JP2006104559A - Method for sintering titanium-based powder compact - Google Patents

Method for sintering titanium-based powder compact Download PDF

Info

Publication number
JP2006104559A
JP2006104559A JP2004296274A JP2004296274A JP2006104559A JP 2006104559 A JP2006104559 A JP 2006104559A JP 2004296274 A JP2004296274 A JP 2004296274A JP 2004296274 A JP2004296274 A JP 2004296274A JP 2006104559 A JP2006104559 A JP 2006104559A
Authority
JP
Japan
Prior art keywords
titanium
sintering
based powder
molded body
powder compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004296274A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takamiya
博之 高宮
Mikio Kondo
幹夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2004296274A priority Critical patent/JP2006104559A/en
Publication of JP2006104559A publication Critical patent/JP2006104559A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for sintering a titanium-based powder compact capable of producing a titanium-based sintered compact having reduced contamination caused by oxygen or the like even in an inert gas atmosphere and having satisfactory mechanical properties. <P>SOLUTION: A titanium-based powder compact 1 compacted from raw material powder essentially consisting of titanium is sintered by a heating furnace using a graphite heater in an inert gas atmosphere under the pressure of atmospheric pressure or higher, under an oxygen concentration of ≤50 ppm, and under a CO concentration of ≤100 ppm. At this time, the titanium-based powder compact 1 is supported by a supporting member 2 and is installed inside a case 3 made of graphite. The supporting member 2 is composed of a base part 20 and a reaction control part 21 comprising at least either Y<SB>2</SB>O<SB>3</SB>or ZrO<SB>2</SB>, and comes into contact with the titanium-based powder compact 1 via the reaction control part 21. Further, a sintering promotion member 5 made of titanium for forming a sintering promotion atmosphere is arranged around the titanium-based powder compact 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、チタンを主成分とする原料粉末から成形されたチタン系粉末成形体を焼結するチタン系粉末成形体の焼結方法に関する。   The present invention relates to a method for sintering a titanium-based powder molded body that sinters a titanium-based powder molded body molded from a raw material powder containing titanium as a main component.

チタンは軽く、高強度であり、耐食性にも優れる。このため、宇宙・航空機器材料、生体・医療材料、スポーツ用品等、種々の分野で利用されている。また、耐熱性や超塑性機能を有するため、鉄系材料に代わる構造材料として期待されている。鉄系材料からなる部材は、通常、鋳造法や鍛造法で製造される。しかし、チタンのような活性金属では、高温での溶解等に技術的な問題が多く、鋳造法や鍛造法を用いることは難しい。また、チタンは難加工性材料であるため、機械加工による部材の製造が難しく、加工コストも高くなる。このため、自動車用部品等のコスト制限が大きな分野では、チタンの実用化が進み難いのが現状である。   Titanium is light, high in strength, and excellent in corrosion resistance. For this reason, it is used in various fields such as space / aviation equipment materials, biological / medical materials, and sports equipment. Moreover, since it has heat resistance and a superplastic function, it is expected as a structural material that can replace ferrous materials. A member made of an iron-based material is usually manufactured by a casting method or a forging method. However, an active metal such as titanium has many technical problems such as melting at a high temperature, and it is difficult to use a casting method or a forging method. Further, since titanium is a difficult-to-process material, it is difficult to manufacture a member by machining, and the processing cost is increased. For this reason, in the field | area where the cost restrictions, such as parts for motor vehicles, are large, the present condition is that the practical use of titanium is hard to advance.

このような状況下、チタン系材料からなる部材の製造方法として、粉末冶金法を利用した(ニア)ネットシェイプ法が試みられている。ネットシェイプ法では、まず、チタンを主成分とする原料粉末を加圧成形してチタン系粉末成形体とし、その後、チタン系粉末成形体を焼結して焼結体とする。ここで、チタン系粉末成形体の焼結は、焼結雰囲気からの酸素汚染により焼結体の機械的特性が低下するのを抑制するため、10-2Pa以下の高真空下で行われる(例えば、特許文献1〜3参照。)。高真空下での焼結(以下、適宜「真空焼結」と称す。)では、焼結する度に加熱炉の真空引きが必要となる。よって、真空焼結は、バッチ処理となり、量産性に劣り、コスト高となる。また、真空焼結では、加熱源として高価なモリブデン(Mo)ヒータを使用することが多く、この点もコスト高の要因になっている。 Under such circumstances, a (near) net shape method using a powder metallurgy method has been attempted as a method for producing a member made of a titanium-based material. In the net shape method, first, a raw material powder containing titanium as a main component is pressure-molded to form a titanium-based powder molded body, and then the titanium-based powder molded body is sintered to form a sintered body. Here, the sintering of the titanium-based powder molded body is performed under a high vacuum of 10 −2 Pa or less in order to suppress deterioration of the mechanical properties of the sintered body due to oxygen contamination from the sintering atmosphere ( For example, see Patent Documents 1 to 3.) Sintering under high vacuum (hereinafter referred to as “vacuum sintering” as appropriate) requires evacuation of the heating furnace each time sintering is performed. Therefore, vacuum sintering is a batch process, which is inferior in mass productivity and high in cost. Also, in vacuum sintering, an expensive molybdenum (Mo) heater is often used as a heating source, which is also a factor of high cost.

そこで、安価な黒鉛ヒータを使用した、不活性ガス雰囲気での焼結が試みられている。不活性ガス雰囲気で焼結する場合には、高真空下で行う以上に、使用する不活性ガスや炉壁からの酸素、炭素、窒素等の汚染が問題となる。その対策として、例えば、特許文献4には、焼結用ケース内に、酸素を捕捉するゲッター金属を入れて、チタン系粉末成形体を焼結する方法が開示されている。
特開平3−267306号公報 特開2000−8102号公報 特開平10−251706号公報 特開平6−330105号公報
Therefore, sintering in an inert gas atmosphere using an inexpensive graphite heater has been attempted. In the case of sintering in an inert gas atmosphere, contamination with oxygen, carbon, nitrogen, etc. from the inert gas and the furnace wall to be used becomes a problem more than in a high vacuum. As a countermeasure, for example, Patent Document 4 discloses a method of sintering a titanium-based powder compact by putting a getter metal that traps oxygen in a sintering case.
JP-A-3-267306 JP 2000-8102 A Japanese Patent Laid-Open No. 10-251706 JP-A-6-330105

しかしながら、上記特許文献4に開示されるように、焼結用ケース内にゲッター金属を入れても、酸素、炭素、窒素等の汚染を充分に抑制することはできない。このため、真空焼結の場合と比較して、得られる焼結体の機械的特性は低くなる。   However, as disclosed in Patent Document 4, even if a getter metal is placed in the sintering case, contamination such as oxygen, carbon, and nitrogen cannot be sufficiently suppressed. For this reason, compared with the case of vacuum sintering, the mechanical characteristic of the obtained sintered compact becomes low.

最近では、炉内の酸素分圧を限りなく低下させることのできる極低酸素分圧炉が開発されている。しかし、本発明者の実験によれば、この極低酸素分圧炉を使用した場合でも、焼結体への微量な炭素、窒素等の吸収は避けられず、焼結体の機械的特性、特に延性が低下してしまうことがわかった。   Recently, an extremely low oxygen partial pressure furnace capable of reducing the oxygen partial pressure in the furnace as much as possible has been developed. However, according to the inventor's experiment, even when this extremely low oxygen partial pressure furnace is used, absorption of a small amount of carbon, nitrogen, etc. into the sintered body is inevitable, and the mechanical properties of the sintered body, It turned out that ductility falls especially.

また、通常、チタン系粉末成形体は、焼結用ケース内に支持部材で支持されて設置される。この場合、焼結時にチタン系粉末成形体が支持部材と反応し、固着を生じるという問題があった。チタン系粉末成形体と支持部材との反応により、支持部材由来の酸素、炭素等が焼結体へ侵入し、焼結体の機械的特性が低下する。また、焼結体に歪みが生じ、焼結体の形状精度が低下する。   In general, the titanium-based powder compact is installed in a sintering case supported by a support member. In this case, there has been a problem that the titanium-based powder molded body reacts with the support member during sintering to cause sticking. Due to the reaction between the titanium-based powder compact and the support member, oxygen, carbon, and the like derived from the support member enter the sintered body, and the mechanical properties of the sintered body deteriorate. In addition, distortion occurs in the sintered body, and the shape accuracy of the sintered body decreases.

本発明はこのような実状に鑑みてなされたものであり、不活性ガス雰囲気でも、酸素、炭素、窒素等による汚染が少なく、機械的特性の良好なチタン系焼結体を製造することのできるチタン系粉末成形体の焼結方法を提供することを課題とする。   The present invention has been made in view of such a situation, and it is possible to produce a titanium-based sintered body having a good mechanical property with little contamination by oxygen, carbon, nitrogen, etc. even in an inert gas atmosphere. It is an object to provide a method for sintering a titanium-based powder compact.

(1)本発明の第一のチタン系粉末成形体の焼結方法(以下、適宜「本発明の第一の焼結方法」と称す。)は、チタンを主成分とする原料粉末から成形されたチタン系粉末成形体を、黒鉛ヒータを用いた加熱炉で焼結するチタン系粉末成形体の焼結方法であって、該チタン系粉末成形体を、支持部材で支持して黒鉛製のケース内に設置し、該支持部材は、基部と、Y23およびZrO2の少なくとも一方を含む反応抑制部と、からなり、該反応抑制部を介して該チタン系粉末成形体と接触し、大気圧以上の圧力下、酸素濃度50ppm以下、CO濃度100ppm以下の不活性ガス雰囲気にて焼結することを特徴とする。 (1) The first titanium-based powder molded body sintering method of the present invention (hereinafter referred to as “the first sintering method of the present invention” as appropriate) is molded from a raw material powder containing titanium as a main component. The titanium-based powder molded body is sintered in a heating furnace using a graphite heater, and the titanium-based powder molded body is supported by a support member. The support member comprises a base and a reaction suppression unit including at least one of Y 2 O 3 and ZrO 2 , and is in contact with the titanium-based powder molded body through the reaction suppression unit, It is characterized by sintering in an inert gas atmosphere having an oxygen concentration of 50 ppm or less and a CO concentration of 100 ppm or less under a pressure of atmospheric pressure or higher.

