JP2006102716A - Cleaning condition evaluation method for contaminated soil and contaminated soil cleaning method - Google Patents

Cleaning condition evaluation method for contaminated soil and contaminated soil cleaning method Download PDF

Info

Publication number
JP2006102716A
JP2006102716A JP2004296365A JP2004296365A JP2006102716A JP 2006102716 A JP2006102716 A JP 2006102716A JP 2004296365 A JP2004296365 A JP 2004296365A JP 2004296365 A JP2004296365 A JP 2004296365A JP 2006102716 A JP2006102716 A JP 2006102716A
Authority
JP
Japan
Prior art keywords
contaminated soil
purification
conditions
gas
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004296365A
Other languages
Japanese (ja)
Other versions
JP4596524B2 (en
Inventor
Hiroaki Meguro
裕章 目黒
Yoshiaki Hasebe
吉昭 長谷部
Masahiro Eguchi
正浩 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2004296365A priority Critical patent/JP4596524B2/en
Publication of JP2006102716A publication Critical patent/JP2006102716A/en
Application granted granted Critical
Publication of JP4596524B2 publication Critical patent/JP4596524B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cleaning condition evaluation method for contaminated soil and a contaminated soil cleaning method capable of accurately and safely cleaning the contaminated soil by evaluating safety in a cleaning technology having the possibility of generating a combustible gas, especially safety in a cleaning method using iron and using the result of evaluation. <P>SOLUTION: The cleaning condition evaluation method for contaminated soil comprises the steps of subjecting the contaminated soil to be cleaned to a plurality of conditions to prepare a plurality of samples of contaminated soil, sealing the samples in sealed systems, measuring the quantity of a combustible gas produced in the sealed systems, measuring the cleaning efficiency of objects to be cleaned in the samples and evaluating the conditions from the measured results of the generation quantity of the combustible gas and the cleaning efficiency. The contaminated soil cleaning method on the basis of the evaluation result is also disclosed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、化学物質、特に有機塩素化合物に汚染された土壌、底質、汚泥を、さらには地下水まで含めて、安全に効率よく浄化できるようにした汚染土壌の浄化処理条件評価方法および汚染土壌浄化方法に関する。   The present invention relates to a method for evaluating purification treatment conditions for contaminated soil and soil contaminated with soil, sediment, sludge, and even groundwater contaminated with chemical substances, particularly organochlorine compounds, which can be safely and efficiently purified. It relates to a purification method.

トリクロロエチレンやテトラクロロエチレンなどの有機塩素化合物は、脱脂などの洗浄剤として、各種工場やクリーニング店等で広く使用されている。近年、発ガン性物質の疑いがあるこれらの有機塩素化合物による、地下水、土壌汚染が大きな社会問題となってきている。   Organochlorine compounds such as trichlorethylene and tetrachlorethylene are widely used in various factories and cleaning shops as cleaning agents for degreasing. In recent years, contamination of groundwater and soil by these chlorinated organic compounds, which are suspected of carcinogenic substances, has become a major social problem.

これまで行われてきた浄化対策としては、主に封じ込め処理、汚染土壌の掘削・封じ込め処理、および揚水ばっ気、真空抽気と活性炭吸着などの組み合わせによるポンプアンドトリート法が挙げられる。近年では、特に有機塩素化合物で汚染された地下水、土壌に鉄粉を注入、接触して還元処理をすることが検討され実用化されている。従来は、浄化の効率を優先しているために、より水素ガス発生量が多い浄化剤が研究開発され、実用化されつつある(例えば、特許文献1)。しかし、特に水分が多い土壌や地下水浄化用に透過壁または遮断壁として鉄を用いた場合、水素ガスが長期にわたって発生していると想定される。
特開2004−113976号公報
The purification measures that have been taken so far include mainly the containment process, excavation and containment process of contaminated soil, and the pump-and-treat method using a combination of pumping aeration, vacuum extraction and activated carbon adsorption. In recent years, in particular, it has been studied and put into practical use by injecting iron powder into groundwater and soil contaminated with organochlorine compounds and bringing them into contact for reduction treatment. Conventionally, since purification efficiency is prioritized, a purification agent having a larger hydrogen gas generation amount has been researched and put into practical use (for example, Patent Document 1). However, it is assumed that hydrogen gas is generated over a long period of time, particularly when iron is used as a permeation wall or a barrier wall for soil or groundwater purification with high water content.
JP 2004-113976 A

