JP2006102672A - Production method of atomized powder for flame spraying - Google Patents

Production method of atomized powder for flame spraying Download PDF

Info

Publication number
JP2006102672A
JP2006102672A JP2004294288A JP2004294288A JP2006102672A JP 2006102672 A JP2006102672 A JP 2006102672A JP 2004294288 A JP2004294288 A JP 2004294288A JP 2004294288 A JP2004294288 A JP 2004294288A JP 2006102672 A JP2006102672 A JP 2006102672A
Authority
JP
Japan
Prior art keywords
powder
vibration
thermal spraying
particles
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004294288A
Other languages
Japanese (ja)
Other versions
JP4305357B2 (en
Inventor
Tatsuo Shimatani
竜男 島谷
Kunihiko Suzuki
邦彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004294288A priority Critical patent/JP4305357B2/en
Publication of JP2006102672A publication Critical patent/JP2006102672A/en
Application granted granted Critical
Publication of JP4305357B2 publication Critical patent/JP4305357B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method of atomized powder for flame spraying where spray properties are excellent and the properties of obtained spray deposit are excellent. <P>SOLUTION: Powder produced by an atomization method is accumulated to a prescribed thickness, and vibration is applied to the accumulated powder to remove deformed particles and hollow particles coming to the surface layer part of a layer comprising the accumulated powder. It is preferable that the vibration applied to the powder is horizontal rotating vibration, and the revolution number per min is 20-50 rpm and the rotating radius is 5-100 mm. The horizontal rotating vibration can be carried out by a circular vibrator. A container 3 is put in the circular vibrator, and it is preferable that the powder to which the vibration is applied is fed into the container so that the depth of the powder is ≥1 cm and ≤5 cm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、溶射用アトマイズ粉末の製造方法に関する。   The present invention relates to a method for producing atomized powder for thermal spraying.

溶射法は、溶射材料を燃焼炎やプラズマ熱源中に投入することで、溶射材料を溶融または半溶融状態の粒子にして被覆対象の基材表面に吹き付け、皮膜を形成する表面処理方法である。簡便な作業で実施でき、作業性に優れるとともに、硬質皮膜の形成が容易にできることから、耐摩耗性、防食性、耐熱性、断熱性等を向上させるための最も有力な手段の一つとして、今日では様々な産業分野で使用されている。   The thermal spraying method is a surface treatment method in which a thermal spray material is put into a combustion flame or a plasma heat source, and the thermal spray material is melted or semi-molten particles and sprayed onto the surface of a substrate to be coated to form a coating. As one of the most powerful means to improve wear resistance, corrosion resistance, heat resistance, heat insulation, etc., since it can be carried out with simple work, excellent workability and easy formation of hard coating, Today it is used in various industrial fields.

溶射材料としては、金属、セラミック、サーメット等があり、溶射ガンの仕様に応じて、粉末状、ワイヤ状、棒状などの形態で使用されている。   Thermal spray materials include metals, ceramics, cermets, etc., and are used in the form of powder, wire, rod, etc., depending on the specifications of the thermal spray gun.

このうち粉末状の溶射材料である溶射用粉末の製造には、例えば、特許文献1および2等に記載された装置を用いたアトマイズ法が多く用いられている。アトマイズ法とは溶湯噴霧法の一種であり、原料を溶解炉で溶融し、タンディッシュにより流量および流速を調整した溶湯を、高圧の水または不活性ガスなどの冷却媒体により粉砕し、冷却タンク中の落下過程で冷却して凝固させて合金粉末を得る方法である。溶湯の表面張力により、溶湯は球状に凝固する。   Among these, for the production of thermal spraying powder, which is a powdered thermal spraying material, for example, an atomizing method using an apparatus described in Patent Documents 1 and 2 is often used. The atomizing method is a kind of molten metal spraying method. The raw material is melted in a melting furnace, and the flow rate and flow rate adjusted by a tundish are pulverized with a cooling medium such as high-pressure water or an inert gas, and then in a cooling tank. This is a method of obtaining an alloy powder by cooling and solidifying in the process of falling. Due to the surface tension of the molten metal, the molten metal solidifies into a spherical shape.

