JP2006102405A - Simple linear motor for toy - Google Patents

Simple linear motor for toy Download PDF

Info

Publication number
JP2006102405A
JP2006102405A JP2004314751A JP2004314751A JP2006102405A JP 2006102405 A JP2006102405 A JP 2006102405A JP 2004314751 A JP2004314751 A JP 2004314751A JP 2004314751 A JP2004314751 A JP 2004314751A JP 2006102405 A JP2006102405 A JP 2006102405A
Authority
JP
Japan
Prior art keywords
mover
permanent magnet
stator
linear motor
solenoid coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004314751A
Other languages
Japanese (ja)
Inventor
Takuya Miyagawa
拓也 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004314751A priority Critical patent/JP2006102405A/en
Publication of JP2006102405A publication Critical patent/JP2006102405A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To build a simple linear motor for toy which surely operates while the number of parts is made small as much as possible, and the motor is simplified. <P>SOLUTION: A solenoid coil and a lead switch are installed in a long plate-like rail which becomes a stator. A permanent magnet is installed in a moving element, and a thrust is generated only by a resilient magnetic force of both the moving element and the stator. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、永久磁石と電磁石の反発磁力を用いた簡易線上動力装置(簡易リニアモータ)機構と、その具体的製造方法に属する。  The present invention belongs to a simple linear power device (simple linear motor) mechanism using a repulsive magnetic force of a permanent magnet and an electromagnet, and a specific manufacturing method thereof.

従来のリニアモータは、重量物の運搬を前提としたもので、その推力は慣性エネルギーを想定せず、固定子全範囲に電磁石、可動子支持用のローラ又はレイルを設けなければならない。例えばこの場合、レイル全面に電磁石を設置する必要があり、又、固定子との摩擦を軽減する為にレイル全面にローラを設置する必要がある。(例えば、特許文献1参照。)
又、一般的にリニアモータは工業用機構に用いられる事から、可動子の移動量(ステップ量)を検知、設定する場合が多く此の場合に於いても固定子移動領域全域に電磁石叉は永久磁石を設置する必要がある。(例えば、特許文献2、特許文献3、参照。)
The conventional linear motor is premised on the transportation of heavy objects, and its thrust does not assume inertial energy, and an electromagnet, a roller for supporting a mover, or a rail must be provided in the entire range of the stator. For example, in this case, it is necessary to install an electromagnet on the entire surface of the rail, and it is necessary to install a roller on the entire surface of the rail in order to reduce friction with the stator. (For example, refer to Patent Document 1.)
In general, linear motors are used in industrial mechanisms, and the amount of movement (step amount) of the mover is often detected and set. It is necessary to install a permanent magnet. (For example, refer to Patent Document 2 and Patent Document 3.)

特開昭55−132295号公報JP 55-132295 A 特開昭63−206153号公報JP-A-63-206153 特開昭61−199457号公報JP 61-199457 A

従来のリニアモータは、固定子、可動子間の磁力により吸引叉は反発、場合により両方のエネルギーを推力とする為、固定子の全域に永久磁石又は電磁石を必要とする。
又、一般的にその目的が可動子の位置制御や運動制御を必要とする為、可動子制御用の各種デバイスが必要となる事が普通である。
これらの諸要因から、DCモータ等の他モータ動力と比べ、複雑で部品点数も多く製作コストが高い。故に本発明の目的である玩具用動力機構に適さない。
The conventional linear motor requires a permanent magnet or an electromagnet over the entire area of the stator because it attracts or repels due to the magnetic force between the stator and the mover, and in some cases uses both energies as thrust.
Also, since the purpose generally requires position control and motion control of the mover, various devices for controlling the mover are usually required.
Because of these factors, compared to other motor power such as a DC motor, it is complicated, has a large number of parts, and is expensive to manufacture. Therefore, it is not suitable for the power mechanism for toys which is the object of the present invention.

本発明は、極力少量の部品点数で、可動子に確実な推力を与え、玩具用動力機構に適する事を目的としている。  An object of the present invention is to apply a reliable thrust to the mover with as few parts as possible and to be suitable for a toy power mechanism.