本発明の第一の焼結方法では、チタン系粉末成形体は、支持部材に支持されてケース内に設置される。支持部材は、基部と反応抑制部とからなり、反応抑制部を介してチタン系粉末成形体と接触する。反応抑制部を構成するY23、ZrO2は、高温で安定であり、チタン系粉末成形体とは反応しない。支持部材とチタン系粉末成形体とは、反応抑制部を挟んで接触するため、両者の反応は生じない。よって、チタン系粉末成形体と支持部材との固着は生じない。このため、支持部材からチタン系粉末成形体への酸素等の侵入は抑制される。また、得られるチタン系焼結体の歪みも抑制される。よって、本発明の第一の焼結方法によれば、機械的特性および形状精度の良好なチタン系焼結体を得ることができる。 In the first sintering method of the present invention, the titanium-based powder compact is supported by a support member and installed in the case. The support member includes a base portion and a reaction suppression portion, and comes into contact with the titanium-based powder molded body via the reaction suppression portion. Y 2 O 3 and ZrO 2 constituting the reaction suppression part are stable at high temperatures and do not react with the titanium-based powder compact. Since the support member and the titanium-based powder molded body are in contact with each other with the reaction suppression portion interposed therebetween, the reaction between them does not occur. Therefore, the titanium powder compact and the support member do not stick. For this reason, the penetration | invasion of oxygen etc. from a support member to a titanium type powder compact is suppressed. Moreover, distortion of the obtained titanium-based sintered body is also suppressed. Therefore, according to the first sintering method of the present invention, a titanium-based sintered body having good mechanical characteristics and shape accuracy can be obtained.

また、本発明の第一の焼結方法では、酸素濃度50ppm以下、CO濃度100ppm以下の不活性ガス雰囲気で焼結を行う。つまり、酸素濃度およびCO(一酸化炭素)濃度が極めて低い条件下で焼結を行う。したがって、焼結時における酸素および炭素の汚染のおそれは少ない。また、不活性ガス雰囲気で焼結を行うため、真空焼結とは異なり、焼結の度に真空引きの必要がない。よって、本発明の第一の焼結方法によれば、焼結を連続して行うことが可能となる。   In the first sintering method of the present invention, sintering is performed in an inert gas atmosphere having an oxygen concentration of 50 ppm or less and a CO concentration of 100 ppm or less. That is, sintering is performed under conditions where the oxygen concentration and CO (carbon monoxide) concentration are extremely low. Therefore, there is little risk of oxygen and carbon contamination during sintering. In addition, since sintering is performed in an inert gas atmosphere, unlike vacuum sintering, there is no need for evacuation for each sintering. Therefore, according to the first sintering method of the present invention, sintering can be performed continuously.

このように、本発明の第一の焼結方法によれば、機械的特性および形状精度の良好なチタン系焼結体を、低コストに量産することができる。   Thus, according to the first sintering method of the present invention, a titanium-based sintered body having good mechanical characteristics and shape accuracy can be mass-produced at low cost.

(2)本発明の第二のチタン系粉末成形体の焼結方法(以下、適宜「本発明の第二の焼結方法」と称す。)は、チタンを主成分とする原料粉末から成形されたチタン系粉末成形体を、黒鉛ヒータを用いた加熱炉で焼結するチタン系粉末成形体の焼結方法であって、該チタン系粉末成形体を黒鉛製のケース内に設置し、該チタン系粉末成形体の周囲には、焼結促進雰囲気を形成するためのチタン製の焼結促進部材を配置し、大気圧以上の圧力下、酸素濃度50ppm以下、CO濃度100ppm以下の不活性ガス雰囲気にて焼結することを特徴とする。   (2) The second titanium powder molding method of the present invention (hereinafter referred to as “the second sintering method of the present invention” as appropriate) is formed from a raw material powder containing titanium as a main component. The titanium-based powder molded body is sintered in a heating furnace using a graphite heater, and the titanium-based powder molded body is placed in a graphite case. A titanium sintering promoting member for forming a sintering accelerating atmosphere is disposed around the green powder compact, and an inert gas atmosphere having an oxygen concentration of 50 ppm or less and a CO concentration of 100 ppm or less under a pressure of atmospheric pressure or higher. It is characterized by sintering.

本発明の第二の焼結方法では、チタン系粉末成形体の周囲に、焼結促進雰囲気を形成するためのチタン製の焼結促進部材が配置される。焼結促進部材の配置により、チタン系粉末成形体の周囲は、焼結が促進される雰囲気となる。具体的には、焼結促進部材は、チタン系粉末成形体の周囲の雰囲気を、ケース内のそれ以外の雰囲気から隔離する役割を果たす。また、焼結促進部材はチタン製であるため、焼結時の雰囲気に存在する酸素、炭素、窒素等を捕捉するゲッターの役割を果たす。これにより、チタン系粉末成形体の周囲への酸素、炭素、窒素等の移動が抑制され、チタン系粉末成形体の周囲には、より清浄度の高い雰囲気が実現される。   In the second sintering method of the present invention, a titanium sintering promoting member for forming a sintering promoting atmosphere is disposed around the titanium-based powder compact. Due to the arrangement of the sintering promoting member, the atmosphere around the titanium-based powder compact is promoted to sinter. Specifically, the sintering promoting member plays a role of isolating the atmosphere around the titanium-based powder molded body from the other atmosphere in the case. Further, since the sintering promoting member is made of titanium, it serves as a getter that captures oxygen, carbon, nitrogen, etc. present in the atmosphere during sintering. Thereby, the movement of oxygen, carbon, nitrogen and the like around the titanium-based powder compact is suppressed, and an atmosphere with higher cleanliness is realized around the titanium-based powder compact.

また、昇温に伴い、チタン系粉末成形体ではチタン等の蒸発が生じる。通常、大気圧以上の雰囲気では、真空雰囲気に比べて、チタンの蒸発が少ない。これは、雰囲気の違いにより、蒸発凝着機構が異なるためと考えられる。つまり、大気圧以上の雰囲気では、チタンの蒸発よりも、雰囲気からの汚染が優先してしまう。このため、チタンの蒸発、凝着が阻害され、焼結が促進され難い。これに対して、本発明の第二の焼結方法では、チタン系粉末成形体の周囲を、焼結促進部材により清浄度の高い雰囲気に保つ。その結果、酸素等に汚染されることなく、チタンの蒸発、凝着が促進される。チタンの蒸発は、チタン系粉末成形体のみならず、チタン製の焼結促進部材でも生じると考えられる。このようなチタンの蒸発雰囲気が、酸素等の移動を妨げる保護シールとしても作用する。チタンの蒸発、凝着が繰り返されることで、焼結が促進される。その結果、真空焼結と同等レベルの延性を有するチタン系焼結体を得ることができる。   Further, as the temperature rises, evaporation of titanium or the like occurs in the titanium-based powder compact. Usually, in an atmosphere at atmospheric pressure or higher, evaporation of titanium is less than in a vacuum atmosphere. This is thought to be because the evaporation and adhesion mechanism varies depending on the atmosphere. That is, in an atmosphere at atmospheric pressure or higher, contamination from the atmosphere has priority over titanium evaporation. For this reason, evaporation and adhesion of titanium are hindered, and sintering is hardly promoted. On the other hand, in the second sintering method of the present invention, the periphery of the titanium-based powder compact is maintained in a clean atmosphere with the sintering promoting member. As a result, evaporation and adhesion of titanium are promoted without being contaminated by oxygen or the like. It is considered that the evaporation of titanium occurs not only in the titanium-based powder molded body but also in the titanium sintering promoting member. Such an evaporation atmosphere of titanium also acts as a protective seal that prevents the movement of oxygen and the like. Sintering is promoted by repeated evaporation and adhesion of titanium. As a result, a titanium-based sintered body having the same level of ductility as vacuum sintering can be obtained.

また、本発明の第二の焼結方法では、上記本発明の第一の焼結方法と同様、酸素濃度およびCO濃度が極めて低い不活性ガス雰囲気にて焼結を行う。このため、連続焼結が可能となる他、焼結促進部材の変形、劣化も少ない。このように、本発明の第二の焼結方法によれば、特に延性の高いチタン系焼結体を、低コストに量産することができる。   In the second sintering method of the present invention, as in the first sintering method of the present invention, sintering is performed in an inert gas atmosphere having extremely low oxygen and CO concentrations. For this reason, continuous sintering becomes possible, and deformation and deterioration of the sintering promoting member are small. Thus, according to the second sintering method of the present invention, a titanium-based sintered body having particularly high ductility can be mass-produced at a low cost.

(3)本発明の第三のチタン系粉末成形体の焼結方法(以下、適宜「本発明の第三の焼結方法」と称す。)は、チタンを主成分とする原料粉末から成形されたチタン系粉末成形体を、黒鉛ヒータを用いた加熱炉で焼結するチタン系粉末成形体の焼結方法であって、該チタン系粉末成形体を、支持部材で支持して黒鉛製のケース内に設置し、該支持部材は、基部と、Y23およびZrO2の少なくとも一方を含む反応抑制部と、からなり、該反応抑制部を介して該チタン系粉末成形体と接触し、該チタン系粉末成形体の周囲には、焼結促進雰囲気を形成するためのチタン製の焼結促進部材を配置し、大気圧以上の圧力下、酸素濃度50ppm以下、CO濃度100ppm以下の不活性ガス雰囲気にて焼結することを特徴とする。 (3) The third method for sintering a titanium-based powder molded body of the present invention (hereinafter referred to as “the third sintering method of the present invention” as appropriate) is formed from a raw material powder mainly composed of titanium. The titanium-based powder molded body is sintered in a heating furnace using a graphite heater, and the titanium-based powder molded body is supported by a support member. The support member comprises a base and a reaction suppression unit including at least one of Y 2 O 3 and ZrO 2 , and is in contact with the titanium-based powder molded body through the reaction suppression unit, Around the titanium-based powder compact, a titanium-stimulating member for forming a sintering-promoting atmosphere is arranged, and an inert gas having an oxygen concentration of 50 ppm or less and a CO concentration of 100 ppm or less under a pressure higher than atmospheric pressure. It is characterized by sintering in a gas atmosphere.

本発明の第三の焼結方法は、上記本発明の第一および第二の焼結方法を組み合わせた方法である。支持部材は、反応抑制部を介してチタン系粉末成形体と接触する。このため、チタン系粉末成形体と支持部材との反応が生じず、両者の固着が抑制される。その結果、支持部材からチタン系粉末成形体への酸素等の侵入や、得られるチタン系焼結体の歪みは抑制される。また、焼結促進部材により、チタン系粉末成形体の周囲への酸素、炭素、窒素等の移動が抑制され、チタン系粉末成形体の周囲には、より清浄度の高い雰囲気が実現される。これより、酸素等に汚染されることなく、チタンの蒸発、凝着が促進される。チタンの蒸発、凝着が繰り返されることで、焼結がさらに促進される。   The third sintering method of the present invention is a method in which the first and second sintering methods of the present invention are combined. The support member comes into contact with the titanium-based powder molded body via the reaction suppression unit. For this reason, the reaction between the titanium-based powder molded body and the support member does not occur, and sticking of both is suppressed. As a result, intrusion of oxygen or the like from the support member into the titanium-based powder molded body and distortion of the obtained titanium-based sintered body are suppressed. Further, the sintering promoting member suppresses movement of oxygen, carbon, nitrogen and the like around the titanium-based powder molded body, and an atmosphere with higher cleanliness is realized around the titanium-based powder molded body. Thus, evaporation and adhesion of titanium are promoted without being contaminated by oxygen or the like. Sintering is further promoted by repeated evaporation and adhesion of titanium.