アトマイズ法により得られた粉末は、粒子表面が滑らであり、形状は球状であることから、流動性が高い。また、合金化されているので、粒子の一粒一粒は均一な組成である。このため、他の製法で得られた混合粉末や造粒焼結粉末などの粉末を用いて溶射を行った場合と比べて、溶射により得られる皮膜は均質性に優れている。   The powder obtained by the atomization method has high fluidity because the particle surface is smooth and the shape is spherical. Moreover, since it is alloyed, each grain has a uniform composition. For this reason, compared with the case where thermal spraying is performed using powders such as mixed powders and granulated sintered powders obtained by other manufacturing methods, the coating obtained by thermal spraying is excellent in homogeneity.

溶射用粉末の評価における重要な特性の一つとして、見掛け密度が挙げられる。見掛け密度とは、単位体積当たりに充填された粉末の質量のことであり、粉末の充填量を表すものである。粒度が微細であるほど、また、形状が球状から外れた異形状の粒子が少ないほど、さらには粒子内部に空隙がないほど高い値となる。特に、形状が球状から外れた異形状粒子の存在は、溶射用の粒子を一定の割合で供給することを難しくし、均一な溶射膜を得ることが困難となる等の溶射性の低下を招く。また、粒子内部に空洞のある粒子(中空粒子)を多く含む粉末を溶射用粉末に使用して得た溶射皮膜には、空孔が多く、皮膜の特性が低下するという問題点がある。   One of the important characteristics in the evaluation of thermal spraying powder is apparent density. The apparent density is the mass of the powder filled per unit volume and represents the amount of the powder filled. The smaller the particle size, the smaller the number of irregularly shaped particles deviating from the spherical shape, and the higher the value, the more voids are present inside the particles. In particular, the presence of irregularly shaped particles whose shape deviates from a spherical shape makes it difficult to supply particles for thermal spraying at a constant rate, and causes a decrease in thermal spraying properties such as difficulty in obtaining a uniform thermal sprayed film. . In addition, a thermal spray coating obtained by using a powder containing a large amount of particles having hollow particles (hollow particles) as the thermal spray powder has a problem in that there are many voids and the properties of the coating deteriorate.

一方、溶射用粉末の粒度については、粒子自体の材質と溶射ガンの仕様に合わせて、所望の粒度範囲へと分級し、調整することは、従来の溶射用アトマイズ粉末の製造方法でもなされているものの、上記の異形状粒子や中空粒子の除去が困難であった。   On the other hand, as for the particle size of the thermal spraying powder, according to the material of the particle itself and the specifications of the thermal spray gun, classification and adjustment to a desired particle size range are also made in the conventional method for producing atomized powder for thermal spraying. However, it was difficult to remove the irregularly shaped particles and the hollow particles.

このため、従来の溶射用アトマイズ粉末の製造方法で製造したアトマイズ粉末を用いて溶射を行う場合、所望の溶射性および溶射皮膜の特性が得られないという問題点があった。   For this reason, when spraying using the atomized powder manufactured with the conventional manufacturing method of the atomizing powder for thermal spraying, there existed a problem that the characteristic of a desired thermal spraying property and a thermal spray coating was not acquired.

特開平5−179315号公報JP-A-5-179315

特開平9−20901号公報Japanese Patent Laid-Open No. 9-20901

本発明はかかる問題点に鑑みてなされたものであって、溶射性が良好で、かつ、得られる溶射皮膜の特性が良好な溶射用アトマイズ粉末の製造方法を提供することを目的とする。   This invention is made | formed in view of this problem, Comprising: It aims at providing the manufacturing method of the atomized powder for thermal spraying with the favorable thermal spraying property and the characteristic of the thermal spray coating obtained.