上記目的を達成する為に、樹脂等で製作される長尺板状のレイル底面に一定間隔毎に電磁石(以下ソレノイドコイルとする)とリードスイッチを設置し、これを固定子とする。この時のソレノイドコイルとリードスイッチの配置位置は、ソレノイドコイルは発生する磁束方向が上面、叉はやや可動子進行方向へ向く様にし、発生する磁極は対向する可動子側の永久磁石が発生する極性と同極のものとする。又リードスイッチは可動子が固定子に設置されるソレノイドコイル通過直後に可動子側永久磁石の磁力を感知できる位置に設置する。  In order to achieve the above object, an electromagnet (hereinafter referred to as a solenoid coil) and a reed switch are installed at regular intervals on the bottom surface of a long plate-shaped rail made of resin or the like, and this is used as a stator. At this time, the solenoid coil and the reed switch are arranged such that the direction of the magnetic flux generated by the solenoid coil is directed to the top surface, or slightly to the moving direction of the mover, and the permanent magnet on the mover side is generated as the generated magnetic pole. It shall be of the same polarity as the polarity. The reed switch is installed at a position where the magnetic force of the mover side permanent magnet can be sensed immediately after the mover passes through the solenoid coil installed on the stator.

4隅にタイヤを配置したシャーシにフェライト等の永久磁石を設置し、これを可動子とする。この時、永久磁石が発生する磁束は下面、叉はやや後方へ向く様にし、その発生磁極は、固定子側ソレノイドコイルが発生する磁極と同極のものとする。  Permanent magnets such as ferrite are installed in a chassis having tires arranged at four corners, and this is used as a mover. At this time, the magnetic flux generated by the permanent magnet is directed to the lower surface or slightly rearward, and the generated magnetic pole has the same polarity as the magnetic pole generated by the stator side solenoid coil.

本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。  Since the present invention is configured as described above, the following effects can be obtained.

非常に少ない部品点数で、リニアモータが実現できる。  A linear motor can be realized with very few parts.

可動子側の動力は安価なフェライト等の永久磁石のみで良く、低コスト化と小型化ができ、複雑な内部機構が存在しない為、可動子自体の意匠造型の自由度が高い。
又、加減速等の歯車といった機械機構が存在せず、耐久性が極めて高い。
The power on the mover side is only an inexpensive permanent magnet such as ferrite, which can be reduced in cost and size, and has no complicated internal mechanism. Therefore, the design of the mover itself is highly flexible.
Further, there is no mechanical mechanism such as a gear for acceleration / deceleration and the durability is extremely high.

固定子コイルへの印加は、固定子側リードスイッチへの可動子の接近により自動的に行われ、各種制御デバイスを必要とせず、又非接触な為、耐久性、信頼性が高い。  The application to the stator coil is automatically performed by the approach of the mover to the stator-side reed switch, and does not require various control devices and is non-contact, so that the durability and reliability are high.

図3に於いて示されるシャーシ2に、永久磁石3と車軸9/車輪8を設け、これを可動子とする。  A permanent magnet 3 and an axle 9 / wheel 8 are provided on the chassis 2 shown in FIG.

車輪8は、走行時の転がり抵抗を低減する為に、必要に応じ図4で示すリブ10を設ける。又、必要に応じ、面取り11を設ける。  The wheels 8 are provided with ribs 10 shown in FIG. 4 as necessary in order to reduce rolling resistance during traveling. Further, a chamfer 11 is provided as necessary.

図1に於いて示される樹脂等にて製作される長尺板状のレイル1内部に、図2で示すように、ソレノイドコイル6を一定間隔を有し設け、又各ソレノイドコイル6毎にリードスイッチ7を設置する。
この時、ソレノイドコイル6が上面へ発生する磁力極性は、対面する可動子側永久磁石3の下面磁力極性と同極のものとする。
As shown in FIG. 2, solenoid coils 6 are provided at regular intervals inside the long plate-shaped rail 1 made of resin or the like shown in FIG. 1, and leads are provided for each solenoid coil 6. Install the switch 7.
At this time, the polarity of the magnetic force generated by the solenoid coil 6 on the upper surface is the same as that of the lower surface magnetic force polarity of the mover side permanent magnet 3 facing each other.

レイル1の両側面には、可動子の脱輪を防ぐ為に、レイルガイド5を設ける。  Rail guides 5 are provided on both sides of the rail 1 to prevent the mover from being removed.

図5で示す様に、可動子の永久磁石3が固定子のリードスイッチ7に接近するとソレノイドコイル6に印加し、磁力を発生する。
すると、図6で示すように可動子の永久磁石3と、ソレノイドコイル6の対面する磁極が同一なので、反発磁力を得て可動子は前進する。
反発磁力による推力を得、前進した直後、図7で示す様にリードスイッチ7と可動子の永久磁石3が離れる為、ソレノイドコイル6への通電が遮断される。この時、可動子は慣性により一定量前進を続ける。
慣性により前進する可動子の永久磁石3は、次のリードスイッチ7’に接近し、ソレノイドコイル6’が印加し反発磁力を得て、加速を繰り返す。
As shown in FIG. 5, when the permanent magnet 3 of the mover approaches the reed switch 7 of the stator, it is applied to the solenoid coil 6 to generate a magnetic force.
Then, as shown in FIG. 6, since the permanent magnet 3 of the mover and the magnetic pole facing the solenoid coil 6 are the same, the mover moves forward with a repulsive magnetic force.
Immediately after the thrust obtained by the repulsive magnetic force and moving forward, the reed switch 7 and the permanent magnet 3 of the mover are separated from each other as shown in FIG. At this time, the mover keeps moving forward by a certain amount due to inertia.
The permanent magnet 3 of the mover moving forward by inertia approaches the next reed switch 7 ′, and the solenoid coil 6 ′ applies and obtains a repulsive magnetic force, and repeats acceleration.

これまでの実験で、可動子の永久磁石3に磁束密度120テスラ(以下Tと表す)のフェライト磁石を使用し、可動子の全重量を30gとし、0.37φのUEWリッツ線を30φに60回巻き固定子のソレノイドコイル6とし、電源4を誘起電圧6Vにてソレノイドコイル6より5Tを発生させれば確実な推力を得られる事が実証された。  In previous experiments, a ferrite magnet having a magnetic flux density of 120 Tesla (hereinafter referred to as T) was used for the permanent magnet 3 of the mover, the total weight of the mover was set to 30 g, and a UEW Litz wire of 0.37φ was set to 30φ. It has been proved that a reliable thrust can be obtained when the solenoid coil 6 of the wound stator is used and the power source 4 generates 5T from the solenoid coil 6 at an induced voltage of 6V.

必要に応じ、ソレノイドコイル6に強磁性体のコイル芯を用いれば、より強力な磁束が得られ可動子の推力は増加する。
同様に、可動子の永久磁石3により強力な磁束を有するネオジウム等の永久磁石を用いれば、更に強力な推進力が得られる。
If a ferromagnetic coil core is used for the solenoid coil 6 as required, a stronger magnetic flux is obtained and the thrust of the mover increases.
Similarly, if a permanent magnet such as neodymium having a strong magnetic flux is used by the permanent magnet 3 of the mover, a stronger driving force can be obtained.

リードスイッチ7は、不活性ガスをガラス管を用い密封したタイプを用いる事で、長期間の使用でも接点腐食が起こらず、耐久性、信頼性を増す事ができる。  Since the reed switch 7 is a type in which an inert gas is sealed with a glass tube, contact corrosion does not occur even when used for a long period of time, and durability and reliability can be increased.

全体図である。FIG. 固定子内部説明図である。It is explanatory drawing inside a stator. 可動子説明図である。It is a mover explanatory drawing. 可動子車輪部位図である。It is a needle | mover wheel site | part figure. 機構説明図である。It is mechanism explanatory drawing. 機構説明図である。It is mechanism explanatory drawing. 機構説明図である。It is mechanism explanatory drawing. 機構説明図である。It is mechanism explanatory drawing. 固定子側ソレノイド部位回路図である。It is a stator side solenoid part circuit diagram.

符号の説明Explanation of symbols

1 レイル
2 シャーシ
3 永久磁石
4 直流電源
5 レイルガイド
6 ソレノイドコイル
7 リードスイッチ
8 車輪
9 車軸
10 リブ
11 面取り
1 Rail 2 Chassis 3 Permanent Magnet 4 DC Power Supply 5 Rail Guide 6 Solenoid Coil 7 Reed Switch 8 Wheel 9 Axle 10 Rib 11 Chamfer

Claims (1)

長尺板状のレイル底面に一定間隔毎に電磁石とリードスイッチを設置し、このレイル部位に永久磁石を設置した車を置くと反発磁力が発生し、推力を得て前進する玩具用簡易リニアモータ。A simple linear motor for toy that moves forward with a thrust generated by a repulsive magnetic force when a car with a permanent magnet installed on the rail is installed on the bottom of the long plate-shaped rail. .
JP2004314751A 2004-10-01 2004-10-01 Simple linear motor for toy Pending JP2006102405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004314751A JP2006102405A (en) 2004-10-01 2004-10-01 Simple linear motor for toy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004314751A JP2006102405A (en) 2004-10-01 2004-10-01 Simple linear motor for toy

Publications (1)

Publication Number Publication Date
JP2006102405A true JP2006102405A (en) 2006-04-20

Family

ID=36372759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004314751A Pending JP2006102405A (en) 2004-10-01 2004-10-01 Simple linear motor for toy

Country Status (1)

Country Link
JP (1) JP2006102405A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101206091B1 (en) 2011-04-07 2012-11-28 배준영 Magnetic levitation train
KR20180040845A (en) * 2016-10-13 2018-04-23 김석현 Electromagnet intensity measuring instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101206091B1 (en) 2011-04-07 2012-11-28 배준영 Magnetic levitation train
KR20180040845A (en) * 2016-10-13 2018-04-23 김석현 Electromagnet intensity measuring instrument
KR101881317B1 (en) 2016-10-13 2018-07-24 김석현 Electromagnet intensity measuring instrument

Similar Documents

Publication Publication Date Title
KR101823228B1 (en) Magnetic flux control device
US10110108B2 (en) Three degree-of-freedom electromagnetic machine control system and method
JP4508999B2 (en) Linear drive
US8850989B2 (en) Magnetic levitation assembly
JP2007123470A (en) Solenoid actuator and biaxial actuator
US8324777B2 (en) Method and system for transportation using a magnetic bearing structure
JP2006102405A (en) Simple linear motor for toy
US5601027A (en) Positioning system with damped magnetic attraction stopping assembly
JP3176707U (en) Levitation vehicle for toy and track running toy
JP5700193B2 (en) Linear actuator and suspension device using the same
EP3270493B1 (en) A multi-degree of freedom electromagnetic machine with input amplitude modulation control
JP2015104200A (en) Linear motor
WO2013008737A1 (en) Inertial drive actuator
JP2011214624A (en) Linear actuator
CN103904936A (en) Linear motor capable of being controlled at three levels on basis of iron and gallium alloy and application method of linear motor
Jo et al. Design and control of the miniature maglev using electromagnets and permanent magnets in magnetic levitation system
KR101474975B1 (en) Magnetic levitation system having cross connected invertor
JP2542139B2 (en) Electromagnetic brake device
KR101623757B1 (en) Displacement providing device for displace article using permanent magnet
US9956969B2 (en) Brake device
JPH0479702A (en) Carrier
JPWO2019176507A1 (en) Plane motor
JP2011094744A (en) Suspension and damping device
JP2005204448A (en) Noncontact brake mechanism of linear motor
KR101031851B1 (en) Control Method of Normal Force for Linear Induction Motor