このように、本発明の第三の焼結方法によれば、延性等の機械的特性および形状精度の良好なチタン系焼結体を、低コストに量産することができる。   Thus, according to the third sintering method of the present invention, it is possible to mass-produce a titanium-based sintered body having good mechanical properties such as ductility and good shape accuracy at a low cost.

本発明の三つのチタン系粉末成形体の焼結方法によれば、機械的特性の良好なチタン系焼結体を、低コストに量産することができる。特に、本発明の第一の焼結方法では、チタン系粉末成形体と支持部材との反応、固着を防止する。これより、支持部材からチタン系粉末成形体への酸素等の侵入や、得られるチタン系焼結体の歪みが抑制される。また、本発明の第二の焼結方法では、酸素等の汚染を抑制しつつ、チタンの蒸発、凝着を促進させる。これより、真空焼結と同等レベルの延性を有するチタン系焼結体が得られる。また、本発明の第三の焼結方法では、チタン系粉末成形体と支持部材との反応、固着を防止すると共に、酸素等の汚染を抑制し、チタンの蒸発、凝着を促進させる。これより、延性が高く、形状精度の良好なチタン系焼結体が得られる。   According to the method for sintering three titanium-based powder compacts of the present invention, titanium-based sintered bodies having good mechanical properties can be mass-produced at low cost. In particular, in the first sintering method of the present invention, reaction and sticking between the titanium-based powder compact and the support member are prevented. Thereby, the penetration | invasion of oxygen etc. from a support member to a titanium type powder compact and the distortion of the titanium type sintered compact obtained are suppressed. Further, in the second sintering method of the present invention, evaporation and adhesion of titanium are promoted while suppressing contamination of oxygen and the like. Thus, a titanium-based sintered body having a ductility equivalent to that of vacuum sintering can be obtained. Further, in the third sintering method of the present invention, the reaction and fixation between the titanium-based powder compact and the support member are prevented, and contamination with oxygen or the like is suppressed, and evaporation and adhesion of titanium are promoted. Thus, a titanium-based sintered body having high ductility and good shape accuracy can be obtained.

以下、本発明の三つのチタン系粉末成形体の焼結方法の実施形態をそれぞれ説明する。   Hereinafter, embodiments of the method for sintering three titanium powder compacts of the present invention will be described.

〈第一の焼結方法〉
まず、本発明の第一の焼結方法の一実施形態を説明する。図1に、本発明の第一の焼結方法で使用する焼結用ケースの断面図を示す。図1に示すように、上方に開口した箱形のケース3の中に、板状の支持部材2が設置される。ケース3は、黒鉛製である。支持部材2は、黒鉛板20と、その表面にY23を溶射して形成された溶射層21とからなる。黒鉛板20は、本発明を構成する支持部材の基部に含まれる。また、溶射層21は、本発明を構成する支持部材の反応抑制部に含まれる。チタン系粉末成形体1は、支持部材2の上に載置される。チタン系粉末成形体1の下面は、溶射層21と接触する。チタン系粉末成形体1の組成は、チタン(Ti)−6%アルミニウム(Al)−4%バナジウム(V)である(単位は質量%、以下同じ。)。焼結は、黒鉛ヒータを用いた連続焼結炉(図略)において、チタン系粉末成形体1を収容したケース3を、ベルト搬送機構により炉内を移動させながら行う。連続焼結炉内は、大気圧、酸素濃度50ppm以下、CO濃度100ppm以下のアルゴン(Ar)ガス雰囲気に保持される。
<First sintering method>
First, an embodiment of the first sintering method of the present invention will be described. FIG. 1 shows a cross-sectional view of a sintering case used in the first sintering method of the present invention. As shown in FIG. 1, a plate-like support member 2 is installed in a box-shaped case 3 opened upward. Case 3 is made of graphite. The support member 2 includes a graphite plate 20 and a sprayed layer 21 formed by spraying Y 2 O 3 on the surface thereof. The graphite plate 20 is included in the base of the support member that constitutes the present invention. Moreover, the thermal spray layer 21 is included in the reaction suppression part of the support member which comprises this invention. The titanium-based powder compact 1 is placed on the support member 2. The lower surface of the titanium-based powder compact 1 is in contact with the sprayed layer 21. The composition of the titanium-based powder molded body 1 is titanium (Ti) -6% aluminum (Al) -4% vanadium (V) (unit is mass%, the same applies hereinafter). Sintering is performed in a continuous sintering furnace (not shown) using a graphite heater while the case 3 containing the titanium-based powder compact 1 is moved in the furnace by a belt transport mechanism. The inside of the continuous sintering furnace is maintained in an argon (Ar) gas atmosphere having an atmospheric pressure, an oxygen concentration of 50 ppm or less, and a CO concentration of 100 ppm or less.

本実施形態では、チタン系粉末成形体1は、支持部材2の溶射層21と接触する。溶射層21は、高温で安定なY23からなり、チタン系粉末成形体1とは反応しない。つまり、支持部材2とチタン系粉末成形体1とは反応せず、両者の固着は生じない。このため、支持部材2からチタン系粉末成形体1への炭素、酸素の侵入や、得られるチタン系焼結体の歪みが抑制される。また、酸素濃度およびCO濃度が極めて低いアルゴンガス雰囲気で焼結を行うため、酸素および炭素の汚染のおそれは少ない。また、連続焼結炉を使用するため、チタン系焼結体を低コストに量産することができる。 In the present embodiment, the titanium-based powder compact 1 is in contact with the sprayed layer 21 of the support member 2. The sprayed layer 21 is made of Y 2 O 3 that is stable at high temperatures and does not react with the titanium-based powder molded body 1. That is, the support member 2 and the titanium-based powder molded body 1 do not react with each other, and the sticking between them does not occur. For this reason, invasion of carbon and oxygen from the support member 2 to the titanium-based powder compact 1 and distortion of the obtained titanium-based sintered body are suppressed. In addition, since sintering is performed in an argon gas atmosphere with extremely low oxygen and CO concentrations, there is little risk of oxygen and carbon contamination. Moreover, since the continuous sintering furnace is used, the titanium-based sintered body can be mass-produced at a low cost.

次に、本発明の第一の焼結方法の他の実施形態を説明する。上記実施形態では、組成Ti−6%Al−4%Vのチタン系粉末成形体を用いた。しかし、チタン系粉末成形体の組成は、これに限定されるものではない。チタン系粉末成形体は、チタンを主成分とする原料粉末から成形したものであればよい。ここで、「チタンを主成分とする」とは、原料粉末全体を100at%とした場合に、チタンの含有割合が50at%以上であることを意味する。原料粉末としては、例えば、純チタン粉末、チタン合金粉末、チタン化合物粉末の他、Al、V、鉄(Fe)、Mo、スズ(Sn)、ニオブ(Nb)、ケイ素(Si)、マンガン(Mn)、ジルコニウム(Zr)、タンタル(Ta)、ホウ素(B)等の含有させたい元素の粉末、あるいは同元素を含む合金粉末を用いることができる。原料粉末は、一種類の粉末でもよく、二種類以上の粉末を混合したものでもよい。   Next, another embodiment of the first sintering method of the present invention will be described. In the said embodiment, the titanium type powder compact of composition Ti-6% Al-4% V was used. However, the composition of the titanium-based powder compact is not limited to this. The titanium-based powder molded body may be any one formed from a raw material powder mainly composed of titanium. Here, “having titanium as a main component” means that the content ratio of titanium is 50 at% or more when the entire raw material powder is 100 at%. Examples of the raw material powder include pure titanium powder, titanium alloy powder, titanium compound powder, Al, V, iron (Fe), Mo, tin (Sn), niobium (Nb), silicon (Si), manganese (Mn ), Zirconium (Zr), tantalum (Ta), boron (B), or the like, or a powder of an alloy containing the same element can be used. The raw material powder may be one type of powder or a mixture of two or more types of powder.

原料粉末は、既に公知の方法により加圧成形し、チタン系粉末成形体とすればよい。例えば、内面に高級脂肪酸系潤滑剤を塗布した金型に、原料粉末を充填し、100〜225℃の温間状態で、392MPa以上の圧力で加圧成形すると、高密度のチタン系粉末成形体を得ることができる。チタン系粉末成形体の密度が高いほど、焼結前後の寸法変化は小さくなる。これより、ネットシェイプ化が可能となり、チタン製品の低価格化が達成できる。   The raw material powder may be pressure-molded by a known method to form a titanium-based powder compact. For example, when a raw material powder is filled in a mold having an inner surface coated with a higher fatty acid-based lubricant and pressed at a pressure of 392 MPa or more in a warm state at 100 to 225 ° C., a high-density titanium-based powder molded body Can be obtained. The higher the density of the titanium-based powder compact, the smaller the dimensional change before and after sintering. As a result, the net shape can be realized, and the price of titanium products can be reduced.

上記実施形態では、支持部材の反応抑制部をY23の溶射層とした。反応抑制部は、Y23およびZrO2の少なくとも一方を含めばよい。例えば、Y23、ZrO2のいずれか一方からなる態様、あるいはY23およびZrO2の両方を含む態様がある。また、これ以外の酸化物(CaO、Al23等)を含んでいてもよい。但し、高温下で焼結を行う場合には、酸化物の分解を考慮する必要がある。例えば、Al23は、1300℃以上、CO濃度が10ppm以下の焼結雰囲気では分解してしまう。また、CaOは吸湿性があり、扱い難い。これに対して、Y23は、1300℃以上の高温下で、どのような雰囲気でも安定であり好適である。 In the above embodiment, the reaction suppress part of the support member and the sprayed layer of Y 2 O 3. The reaction suppression unit may include at least one of Y 2 O 3 and ZrO 2 . For example, there is a mode including both of Y 2 O 3, ZrO 2 in any embodiments composed of one or Y 2 O 3 and ZrO 2,. Also, other oxides (CaO, Al 2 O 3, etc.) may be contained. However, when sintering is performed at a high temperature, it is necessary to consider the decomposition of the oxide. For example, Al 2 O 3 is decomposed in a sintering atmosphere having a temperature of 1300 ° C. or higher and a CO concentration of 10 ppm or lower. CaO is hygroscopic and difficult to handle. In contrast, Y 2 O 3 is suitable because it is stable in any atmosphere at a high temperature of 1300 ° C. or higher.

反応抑制部としては、溶射層の他、例えば、基部の表面に配置された焼結板、基部の表面に敷設された粉末等の種々の態様を採用することができる。コスト、表面の平坦性等を考慮すると、溶射層の態様を採用することが望ましい。溶射層は、Y23およびZrO2の少なくとも一方を含む溶射材を、プラズマ溶射、ガス溶射等により基部の表面に溶射して形成すればよい。この場合、溶射層の厚さは、100μm以下とするとよい。100μmより厚くすると、溶射層が基部から剥離し易くなる。 As the reaction suppressing portion, various modes such as a sintered plate disposed on the surface of the base portion and powder laid on the surface of the base portion can be adopted in addition to the sprayed layer. In consideration of cost, surface flatness, etc., it is desirable to adopt the form of the sprayed layer. The thermal spray layer may be formed by spraying a thermal spray material containing at least one of Y 2 O 3 and ZrO 2 on the surface of the base by plasma spraying, gas spraying, or the like. In this case, the thickness of the sprayed layer is preferably 100 μm or less. When it is thicker than 100 μm, the sprayed layer is easily peeled off from the base.

また、反応抑制部を溶射層とした場合には、基部と溶射層との密着性を向上させるため、基部に中間層を設けることが望ましい。すなわち、基部を、基部本体と中間層とから構成し、中間層の表面に溶射層を形成することが望ましい。この場合、支持部材は、「基部本体/中間層/溶射層」という構成となる。例えば、基部本体が黒鉛製である場合には、中間層を、高融点で、熱膨張率が炭素と同程度の金属で構成するとよい。このような金属としては、例えば、Mo、タングステン(W)、Ta等が挙げられる。これらの金属の一種以上を、基部本体に溶射して中間層を形成すればよい。中間層は複数層形成してもよい。中間層の厚さは、例えば、10μm以上100μm以下とするとよい。   Further, when the reaction suppression portion is a sprayed layer, it is desirable to provide an intermediate layer on the base portion in order to improve the adhesion between the base portion and the sprayed layer. That is, it is desirable that the base is composed of a base body and an intermediate layer, and a sprayed layer is formed on the surface of the intermediate layer. In this case, the support member has a configuration of “base body / intermediate layer / sprayed layer”. For example, when the base body is made of graphite, the intermediate layer may be made of a metal having a high melting point and a thermal expansion coefficient similar to that of carbon. Examples of such metals include Mo, tungsten (W), Ta, and the like. One or more of these metals may be sprayed onto the base body to form the intermediate layer. A plurality of intermediate layers may be formed. The thickness of the intermediate layer is preferably 10 μm or more and 100 μm or less, for example.

上記実施形態では、チタン系粉末成形体を板状の支持部材の上に載置した。しかし、チタン系粉末成形体の形状に応じて、種々の形状の支持部材を採用することができる。いずれの場合でも、チタン系粉末成形体と支持部材とを、反応抑制部を介して接触させればよい。また、上記実施形態では、量産性およびコストの観点から、ベルト搬送機構を備えた連続焼結炉を使用した。しかし、バッチ式の加熱炉を使用してもよい。   In the said embodiment, the titanium type powder compact was mounted on the plate-shaped support member. However, various types of support members can be employed depending on the shape of the titanium-based powder compact. In any case, the titanium-based powder molded body and the support member may be brought into contact with each other via the reaction suppression unit. Moreover, in the said embodiment, the continuous sintering furnace provided with the belt conveyance mechanism was used from a viewpoint of mass productivity and cost. However, a batch-type heating furnace may be used.

焼結温度および焼結時間は、チタン系焼結体の所望特性や、生産性等を考慮して決定すればよい。焼結温度が高いほど、短時間で高強度のチタン系焼結体が得られる。但し、焼結温度が高すぎると、反応抑制部を介した状態でもチタン系粉末成形体と支持部材とが反応してしまうおそれがある。一方、焼結温度が低すぎると、元素拡散が不充分となり好ましくない。また、焼結時間も長くなり、生産性が低下する。したがって、焼結温度は、1000℃以上1500℃以下とするとよい。1100℃以上1300℃以下とするとより好適である。また、焼結時間は、焼結温度等にもよるが、0.5〜4時間程度とするとよい。   The sintering temperature and sintering time may be determined in consideration of desired characteristics of the titanium-based sintered body, productivity, and the like. As the sintering temperature is higher, a high-strength titanium-based sintered body can be obtained in a shorter time. However, if the sintering temperature is too high, the titanium-based powder molded body and the support member may react even in a state where the reaction suppressing portion is interposed. On the other hand, if the sintering temperature is too low, element diffusion becomes insufficient, which is not preferable. In addition, the sintering time becomes longer and the productivity is lowered. Therefore, the sintering temperature is preferably 1000 ° C. or higher and 1500 ° C. or lower. It is more preferable that the temperature is 1100 ° C. or higher and 1300 ° C. or lower. The sintering time is preferably about 0.5 to 4 hours, although it depends on the sintering temperature.

〈第二の焼結方法〉
まず、本発明の第二の焼結方法の一実施形態を説明する。図2に、本発明の第二の焼結方法で使用する焼結用ケースの断面図を示す。図2中、図1と対応する部位については、図1と同じ符号で示す。本実施形態と上記本発明の第一の焼結方法の実施形態とでは、支持部材および焼結促進部材についての形態のみが相違する。したがって、ここでは相違点を中心に説明する。
<Second sintering method>
First, an embodiment of the second sintering method of the present invention will be described. FIG. 2 shows a sectional view of a sintering case used in the second sintering method of the present invention. 2, parts corresponding to those in FIG. 1 are denoted by the same reference numerals as in FIG. This embodiment differs from the above-described embodiment of the first sintering method of the present invention only in the form of the support member and the sintering promoting member. Therefore, the difference will be mainly described here.

図2に示すように、上方に開口した箱形のケース3の中に、板状の支持台4が設置される。ケース3および支持台4は、ともに黒鉛製である。チタン系粉末成形体1は、支持台4の上に載置される。チタン系粉末成形体1の組成は、Ti−6%Al−4%Vである。チタン系粉末成形体1は、チタン製のカバー5で囲われる。カバー5は、下方に開口した箱形を呈する。カバー5の両壁下端には、カバー5の内外を通気させる通気口50a、50bが設けられる。カバー5は、本発明における焼結促進部材に含まれる。焼結は、黒鉛ヒータを用いた連続焼結炉(図略)において、チタン系粉末成形体1を収容したケース3を、ベルト搬送機構により炉内を移動させながら行う。連続焼結炉内は、大気圧、酸素濃度50ppm以下、CO濃度100ppm以下のアルゴンガス雰囲気に保持される。   As shown in FIG. 2, a plate-like support 4 is installed in a box-shaped case 3 opened upward. Both the case 3 and the support base 4 are made of graphite. The titanium-based powder compact 1 is placed on the support 4. The composition of the titanium-based powder compact 1 is Ti-6% Al-4% V. The titanium-based powder compact 1 is surrounded by a titanium cover 5. The cover 5 has a box shape opened downward. Vents 50 a and 50 b that vent the inside and outside of the cover 5 are provided at the lower ends of both walls of the cover 5. The cover 5 is included in the sintering promoting member in the present invention. Sintering is performed in a continuous sintering furnace (not shown) using a graphite heater while the case 3 containing the titanium-based powder compact 1 is moved in the furnace by a belt transport mechanism. The inside of the continuous sintering furnace is maintained in an argon gas atmosphere having an atmospheric pressure, an oxygen concentration of 50 ppm or less, and a CO concentration of 100 ppm or less.

図3および図4を用いて、焼結時の挙動を説明する。図3は、昇温過程(400℃〜)の挙動を示し、図4は、焼結過程(1000℃〜)の挙動を示す。図3に示すように、チタン系粉末成形体1をカバー5で囲うことにより、チタン系粉末成形体1の周囲は、カバー5の外の雰囲気から隔離される。これより、チタン系粉末成形体1の周囲への酸素(O2)、CO、窒素(N2)の移動が抑制される。また、昇温過程では、チタン系粉末成形体1に含まれる水素(H2)が放出される。これより、カバー5内の水素圧は高くなり、カバー5内へのO2、CO、N2の侵入がより抑制される。ここで、通気口50a、50bは、カバー5の両壁下端に設けられているため、水素より重い気体の侵入を抑制するのに効果的である。こうして、チタン系粉末成形体1の周囲には、清浄度の高い雰囲気が形成される。 The behavior during sintering will be described with reference to FIGS. 3 and 4. FIG. 3 shows the behavior of the temperature raising process (from 400 ° C.), and FIG. 4 shows the behavior of the sintering process (from 1000 ° C.). As shown in FIG. 3, by surrounding the titanium-based powder compact 1 with a cover 5, the periphery of the titanium-based powder compact 1 is isolated from the atmosphere outside the cover 5. Thereby, the movement of oxygen (O 2 ), CO, and nitrogen (N 2 ) around the titanium-based powder compact 1 is suppressed. In the temperature raising process, hydrogen (H 2 ) contained in the titanium-based powder compact 1 is released. As a result, the hydrogen pressure in the cover 5 is increased, and the intrusion of O 2 , CO, and N 2 into the cover 5 is further suppressed. Here, since the vent holes 50a and 50b are provided at the lower ends of both walls of the cover 5, they are effective in suppressing the intrusion of a gas heavier than hydrogen. Thus, an atmosphere with a high cleanliness is formed around the titanium-based powder compact 1.

さらに昇温が進んで焼結過程になると、図4に示すように、チタン系粉末成形体1ではチタンの蒸発が生じる。チタン系粉末成形体1の周囲は、清浄度の高い雰囲気となっているため、チタンの蒸発、凝着が促進される。チタンの蒸発は、チタン系粉末成形体1のみならず、カバー5でも生じる。このチタンの蒸発雰囲気が、カバー5内へのC、O、Nの侵入を妨げる。さらに、カバー5は、C、O、N、Hを捕捉する。その結果、カバー5の内側では、清浄度の高い雰囲気が保たれ、チタンの蒸発、凝着により、焼結が促進される。これにより、真空焼結と同等レベルの延性を有するチタン系焼結体を得ることができる。また、焼結時の酸素濃度およびCO濃度は極めて低いため、カバー5の劣化は少ない。   When the temperature rises further and the sintering process is started, titanium is evaporated in the titanium-based powder compact 1 as shown in FIG. Since the surroundings of the titanium-based powder molded body 1 have an atmosphere with a high cleanliness, evaporation and adhesion of titanium are promoted. The evaporation of titanium occurs not only in the titanium-based powder compact 1 but also in the cover 5. This titanium evaporation atmosphere prevents C, O, and N from entering the cover 5. Furthermore, the cover 5 captures C, O, N, and H. As a result, a clean atmosphere is maintained inside the cover 5 and sintering is promoted by evaporation and adhesion of titanium. Thereby, a titanium-based sintered body having a ductility equivalent to that of vacuum sintering can be obtained. Further, since the oxygen concentration and the CO concentration during sintering are extremely low, the deterioration of the cover 5 is small.

次に、本発明の第二の焼結方法の他の実施形態を説明する。上記実施形態では、焼結促進部材として箱形のカバー5を用いた。焼結促進部材は、チタン系粉末成形体1の周囲に焼結促進雰囲気を形成できるものであれば、形状、配置形態等が特に限定されるものではない。例えば、焼結促進部材は、チタン系粉末成形体1の全体を覆うものでなくてもよい。また、焼結促進部材には、チタン圧延板を塑性加工して作製したもの、チタン粉末を所定の形状に成形したもの、もしくはそれを焼結したもの等を用いればよい。なお、焼結促進部材は、C、O、Nの捕捉等により、焼結過程において少しずつ劣化していく。つまり、焼結を経た焼結促進部材には、Ti以外にTiC、TiN等が含まれる。このため、本明細書では、純チタン製だけではなく、それが劣化した態様をも含めて、「チタン製」と称す。   Next, another embodiment of the second sintering method of the present invention will be described. In the above embodiment, the box-shaped cover 5 is used as the sintering promoting member. As long as the sintering promoting member can form a sintering promoting atmosphere around the titanium-based powder compact 1, the shape, the arrangement, and the like are not particularly limited. For example, the sintering promoting member may not cover the entire titanium-based powder molded body 1. Moreover, what is necessary is just to use what manufactured the titanium rolling plate by plastic processing, what shape | molded titanium powder in the predetermined shape, what sintered it, etc. as a sintering promotion member. The sintering promoting member gradually deteriorates during the sintering process due to capture of C, O, N, and the like. That is, the sintering promoting member that has undergone sintering includes TiC, TiN, and the like in addition to Ti. For this reason, in the present specification, the term “made of titanium” is used, including not only pure titanium but also a deteriorated form thereof.

上記実施形態では、カバー5の両壁下端に通気口50a、50bを設けた。しかし、通気口の位置、数等は特に限定されるものではない。チタン系粉末成形体を囲うカバーの形状に応じて、適宜設ければよい。   In the above embodiment, the vent holes 50 a and 50 b are provided at the lower ends of both walls of the cover 5. However, the position and number of the vents are not particularly limited. What is necessary is just to provide suitably according to the shape of the cover surrounding a titanium-type powder compact.

チタン系粉末成形体1には、通常、チタン粉末の製造上、不可避の水素が含まれる。但し、水素の放出をより促進させたい場合には、水素化チタン等の水素化物粉末を用いてチタン系粉末成形体を成形するとよい。また、チタン系粉末成形体の組成、成形方法、使用する加熱炉、焼結温度、および焼結時間については、上記本発明の第一の焼結方法に準ずる。   The titanium-based powder compact 1 usually contains hydrogen which is unavoidable for the production of titanium powder. However, when it is desired to further promote the release of hydrogen, a titanium-based powder compact may be formed using a hydride powder such as titanium hydride. The composition of the titanium-based powder compact, the molding method, the heating furnace to be used, the sintering temperature, and the sintering time are in accordance with the first sintering method of the present invention.

〈第三の焼結方法〉
本発明の第三の焼結方法の一実施形態を説明する。図5に、本発明の第三の焼結方法で使用する焼結用ケースの断面図を示す。図5中、図1、図2と対応する部位については、図1、図2と同じ符号で示す。なお、本実施形態は、上記二つの実施形態を組み合わせた形態に相当する。
<Third sintering method>
One embodiment of the third sintering method of the present invention will be described. FIG. 5 shows a sectional view of a sintering case used in the third sintering method of the present invention. 5, parts corresponding to those in FIGS. 1 and 2 are denoted by the same reference numerals as those in FIGS. This embodiment corresponds to a combination of the above two embodiments.

図5に示すように、上方に開口した箱形のケース3の中に、板状の支持部材2が設置される。ケース3は、黒鉛製である。支持部材2は、黒鉛板20と、その表面にY23を溶射して形成された溶射層21とからなる。黒鉛板20は、本発明を構成する支持部材の基部に含まれる。また、溶射層21は、本発明を構成する支持部材の反応抑制部に含まれる。チタン系粉末成形体1は、支持部材2の上に載置される。チタン系粉末成形体1の下面は、溶射層21と接触する。チタン系粉末成形体1の組成は、Ti−6%Al−4%Vである。 As shown in FIG. 5, a plate-like support member 2 is installed in a box-shaped case 3 opened upward. Case 3 is made of graphite. The support member 2 includes a graphite plate 20 and a sprayed layer 21 formed by spraying Y 2 O 3 on the surface thereof. The graphite plate 20 is included in the base of the support member that constitutes the present invention. Moreover, the thermal spray layer 21 is included in the reaction suppression part of the support member which comprises this invention. The titanium-based powder compact 1 is placed on the support member 2. The lower surface of the titanium-based powder compact 1 is in contact with the sprayed layer 21. The composition of the titanium-based powder compact 1 is Ti-6% Al-4% V.

チタン系粉末成形体1は、チタン製のカバー5で囲われる。カバー5は、下方に開口した箱形を呈する。カバー5の両壁下端には、カバー5の内外を通気させる通気口50a、50bが設けられる。カバー5は、本発明における焼結促進部材に含まれる。   The titanium-based powder compact 1 is surrounded by a titanium cover 5. The cover 5 has a box shape opened downward. Vents 50 a and 50 b that vent the inside and outside of the cover 5 are provided at the lower ends of both walls of the cover 5. The cover 5 is included in the sintering promoting member in the present invention.

焼結は、黒鉛ヒータを用いた連続焼結炉(図略)において、チタン系粉末成形体1を収容したケース3を、ベルト搬送機構により炉内を移動させながら行う。連続焼結炉内は、大気圧、酸素濃度50ppm以下、CO濃度100ppm以下のアルゴンガス雰囲気に保持される。   Sintering is performed in a continuous sintering furnace (not shown) using a graphite heater while the case 3 containing the titanium-based powder compact 1 is moved in the furnace by a belt transport mechanism. The inside of the continuous sintering furnace is maintained in an argon gas atmosphere having an atmospheric pressure, an oxygen concentration of 50 ppm or less, and a CO concentration of 100 ppm or less.

本実施形態では、チタン系粉末成形体1は、支持部材2の溶射層21と接触する。溶射層21は、高温で安定なY23からなり、チタン系粉末成形体1とは反応しない。つまり、支持部材2とチタン系粉末成形体1とは反応せず、両者の固着は生じない。このため、支持部材2からチタン系粉末成形体1への炭素、酸素の侵入や、得られるチタン系焼結体の歪みが抑制される。また、酸素濃度およびCO濃度が極めて低いアルゴンガス雰囲気で焼結を行うため、酸素および炭素の汚染のおそれは少ない。さらに、チタン系粉末成形体1の周囲には、カバー5により清浄度の高い雰囲気が形成される。このため、チタン系粉末成形体1ではチタンの蒸発、凝着が促進される。このように、本実施形態によれば、延性等の機械的特性および形状精度の良好なチタン系焼結体を、低コストに量産することができる。 In the present embodiment, the titanium-based powder compact 1 is in contact with the sprayed layer 21 of the support member 2. The sprayed layer 21 is made of Y 2 O 3 that is stable at high temperatures and does not react with the titanium-based powder molded body 1. That is, the support member 2 and the titanium-based powder molded body 1 do not react with each other, and the two do not stick together. For this reason, invasion of carbon and oxygen from the support member 2 to the titanium-based powder molded body 1 and distortion of the obtained titanium-based sintered body are suppressed. In addition, since sintering is performed in an argon gas atmosphere with extremely low oxygen and CO concentrations, there is little risk of oxygen and carbon contamination. Furthermore, a high clean atmosphere is formed by the cover 5 around the titanium-based powder compact 1. For this reason, in the titanium-based powder molded body 1, evaporation and adhesion of titanium are promoted. Thus, according to the present embodiment, a titanium-based sintered body having good mechanical properties such as ductility and good shape accuracy can be mass-produced at a low cost.

本発明の第三の焼結方法の他の実施形態として、チタン系粉末成形体の組成、成形方法、支持部材、焼結促進部材、使用する加熱炉、焼結温度、および焼結時間については、すべて上記本発明の第一および第二の焼結方法に準ずる。   As another embodiment of the third sintering method of the present invention, the composition of the titanium-based powder compact, the molding method, the support member, the sintering promoting member, the heating furnace to be used, the sintering temperature, and the sintering time are as follows. All conform to the first and second sintering methods of the present invention.

上記実施形態に基づいて、チタン系粉末成形体を焼結した。得られたチタン系焼結体の元素分析を行い、汚染の程度を調査するとともに、機械的特性を評価した。また、焼結の際に用いる支持部材について、構成の違いによる反応抑制部の耐久性を調査した。以下、チタン系粉末成形体の成形、焼結、チタン系焼結体の元素分析、機械的特性の評価、および反応抑制部の耐久性について順に説明する。   Based on the said embodiment, the titanium type powder compact was sintered. Elemental analysis of the obtained titanium-based sintered body was conducted to investigate the degree of contamination and to evaluate mechanical properties. Moreover, about the support member used in the case of sintering, durability of the reaction suppression part by the difference in a structure was investigated. Hereinafter, forming and sintering of a titanium-based powder molded body, elemental analysis of the titanium-based sintered body, evaluation of mechanical characteristics, and durability of the reaction suppressing unit will be described in order.