従来技術の中でも、可燃性ガスを発生する可能性のある浄化技術、例えば鉄、アルミニウム化合物などの金属を汚染土壌に加える浄化方法では、常温で簡単に、安く浄化可能であるため、近年広く採用されている。しかし、例えば鉄を用いた浄化方法では、下記式(1)または(2)に示すように水素ガスが発生することから、発生した水素ガスが蓄積して爆発範囲(4〜75%)になることを回避できるよう、安全上注意を要する。
3Fe+4H2O→Fe3O4+4H2 (1)
Fe+2H2O→Fe2++2OH- +H (2)
Among conventional technologies, purification technologies that may generate flammable gases, such as purification methods that add metals such as iron and aluminum compounds to contaminated soil, have been widely adopted in recent years because they can be purified easily at low temperatures. Has been. However, in the purification method using, for example, iron, hydrogen gas is generated as shown in the following formula (1) or (2), so that the generated hydrogen gas accumulates and becomes an explosion range (4 to 75%). Care must be taken to avoid this.
3Fe + 4H 2 O → Fe 3 O 4 + 4H 2 (1)
Fe + 2H 2 O → Fe 2+ + 2OH - + H (2)

そこで本発明の課題は、可燃性ガスを発生する可能性のある浄化技術、特に鉄を用いた浄化方法における水素ガスに対する安全性を的確に評価し、その評価結果に基づいて、汚染土壌を安全かつ確実に浄化できるようにした、汚染土壌の浄化処理条件評価方法および汚染土壌浄化方法を提供することにある。   Therefore, an object of the present invention is to accurately evaluate the safety against hydrogen gas in a purification technique that may generate flammable gas, in particular, a purification method using iron, and based on the evaluation result, the contaminated soil can be safely It is another object of the present invention to provide a method for evaluating the treatment conditions of contaminated soil and a method for purifying contaminated soil, which can be reliably purified.

本発明者らは、トリクロロエチレン(TCE)、シス−1,2 −ジクロロエチレン(c-DCE)などの有機塩素化合物に汚染された土壌、地下水を、特に鉄を用いて浄化する方法についてバイアルテストで検討した結果、土壌、水、鉄粉の三種が存在した場合の密閉系ではガス中の水素ガス濃度がケースによっては4%を超過する場合があることを見出した。さらに発明者らは様々な土壌種に鉄を加えて密閉系にて水素ガス濃度を測定したところ、土壌に鉄を添加した場合の水素発生量は、土壌それぞれによって大きくことなることが確認されたため、単に添加した鉄量から発生する水素ガスを計算で予測することは困難であること、また、水素発生量は鉄粉量及びpHに依存することも見出した。このような経緯から、浄化対象の土壌に対して鉄を添加した浄化処理を行う場合、浄化する土壌ごとに前もって実施予定の浄化処理を施した汚染土壌試料を密閉系に封入し、その密閉系下で水素ガスの発生量を測定することが、汚染土壌の処理条件を検討するために有効であることを見出し、本発明を完成するに至った。このような試験結果に基づいて、水素の発生期間の予測ができ、鉄添加量やpH等を変化させて水素発生抑制に対する適切な処理条件条件の検討を行ったり、測定された水素ガス量を基に、発生ガスの吸引必要量や不活性ガス(窒素など)での希釈方法、地表面での送風による気散方法の検討等を行ったりすることで、安全に浄化する浄化方法を提供することができる。   The present inventors examined a method for purifying soil and groundwater contaminated with organochlorine compounds such as trichlorethylene (TCE) and cis-1,2-dichloroethylene (c-DCE) using iron, in particular, using a vial test. As a result, it was found that the hydrogen gas concentration in the gas may exceed 4% in some cases in a closed system when soil, water, and iron powder exist. Furthermore, when the inventors added iron to various soil species and measured the hydrogen gas concentration in a closed system, the amount of hydrogen generated when iron was added to the soil was confirmed to vary greatly depending on the soil. It has also been found that it is difficult to predict the hydrogen gas generated simply from the amount of added iron by calculation, and that the amount of hydrogen generated depends on the amount of iron powder and pH. For this reason, when performing a purification treatment in which iron is added to the soil to be purified, a contaminated soil sample that has been subjected to the purification treatment to be carried out in advance is sealed in a closed system for each soil to be purified. Under the circumstances, it was found that measuring the amount of hydrogen gas generated is effective for examining the treatment conditions of contaminated soil, and the present invention has been completed. Based on the test results, the generation period of hydrogen can be predicted, and appropriate treatment conditions for suppressing hydrogen generation can be examined by changing the iron addition amount, pH, etc. Based on this, we provide a purification method that purifies safely by examining the required amount of generated gas, dilution method with inert gas (nitrogen, etc.), and air diffusion method by blowing air on the ground surface. be able to.

すなわち、本発明に係る汚染土壌の浄化処理条件評価方法は、浄化対象の汚染土壌に対し、所定の条件で浄化処理を施した汚染土壌試料を作成し、該試料を密閉系に封入し、その密閉系下での可燃性ガスの発生量を測定し、その測定結果により前記所定の条件を評価することを特徴とする方法からなる。   That is, the method for evaluating the purification treatment conditions for contaminated soil according to the present invention creates a contaminated soil sample that has been subjected to purification treatment under a predetermined condition for the contaminated soil to be purified, and encloses the sample in a closed system, The method comprises measuring the amount of combustible gas generated in a closed system and evaluating the predetermined condition based on the measurement result.