本発明に係る溶射用アトマイズ粉末の製造方法は、アトマイズ法により製造された粉末を所定の厚さに堆積させ、該堆積させた粉末に振動を加え、該堆積させた粉末からなる層の表層部に浮き上がってきた異形状粒子および中空粒子を除去することを特徴とする。   The method for producing atomized powder for thermal spraying according to the present invention comprises depositing a powder produced by the atomizing method to a predetermined thickness, applying vibration to the deposited powder, and a surface layer portion of the layer comprising the deposited powder. It is characterized by removing irregularly shaped particles and hollow particles floating on the surface.

前記粉末に加えられる振動は、水平旋回振動で、かつ、1分間あたりの回転数が20〜50rpm、旋回半径が5〜100mmであることが好ましい。   It is preferable that the vibration applied to the powder is horizontal swirling vibration, and has a rotation speed of 20 to 50 rpm per minute and a swirling radius of 5 to 100 mm.

前記水平旋回振動は、例えば円形振動機によってなされる。   The horizontal turning vibration is performed by, for example, a circular vibrator.

また、前記円形振動機内に容器を載置し、該容器に、前記振動を加えられる粉末を深さが1cm以上5cm以下となるように投入することが好ましい。   Moreover, it is preferable that a container is placed in the circular vibrator, and the powder to which the vibration is applied is put into the container so that the depth is 1 cm or more and 5 cm or less.

本発明によれば、異形状粒子および中空粒子が効果的に除去された溶射用アトマイズ粉末を製造することができる。その結果、溶射性が良好で、かつ、得られる溶射皮膜の特性が良好な溶射用アトマイズ粉末を得ることができる。   According to the present invention, an atomized powder for thermal spraying from which irregularly shaped particles and hollow particles are effectively removed can be produced. As a result, it is possible to obtain an atomized powder for thermal spraying that has good thermal spraying properties and good thermal spray coating characteristics.

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、アトマイズ後の粉末を堆積させた層を円形振動機により水平方向にゆっくりと水平旋回振動させることによって、異形状粒子については他の球状粒子との沈降性の差により、中空粒子については見掛けの比重差により、分離が可能であることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventor has made the layer with the powder after atomization slowly and horizontally oscillated in a horizontal direction by a circular vibrator, so that the irregularly shaped particles can It was found that the hollow particles can be separated by the apparent specific gravity difference due to the difference in sedimentation from the spherical particles.

すなわち、異形状粒子は、他の球状粒子よりも流動性が低いために、粉末を堆積させた層内を沈降しにくい。中空粒子は、流動性は他の粒子と同じであるものの、粒子中に空隙があるため粒子としての比重が小さく堆積層中を沈降しにくい。したがって、溶射用アトマイズ粉末を振動させることにより、正常粒子が優先的に堆積層内を沈降することになる。この結果、異形状粒子および中空粒子は、相対的に堆積層の表層に浮き上がってくる。   That is, irregularly shaped particles have lower fluidity than other spherical particles, and therefore do not easily settle in the layer on which the powder is deposited. Although the hollow particles have the same fluidity as the other particles, since the particles have voids, the specific gravity of the particles is small and it is difficult to settle in the deposition layer. Therefore, normal particles preferentially settle in the deposition layer by vibrating the atomized powder for thermal spraying. As a result, the irregularly shaped particles and the hollow particles are relatively lifted on the surface layer of the deposited layer.

また、異形状粒子および中空粒子は、正常粒子とは色調が異なる。   In addition, irregularly shaped particles and hollow particles have a color tone different from that of normal particles.

したがって、溶射用アトマイズ粉末を振動させた後に、異形状粒子および中空粒子だけを除去することが可能となる。   Therefore, after the atomized powder for thermal spraying is vibrated, only the irregularly shaped particles and the hollow particles can be removed.