(1)チタン系粉末成形体の成形
組成Ti−6%Al−4%Vのチタン系粉末成形体を成形した。まず、純チタン粉末(平均粒径80μm)と、Al3V粉末(平均粒径7μm)と、を混合して原料粉末を調製した。次いで、調製した原料粉末を乾燥器に入れ、大気雰囲気で150℃に加熱した。成形には、円筒形キャビティ(φ23mm×50mm)を有する金型を用いた。この金型を、大気中で150℃に加熱した。加熱した金型の内面に、潤滑剤の1.2%ステアリン酸リチウム水溶液をスプレーガンで塗布した。この金型の中に、加熱した原料粉末を充填し、294〜1960MPaの圧力で温間加圧成形を行った。
(1) Molding of titanium-based powder molded body A titanium-based powder molded body having the composition Ti-6% Al-4% V was molded. First, pure titanium powder (average particle size 80 μm) and Al 3 V powder (average particle size 7 μm) were mixed to prepare a raw material powder. Next, the prepared raw material powder was put in a dryer and heated to 150 ° C. in an air atmosphere. For molding, a mold having a cylindrical cavity (φ23 mm × 50 mm) was used. This mold was heated to 150 ° C. in the atmosphere. A 1.2% lithium stearate aqueous solution of a lubricant was applied to the inner surface of the heated mold with a spray gun. This mold was filled with heated raw material powder, and warm press molding was performed at a pressure of 294 to 1960 MPa.

(2)チタン系粉末成形体の焼結
(I)得られたチタン系粉末成形体を、前出図5に示した態様(本発明の第三の焼結方法)でケース内に配置し、黒鉛ヒータを備えた連続焼結炉(関東冶金工業株式会社製、オキシノン炉)の中で焼結を行った。焼結は、大気圧下、酸素濃度50ppm以下、CO濃度100ppm以下のアルゴンガス雰囲気で行った。以下、この焼結雰囲気を、「極低酸素雰囲気」と称す。炉内温度を、1000〜1500℃の各温度に保持し、所望の温度に保持される時間が0.5〜4時間となるよう、チタン系粉末成形体を収容したケースを移動させた。
(2) Sintering of titanium-based powder compact (I) The obtained titanium-based powder compact is placed in the case in the embodiment shown in FIG. 5 (third sintering method of the present invention), Sintering was performed in a continuous sintering furnace (manufactured by Kanto Metallurgical Co., Ltd., oxynon furnace) equipped with a graphite heater. Sintering was performed in an argon gas atmosphere with an oxygen concentration of 50 ppm or less and a CO concentration of 100 ppm or less under atmospheric pressure. Hereinafter, this sintering atmosphere is referred to as “very low oxygen atmosphere”. The furnace temperature was maintained at 1000 to 1500 ° C., and the case containing the titanium-based powder compact was moved so that the time for maintaining the desired temperature was 0.5 to 4 hours.

(II)比較のため、上記同様のチタン系粉末成形体を用い、以下に示す種々の態様で焼結を行った。   (II) For comparison, the same titanium-based powder molded body as described above was used, and sintering was performed in the following various modes.

(a)従来の真空焼結
焼結には、高温真空加熱炉(ネムス社製、FD−25)を用いた。同炉の加熱源はMoヒータであり、チタン系粉末成形体を配置するケースはW製である。焼結は、10-3Paの真空雰囲気、温度1100℃または1200℃で0.5時間行った。
(A) Conventional vacuum sintering A high-temperature vacuum heating furnace (manufactured by Nemus, FD-25) was used for sintering. The heating source of the furnace is a Mo heater, and the case where the titanium-based powder compact is disposed is made of W. Sintering was performed in a vacuum atmosphere of 10 −3 Pa at a temperature of 1100 ° C. or 1200 ° C. for 0.5 hours.

(b)従来のアルゴンガス雰囲気での焼結
焼結には、島津加圧焼結急速冷却炉(株式会社島津製作所製、PVSGgr 20/20)を用いた。同炉の加熱源は黒鉛ヒータであり、チタン系粉末成形体を配置するケースも黒鉛製である。焼結は、大気圧下、99.995%アルゴンガス雰囲気、温度1100℃または1200℃で0.5時間行った。なお、アルゴンガス雰囲気における酸素濃度、およびCO濃度の管理は行わなかった。
(B) Sintering in Conventional Argon Gas Atmosphere For the sintering, a Shimadzu pressure sintering rapid cooling furnace (manufactured by Shimadzu Corporation, PVSGgr 20/20) was used. The heating source of the furnace is a graphite heater, and the case where the titanium-based powder compact is disposed is also made of graphite. Sintering was carried out at atmospheric pressure under a 99.995% argon gas atmosphere at a temperature of 1100 ° C. or 1200 ° C. for 0.5 hours. Note that the oxygen concentration and CO concentration in the argon gas atmosphere were not managed.

(c)Mo製カバーを用いた焼結
上記(I)の焼結方法(前出図5に示した態様)において、カバーの材質をMoに変更した。それ以外は、上記(I)と同様に焼結を行った。
(C) Sintering with Mo Cover In the sintering method (I) (the embodiment shown in FIG. 5), the cover material was changed to Mo. Other than that, it sintered similarly to said (I).

(d)チタン製ゲッターを用いた焼結
上記(I)の焼結方法(前出図5に示した態様)において、チタン製のカバーに代え、ケース内にチタン製のゲッターを配置した。ゲッターは、純チタン粉末の成形体(φ10mm×40mm)であり、チタン系粉末成形体の周囲に6本配置した。それ以外は、上記(I)と同様に焼結を行った。
(D) Sintering Using Titanium Getter In the sintering method (I) (the embodiment shown in FIG. 5), a titanium getter was placed in the case in place of the titanium cover. The getters were pure titanium powder compacts (φ10 mm × 40 mm), and six were arranged around the titanium-based powder compacts. Other than that, it sintered similarly to said (I).

(e)カバーなしの焼結
上記(I)の焼結方法(前出図5に示した態様)において、チタン製のカバーを使用しないで焼結を行った。つまり、本態様は、本発明の第一の焼結方法(前出図1に示した態様)に相当する。
(E) Sintering without Cover In the sintering method (I) (the embodiment shown in FIG. 5), sintering was performed without using a titanium cover. That is, this mode corresponds to the first sintering method of the present invention (the mode shown in FIG. 1).

(3)チタン系焼結体の元素分析
種々の焼結方法で得られたチタン系焼結体について、元素分析を行った。結果を表1に示す。なお、表1には、原料粉末についての結果も併せて示す。
(3) Elemental analysis of titanium-based sintered body Elemental analysis was performed on titanium-based sintered bodies obtained by various sintering methods. The results are shown in Table 1. Table 1 also shows the results for the raw material powder.

Figure 2006104559
Figure 2006104559

表1に示すように、極低酸素雰囲気で焼結した焼結体[(I)、(II)−e]では、従来のアルゴンガス雰囲気で焼結した焼結体[(II)−b]と比較して、O、C、Nの含有量が少なかった。これより、極低酸素雰囲気で焼結すると、不純物元素による汚染が少ないことがわかる。特に、チタン製カバーを使用した場合[(I)]には、CおよびNの汚染が少なかった。なお、従来のアルゴンガス雰囲気で焼結した焼結体[(II)−b]は、不純物元素の吸収により表面が変質し、膨張して不均一に変形した。   As shown in Table 1, in the sintered body [(I), (II) -e] sintered in an extremely low oxygen atmosphere, the sintered body [(II) -b] sintered in a conventional argon gas atmosphere The content of O, C, and N was small as compared with. From this, it can be seen that when sintered in an extremely low oxygen atmosphere, there is little contamination with impurity elements. In particular, when a titanium cover was used [(I)], there was little contamination of C and N. In addition, the surface of the sintered body [(II) -b] sintered in the conventional argon gas atmosphere was altered by absorption of the impurity element, and expanded and deformed unevenly.

また、上記(I)の焼結方法で使用したチタン製カバーを元素分析し、焼結前後の成分を比較した。結果を表2に示す。   In addition, the titanium cover used in the sintering method (I) was subjected to elemental analysis, and the components before and after sintering were compared. The results are shown in Table 2.

Figure 2006104559
Figure 2006104559

表2に示すように、焼結後には、いずれの元素も増加した。これより、チタン製カバーはO、H、C、Nを捕捉していることがわかる。しかし、極低酸素雰囲気で焼結したため、これら元素の増加量はそれほど多くはない。この結果から、極低酸素雰囲気による焼結では、チタン製カバーの劣化は少なく、カバーを繰り返し使用できることがわかる。   As shown in Table 2, all elements increased after sintering. From this, it can be seen that the titanium cover captures O, H, C, and N. However, since sintering was performed in an extremely low oxygen atmosphere, the amount of increase of these elements is not so large. From this result, it can be seen that the sintering in the extremely low oxygen atmosphere causes little deterioration of the titanium cover, and the cover can be used repeatedly.

(4)チタン系焼結体の機械的特性の評価
種々の焼結方法で得られたチタン系焼結体を引張試験用の試験片に加工し、各試験片について引張試験を行った。引張試験の方法は、JIS Z 2241に従った。引張試験の結果として、図6に、各試験片の室温における破断伸びの値を示す。図6に示すように、チタン製カバーを使用して焼結した焼結体[(I)]は、真空焼結した焼結体[(II)−a]と同等レベルの伸びを示した。一方、従来のアルゴンガス雰囲気で焼結した焼結体[(II)−b]の伸びは小さく、特に、1200℃で焼結した場合には、チタン系焼結体の表面がCで汚染され変形したため、測定できなかった。また、Mo製カバーを使用して焼結した焼結体[(II)−c]、チタン製ゲッターを使用して焼結した焼結体[(II)−d]、カバーなしで焼結した焼結体[(II)−e]では、不純物元素による汚染は少ないが、真空焼結と比較して伸びは低下した。
(4) Evaluation of mechanical properties of titanium-based sintered body Titanium-based sintered bodies obtained by various sintering methods were processed into test pieces for tensile tests, and tensile tests were performed on the respective test pieces. The tensile test method was in accordance with JIS Z 2241. As a result of the tensile test, FIG. 6 shows the value of the elongation at break of each test piece at room temperature. As shown in FIG. 6, the sintered body [(I)] sintered using the titanium cover exhibited the same level of elongation as the sintered body [(II) -a] sintered in vacuum. On the other hand, the elongation of the sintered body [(II) -b] sintered in the conventional argon gas atmosphere is small. In particular, when sintered at 1200 ° C., the surface of the titanium-based sintered body is contaminated with C. Measurement was not possible due to deformation. Also, a sintered body [(II) -c] sintered using a Mo cover, a sintered body [(II) -d] sintered using a titanium getter, and sintered without a cover. In the sintered body [(II) -e], the contamination by the impurity element is small, but the elongation is lower than that in the vacuum sintering.

また、図7に、焼結温度と破断伸びとの関係を示す。図7には、チタン製カバーを使用して焼結した焼結体[(I)]と、チタン製カバーなしで焼結した焼結体[(II)−e]とを比較して示す。図7に示すように、すべての焼結温度において、チタン製カバーを使用した方が、伸びが大きくなった。これは、カバーの内側で、清浄度の高い雰囲気が保たれることにより、チタンの蒸発、凝着が促進されたからである。また、カバーの有無に関わらず、焼結温度が高いほど、伸びは大きくなった。これは、温度が高いほど、Ti、Al、Vの蒸発が促進され、元素拡散性が高くなり、焼結が促進されたからである。   FIG. 7 shows the relationship between the sintering temperature and the elongation at break. FIG. 7 shows a comparison between a sintered body [(I)] sintered using a titanium cover and a sintered body [(II) -e] sintered without a titanium cover. As shown in FIG. 7, the elongation was greater when the titanium cover was used at all sintering temperatures. This is because evaporation and adhesion of titanium were promoted by maintaining a clean atmosphere inside the cover. In addition, the elongation increased as the sintering temperature increased regardless of the presence or absence of the cover. This is because the higher the temperature, the more the evaporation of Ti, Al, and V is promoted, the element diffusibility is increased, and the sintering is promoted.

(5)支持部材における反応抑制部の耐久性
構成の異なる種々の支持部材を作製した。作製した支持部材を用いて焼結試験を行い、反応抑制部の耐久性を調査した。焼結試験は、本発明の第一の焼結方法(前出図1に示した態様)に準じて行った。表3に、作製した支持部材の構成、および焼結温度に対する反応抑制部の評価を示す。
(5) Durability of reaction suppressing portion in support member Various support members having different configurations were produced. A sintering test was performed using the prepared support member, and the durability of the reaction suppression portion was investigated. The sintering test was performed according to the first sintering method of the present invention (the embodiment shown in FIG. 1). Table 3 shows the structure of the produced support member and the evaluation of the reaction suppression portion with respect to the sintering temperature.

Figure 2006104559
Figure 2006104559

表3に示すように、Y23粉末を敷設して反応抑制部とした場合には、焼結体との反応は抑制されるものの、Y23粉末と接触した焼結体の下面に、Y23粉末が噛み込んでしまった。図8に、1300℃で焼結した焼結体の上面と下面との光学顕微鏡写真を示す。図8の写真からわかるように、焼結体の下面にはY23粉末が付着している。 As shown in Table 3, when the Y 2 O 3 powder is laid and used as a reaction suppression portion, the reaction with the sintered body is suppressed, but the lower surface of the sintered body in contact with the Y 2 O 3 powder In addition, the Y 2 O 3 powder was caught. In FIG. 8, the optical microscope photograph of the upper surface and lower surface of the sintered compact sintered at 1300 degreeC is shown. As can be seen from the photograph in FIG. 8, Y 2 O 3 powder adheres to the lower surface of the sintered body.

また、Y23焼結板を反応抑制部とした場合には、焼結を繰り返しても、Y23焼結板および焼結体のいずれの接触面においても変化は見られなかった。図9に、1400℃で焼結した場合の、Y23焼結板の非接触面と接触面、および焼結体の非接触面と接触面の光学顕微鏡写真を示す。焼結体の接触面には、Y23の付着は見られない。 In addition, when the Y 2 O 3 sintered plate was used as the reaction suppressing portion, no change was observed on any contact surface of the Y 2 O 3 sintered plate and the sintered body even when the sintering was repeated. . FIG. 9 shows optical micrographs of the non-contact surface and the contact surface of the Y 2 O 3 sintered plate and the non-contact surface and the contact surface of the sintered body when sintered at 1400 ° C. No adhesion of Y 2 O 3 is observed on the contact surface of the sintered body.

また、Y23等を溶射した溶射層を反応抑制部とした場合には、焼結を繰り返すと、溶射層に若干剥がれが生じた。図10に、1400℃で焼結した場合の、Y23溶射層の非接触面と接触面、および焼結体の非接触面と接触面の光学顕微鏡写真を示す。Y23溶射層と接触した焼結体の下面(接触面)には、Y23が若干付着している。 Further, in the case where the sprayed layer sprayed with Y 2 O 3 or the like was used as the reaction suppressing portion, when the sintering was repeated, the sprayed layer was slightly peeled off. FIG. 10 shows optical micrographs of the non-contact surface and the contact surface of the Y 2 O 3 sprayed layer and the non-contact surface and the contact surface of the sintered body when sintered at 1400 ° C. A little Y 2 O 3 is adhered to the lower surface (contact surface) of the sintered body in contact with the Y 2 O 3 sprayed layer.

また、支持部材の基部にMo層等の中間層を設け、中間層の表面にY23等の溶射層を形成した態様では、焼結を繰り返しても、溶射層および焼結体のいずれの接触面においても変化は見られなかった。図11に、800〜1300℃で10回焼結した後の、Y23溶射層/Mo中間層の非接触面と接触面、および焼結体の非接触面と接触面の光学顕微鏡写真を示す。また、図12に、1400℃で焼結した場合の、Y23溶射層/W中間層の接触面、および焼結体の接触面の光学顕微鏡写真を示す。図11、図12において、焼結体の接触面には、Y23の付着は見られない。 Further, in an aspect in which an intermediate layer such as a Mo layer is provided at the base of the support member and a sprayed layer such as Y 2 O 3 is formed on the surface of the intermediate layer, either the sprayed layer or the sintered body can be used even if sintering is repeated. There was no change in the contact surface. FIG. 11 shows optical microscope photographs of the non-contact surface and the contact surface of the Y 2 O 3 sprayed layer / Mo intermediate layer and the non-contact surface and the contact surface of the sintered body after being sintered 10 times at 800 to 1300 ° C. Indicates. FIG. 12 shows an optical micrograph of the contact surface of the Y 2 O 3 sprayed layer / W intermediate layer and the contact surface of the sintered body when sintered at 1400 ° C. 11 and 12, no Y 2 O 3 adheres to the contact surface of the sintered body.

以上の結果から、Y23焼結板は耐久性に優れ、反応抑制部として好適であることがわかった。しかし、Y23焼結板の場合には、製造コストが高くなり、形状の自由度が制限される。この点を考慮すると、反応抑制部には、Y23等を溶射した溶射層が好適である。特に、基部にMo、W等からなる中間層を設け、その上に溶射層を形成すると、溶射層の密着性が向上して耐久性がより向上する。 From the above results, it was found that the Y 2 O 3 sintered plate is excellent in durability and suitable as a reaction suppressing part. However, in the case of a Y 2 O 3 sintered plate, the manufacturing cost increases and the degree of freedom in shape is limited. Considering this point, a sprayed layer in which Y 2 O 3 or the like is sprayed is suitable for the reaction suppressing portion. In particular, when an intermediate layer made of Mo, W or the like is provided on the base and a sprayed layer is formed thereon, the adhesion of the sprayed layer is improved and the durability is further improved.

本発明のチタン系粉末成形体の焼結方法によれば、軽量で高強度のチタン系部材を量産することができる。このため、自動車用部品、スポーツ用品、工具等の様々な量産部品を、従来の鉄鋼製からチタン合金製に代替することが可能となる。   According to the method for sintering a titanium-based powder molded body of the present invention, a lightweight and high-strength titanium-based member can be mass-produced. For this reason, it becomes possible to substitute various mass-produced parts such as automobile parts, sporting goods, and tools from conventional steel products to titanium alloy products.

本発明の第一の焼結方法で使用する焼結用ケースの断面図である。It is sectional drawing of the case for sintering used with the 1st sintering method of this invention. 本発明の第二の焼結方法で使用する焼結用ケースの断面図である。It is sectional drawing of the case for sintering used with the 2nd sintering method of this invention. 焼結時の昇温過程(400℃〜)の挙動を示す。The behavior of the temperature rising process (from 400 ° C.) during sintering is shown. 焼結時の焼結過程(1000℃〜)の挙動を示す。The behavior of the sintering process (from 1000 ° C.) during sintering is shown. 本発明の第三の焼結方法で使用する焼結用ケースの断面図である。It is sectional drawing of the case for sintering used with the 3rd sintering method of this invention. 各試験片の室温における破断伸びを示すグラフである。It is a graph which shows the elongation at break of each test piece at room temperature. 焼結方法の違いによる焼結温度と破断伸びとの関係を示すグラフである。It is a graph which shows the relationship between the sintering temperature by the difference in a sintering method, and breaking elongation. 焼結体の上面と下面との光学顕微鏡写真である(Y23粉末敷設)。It is an optical microscope photograph of the upper and lower surfaces of the sintered body (Y 2 O 3 powder laying). 23焼結板の非接触面と接触面、および焼結体の非接触面と接触面の光学顕微鏡写真である。Non-contact surface and the contact surface of the Y 2 O 3 sintered plate, and an optical micrograph of the non-contact surface and the contact surface of the sintered body. 23溶射層の非接触面と接触面、および焼結体の非接触面と接触面の光学顕微鏡写真である。Non-contact surface and the contact surface of the Y 2 O 3 sprayed layer, and an optical micrograph of the non-contact surface and the contact surface of the sintered body. 23溶射層/Mo中間層の非接触面と接触面、および焼結体の非接触面と接触面の光学顕微鏡写真である。Non-contact surface and the contact surface of the Y 2 O 3 sprayed layer / Mo intermediate layer, and an optical micrograph of the non-contact surface and the contact surface of the sintered body. 23溶射層/W中間層の接触面、および焼結体の接触面の光学顕微鏡写真である。The contact surface of the Y 2 O 3 sprayed layer / W intermediate layer, and an optical micrograph of the contact surface of the sintered body.

符号の説明Explanation of symbols

1:チタン系粉末成形体
2:支持部材 20:黒鉛板(基部) 21:溶射層(反応抑制部)
3:ケース 4:支持台 5:カバー(焼結促進部材) 50a、50b:通気口
1: Titanium-based powder compact 2: Support member 20: Graphite plate (base part) 21: Thermal spray layer (reaction suppression part)
3: Case 4: Support base 5: Cover (sintering promotion member) 50a, 50b: Vent

Claims (6)

チタンを主成分とする原料粉末から成形されたチタン系粉末成形体を、黒鉛ヒータを用いた加熱炉で焼結するチタン系粉末成形体の焼結方法であって、
該チタン系粉末成形体を、支持部材で支持して黒鉛製のケース内に設置し、
該支持部材は、基部と、Y23およびZrO2の少なくとも一方を含む反応抑制部と、からなり、該反応抑制部を介して該チタン系粉末成形体と接触し、
大気圧以上の圧力下、酸素濃度50ppm以下、CO濃度100ppm以下の不活性ガス雰囲気にて焼結することを特徴とするチタン系粉末成形体の焼結方法。
A method for sintering a titanium-based powder molded body in which a titanium-based powder molded body molded from a raw material powder mainly composed of titanium is sintered in a heating furnace using a graphite heater,
The titanium-based powder compact is supported by a support member and installed in a graphite case.
The support member includes a base and a reaction suppression unit including at least one of Y 2 O 3 and ZrO 2 , and is in contact with the titanium-based powder molded body through the reaction suppression unit,
A sintering method for a titanium-based powder compact characterized by sintering in an inert gas atmosphere having an oxygen concentration of 50 ppm or less and a CO concentration of 100 ppm or less under a pressure of atmospheric pressure or higher.
前記反応抑制部は、前記基部の表面に形成された溶射層、または該基部の表面に配置された焼結板である請求項1に記載のチタン系粉末成形体の焼結方法。   2. The method for sintering a titanium-based powder molded body according to claim 1, wherein the reaction suppression unit is a sprayed layer formed on the surface of the base or a sintered plate disposed on the surface of the base. 前記基部は、基部本体と中間層とからなり、
前記反応抑制部は、該中間層の表面に形成された溶射層である請求項1に記載のチタン系粉末成形体の焼結方法。
The base comprises a base body and an intermediate layer,
The method for sintering a titanium-based powder molded body according to claim 1, wherein the reaction suppression unit is a sprayed layer formed on a surface of the intermediate layer.
チタンを主成分とする原料粉末から成形されたチタン系粉末成形体を、黒鉛ヒータを用いた加熱炉で焼結するチタン系粉末成形体の焼結方法であって、
該チタン系粉末成形体を黒鉛製のケース内に設置し、
該チタン系粉末成形体の周囲には、焼結促進雰囲気を形成するためのチタン製の焼結促進部材を配置し、
大気圧以上の圧力下、酸素濃度50ppm以下、CO濃度100ppm以下の不活性ガス雰囲気にて焼結することを特徴とするチタン系粉末成形体の焼結方法。
A method for sintering a titanium-based powder molded body in which a titanium-based powder molded body molded from a raw material powder mainly composed of titanium is sintered in a heating furnace using a graphite heater,
Installing the titanium-based powder compact in a graphite case,
Around the titanium-based powder compact, a titanium-sintering promoting member for forming a sintering-promoting atmosphere is disposed,
A sintering method for a titanium-based powder compact characterized by sintering in an inert gas atmosphere having an oxygen concentration of 50 ppm or less and a CO concentration of 100 ppm or less under a pressure of atmospheric pressure or higher.
前記焼結促進部材は、前記チタン系粉末成形体を囲うカバーであり、
該カバーは、該カバーの内外を通気させる通気口を持つ請求項4に記載のチタン系粉末成形体の焼結方法。
The sintering promoting member is a cover that surrounds the titanium-based powder molded body,
The method for sintering a titanium-based powder molded body according to claim 4, wherein the cover has an air vent for ventilating the inside and outside of the cover.
チタンを主成分とする原料粉末から成形されたチタン系粉末成形体を、黒鉛ヒータを用いた加熱炉で焼結するチタン系粉末成形体の焼結方法であって、
該チタン系粉末成形体を、支持部材で支持して黒鉛製のケース内に設置し、
該支持部材は、基部と、Y23およびZrO2の少なくとも一方を含む反応抑制部と、からなり、該反応抑制部を介して該チタン系粉末成形体と接触し、
該チタン系粉末成形体の周囲には、焼結促進雰囲気を形成するためのチタン製の焼結促進部材を配置し、
大気圧以上の圧力下、酸素濃度50ppm以下、CO濃度100ppm以下の不活性ガス雰囲気にて焼結することを特徴とするチタン系粉末成形体の焼結方法。
A method for sintering a titanium-based powder molded body in which a titanium-based powder molded body molded from a raw material powder mainly composed of titanium is sintered in a heating furnace using a graphite heater,
The titanium-based powder compact is supported by a support member and installed in a graphite case.
The support member includes a base and a reaction suppression unit including at least one of Y 2 O 3 and ZrO 2 , and is in contact with the titanium-based powder molded body through the reaction suppression unit,
Around the titanium-based powder compact, a titanium-sintering promoting member for forming a sintering-promoting atmosphere is disposed,
A sintering method for a titanium-based powder compact characterized by sintering in an inert gas atmosphere having an oxygen concentration of 50 ppm or less and a CO concentration of 100 ppm or less under a pressure of atmospheric pressure or higher.
JP2004296274A 2004-10-08 2004-10-08 Method for sintering titanium-based powder compact Pending JP2006104559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004296274A JP2006104559A (en) 2004-10-08 2004-10-08 Method for sintering titanium-based powder compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004296274A JP2006104559A (en) 2004-10-08 2004-10-08 Method for sintering titanium-based powder compact

Publications (1)

Publication Number Publication Date
JP2006104559A true JP2006104559A (en) 2006-04-20

Family

ID=36374631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004296274A Pending JP2006104559A (en) 2004-10-08 2004-10-08 Method for sintering titanium-based powder compact

Country Status (1)

Country Link
JP (1) JP2006104559A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105903967A (en) * 2016-05-23 2016-08-31 苏州云植医学技术有限公司 Method of nanometer zirconia toughened titanium alloy orthopedics implant based on 3D printing
WO2017006053A1 (en) * 2015-07-06 2017-01-12 Safran Aircraft Engines Method for heat treating a preform made of titanium alloy powder
CN112342419A (en) * 2020-09-23 2021-02-09 华南理工大学 Method for preparing TiC reinforced titanium-based composite material based on cross-linked modified sintered titanium hydride
CN112522530A (en) * 2020-11-03 2021-03-19 西安理工大学 High-strength Ti-ZrO2-B4Preparation method of C-system composite material
CN114207167A (en) * 2019-07-19 2022-03-18 全球先进金属美国股份有限公司 Spherical tantalum-titanium alloy powder, product containing same, and method for manufacturing same
CN115418663A (en) * 2022-07-21 2022-12-02 中钛国创(青岛)科技有限公司 High-purity high-strength titanium fiber felt and preparation method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021179011A (en) * 2015-07-06 2021-11-18 サフラン・エアクラフト・エンジンズ Method for heat-treating preform made of titanium alloy powder
US10967430B2 (en) 2015-07-06 2021-04-06 Safran Aircraft Engines Method for heat treating a preform made of titanium alloy powder
FR3038622A1 (en) * 2015-07-06 2017-01-13 Snecma METHOD FOR THERMALLY PROCESSING TITANIUM ALLOY POWDER PREFORM
CN108291776A (en) * 2015-07-06 2018-07-17 赛峰飞机发动机公司 The method for being heat-treated the preform prepared by titanium alloy powder
RU2711395C2 (en) * 2015-07-06 2020-01-17 Сафран Эркрафт Энджинз Method of heat treatment of workpiece from titanium alloy powder
CN108291776B (en) * 2015-07-06 2020-11-17 赛峰飞机发动机公司 Method for heat treating preforms made from titanium alloy powder
WO2017006053A1 (en) * 2015-07-06 2017-01-12 Safran Aircraft Engines Method for heat treating a preform made of titanium alloy powder
US11440095B2 (en) 2015-07-06 2022-09-13 Safran Aircraft Engines Method for heat treating a preform made of titanium alloy powder
JP7119183B2 (en) 2015-07-06 2022-08-16 サフラン・エアクラフト・エンジンズ Method for heat treating a preform made of titanium alloy powder
CN105903967A (en) * 2016-05-23 2016-08-31 苏州云植医学技术有限公司 Method of nanometer zirconia toughened titanium alloy orthopedics implant based on 3D printing
CN114207167A (en) * 2019-07-19 2022-03-18 全球先进金属美国股份有限公司 Spherical tantalum-titanium alloy powder, product containing same, and method for manufacturing same
CN112342419A (en) * 2020-09-23 2021-02-09 华南理工大学 Method for preparing TiC reinforced titanium-based composite material based on cross-linked modified sintered titanium hydride
CN112522530B (en) * 2020-11-03 2022-04-12 西安理工大学 High-strength Ti-ZrO2-B4Preparation method of C-system composite material
CN112522530A (en) * 2020-11-03 2021-03-19 西安理工大学 High-strength Ti-ZrO2-B4Preparation method of C-system composite material
CN115418663A (en) * 2022-07-21 2022-12-02 中钛国创(青岛)科技有限公司 High-purity high-strength titanium fiber felt and preparation method thereof

Similar Documents

Publication Publication Date Title
Liu et al. Design of powder metallurgy titanium alloys and composites
JP5524257B2 (en) Method for producing metal articles without melting
JP5001159B2 (en) Method for controlling the oxygen content of a powder
EP1184107B1 (en) Alloyed steel powder for powder metallurgy
US6599466B1 (en) Manufacture of lightweight metal matrix composites with controlled structure
US9457405B2 (en) Metallic crucibles and methods of forming the same
JP4541969B2 (en) Aluminum powder alloy composite material for neutron absorption, method for manufacturing the same, and basket manufactured therewith
CA2706686A1 (en) Enhanced fatigue strength orthopaedic implant with porous coating and method of making same
CN104889379A (en) Metal powder for powder metallurgy, compound, granulated powder, and sintered body
JP2006104559A (en) Method for sintering titanium-based powder compact
WO2013162658A2 (en) Oxygen-enriched ti-6ai-4v alloy and process for manufacture
US20080175750A1 (en) Method For The Alloying Of Aluminum To Form Components
JP5772731B2 (en) Aluminum alloy powder forming method and aluminum alloy member
US20070148031A1 (en) Method of producing a highly dense semifinished product or component
JP2002137039A (en) Forging method of sintered material
US7135141B2 (en) Method of manufacturing a sintered body
JP2020063461A (en) Aluminum alloy
US5930583A (en) Method for forming titanium alloys by powder metallurgy
JP4094959B2 (en) Method for producing reinforced platinum material
JP2006299364A (en) Fe-BASED SINTERED ALLOY
JP2798709B2 (en) Manufacturing method of aluminum alloy powder sintered parts
Philips et al. Electron Beam Powder Bed Fusion of ATI C103TM Refractory Alloy
US20100190024A1 (en) Sintered copper-based material having increased grain size and method of making the same
AU2021243424A1 (en) Oxidation resistant alloy and manufacturing method of oxidation resistant alloy
JPH05171217A (en) Manufacture of sintered compact of alloy of rare earth element