この汚染土壌の浄化処理条件評価方法においては、とくに、上記浄化処理が、金属鉄、鉄塩、鉄キレート等の鉄化合物のいずれか一種以上を添加する処理であることが好ましい。   In this contaminated soil purification treatment condition evaluation method, in particular, the purification treatment is preferably a treatment of adding any one or more of iron compounds such as metallic iron, iron salts, and iron chelates.

また、本発明は、複数の条件を比較評価できる方法も提供する。すなわち、本発明に係る汚染土壌の浄化処理条件評価方法は、浄化対象の汚染土壌に対し、複数の条件で浄化処理を施した複数の汚染土壌試料を作成し、各試料を密閉系にそれぞれ封入し、密閉系下での可燃性ガスの発生量を測定するとともに、各試料における浄化対象物質の浄化効率を測定し、可燃性ガス発生量の測定結果と浄化対象物質の溶出濃度の変化や分解効率などの浄化効率の測定結果から、前記複数の条件を評価することを特徴とする方法からなる。   The present invention also provides a method capable of comparing and evaluating a plurality of conditions. That is, according to the method for evaluating purification treatment conditions for contaminated soil according to the present invention, a plurality of contaminated soil samples are prepared by subjecting the contaminated soil to be purified to purification treatment under a plurality of conditions, and each sample is enclosed in a sealed system. In addition to measuring the amount of combustible gas generated in a closed system, measure the purification efficiency of the purification target substance in each sample, change the measurement result of the combustible gas generation amount and change or decomposition of the elution concentration of the purification target substance. The method comprises evaluating the plurality of conditions from a measurement result of purification efficiency such as efficiency.

この汚染土壌の浄化処理条件評価方法においては、浄化対象の汚染土壌に対し実際に行う浄化処理の条件として、前記複数の条件の中から好適な条件あるいは最適な条件を選択することができる。あるいは、前記複数の条件の評価結果に基づいて決定する、例えば、2つの条件間に好適あるいは最適な条件が存在することが明らかに推定される場合には、それらの条件に基づいて実際に行う浄化処理の条件を決定することもできる。   In this contaminated soil purification treatment condition evaluation method, a suitable condition or an optimum condition can be selected from among the plurality of conditions as the condition of the purification treatment actually performed on the contaminated soil to be purified. Alternatively, it is determined based on the evaluation results of the plurality of conditions. For example, when it is clearly estimated that a suitable or optimal condition exists between the two conditions, it is actually performed based on those conditions. It is also possible to determine the conditions for the purification treatment.

この汚染土壌の浄化処理条件評価方法においても、とくに、上記浄化処理が、金属鉄、鉄塩、鉄キレート等の鉄化合物のいずれか一種以上を添加する処理であることが好ましい。   Also in this contaminated soil purification treatment condition evaluation method, it is particularly preferable that the purification treatment is a treatment of adding any one or more of iron compounds such as metallic iron, iron salts, and iron chelates.

複数の条件の評価は、例えば、以下のように行うことができる。浄化処理のための添加物の量を変化させることにより複数の条件を評価する、あるいは、浄化処理における土壌pHを変化させることにより複数の条件を評価する、さらにはこれらを組み合わせて複数の条件を評価する方法が挙げられる。   Evaluation of a plurality of conditions can be performed as follows, for example. Evaluate multiple conditions by changing the amount of additive for purification treatment, or evaluate multiple conditions by changing the soil pH in the purification treatment, or combine these to meet multiple conditions The method of evaluating is mentioned.

本発明に係る汚染土壌浄化方法は、上記のような汚染土壌の浄化処理条件評価方法による評価結果に基づいて汚染土壌を浄化することを特徴とする方法からなる。   The contaminated soil purification method according to the present invention comprises a method characterized in that the contaminated soil is purified based on the evaluation result by the above-described contaminated soil purification treatment condition evaluation method.

この汚染土壌浄化方法においては、とくに、水素ガスなどの可燃性ガスに対する安全対策を行いながら汚染土壌を浄化することが望ましい。   In this contaminated soil purification method, it is particularly desirable to purify the contaminated soil while taking safety measures against flammable gases such as hydrogen gas.

上記安全対策としては、例えば、浄化エリアの地表に対し送風しながら浄化する、少なくとも1つの井戸からガスを放散させながら浄化する、少なくとも1つのガス吸引井戸からガスを吸引しながら浄化する、少なくとも1つのガス注入井戸からガスを注入しながら浄化する、少なくとも1つのガス注入井戸からガスを注入するとともに、少なくとも1つのガス吸引井戸からガスを吸引しながら浄化する、浄化エリア近辺のガス濃度をモニタリングしながら浄化する、等の対策を採用できる。このうち、浄化エリア近辺のガス濃度をモニタリングしながら浄化する方法は、他の安全対策と組み合わせて、あるいは所定の浄化処理とともに実施できる。   As the safety measure, for example, purification is performed while blowing air to the surface of the purification area, purification is performed while gas is diffused from at least one well, purification is performed while sucking gas from at least one gas suction well, at least one Purify while injecting gas from one gas injection well, inject gas from at least one gas injection well, and purify while sucking gas from at least one gas suction well, monitor the gas concentration near the purification area Measures such as purifying can be adopted. Among these, the method of purifying while monitoring the gas concentration in the vicinity of the purification area can be implemented in combination with other safety measures or with a predetermined purification process.