また、本発明の方法は、その振動方法が水平方向における水平旋回振動であることに特徴があり、この振動方法を用いているため、高い分離効果が得られる。上下運動や水平方向の往復運動では、堆積層の表層に浮かび上がってきた異形状粒子および中空粒子が再び沈降してしまったり、容器側面で跳ね返った粒子が堆積層の表層に覆い被さるため、異形状粒子および中空粒子が表層部以外に残ったり、表層部にある程度の量の正常粒子が残ってしまう。これに対し、本発明の方法は、その振動方法が水平方向における水平旋回振動であるため、浮かび上がってきた異形状粒子および中空粒子が再び沈降することは起こりにくい。また、容器側面での粒子の跳ね返りも生じにくい。   Further, the method of the present invention is characterized in that the vibration method is horizontal turning vibration in the horizontal direction, and since this vibration method is used, a high separation effect can be obtained. In vertical movement and horizontal reciprocating movement, irregularly shaped particles and hollow particles floating on the surface of the sedimentary layer settle down again, or particles that bounce off the side of the container cover the surface of the sedimentary layer. Shaped particles and hollow particles remain other than the surface layer part, or a certain amount of normal particles remain in the surface layer part. On the other hand, in the method of the present invention, since the vibration method is horizontal swirling vibration in the horizontal direction, the irregularly shaped particles and the hollow particles that have emerged are unlikely to settle again. In addition, the particles are unlikely to rebound on the side of the container.

なお、本発明における水平旋回振動は、粉末に適度な振動を与え、かつ、粉末が跳ね上がらない程度のものであることが必要であることから、水平旋回振動の回転数としては、20〜50rpmであることが必要である。水平旋回振動の回転数が20rpmを下回ると粉末の振動量が少なく、異形状粒子および中空粒子の浮き上がりが生じない。一方、水平旋回振動の回転数が50rpmを超えると、跳ね上がった粉末が表層に覆い被さってしまう。また、水平旋回振動の旋回半径としては、5〜100mmであることが必要である。水平旋回振動の旋回半径が5mmを下回ると粉末の振動量が少なく、異形状粒子および中空粒子の浮き上がりが生じない。一方、水平旋回振動の旋回半径が100mmを超えると、跳ね上がった粉末が表層に覆い被さってしまう。   In addition, since the horizontal swirling vibration in the present invention is required to give moderate vibration to the powder and the powder does not jump up, the rotation speed of the horizontal swirling vibration is 20 to 50 rpm. It is necessary to be. When the rotational speed of the horizontal swirling vibration is less than 20 rpm, the vibration amount of the powder is small, and the irregularly shaped particles and the hollow particles are not lifted up. On the other hand, when the rotational speed of the horizontal swirling vibration exceeds 50 rpm, the jumped powder is covered with the surface layer. Moreover, as a turning radius of a horizontal turning vibration, it is required to be 5-100 mm. When the turning radius of the horizontal turning vibration is less than 5 mm, the amount of vibration of the powder is small, and lifting of irregularly shaped particles and hollow particles does not occur. On the other hand, when the turning radius of the horizontal turning vibration exceeds 100 mm, the jumped powder covers the surface layer.

また、本発明に係る方法においてより高い効果を得るためには、円形振動機内に載置する容器に対する粉末の投入量が、5cmの深さを超えないようにすることが望ましい。正常粒子の必要な沈降距離、並びに異形状粒子および中空粒子の必要な浮き上がり距離を短くすることによって、異形状粒子および中空粒子の浮き上がりを促進させるためであり、容器内の粉末の深さが5cmを超えると、容器の底付近における異形状粒子および中空粒子が十分には浮き上がらず、取り除けなくなってしまうからである。一方、深さが1cm未満の場合には、粒子の沈降、浮き上がりが生じないため、分離ができない。   In addition, in order to obtain a higher effect in the method according to the present invention, it is desirable that the amount of powder introduced into the container placed in the circular vibrator does not exceed a depth of 5 cm. This is to promote the lifting of irregularly shaped particles and hollow particles by shortening the necessary settling distance of normal particles and the necessary lifting distance of irregularly shaped particles and hollow particles, and the depth of the powder in the container is 5 cm. This is because the irregularly shaped particles and the hollow particles in the vicinity of the bottom of the container are not sufficiently lifted and cannot be removed. On the other hand, when the depth is less than 1 cm, the particles cannot settle and lift, and therefore cannot be separated.

図1に本発明の実施に用いることのできる円形振動機の模式図を示す。加振装置1により所定の回転速度でシャフト2が回転し、容器3が旋回半径rで回転し、粉末層4には水平旋回振動が加えられる。   FIG. 1 is a schematic diagram of a circular vibrator that can be used in the practice of the present invention. The vibration device 1 rotates the shaft 2 at a predetermined rotation speed, the container 3 rotates at the turning radius r, and a horizontal swirling vibration is applied to the powder layer 4.

以下、実施例により本発明に係る方法を具体的に説明する。   Hereinafter, the method according to the present invention will be described specifically by way of examples.

(実施例1)
質量比にて、C:0.9%、Si:4.3%、Cr:17.0%、B:3.5%、Fe:4.0%、残部:Niとなるように配合した原料を高周波誘導真空溶解炉を用いて真空溶解し、得られた1650℃程度の溶湯を水アトマイズ法によって合金粉末にした。この合金粉末を熱風乾燥後、振動式分級機(株式会社徳寿工作所製)にて45〜125μmに分級した。得られた粉末を略円筒状のステンレス製容器に入れ、円形振動機(株式会社徳寿工作所製)内に載置し、30rpmの回転数で10分間の振動を加えた。表面に浮き上がってきた色調の異なる粒子を刷毛で取り除くことにより、実施例1の溶射用粉末を作製した。この溶射用粉末の流動度と見掛け密度を表1に示す。
Example 1
Raw materials blended such that C: 0.9%, Si: 4.3%, Cr: 17.0%, B: 3.5%, Fe: 4.0%, balance: Ni in mass ratio Was melted in a vacuum using a high-frequency induction vacuum melting furnace, and the resulting molten metal at about 1650 ° C. was made into an alloy powder by a water atomization method. This alloy powder was dried with hot air and then classified into 45 to 125 μm with a vibration classifier (manufactured by Tokuju Kogakusho Co., Ltd.). The obtained powder was put into a substantially cylindrical stainless steel container and placed in a circular vibrator (manufactured by Tokuju Kogakusho Co., Ltd.), and vibration was applied for 10 minutes at a rotation speed of 30 rpm. The powder for thermal spraying of Example 1 was produced by removing particles with different color tones that floated on the surface with a brush. Table 1 shows the fluidity and apparent density of the thermal spraying powder.

粉末の流動度はJIS Z 2502に記載の金属粉の流動度測定方法に準拠して測定し、見掛け密度はJIS Z 2504に記載の金属粉の見掛け密度測定方法に準拠して測定した。   The fluidity of the powder was measured according to the method for measuring the fluidity of metal powder described in JIS Z 2502, and the apparent density was measured according to the method for measuring the apparent density of metal powder described in JIS Z 2504.

次に、この合金粉末を用いて、粉末式フレーム溶射ガンにより、SS400軟鋼の基板上に3mmの厚さに溶射した後、燃焼炎トーチ(酸素−アセチレンバーナ)により1000℃以上に加熱し、再溶融処理を施して自溶合金溶射皮膜を形成した。さらに、この皮膜の表面を切削、及び研磨して試験片を作製した。この試験片により、得られた溶射皮膜の空孔率と硬度(表面、断面)を測定した。測定結果を表1に示す。   Next, this alloy powder was sprayed to a thickness of 3 mm on a SS400 mild steel substrate with a powder flame spray gun, and then heated to 1000 ° C. or more with a combustion flame torch (oxygen-acetylene burner). A melt treatment was applied to form a self-fluxing alloy spray coating. Further, the surface of this film was cut and polished to prepare a test piece. With this test piece, the porosity and hardness (surface, cross section) of the obtained thermal spray coating were measured. The measurement results are shown in Table 1.

皮膜の空孔率はX線反射率測定により測定し、表面硬度はロックウェル硬度計(Cスケール)により測定し、断面硬度はビッカース硬度計(荷重:9.807N(1.0kgf))により測定した。   The porosity of the film is measured by X-ray reflectivity measurement, the surface hardness is measured by a Rockwell hardness meter (C scale), and the cross-sectional hardness is measured by a Vickers hardness meter (load: 9.807 N (1.0 kgf)). did.

(実施例2)
分級粒度範囲を20〜53μmとした以外は実施例1と同様にして、実施例2の溶射用粉末を作製した。この溶射用粉末の流動度と見掛け密度を表1に示す。
(Example 2)
A thermal spraying powder of Example 2 was produced in the same manner as in Example 1 except that the classified particle size range was 20 to 53 μm. Table 1 shows the fluidity and apparent density of the thermal spraying powder.

次に、この合金粉末を用いて、高速ガス炎溶射法(燃料:ケロシン−酸素)により、SS400軟鋼の基板上に1mm厚さの溶射被膜層を形成した後、燃焼炎トーチ(酸素−アセチレンバーナ)にて1000℃以上に加熱し、再溶融処理を施して試験片を作製した。この試験片により、得られた溶射皮膜の空孔率と硬度(断面)を測定した。測定結果を表1に示す。   Next, using this alloy powder, a spray coating layer having a thickness of 1 mm is formed on a SS400 mild steel substrate by a high-speed gas flame spraying method (fuel: kerosene-oxygen), and then a combustion flame torch (oxygen-acetylene burner). ) Was heated to 1000 ° C. or higher and subjected to remelting treatment to produce a test piece. With this test piece, the porosity and hardness (cross section) of the obtained thermal spray coating were measured. The measurement results are shown in Table 1.

(比較例1)
実施例1では、水アトマイズ法によって製造した合金粉末を45〜125μmに分級した後、円形振動機により水平旋回振動を加え、表面に浮き上がってきた色調の異なる粒子を刷毛で取り除いて溶射用粉末としたが、比較例1では円形振動機による操作を行わず、水アトマイズ法によって製造した合金粉末を45〜125μmに分級しただけのものを溶射用粉末とした。
(Comparative Example 1)
In Example 1, after classifying the alloy powder produced by the water atomization method to 45 to 125 μm, horizontal swirling vibration is applied by a circular vibrator, and particles having different color tones floating on the surface are removed with a brush to obtain a thermal spraying powder. However, in Comparative Example 1, the operation with the circular vibrator was not performed, and the alloy powder produced by the water atomizing method was only classified into 45 to 125 μm as the thermal spraying powder.

比較例1のサンプルとして得られた溶射用粉末について、実施例1と同様にして、溶射用粉末の流動度および見掛け密度、並びに得られた溶射皮膜の空孔率および硬度(表面、断面)を測定した。その測定結果を表1に示す。   For the thermal spraying powder obtained as a sample of Comparative Example 1, the fluidity and apparent density of the thermal spraying powder, and the porosity and hardness (surface, cross section) of the thermal spray coating obtained in the same manner as in Example 1. It was measured. The measurement results are shown in Table 1.

(比較例2)
実施例2では、水アトマイズ法によって製造した合金粉末を20〜53μmに分級した後、円形振動機により水平旋回振動を加え、表面に浮き上がってきた色調の異なる粒子を刷毛で取り除いて溶射用粉末としたが、比較例2では円形振動機による操作を行わず、水アトマイズ法によって製造した合金粉末を20〜53μmに分級しただけのものを溶射用粉末とした。
(Comparative Example 2)
In Example 2, after classifying the alloy powder produced by the water atomization method to 20 to 53 μm, horizontal swirling vibration is applied by a circular vibrator, and particles having different color tones that have floated on the surface are removed with a brush to obtain a thermal spraying powder. However, in Comparative Example 2, the operation with the circular vibrator was not performed, and the alloy powder produced by the water atomizing method was only classified into 20 to 53 μm as the thermal spraying powder.

比較例2のサンプルとして得られた溶射用粉末について、実施例2と同様にして、溶射用粉末の流動度および見掛け密度、並びに得られた溶射皮膜の空孔率および硬度(断面)を測定した。その測定結果を表1に示す。   About the thermal spraying powder obtained as a sample of Comparative Example 2, the fluidity and apparent density of the thermal spraying powder and the porosity and hardness (cross section) of the obtained thermal spray coating were measured in the same manner as in Example 2. . The measurement results are shown in Table 1.

Figure 2006102672
Figure 2006102672

表1に示す結果からわかるように、本発明方法によって製造した溶射用アトマイズ粉末(実施例1、2)は、公知の製造方法によって製造した溶射用アトマイズ粉末(比較例1、2)よりも高い流動度と見掛け密度を有する。このため、溶射によって得られる溶射皮膜も、実施例1及び2の溶射用アトマイズ粉末を用いた場合の方が、比較例1及び2の溶射用アトマイズ粉末を用いた場合よりも良好になると考えられる。   As can be seen from the results shown in Table 1, the atomized powder for thermal spray produced by the method of the present invention (Examples 1 and 2) is higher than the atomized powder for thermal spray produced by a known production method (Comparative Examples 1 and 2). Has fluidity and apparent density. For this reason, it is considered that the thermal spray coating obtained by thermal spraying is better when the atomized powder for thermal spraying of Examples 1 and 2 is used than when the atomized powder for thermal spraying of Comparative Examples 1 and 2 is used. .

実際に得られた溶射皮膜の空孔率および硬度を測定したところ、表1に示すように、実施例1及び2の溶射用アトマイズ粉末を用いた溶射皮膜の方が、比較例1及び2の溶射用アトマイズ粉末を用いた溶射皮膜よりも空孔率が小さく、かつ、硬度も大きく、良好な溶射皮膜であった。   When the porosity and hardness of the actually obtained thermal spray coating were measured, as shown in Table 1, the thermal spray coatings using the atomized powders for thermal spraying of Examples 1 and 2 were those of Comparative Examples 1 and 2. The porosity was smaller than that of the thermal spray coating using the atomized powder for thermal spraying, and the hardness was high.

本発明の実施に用いることのできる円形振動機の模式図である。It is a schematic diagram of the circular vibrator which can be used for implementation of this invention.

符号の説明Explanation of symbols

1 加振装置
2 シャフト
3 容器
4 粉末層
r 旋回半径
1 Exciter 2 Shaft 3 Container 4 Powder layer r Turning radius

Claims (4)

アトマイズ法により製造された粉末を所定の厚さに堆積させ、該堆積させた粉末に振動を加え、該堆積させた粉末からなる層の表層部に浮き上がってきた異形状粒子および中空粒子を除去することを特徴とする溶射用アトマイズ粉末の製造方法。 The powder produced by the atomization method is deposited to a predetermined thickness, and the deposited powder is vibrated to remove irregularly shaped particles and hollow particles floating on the surface layer portion of the deposited powder layer. A method for producing atomized powder for thermal spraying. 前記粉末に加えられる振動が、水平旋回振動で、かつ、1分間あたりの回転数が20〜50rpm、旋回半径が5〜100mmであることを特徴とする請求項1に記載の溶射用アトマイズ粉末の製造方法。 The atomized powder for thermal spraying according to claim 1, wherein the vibration applied to the powder is horizontal swirling vibration, and has a rotation speed of 20 to 50 rpm per minute and a swirling radius of 5 to 100 mm. Production method. 前記水平旋回振動が円形振動機によってなされることを特徴とする請求項2に記載の溶射用アトマイズ粉末の製造方法。 The method for producing atomized powder for thermal spraying according to claim 2, wherein the horizontal swirling vibration is performed by a circular vibrator. 前記円形振動機内に容器を載置し、該容器に、前記振動を加えられる粉末を深さが1cm以上5cm以下となるように投入することを特徴とする請求項3に記載の溶射用アトマイズ粉末の製造方法。 The atomized powder for thermal spraying according to claim 3, wherein a container is placed in the circular vibrator, and the powder to which the vibration is applied is put into the container so as to have a depth of 1 cm or more and 5 cm or less. Manufacturing method.
JP2004294288A 2004-10-06 2004-10-06 Method for producing atomized powder for thermal spraying Expired - Fee Related JP4305357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004294288A JP4305357B2 (en) 2004-10-06 2004-10-06 Method for producing atomized powder for thermal spraying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004294288A JP4305357B2 (en) 2004-10-06 2004-10-06 Method for producing atomized powder for thermal spraying

Publications (2)

Publication Number Publication Date
JP2006102672A true JP2006102672A (en) 2006-04-20
JP4305357B2 JP4305357B2 (en) 2009-07-29

Family

ID=36372970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004294288A Expired - Fee Related JP4305357B2 (en) 2004-10-06 2004-10-06 Method for producing atomized powder for thermal spraying

Country Status (1)

Country Link
JP (1) JP4305357B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249645A (en) * 2008-04-01 2009-10-29 Daido Steel Co Ltd Method for producing coating film
RU2697046C2 (en) * 2015-06-08 2019-08-08 Ниссин Стил Ко., Лтд. Pretreatment method for coating or printing application
CN114850032A (en) * 2022-05-07 2022-08-05 金易通(天津)智能装备有限公司 Fog dry separation method and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249645A (en) * 2008-04-01 2009-10-29 Daido Steel Co Ltd Method for producing coating film
RU2697046C2 (en) * 2015-06-08 2019-08-08 Ниссин Стил Ко., Лтд. Pretreatment method for coating or printing application
CN114850032A (en) * 2022-05-07 2022-08-05 金易通(天津)智能装备有限公司 Fog dry separation method and system

Also Published As

Publication number Publication date
JP4305357B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
EP1227169B1 (en) Spray powder and method for its production
US10273567B2 (en) Centrifugal atomization of iron-based alloys
JP6377733B2 (en) New powder
JP3653380B2 (en) Method for producing chromium carbide-nickel chromium atomized powder
CN109930053B (en) FeCoNiCrMn high-entropy alloy and method for preparing wear-resistant coating by using same
EP0960954A2 (en) Powder of chromium carbide and nickel chromium
JP4359442B2 (en) Thermal spray powder and method for forming thermal spray coating using the same
JP5222553B2 (en) Abrasion resistant alloy powder and coating
CN106319513A (en) High-entropy alloy powder and preparation method of high-hardness high-entropy alloy coating
JP2008231527A (en) Powder for cold spray, and film formation method
JP4305357B2 (en) Method for producing atomized powder for thermal spraying
JP4885445B2 (en) Thermal spray powder
JP2012112012A (en) Powder for hvaf thermal spraying, and method for forming thermal-sprayed film
JP2004124129A (en) Powder for thermal spraying
CN106133191B (en) Method for producing a coating by cold gas spraying of a coating material and coating
JP2002339032A (en) Two component alloy
Guo et al. FeCoNiAlTiCrSi high entropy alloy coating prepared by laser cladding
JP4547253B2 (en) Thermal spray powder
Pelletier et al. Microstructure and mechanical properties of some metal matrix composites coatings by laser cladding
Khaing et al. Production of fine aluminum powder from metallic aluminum
CA1148035A (en) Fusable, self-fluxing alloy powders
JP2006161131A (en) Co-BASED SELF-FLUXING ALLOY POWDER FOR THERMAL SPRAYING AND ITS PRODUCTION METHOD
Xu et al. Microscopic Characteristics and Properties of Fe-Based Amorphous Alloy Compound Reinforced WC-Co-Based Coating via Plasma Spray Welding. Processes 2021, 9, 6
Pribytkov et al. Composite powders for electron-beam deposition of titanium carbide–binder coatings on high-chromium cast iron
Kusoglu et al. Gas Atomized Powders: Gas Atomization of NiCrBSi Powders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees