogen-containing polymer (H) and expressed in weight percentage, and I / H = 0.3. A rubber reinforcement comprising a glass fiber secondary coating coating solution in which bisallylnadiimide (I) is dispersed in an organic solvent in an amount of 1% to 10.0%, and a further secondary coating layer is provided. Glass fiber. 請求項3に記載のゴム補強用繊維を架橋された水素化ニトリルゴムに埋設させてなることを特徴とする伝動ベルト。 A power transmission belt comprising the rubber reinforcing fiber according to claim 3 embedded in a cross-linked hydrogenated nitrile rubber.
JP2005029637A 2005-02-04 2005-02-04 Glass fiber coating solution and rubber fiber reinforcing glass fiber using the same Active JP4522279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005029637A JP4522279B2 (en) 2005-02-04 2005-02-04 Glass fiber coating solution and rubber fiber reinforcing glass fiber using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005029637A JP4522279B2 (en) 2005-02-04 2005-02-04 Glass fiber coating solution and rubber fiber reinforcing glass fiber using the same

Publications (2)

Publication Number Publication Date
JP2006214046A JP2006214046A (en) 2006-08-17
JP4522279B2 true JP4522279B2 (en) 2010-08-11

Family

ID=36977501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005029637A Active JP4522279B2 (en) 2005-02-04 2005-02-04 Glass fiber coating solution and rubber fiber reinforcing glass fiber using the same

Country Status (1)

Country Link
JP (1) JP4522279B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5712532B2 (en) 2010-05-31 2015-05-07 横浜ゴム株式会社 Laminated body and pneumatic tire
CN115594277B (en) * 2022-11-11 2024-08-09 扬州大学 Application of colloid resorcinol-formaldehyde resin in treatment of bromine-containing wastewater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203730A (en) * 2002-12-10 2004-07-22 Central Glass Co Ltd Glass fiber for rubber reinforcement

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766943A (en) * 1980-10-11 1982-04-23 Sumitomo Chem Co Ltd Adhesion treatment for rubber-reinforcing fiber
JPH03220372A (en) * 1990-01-24 1991-09-27 Teijin Ltd Treatment of fiber
JP2656375B2 (en) * 1990-09-14 1997-09-24 セントラル硝子株式会社 Glass fiber for rubber reinforcement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203730A (en) * 2002-12-10 2004-07-22 Central Glass Co Ltd Glass fiber for rubber reinforcement

Also Published As

Publication number Publication date
JP2006214046A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
WO2006038490A1 (en) Coating liquid for covering glass fiber and rubber-reinforcing glass fiber using same
JP4410648B2 (en) Glass fiber coating solution and rubber fiber reinforcing glass fiber using the same
WO2007114228A1 (en) Coating liquid for coating glass fiber and rubber-reinforcing glass fiber using the same
JP4410740B2 (en) Glass fiber for rubber reinforcement and transmission belt using the same.
JP2008133553A (en) Glass fiber for rubber reinforcing
JP4440190B2 (en) Glass fiber for rubber reinforcement and transmission belt using the same.
JP4030499B2 (en) Glass fiber for rubber reinforcement
JP4522279B2 (en) Glass fiber coating solution and rubber fiber reinforcing glass fiber using the same
JP4876858B2 (en) Glass fiber coating solution and rubber fiber reinforcing glass fiber using the same
JP5262253B2 (en) Glass fiber coating solution and rubber fiber reinforcing glass fiber using the same
JP4985036B2 (en) Glass fiber for rubber reinforcement and conductive belt using the same
JP5428433B2 (en) Glass fiber for rubber reinforcement and transmission belt using the same
JP5146146B2 (en) Glass fiber for rubber reinforcement and transmission belt using the same
JP4410738B2 (en) Glass fiber for rubber reinforcement and transmission belt using the same.
JP4876971B2 (en) Glass fiber coating solution and rubber fiber reinforcing glass fiber using the same
JP2008137882A (en) Glass fiber for reinforcing rubber and transmission belt using the same
JP2010222178A (en) Glass fiber for reinforcing rubber and transmission belt using the same
JP5428432B2 (en) Glass fiber for rubber reinforcement and transmission belt using the same
JP2012067412A (en) Coating liquid for coating glass fiber and glass fiber for reinforcing rubber using the same
JP4410739B2 (en) Glass fiber for rubber reinforcement and transmission belt using the same.
JP2008137883A (en) Glass fiber for reinforcing rubber and transmission belt using the same
JP5151730B2 (en) Glass fiber for rubber reinforcement and transmission belt using the same
JP5087969B2 (en) Glass fiber for rubber reinforcement and transmission belt using the same
JP5262252B2 (en) Glass fiber for rubber reinforcement and transmission belt using the same
JP2009029644A (en) Coating liquid for coating glass fiber, its manufacturing method, and rubber-reinforcing glass fiber using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

R150 Certificate of patent or registration of utility model

Ref document number: 4522279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250