前述したように、浄化処理に際しては水素ガスの発生量、濃度が問題となることがあることから、浄化エリアにおけるガス中の水素濃度が爆発範囲以下になるようにガスを排出することが望ましい。   As described above, since the generation amount and concentration of hydrogen gas may be a problem during the purification treatment, it is desirable to discharge the gas so that the hydrogen concentration in the gas in the purification area is below the explosion range.

本発明に係る汚染土壌の浄化処理条件評価方法によれば、可燃性ガスを発生する浄化処理、特に鉄を用いた浄化方法における水素ガスの発生に関して、浄化処理条件、中でも安全性に関して浄化処理条件を的確に評価できる。そして、本発明に係る汚染土壌浄化方法においては、この評価結果に基づいて、実際の浄化処理を行うので、汚染土壌を安全かつ確実に、しかも効率よく浄化することができる。   According to the method for evaluating purification treatment conditions for contaminated soil according to the present invention, purification treatment conditions that generate flammable gas, particularly regarding the generation of hydrogen gas in a purification method using iron, purification treatment conditions, particularly regarding safety. Can be evaluated accurately. And in the contaminated soil purification method which concerns on this invention, since an actual purification process is performed based on this evaluation result, a contaminated soil can be purified safely and reliably and efficiently.

以下に、本発明について、望ましい実施の形態および実施例とともに、詳細に説明する。
本発明は、理論上可燃性ガスを発生する可能性がある浄化処理であれば適用できるが、特に鉄を用いた浄化処理における水素ガスに対する場合に好適に適用される。例えば鉄粉を用いた浄化の場合、土壌の浄化に加え、地下水、底質などの浄化でも適用できる。また、浄化対象汚染物質の種類としては、鉄粉を用いた浄化処理であれば特に限定はなく、有機塩素化合物(TCE、PCE、ダイオキシン類、PCB類など)、油の汚染物の浄化、鉄を用いた他の重金属物質などの不溶化処理にも適用可能である。
Hereinafter, the present invention will be described in detail together with preferred embodiments and examples.
The present invention can be applied to any purification treatment that theoretically generates flammable gas, but is particularly suitably applied to hydrogen gas in purification treatment using iron. For example, in the case of purification using iron powder, it can also be applied to purification of groundwater, sediment, etc. in addition to soil purification. In addition, the type of contaminants to be purified is not particularly limited as long as it is a purification process using iron powder. Organochlorine compounds (TCE, PCE, dioxins, PCBs, etc.), purification of oil contaminants, iron It can also be applied to insolubilization treatment of other heavy metal materials and the like.

本発明は、汚染土壌に対して鉄を添加する浄化処理方法を適用する場合、前もって適切な処理条件を評価して設定し、それに基づいて汚染土壌を安全かつ確実に浄化する汚染土壌浄化方法を提供する。   When applying a purification treatment method for adding iron to contaminated soil, the present invention evaluates and sets an appropriate treatment condition in advance, and a contaminated soil purification method for purifying the contaminated soil safely and reliably based thereon. provide.

ここでいう「適切な処理条件」とは、土壌浄化工程において、汚染土壌の浄化ができつつ系外へ排出される水素濃度が安全な範囲である処理条件を示し、土壌ガス吸引量や不活性ガス(窒素など)での希釈方法、地表面での送風による気散方法等の安全対策を施した後で水素濃度が安全な範囲である処理条件も含む。   The term “appropriate treatment conditions” as used herein refers to treatment conditions in which the concentration of hydrogen discharged to the outside of the system is within a safe range while the contaminated soil can be purified in the soil purification process. It also includes processing conditions in which the hydrogen concentration is within a safe range after taking safety measures such as a method of dilution with gas (nitrogen, etc.), a method of air diffusion by blowing air on the ground surface.

適切な処理条件の設定では、まず、例えば、汚染土壌への鉄粉添加量及びpH条件等といった処理条件を変化させて各系での、可燃性ガスとしての水素の発生量を測定する。これと同時に、各系の浄化対象汚染物質の濃度を測定する。次に各系における浄化効率と水素発生量を比較評価する。これより、浄化対象エリア系外へ排出される水素ガス濃度が安全範囲内か、もしくは少なくとも安全対策を施した後に系外へ排出される水素ガス濃度が安全範囲内である、適切な処理条件を設定することができる。以下、本発明の実施形態を説明する。   In setting appropriate treatment conditions, first, for example, the amount of hydrogen generation as a flammable gas in each system is measured by changing the treatment conditions such as the amount of iron powder added to the contaminated soil and the pH condition. At the same time, the concentration of the pollutant to be purified in each system is measured. Next, a comparative evaluation of the purification efficiency and hydrogen generation amount in each system is performed. From this, appropriate processing conditions are set such that the hydrogen gas concentration discharged outside the system to be purified is within the safe range, or at least the hydrogen gas concentration discharged outside the system after taking safety measures is within the safe range. Can be set. Embodiments of the present invention will be described below.

水素の発生量の測定には、まず浄化対象となっている汚染土壌を一定量採取し、鉄粉を所定の濃度となるように添加したものを用意する。前記土壌を、ブチルゴム栓を有する定容積の密閉瓶に入れ、アルミシールで密閉する。なお、このとき密閉瓶内のヘッドペース部は実サイトでの状態を考慮して、空気もしくは還元状態を再現するために窒素で満たされていることが望ましい。また、遮光することが望ましい。この瓶を静置して、所定時間ごとに、ブチルゴム栓を介して密閉状態を保ちながらヘッドスペース中のガスをガスタイトシリンジで採取し、ガスクロマトグラフ分析装置に注入して水素ガスの定量分析を行う。このとき、ガス検知管等でも濃度を測定することができる。このヘッドスペース中の水素ガス濃度の増加速度から、水素の発生速度を算出することができ、土壌ガス吸引量や不活性ガス(窒素など)での希釈割合、地表面での送風による気散のための送風量の検討を行うことができる。また、水素ガス濃度の経時変化を測定することで、実サイトにおける水素発生速度が低下するまでの期間を予測することができる。以上の操作を、鉄粉の添加量やpH等といった処理条件を変えた実験系を作成し、同様に行う。一方で、作成した処理条件毎に対して汚染土壌の浄化効率も別途評価する。   To measure the amount of hydrogen generated, first, a certain amount of contaminated soil to be purified is collected and iron powder is added to a predetermined concentration. The soil is placed in a fixed-volume sealed bottle having a butyl rubber stopper and sealed with an aluminum seal. At this time, it is desirable that the head pace portion in the sealed bottle is filled with nitrogen in order to reproduce the air or reduced state in consideration of the state at the actual site. It is desirable to shield the light. The bottle is left standing, and the gas in the head space is collected with a gas tight syringe while keeping a sealed state through a butyl rubber stopper every predetermined time, and injected into a gas chromatograph analyzer for quantitative analysis of hydrogen gas. Do. At this time, the concentration can be measured with a gas detection tube or the like. The rate of hydrogen generation can be calculated from the rate of increase in the hydrogen gas concentration in the headspace, and the amount of soil gas suction, dilution rate with inert gas (nitrogen, etc.), Therefore, it is possible to study the amount of blast for the purpose. Further, by measuring the change in the hydrogen gas concentration over time, it is possible to predict the period until the hydrogen generation rate at the actual site decreases. The above operation is performed in the same manner by creating an experimental system in which processing conditions such as the amount of iron powder added and pH are changed. On the other hand, the purification efficiency of contaminated soil is also evaluated separately for each treatment condition created.

一連の操作で得た、水素発生速度および期間の予測値とその処理条件での浄化効率を比較検討し、浄化効率が最も良く、水素ガス発生が安全範囲内か、もしくは少なくとも前述したような土壌ガス吸引量や不活性ガス(窒素など)での希釈方法、地表面での送風による気散方法などの安全対策を行った場合の十分に安全な条件を、適切な処理条件として設定する。   Compare the predicted values of hydrogen generation rate and period obtained in a series of operations and the purification efficiency under the treatment conditions, and the best purification efficiency, hydrogen gas generation is within the safe range, or at least the soil as mentioned above Sufficiently safe conditions are set as appropriate processing conditions when safety measures are taken, such as a gas suction amount, a dilution method with an inert gas (nitrogen, etc.), and an air diffusing method by blowing air on the ground surface.

以下に実施例を示すが、下記実施例は本発明の範囲を限定するものではない。
実施例1
60mLのバイアルビンに、種種の土壌5gを入れ、水10mL、鉄粉0.2gを添加後、バイアルビンをゴム栓とアルミシールで密閉して実験を開始した。100h後にバイアルビン内の水素ガス濃度をガスクロマトグラフィーで、互いに異なる土壌A、B、Cについて測定した結果を表1に示す。表1から明らかなように、鉄粉と水、土壌が存在したときの水素発生量は、土壌種によって大きく異なることが分かる。
Examples are shown below, but the following examples do not limit the scope of the present invention.
Example 1
Various soils (5 g) were placed in a 60 mL vial, and after adding 10 mL of water and 0.2 g of iron powder, the vial was sealed with a rubber stopper and an aluminum seal, and the experiment was started. Table 1 shows the results of measuring the hydrogen gas concentration in the vial after 100 hours for different soils A, B, and C by gas chromatography. As is clear from Table 1, it can be seen that the amount of hydrogen generated when iron powder, water, and soil are present varies greatly depending on the soil species.

Figure 2006102716
Figure 2006102716

実施例2
実施例1において用いた土壌AをPCEにより模擬的に汚染させ、汚染土壌50gに対して、水15mLと鉄粉を表2に示した量を加えて混錬し、硫酸又は水酸化ナトリウムで所定のpHに調整した後に700mLバイアル瓶に入れ、ゴム栓とアルミシールで密閉して実験を開始した。800h後にバイアルビンヘッドスペース内の水素ガス濃度及びPCEの初期濃度に対する分解率をガスクロマトグラフィーで測定した結果を表2に示す。
Example 2
Soil A used in Example 1 is simulated by PCE, and kneaded by adding 15 mL of water and iron powder in the amounts shown in Table 2 to 50 g of contaminated soil, and predetermined with sulfuric acid or sodium hydroxide. After adjusting the pH of the solution, it was put into a 700 mL vial and sealed with a rubber stopper and an aluminum seal to start the experiment. Table 2 shows the results obtained by measuring the decomposition rate of the hydrogen gas concentration in the vial bottle head space and the initial concentration of PCE by gas chromatography after 800 hours.

Figure 2006102716
Figure 2006102716

表2より、鉄粉の量及び土壌pHが異なると、水素の発生挙動及びPCE分解率がそれぞれ異なることが分かる。ここでは条件(1)と(2)を比較することにより、鉄粉量が2.5wt%から1.0wt%に減少すると、水素ガス発生量はあまり変化がないものの、PCE分解率が低下することから、条件(2)を採用し、安全対策を行いながら浄化施工を行うことを計画した。なおここでいう水素ガス濃度はバイアルテスト下の条件であり、実際の現場での濃度を示すものではないが、相対的に同じ挙動を示すと推測される。適切な処理条件の設定では、このように種々の条件での分析を行い、目的に適った条件を設定していくとよい。   From Table 2, it can be seen that when the amount of iron powder and soil pH are different, the hydrogen generation behavior and the PCE decomposition rate are different. Here, by comparing conditions (1) and (2), if the amount of iron powder is reduced from 2.5 wt% to 1.0 wt%, the hydrogen gas generation rate will not change much, but the PCE decomposition rate will decrease. Then, it was planned to carry out purification work while adopting condition (2) and taking safety measures. The hydrogen gas concentration here is the condition under the vial test, and does not indicate the actual concentration in the field, but is presumed to exhibit relatively the same behavior. In setting appropriate processing conditions, it is preferable to perform analysis under various conditions as described above and set conditions suitable for the purpose.

Claims (14)

浄化対象の汚染土壌に対し、所定の条件で浄化処理を施した汚染土壌試料を作成し、該試料を密閉系に封入し、その密閉系下での可燃性ガスの発生量を測定し、その測定結果により前記所定の条件を評価することを特徴とする、汚染土壌の浄化処理条件評価方法。   Create a contaminated soil sample that has been purified under the specified conditions for the contaminated soil to be purified, enclose the sample in a closed system, and measure the amount of combustible gas generated under the closed system. A method for evaluating the condition for purification of contaminated soil, characterized in that the predetermined condition is evaluated based on a measurement result. 前記浄化処理が、金属鉄、鉄塩、鉄キレート等の鉄化合物のいずれか一種以上を添加する処理である、請求項1の汚染土壌の浄化処理条件評価方法。   2. The method for evaluating purification treatment conditions for contaminated soil according to claim 1, wherein the purification treatment is a treatment of adding any one or more of iron compounds such as metallic iron, iron salts, and iron chelates. 浄化対象の汚染土壌に対し、複数の条件で浄化処理を施した複数の汚染土壌試料を作成し、各試料を密閉系にそれぞれ封入し、密閉系下での可燃性ガスの発生量を測定するとともに、各試料における浄化対象物質の浄化効率を測定し、可燃性ガス発生量の測定結果と浄化効率の測定結果から、前記複数の条件を評価することを特徴とする、汚染土壌の浄化処理条件評価方法。   Create multiple contaminated soil samples that have been purified under multiple conditions for contaminated soil to be purified, enclose each sample in a closed system, and measure the amount of combustible gas generated in the closed system And measuring the purification efficiency of the substance to be purified in each sample, and evaluating the plurality of conditions from the measurement result of the amount of combustible gas generation and the measurement result of the purification efficiency. Evaluation methods. 浄化対象の汚染土壌に対し実際に行う浄化処理の条件を、前記複数の条件の中から選択、または、前記複数の条件の評価結果に基づいて決定する、請求項3の汚染土壌の浄化処理条件評価方法。   The conditions for the purification treatment for the contaminated soil to be purified are selected from the plurality of conditions or determined based on the evaluation results of the plurality of conditions. Evaluation methods. 前記浄化処理が、金属鉄、鉄塩、鉄キレート等の鉄化合物のいずれか一種以上を添加する処理である、請求項3または4の汚染土壌の浄化処理条件評価方法。   The method for evaluating purification treatment conditions for contaminated soil according to claim 3 or 4, wherein the purification treatment is a treatment for adding any one or more of iron compounds such as metallic iron, iron salts, and iron chelates. 浄化処理のための添加物の量を変化させることにより複数の条件を評価する、請求項3〜5のいずれかに記載の汚染土壌の浄化処理条件評価方法。   The contaminated soil purification treatment condition evaluation method according to any one of claims 3 to 5, wherein a plurality of conditions are evaluated by changing an amount of an additive for the purification treatment. 浄化処理における土壌pHを変化させることにより複数の条件を評価する、請求項3〜6のいずれかに記載の汚染土壌の浄化処理条件評価方法。   The polluted soil purification treatment condition evaluation method according to any one of claims 3 to 6, wherein a plurality of conditions are evaluated by changing a soil pH in the purification treatment. 請求項1〜7のいずれかに記載の汚染土壌の浄化処理条件評価方法による評価結果に基づいて汚染土壌を浄化することを特徴とする、汚染土壌浄化方法。   The contaminated soil purification method characterized by purifying contaminated soil based on the evaluation result by the purification treatment condition evaluation method of the contaminated soil in any one of Claims 1-7. 可燃性ガスに対する安全対策を行いながら汚染土壌を浄化する、請求項8の汚染土壌浄化方法。   The method for purifying contaminated soil according to claim 8, wherein the contaminated soil is purified while taking safety measures against combustible gas. 前記安全対策が、浄化エリアの地表に対し送風しながら浄化するものである、請求項9の汚染土壌浄化方法。   The contaminated soil purification method according to claim 9, wherein the safety measure purifies the ground surface of the purification area while blowing air. 前記安全対策が、少なくとも1つの井戸からガスを放散させながら浄化するものである、請求項9の汚染土壌浄化方法。   The contaminated soil purification method according to claim 9, wherein the safety measure purifies the gas while dissipating gas from at least one well. 前記安全対策が、浄化エリア近辺のガス濃度をモニタリングしながら浄化するものである、請求項9の汚染土壌浄化方法。   The method for purifying contaminated soil according to claim 9, wherein the safety measure purifies while monitoring the gas concentration in the vicinity of the purification area. 浄化エリア近辺のガス濃度をモニタリングしながら浄化する、請求項8〜11のいずれかに記載の汚染土壌浄化方法。   The contaminated soil purification method according to any one of claims 8 to 11, wherein purification is performed while monitoring a gas concentration in the vicinity of the purification area. 浄化エリアにおけるガス中の水素濃度が爆発範囲以下になるようにガスを排出する、請求項8〜13のいずれかに記載の汚染土壌浄化方法。   The contaminated soil purification method according to any one of claims 8 to 13, wherein the gas is discharged so that a hydrogen concentration in the gas in the purification area is equal to or less than an explosion range.
JP2004296365A 2004-10-08 2004-10-08 Contaminated soil purification method Expired - Fee Related JP4596524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004296365A JP4596524B2 (en) 2004-10-08 2004-10-08 Contaminated soil purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004296365A JP4596524B2 (en) 2004-10-08 2004-10-08 Contaminated soil purification method

Publications (2)

Publication Number Publication Date
JP2006102716A true JP2006102716A (en) 2006-04-20
JP4596524B2 JP4596524B2 (en) 2010-12-08

Family

ID=36373013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004296365A Expired - Fee Related JP4596524B2 (en) 2004-10-08 2004-10-08 Contaminated soil purification method

Country Status (1)

Country Link
JP (1) JP4596524B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272579A (en) * 2007-02-05 2008-11-13 Ohbayashi Corp Method of decontaminating contaminated soil or contaminated water, and decontaminating agent
JP2009545435A (en) * 2006-08-03 2009-12-24 ロンゴーニ,ファビオ Method for improving soil contaminated with hexavalent chromium

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350982A (en) * 1999-06-10 2000-12-19 Canon Inc Method for efficiently performing biodegradation of organic compound and environmental restoration by combination of microorganisms
JP2002254060A (en) * 2001-02-28 2002-09-10 Japan Organo Co Ltd Clarification method for materials contaminated by chemicals
JP2002370083A (en) * 2001-06-13 2002-12-24 Nittoc Constr Co Ltd Method for measuring noxious gas in soil cleaning method
JP2003503197A (en) * 1999-07-01 2003-01-28 エス. グリーンバーグ,リチャード How to improve soil and / or groundwater
JP2003071431A (en) * 1997-08-06 2003-03-11 Ebara Corp Method for cleaning thing polluted with halogenated organic compound
JP2003145130A (en) * 2001-11-15 2003-05-20 National Institute Of Advanced Industrial & Technology Method for cleaning/treating contaminated soil
JP2003230876A (en) * 2001-12-04 2003-08-19 Toda Kogyo Corp Iron composite particle powder for cleaning organic halogen compound-containing soil and underground water, its manufacturing method, cleaning agent containing the iron composite particle powder, its manufacturing method, and method for cleaning organic halogen compound-containing soil and underground water
JP2004033827A (en) * 2002-06-28 2004-02-05 Kumagai Gumi Co Ltd Polluted soil cleaning treatment method and recipe determining method therefor
JP2004049994A (en) * 2002-07-17 2004-02-19 Ataka Construction & Engineering Co Ltd Decomposition method for dioxins
JP2004113976A (en) * 2002-09-27 2004-04-15 Toyo Ink Mfg Co Ltd Soil purifying agent and soil purifying method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071431A (en) * 1997-08-06 2003-03-11 Ebara Corp Method for cleaning thing polluted with halogenated organic compound
JP2000350982A (en) * 1999-06-10 2000-12-19 Canon Inc Method for efficiently performing biodegradation of organic compound and environmental restoration by combination of microorganisms
JP2003503197A (en) * 1999-07-01 2003-01-28 エス. グリーンバーグ,リチャード How to improve soil and / or groundwater
JP2002254060A (en) * 2001-02-28 2002-09-10 Japan Organo Co Ltd Clarification method for materials contaminated by chemicals
JP2002370083A (en) * 2001-06-13 2002-12-24 Nittoc Constr Co Ltd Method for measuring noxious gas in soil cleaning method
JP2003145130A (en) * 2001-11-15 2003-05-20 National Institute Of Advanced Industrial & Technology Method for cleaning/treating contaminated soil
JP2003230876A (en) * 2001-12-04 2003-08-19 Toda Kogyo Corp Iron composite particle powder for cleaning organic halogen compound-containing soil and underground water, its manufacturing method, cleaning agent containing the iron composite particle powder, its manufacturing method, and method for cleaning organic halogen compound-containing soil and underground water
JP2004033827A (en) * 2002-06-28 2004-02-05 Kumagai Gumi Co Ltd Polluted soil cleaning treatment method and recipe determining method therefor
JP2004049994A (en) * 2002-07-17 2004-02-19 Ataka Construction & Engineering Co Ltd Decomposition method for dioxins
JP2004113976A (en) * 2002-09-27 2004-04-15 Toyo Ink Mfg Co Ltd Soil purifying agent and soil purifying method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545435A (en) * 2006-08-03 2009-12-24 ロンゴーニ,ファビオ Method for improving soil contaminated with hexavalent chromium
JP2008272579A (en) * 2007-02-05 2008-11-13 Ohbayashi Corp Method of decontaminating contaminated soil or contaminated water, and decontaminating agent

Also Published As

Publication number Publication date
JP4596524B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP2015511152A (en) Decomposition of non-volatile halogenated organic compounds
JP4167052B2 (en) Purification method for organic compound contamination
JP4887327B2 (en) Fluorine compound decomposition treatment system
JP2007244983A (en) Method for purifying soil
JP2000005740A (en) Cleaning method of soil and underground water contaminated with organic chlorine compound
JP4596524B2 (en) Contaminated soil purification method
JP2006341195A (en) Method of clarifying organic contaminant
JP2006271519A (en) Treatment method, apparatus and control system of pop or pop-containing oil
JP4788946B2 (en) Hydrothermal decomposition of fluorinated organic compounds
JP2002307049A (en) Method of cleaning chemical substance-polluted matter, and method of cleaning underground polluted region
JP5612820B2 (en) Purification method for organic chlorine chemical contamination
JP2004337777A (en) Method for removing contamination with chemical substance
JPH06238260A (en) Removal of soil contamination with organochlorine compound
JP5980652B2 (en) Persulfate treatment apparatus, persulfate treatment method, oxidation-reduction potential measurement apparatus, and oxidation-reduction potential measurement method
JP4027209B2 (en) Purification method for contamination by chemical substances
Deng et al. Reductive dechlorination of chlorinated solvents on zerovalent iron surfaces
US8957276B2 (en) Method of processing waste material
KR101084371B1 (en) Direct oxidation method using iron-bearing mineral to degrade volatile organic compounds generated from the process of contaminated soil remediation
JP4271961B2 (en) Environmental purification method
JP2004167426A (en) Cleaning method of contamination due to chemical substance and cleaning system therefor
JP2007215553A (en) Treatment method of heavy metal contaminant
JPH1057808A (en) Regenerating method for activated carbon
JP2008194542A (en) Noble metal-carrying metal iron particle for purification of soil and ground water and purification method of soil and ground water
JP2003136050A (en) Treatment method of chemical pollutant
JP2004160458A (en) Method of purifying ground water contaminated with chlorinated organic compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100917

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100917

R150 Certificate of patent or registration of utility model

Ref document number: 4596524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees