JP2006100692A - Cooling apparatus and electronic appliance provided therewith - Google Patents

Cooling apparatus and electronic appliance provided therewith Download PDF

Info

Publication number
JP2006100692A
JP2006100692A JP2004287049A JP2004287049A JP2006100692A JP 2006100692 A JP2006100692 A JP 2006100692A JP 2004287049 A JP2004287049 A JP 2004287049A JP 2004287049 A JP2004287049 A JP 2004287049A JP 2006100692 A JP2006100692 A JP 2006100692A
Authority
JP
Japan
Prior art keywords
radiator
refrigerant liquid
pump
elements
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004287049A
Other languages
Japanese (ja)
Inventor
Nobuyuki Goto
伸之 後藤
Toshihiko Matsuda
利彦 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004287049A priority Critical patent/JP2006100692A/en
Publication of JP2006100692A publication Critical patent/JP2006100692A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling apparatus which is blocked and small and where reduction of a refrigerant liquid is reduced, and to provide an electronic appliance provided with the same. <P>SOLUTION: The cooling apparatus is provided with: a pump 1 for circulating a refrigerant liquid having received heat by a heat reception part; a radiator 3 for radiating heat received by the refrigerant liquid; a reservation tank 2 for housing the refrigerant liquid and performing vapor liquid separation of the circulating refrigerant liquid for keeping a circulation amount constant; and a circulation channel for connecting the three elements of the pump 1, the radiator 3, and the reservation tank 2 with each other. The three elements are arranged in one direction. It is a main feature that an element arranged in the middle of the three elements is provided with two joint pipes for connecting circulation channels between itself and the other two elements on both of the sides; and a bypass channel for repeating two channels from each element, and a joint pipe for performing the connection of it for constituting the circulation channels connecting the two element with each other. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷媒を循環させながら発熱部の熱を冷却する冷却装置およびそれを備えた電子機器に関するものである。   The present invention relates to a cooling device that cools the heat of a heat generating portion while circulating a refrigerant, and an electronic device including the same.

従来、半導体集積回路のような発熱部、例えばコンピュータ装置等のマイクロプロセッサなど、を冷却する装置として、冷媒液を使って発熱部の熱を奪い、これをラジエータに搬送して大気中に放熱する冷却装置が知られている(特許文献1参照)。図6は従来の冷却装置の構成を示すブロック図である。   Conventionally, as a device for cooling a heat generating portion such as a semiconductor integrated circuit, for example, a microprocessor such as a computer device, the heat of the heat generating portion is taken away using a refrigerant liquid, which is transferred to a radiator to be radiated to the atmosphere. A cooling device is known (see Patent Document 1). FIG. 6 is a block diagram showing the configuration of a conventional cooling device.

この従来の冷却装置について説明する。図6において、51は冷却すべき対象となるマイクロプロセッサ等の発熱部である。よく知られているように半導体集積回路は動作するときに発熱し、このとき冷却不足だと誤動作を起こす可能性がある。図6で示す発熱部51は電子機器におけるこのような発熱部品である。52は発熱部51に接触して発熱部51と熱交換する受熱部である。この熱交換により発熱部51で発生した熱は循環中の冷媒液に移動する。53はこの熱で温度上昇した冷媒液を循環させるためのポンプである。54はポンプ53によって搬送された冷媒液を外部の空気と熱交換し大気中に放熱するラジエータである。55は冷媒液の減少を補うために予め冷媒液を蓄えておくリザーブタンクである。発熱部51の上に受熱部52が載置され、受熱部52の上にポンプ53が配置される。この配置によって熱交換が可能になる。56はポンプ53から排出される冷媒液をラジエータ54に導くパイプ、57はラジエータ54で冷却された冷媒液をリザーブタンク55に導くパイプ、58はリザーブタンク55からポンプ53に冷媒液を導くパイプである。   This conventional cooling device will be described. In FIG. 6, 51 is a heat generating part such as a microprocessor to be cooled. As is well known, a semiconductor integrated circuit generates heat when it operates, and at this time, if it is insufficiently cooled, it may cause a malfunction. The heat generating portion 51 shown in FIG. 6 is such a heat generating component in an electronic device. Reference numeral 52 denotes a heat receiving portion that contacts the heat generating portion 51 and exchanges heat with the heat generating portion 51. The heat generated in the heat generating portion 51 by this heat exchange moves to the circulating refrigerant liquid. 53 is a pump for circulating the refrigerant liquid whose temperature has been increased by this heat. Reference numeral 54 denotes a radiator that exchanges heat between the refrigerant liquid conveyed by the pump 53 and external air to radiate heat to the atmosphere. A reserve tank 55 stores refrigerant liquid in advance in order to compensate for the decrease in refrigerant liquid. A heat receiving portion 52 is placed on the heat generating portion 51, and a pump 53 is disposed on the heat receiving portion 52. This arrangement allows heat exchange. 56 is a pipe that guides the refrigerant liquid discharged from the pump 53 to the radiator 54, 57 is a pipe that leads the refrigerant liquid cooled by the radiator 54 to the reserve tank 55, and 58 is a pipe that guides the refrigerant liquid from the reserve tank 55 to the pump 53. is there.

ポンプ53の吐出側はパイプ56によってラジエータ54に接続され、このラジエータ54がパイプ57を介してリザーブタンク55に接続される。さらにリザーブタンク55がポンプ53の吸い込み側に接続される。そして発熱部51の上に置かれた受熱部52の上に、さらにポンプ53、リザーブタンク55、ラジエータ54が順に積み重ねられて配置される。このような受熱部52から、ポンプ53、ラジエータ54、リザーブタンク55を経由して再び受熱部52に戻るという冷媒液の循環流路が一組の構成として利用される。
特開平7−142886号公報
The discharge side of the pump 53 is connected to a radiator 54 by a pipe 56, and this radiator 54 is connected to a reserve tank 55 through a pipe 57. Further, a reserve tank 55 is connected to the suction side of the pump 53. A pump 53, a reserve tank 55, and a radiator 54 are further stacked in this order on the heat receiving part 52 placed on the heat generating part 51. A refrigerant liquid circulation passage that returns from the heat receiving portion 52 to the heat receiving portion 52 again via the pump 53, the radiator 54, and the reserve tank 55 is used as a set.
JP-A-7-142886

しかしながら従来の冷却装置は、図6に示すように受熱部52の上にポンプ53、リザーブタンク55、ラジエータ54を順に積み重ねた配置となるため、循環流路を形成するには図6に示すように、この3要素の真中に位置するリザーブタンク55を飛び越えるパイプ56が必要であった。しかし、このような構成では、パイプ56の引き回しによってパイプ56の空間に占める大きさが広がり、冷却装置が小型化できないという問題があった。   However, as shown in FIG. 6, the conventional cooling device has an arrangement in which a pump 53, a reserve tank 55, and a radiator 54 are stacked in this order on the heat receiving portion 52. In addition, a pipe 56 that jumps over the reserve tank 55 located in the middle of the three elements is required. However, in such a configuration, there is a problem that the size of the space in the pipe 56 increases due to the routing of the pipe 56, and the cooling device cannot be reduced in size.

また、パイプ56,57,58はゴムや樹脂のパイプが使われることが多く、このようなパイプは徐々にではあるが冷媒液が壁面を通して蒸発し、外部の空気が代わりに混入する。このため冷媒液は時間の経過とともに減少し、パイプ56,57,58の長さが長いと物質移動を行える面積が増し、冷媒液の減少速度が大きくなるという問題があった。   The pipes 56, 57, and 58 are often rubber or resin pipes. Such pipes gradually evaporate through the wall surface, but external air is mixed instead. For this reason, there has been a problem that the refrigerant liquid decreases with the passage of time, and if the lengths of the pipes 56, 57, and 58 are long, the area capable of mass transfer increases, and the rate of decrease in the refrigerant liquid increases.

そこで本発明は、ブロック化され、小型で、冷媒液の減少が少ない冷却装置およびこれを備えた電子機器を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a cooling device that is block-sized, is small, and has a small decrease in refrigerant liquid, and an electronic device including the same.

本発明は、受熱部で受熱した冷媒液を循環させるためのポンプと、冷媒液が受熱した熱を放熱するラジエータと、冷媒液を収容し循環する冷媒液の気液分離を行って循環量を一定に保つリザーブタンクと、ポンプ,ラジエータ及びリザーブタンクの3要素間を互いに接続する循環流路とを備えるとともに、3要素が1方向に並んで配設された冷却装置であって、3要素の中間に配設された要素には、両側の2要素との間の循環流路をそれぞれ接続する2つの継手管と、2要素間同士をつなぐ循環流路を構成するために各要素からの2つの流路を中継するバイパス流路及びその接続を行う継手管が設けられたことを主要な特徴とする。   The present invention provides a pump for circulating the refrigerant liquid received by the heat receiving unit, a radiator for radiating the heat received by the refrigerant liquid, and gas-liquid separation of the refrigerant liquid that contains and circulates the refrigerant liquid, thereby reducing the circulation amount. A cooling device comprising a reserve tank that is kept constant, and a circulation channel that connects the three elements of the pump, the radiator, and the reserve tank to each other, and in which the three elements are arranged in one direction. The elements disposed in the middle include two joint pipes that respectively connect the circulation flow paths between the two elements on both sides, and 2 from each element to form a circulation flow path that connects the two elements. The main feature is that a bypass channel that relays two channels and a joint pipe that connects the channels are provided.

本発明の冷却装置によれば、ポンプ、ラジエータ、リザーブタンクの3要素をブロック化したとき小型化することができ、両側の2要素間をバイパス流路で中継するため循環流路の長さが短くでき、循環流路から蒸発する冷媒液が減って、補給用の冷媒液を頻繁に補給しなくてもよい。また、本発明の電子機器によれば、小型で、冷媒液の減少が少なく、メンテナンスが容易な電子機器を提供できる。   According to the cooling device of the present invention, when the three elements of the pump, the radiator, and the reserve tank are made into a block, the size can be reduced, and the length of the circulation flow path is reduced because the two elements on both sides are relayed by the bypass flow path. The refrigerant liquid that evaporates from the circulation flow path can be reduced and the replenishment refrigerant liquid does not need to be replenished frequently. In addition, according to the electronic device of the present invention, it is possible to provide an electronic device that is small in size, has little decrease in refrigerant liquid, and is easy to maintain.

上記課題を解決するためになされた第1の発明は、受熱部で受熱した冷媒液を循環させるためのポンプと、冷媒液が受熱した熱を放熱するラジエータと、冷媒液を収容し循環する冷媒液の気液分離を行って循環量を一定に保つリザーブタンクと、ポンプ,ラジエータ及びリザーブタンクの3要素間を互いに接続する循環流路とを備えるとともに、3要素が1方向に並んで配設された冷却装置であって、3要素の中間に配設された要素には、両側の2要素との間の循環流路をそれぞれ接続する2つの継手管と、2要素間同士をつなぐ循環流路を構成するために各要素からの2つの流路を中継するバイパス流路及びその接続を行う継手管が設けられた冷却装置であり、ポンプ、ラジエータ、リザーブタンクの3要素をブロック化したとき小型化することができ、両側の2要素間をバイパス流路で中継するため循環流路の長さが短くでき、循環流路から蒸発する冷媒液が減る。   A first invention made to solve the above problems is a pump for circulating the refrigerant liquid received by the heat receiving unit, a radiator for dissipating the heat received by the refrigerant liquid, and a refrigerant containing and circulating the refrigerant liquid A reserve tank that performs gas-liquid separation of liquid and keeps the circulation rate constant, and a circulation channel that connects the three elements of the pump, radiator, and reserve tank to each other, and the three elements are arranged in one direction. The cooling device, which is arranged in the middle of the three elements, includes two joint pipes that respectively connect the circulation flow paths between the two elements on both sides, and a circulation flow that connects the two elements to each other. This is a cooling device with a bypass flow path that relays two flow paths from each element to form the path and a joint pipe that connects the two flow paths, and when the three elements of the pump, radiator, and reserve tank are blocked Downsizing It is possible, between the two side elements can be shortened the length of the circulation flow path for relaying in the bypass passage, decreases refrigerant liquid evaporates from the circulation passage.

本発明の第2の発明は、第1の発明に従属する発明であって、3要素が、下からポンプ、リザーブタンク、ラジエータの順に積み重ねられている冷却装置であり、最下に配置された発熱部品の熱はポンプで受熱し、最上に配置されたラジエータで放熱されるので、放熱した熱が再び受熱されることがない。   A second invention of the present invention is an invention subordinate to the first invention, and is a cooling device in which three elements are stacked in the order of a pump, a reserve tank, and a radiator from the bottom, and is arranged at the bottom. Since the heat of the heat generating component is received by the pump and radiated by the radiator disposed at the top, the radiated heat is not received again.

本発明の第3の発明は、第1または第2の発明に従属する発明であって、バイパス流路が、3要素で中間に配置された要素の表面に設けられた冷却装置であり、バイパス流路の長さをきわめて短くすることができる。   A third invention of the present invention is an invention dependent on the first or second invention, wherein the bypass flow path is a cooling device provided on the surface of an element arranged in the middle by three elements, and the bypass The length of the flow path can be made extremely short.

本発明の第4の発明は、第2または第3の発明に従属する発明であって、リザーブタンクの高さがラジエータの高さよりも低い冷却装置であり、リザーブタンクの高さが低く、バイパス流路で中継してポンプとラジエータ間を接続する循環流路が短くなり、循環流路から蒸発する冷媒液が減る。   A fourth invention of the present invention is an invention dependent on the second or third invention, wherein the height of the reserve tank is lower than the height of the radiator, the height of the reserve tank is low, and the bypass tank The circulation channel that relays through the channel and connects the pump and the radiator is shortened, and the refrigerant liquid that evaporates from the circulation channel is reduced.

本発明の第5の発明は、第1〜第4のいずれかの冷却装置を備え、冷却装置の受熱部が発熱部品に載置されたことを特徴とする電子機器であり、小型で、冷媒液の減少が少なく、メンテナンスが容易な電子機器を提供できる。   According to a fifth aspect of the present invention, there is provided an electronic apparatus comprising the cooling device according to any one of the first to fourth aspects, wherein the heat receiving portion of the cooling device is placed on a heat generating component, and is small in size and has a refrigerant. It is possible to provide an electronic device that is less likely to lose liquid and easy to maintain.

(実施の形態1)
本発明の実施の形態1は電子機器としてコンピュータ装置に搭載する冷却装置に関するものである。図1は本発明の実施の形態1における冷却装置全体の斜視図である。
(Embodiment 1)
Embodiment 1 of the present invention relates to a cooling device mounted on a computer device as an electronic device. FIG. 1 is a perspective view of the entire cooling device according to Embodiment 1 of the present invention.

図1において、1は水やプロピレングリコール水溶液等の冷媒液を循環させるポンプ、1aはポンプ1の底面に設けられた受熱部(図2に示す)である。   In FIG. 1, 1 is a pump for circulating a coolant such as water or an aqueous solution of propylene glycol, and 1a is a heat receiving portion (shown in FIG. 2) provided on the bottom surface of the pump 1.

ポンプ1は、内部に羽根車を収容した遠心型ポンプや渦流ポンプ等のターボ型ポンプが好適であり、小さなマイクロプロセッサに載置可能なように厚さ3mm〜20mm、半径方向代表寸法10mm〜70mm、回転数は600rpm〜4000rpm、流量が0.01L/分〜1.5L/分、ヘッド0.1m〜2m、比速度でいうと、12〜200(単位:m、m3/分、rpm)程度のきわめて小型のものである。そして、受熱部1aはこのターボ型ポンプのケーシング側面に形成されたマイクロプロセッサに密着できる壁面である。 The pump 1 is preferably a turbo pump such as a centrifugal pump or a vortex pump containing an impeller inside, and has a thickness of 3 mm to 20 mm and a representative radial dimension of 10 mm to 70 mm so that it can be placed on a small microprocessor. The rotation speed is 600 rpm to 4000 rpm, the flow rate is 0.01 L / min to 1.5 L / min, the head is 0.1 m to 2 m, and the specific speed is 12 to 200 (unit: m, m 3 / min, rpm). It is extremely small. And the heat receiving part 1a is a wall surface which can be closely_contact | adhered to the microprocessor formed in the casing side surface of this turbo type pump.

2はリザーブタンクで、冷媒液の減少分を補うために補給用の冷媒液が予め収容されており、循環中の冷媒液が気液分離を行って混入した空気を除去し、循環量を一定に保つためのものである。すなわち、冷媒液は循環流路を構成するパイプ壁面や接続部を通して僅かではあるが徐々に蒸発し、代わりに外部の空気がパイプ壁面を通して冷媒液に混入する。このためリザーブタンク2には、冷媒液の減少で混入した空気を循環させないように、空気を冷媒液から気液分離する空気溜まりが設けられており、空気溜まりに混入した空気が分離されたときは、空気と同一容積の冷媒液を補って循環流路に送り出す。これにより循環量が保たれる。実施の形態1のリザーブタンク2はポンプ1の上に設けられる。そしてリザーブタンク2には、その外部表面もしくは内部に冷媒液をバイパスさせるバイパス流路が設けられる。   Reference numeral 2 denotes a reserve tank, which contains a refrigerant liquid for replenishment in advance to compensate for the decrease in the refrigerant liquid. The circulating refrigerant liquid performs gas-liquid separation to remove mixed air, and the circulation amount is constant. Is to keep That is, the refrigerant liquid gradually evaporates through the pipe wall surface and the connecting portion constituting the circulation flow path, but external air enters the refrigerant liquid through the pipe wall surface instead. For this reason, the reserve tank 2 is provided with an air reservoir for separating the air from the refrigerant liquid so as not to circulate the air mixed in due to the decrease in the refrigerant liquid, and when the air mixed in the air reservoir is separated. Supplements the same volume of refrigerant liquid as air and sends it out to the circulation channel. Thereby, the circulation amount is maintained. The reserve tank 2 according to the first embodiment is provided on the pump 1. The reserve tank 2 is provided with a bypass passage for bypassing the refrigerant liquid on the outer surface or inside thereof.

3はラジエータで、受熱部1aで加熱された冷媒液の熱を大気中に放熱する。ラジエータ3は冷媒液の通るラジエータパイプ7(後述)に多数枚のフィンが固定されており、パイプの内壁面に伝わった熱がパイプ表面からフィンに伝達され、フィンに空気を当てることによって熱を大気中に放熱するものである。ラジエータ3は、熱伝導率が高く放熱性のよい材料、例えばアルミニウム、銅などの薄板材のフィンと、このフィンを貫通する銅管等のラジエータパイプ7から構成される。   Reference numeral 3 denotes a radiator that radiates heat of the refrigerant liquid heated by the heat receiving portion 1a to the atmosphere. In the radiator 3, a large number of fins are fixed to a radiator pipe 7 (described later) through which a refrigerant liquid passes, and heat transmitted to the inner wall surface of the pipe is transmitted from the pipe surface to the fins, and heat is applied by applying air to the fins. It releases heat to the atmosphere. The radiator 3 includes a fin having a thin plate material such as aluminum or copper, and a radiator pipe 7 such as a copper tube penetrating the fin.

4は冷却装置のベースであり、5はポンプ1、リザーブタンク2、ラジエータ3を両側から挟む側板、6は2枚の側板5の頂部を結合した天板、7は多数枚のフィンを貫通するラジエータパイプである。従って、受熱部1a、ポンプ1、リザーブタンク2、ラジエータ3は、上下方向(本発明における1方向)に順に積み重ねられて、ベース4、側板5及び天板6で構成される箱に固定され、1ブロックの冷却装置を構成する。そしてこのポンプ1、リザーブタンク2、ラジエータ3は、パイプによって接続され循環流路が形成される。   4 is a base of the cooling device, 5 is a side plate sandwiching the pump 1, reserve tank 2, and radiator 3 from both sides, 6 is a top plate that joins the tops of the two side plates 5, and 7 penetrates a large number of fins. It is a radiator pipe. Accordingly, the heat receiving portion 1a, the pump 1, the reserve tank 2, and the radiator 3 are stacked in order in the vertical direction (one direction in the present invention) and fixed to a box composed of the base 4, the side plate 5 and the top plate 6, A 1-block cooling device is configured. The pump 1, the reserve tank 2, and the radiator 3 are connected by a pipe to form a circulation channel.

図2は本発明の実施の形態1における冷却装置の正面図、図3は本発明の実施の形態1における冷却装置の側面図である。図2、図3において、11はポンプ1から吐出された冷媒液をリザーブタンク2に設けられた後述のバイパス流路35(図5参照)の入口に送るための第1パイプ、12はリザーブタンク2に設けられたバイパス流路35の出口からラジエータ3の流入口に冷媒液を送るための第2パイプである。次に、13はラジエータ3によって冷却された冷媒液をリザーブタンク2に戻すための第3パイプ、14はリザーブタンク2からポンプ1に冷媒液を送る第4パイプである。ラジエータ3にはラジエータパイプ7が設けられており、第2パイプ12と第3パイプ13はラジエータパイプ7に接続される。この第1パイプ11、第2パイプ12、第3パイプ13、第4パイプ14は、
配管を行うとき作業が容易になるように、フレキシブルでガス透過性の少ないゴム、例えばブチルゴムなどのゴムチューブや、ポリフェニレンエーテル(PPE)等の樹脂で構成される。
2 is a front view of the cooling device according to Embodiment 1 of the present invention, and FIG. 3 is a side view of the cooling device according to Embodiment 1 of the present invention. 2 and 3, reference numeral 11 denotes a first pipe for sending the refrigerant liquid discharged from the pump 1 to an inlet of a later-described bypass passage 35 (see FIG. 5) provided in the reserve tank 2, and 12 denotes a reserve tank. 2 is a second pipe for sending the refrigerant liquid from the outlet of the bypass passage 35 provided in 2 to the inlet of the radiator 3. Next, 13 is a third pipe for returning the refrigerant liquid cooled by the radiator 3 to the reserve tank 2, and 14 is a fourth pipe for sending the refrigerant liquid from the reserve tank 2 to the pump 1. The radiator 3 is provided with a radiator pipe 7, and the second pipe 12 and the third pipe 13 are connected to the radiator pipe 7. The first pipe 11, the second pipe 12, the third pipe 13, and the fourth pipe 14 are
In order to facilitate the work when piping, it is composed of a rubber tube having flexibility and low gas permeability, for example, a rubber tube such as butyl rubber, or a resin such as polyphenylene ether (PPE).

ところで図1、図2、図3からも分かるように、リザーブタンク2とラジエータ3の平面への投影形状は概ね同じであり、その高さ(高さ方向の幅)はラジエータ3の方がリザーブタンク2より高く、リザーブタンク2がラジエータ3の下部に配置されて組み立てられる。このように冷却装置の中間に位置するリザーブタンク2の方が高さが低いので、循環流路を配管するとき、配管の長さを短くすることができる。   1, 2, and 3, the projected shapes of the reserve tank 2 and the radiator 3 on the plane are substantially the same, and the height (width in the height direction) of the radiator 3 is reserved. It is higher than the tank 2 and the reserve tank 2 is arranged at the lower part of the radiator 3 and assembled. Thus, since the reserve tank 2 located in the middle of the cooling device is lower in height, the length of the piping can be shortened when piping the circulation channel.

実施の形態1の冷却装置では、受熱部1aでマイクロプロセッサ(図示しない)の熱を吸収すると、その熱はポンプ1に伝達され、ポンプ1内を通過中の冷媒液を加熱する。熱交換して温度が上昇した冷媒液はリザーブタンク2に設けられたバイパス流路を経由してラジエータ3に至る。ラジエータ3では、冷媒液の熱がラジエータパイプ7の壁面を通して表面からフィンに伝わり、フィンから大気中に放出され、冷媒液の温度が下げられる。温度の下がった冷媒液は、再びリザーブタンク2を経由して再びポンプ1に戻る。   In the cooling device of the first embodiment, when heat from the microprocessor (not shown) is absorbed by the heat receiving unit 1a, the heat is transmitted to the pump 1 to heat the refrigerant liquid passing through the pump 1. The refrigerant liquid whose temperature has increased due to heat exchange reaches the radiator 3 via a bypass passage provided in the reserve tank 2. In the radiator 3, the heat of the refrigerant liquid is transmitted from the surface to the fins through the wall surface of the radiator pipe 7 and is released from the fins into the atmosphere, and the temperature of the refrigerant liquid is lowered. The refrigerant liquid whose temperature has decreased returns to the pump 1 again via the reserve tank 2.

このように受熱部1aが下で、ポンプ1、リザーブタンク2、ラジエータ3が順に積み重なった配置であるため、最下部に配置されたマイクロプロセッサの熱は受熱部1aで受熱され、最上部に配置されたラジエータ3で放熱されることになり、ラジエータ3を下部に配置したときのように下方で加熱された空気が空中を上昇し、上部の受熱部1aの雰囲気温度を上げて再度受熱されるようなことがない。   Thus, since the heat receiving part 1a is below and the pump 1, the reserve tank 2, and the radiator 3 are arranged in order, the heat of the microprocessor arranged at the bottom is received by the heat receiving part 1a and arranged at the top. The radiator 3 is dissipated, and the air heated below as in the case where the radiator 3 is disposed in the lower part rises in the air and is received again by raising the ambient temperature of the upper heat receiving part 1a. There is no such thing.

図4は図2の冷却装置のリザーブタンク2のA−A断面図、図5は図4のリザーブタンク2を抜き出した説明用の断面図である。図4、図5に示すように、31は第1パイプ11が接続される流入継手管、32は第2パイプ12が接続される流出継手管、33は第3パイプ13が接続される流入継手管、34は第4パイプ14が接続される流出継手管である。35はリザーブタンク2内に設けられたバイパス流路である。ラジエータ3に接続された第3パイプ13と、ポンプ1に接続された第4パイプ14が、ラジエータ3とポンプ1をつなぐ循環流路を構成するための本発明の2つの流路であり、バイパス流路35によって中継される。流入継手管31,33、流出継手管32,34が本発明の実施の形態1における継手管である。   4 is an AA cross-sectional view of the reserve tank 2 of the cooling device of FIG. 2, and FIG. 5 is an explanatory cross-sectional view of the reserve tank 2 extracted from FIG. 4 and 5, 31 is an inflow joint pipe to which the first pipe 11 is connected, 32 is an outflow joint pipe to which the second pipe 12 is connected, and 33 is an inflow joint to which the third pipe 13 is connected. A pipe 34 is an outflow joint pipe to which the fourth pipe 14 is connected. Reference numeral 35 denotes a bypass passage provided in the reserve tank 2. The third pipe 13 connected to the radiator 3 and the fourth pipe 14 connected to the pump 1 are two flow paths of the present invention for constituting a circulation flow path connecting the radiator 3 and the pump 1, and are bypassed. Relayed by the flow path 35. The inflow joint pipes 31 and 33 and the outflow joint pipes 32 and 34 are the joint pipes in the first embodiment of the present invention.

バイパス流路35はリザーブタンク2の配管を中継するのに好適な位置に設けられ、ポンプ1から第1パイプ11を介して送られた高温の冷媒液を受け入れ、第2パイプ12を介してラジエータ3に流入させる。従来のようにポンプ1からラジエータ3まで1本のパイプを使って引き回すのでなく、バイパス流路35で定まった位置で一旦中継するものである。流入継手管31の開口をポンプ1の方向に向け、流出継手管32の開口をラジエータ3の方向に向ければ、長いパイプが必要でなく、第1パイプ11と第2パイプ12を最短の長さになる。すなわち、最下部のポンプ1から中間部のリザーブタンク2を飛び越えて最上部のラジエータ3に1本のパイプで配管する場合、ゴムや樹脂等のパイプで配管するとどうしても長くなり易いが、実施の形態1の冷却装置ではバイパス流路35で中継するため最短長のパイプで設置方向が安定した配管にすることができる。同様に、第3パイプ13と第4パイプ14も、流入継手管33、流出継手管34の開口の向きを選ぶことにより最短長さにすることができる。   The bypass passage 35 is provided at a position suitable for relaying the piping of the reserve tank 2, receives the high-temperature refrigerant liquid sent from the pump 1 through the first pipe 11, and receives the radiator through the second pipe 12. 3 is allowed to flow. Instead of using a single pipe from the pump 1 to the radiator 3 as in the prior art, the relay is temporarily relayed at a position determined by the bypass flow path 35. If the opening of the inflow joint pipe 31 is directed in the direction of the pump 1 and the opening of the outflow joint pipe 32 is directed in the direction of the radiator 3, a long pipe is not necessary, and the first pipe 11 and the second pipe 12 have the shortest length. become. That is, when a single pipe is connected to the uppermost radiator 3 by jumping from the lowermost pump 1 to the intermediate reserve tank 2, it is inevitably long if the piping is made with a pipe made of rubber or resin. In the cooling device 1, the relay is relayed by the bypass flow path 35, so that the pipe having the shortest length and the installation direction can be made stable. Similarly, the 3rd pipe 13 and the 4th pipe 14 can also be made into the shortest length by choosing the direction of opening of inflow joint pipe 33 and outflow joint pipe 34.

そして、このように第1パイプ11、第2パイプ12、第3パイプ13、第4パイプ14の長さを短くすることができるため、パイプ壁面を通しての冷媒液の蒸発量を減らし、空気の混入量を減らすことができる。これによって冷媒液の補給の回数が減ってメンテナンスが容易になる。また、冷却装置が配管だけでなくコンパクトになり、発熱部品の上に
、受熱部1a、ポンプ1、リザーブタンク2、ラジエータ3が順に積み重ねられ、使い易く、小型になる。
And since the length of the 1st pipe 11, the 2nd pipe 12, the 3rd pipe 13, and the 4th pipe 14 can be shortened in this way, the amount of evaporation of the refrigerant liquid through the pipe wall surface is reduced, and the mixture of air The amount can be reduced. This reduces the number of times the refrigerant liquid is replenished and facilitates maintenance. In addition, the cooling device becomes compact in addition to the piping, and the heat receiving portion 1a, the pump 1, the reserve tank 2, and the radiator 3 are stacked in this order on the heat generating component, so that it is easy to use and small in size.

ところで、リザーブタンク2は、図4、図5に示すように、ポリフェニレンサルファイド(PPS)、ポリフェニレンエーテル(PPE)等の樹脂モールドで形成されたA,Bの有底角筒状もしくは枡状の2部材を超音波溶着によって接合して作製される。部材Aの表面の隅角部にバイパス流路35が設けられる。これによりリザーブタンク2は箱状となり、内部に一定量の冷媒液を蓄え、気液分離することができる。なお、流入継手管31、流出継手管32、流入継手管33、流出継手管34の形状は図4、図5に示す形状が唯一ではなく、循環流路を構成する配管のレイアウトに応じて開口方向や変形が可能である。さらに、バイパス流路35は加工を容易にするため、流路長さはできるだけ短く、リザーブタンク2の直方体の隅角部に正面側の流入継手管31から流入して側面側の流出管32から流出するように形成するのが望ましい。   By the way, as shown in FIGS. 4 and 5, the reserve tank 2 has a bottomed rectangular tube shape or a bowl-like shape of A or B formed of a resin mold such as polyphenylene sulfide (PPS) or polyphenylene ether (PPE). It is manufactured by joining the members by ultrasonic welding. A bypass channel 35 is provided at the corner of the surface of the member A. As a result, the reserve tank 2 has a box shape, and a certain amount of the refrigerant liquid can be stored therein to be separated into gas and liquid. Note that the shapes of the inflow joint pipe 31, the outflow joint pipe 32, the inflow joint pipe 33, and the outflow joint pipe 34 are not the only shapes shown in FIGS. 4 and 5, and are open according to the layout of the pipes constituting the circulation flow path. Direction and deformation are possible. Further, in order to facilitate processing of the bypass channel 35, the length of the channel is as short as possible. The bypass channel 35 flows into the corner of the rectangular parallelepiped of the reserve tank 2 from the inflow joint pipe 31 on the front side and from the outflow pipe 32 on the side surface side. It is desirable to form such that it flows out.

ところで、冷却装置を電子機器に使用するときは、放熱量、放熱効率の変化に応じてラジエータ3の大きさや形状が変化する。従って、このほかにポンプの大きさや能力、台数、配管径等も変化させる必要がある。しかし、電子機器ごとにポンプを変化させるのは、小型で複雑な形状のポンプを個々の場合に応じて金属加工しなければならず、併せてリザーブタンク2やラジエータ3に対する配管も多様に変化させなければならない。このような方法で放熱量、放熱効率の変化に対応させるのは難しい。これに対し、リザーブタンク2は樹脂モールドで比較的簡単に作製できるため、ポンプより加工が容易である。従って、ラジエータ3の変化に対応させるために、中間に存在するリザーブタンク2を変更することによって種々のラジエータ3に対応することにより、電子機器の製造が容易になる。   By the way, when the cooling device is used in an electronic device, the size and shape of the radiator 3 change according to changes in the heat dissipation amount and the heat dissipation efficiency. Therefore, it is necessary to change the size, capacity, number, and pipe diameter of the pumps. However, to change the pump for each electronic device, a small and complicated pump must be metal-worked according to each case, and the piping for the reserve tank 2 and the radiator 3 can be changed in various ways. There must be. It is difficult to cope with changes in the heat radiation amount and the heat radiation efficiency by such a method. On the other hand, since the reserve tank 2 can be relatively easily manufactured by a resin mold, it is easier to process than the pump. Therefore, in order to cope with the change of the radiator 3, the electronic device can be easily manufactured by changing the reserve tank 2 existing in the middle to cope with the various radiators 3.

なお、以上説明した実施の形態1の冷却装置は発熱部品であるマイクロプロセッサ等を最下部に配置して、受熱部1aを接触させ、その上にポンプ1、リザーブタンク2、ラジエータ3を順に積み重ねた配置としたものである。しかし、ポンプ1、リザーブタンク2、ラジエータ3の3要素は、必ずしもこの順に配置される必要はない。上下方向でなく横方向に配置したり、あるいは電子機器の部品のレイアウトによって別の順に変更せざるを得ない場合もある。本発明はこのように3要素の配列順を適宜変更できるものである。このとき、バイパス流路が形成される要素は、ポンプ、ラジエータとなったりするが、ポンプの場合ケーシング表面の隅角部等、ラジエータの場合一番外側のフィン等に設ければよい。   In the cooling device according to the first embodiment described above, the heat generating component such as a microprocessor is arranged at the bottom, the heat receiving portion 1a is brought into contact, and the pump 1, the reserve tank 2, and the radiator 3 are sequentially stacked thereon. It is what was arranged. However, the three elements of the pump 1, the reserve tank 2, and the radiator 3 are not necessarily arranged in this order. In some cases, it is necessary to arrange them in the horizontal direction instead of the vertical direction, or to change them in a different order depending on the layout of the components of the electronic device. In the present invention, the arrangement order of the three elements can be appropriately changed as described above. At this time, the element in which the bypass flow path is formed may be a pump or a radiator. However, in the case of a pump, the element may be provided on the outermost fin or the like in the case of a radiator.

本発明は、冷媒を循環させながら発熱部の熱を冷却する冷却装置およびそれを備えた電子機器に適用することができる。   The present invention can be applied to a cooling device that cools the heat of the heat generating portion while circulating the refrigerant, and an electronic device including the same.

本発明の実施の形態1における冷却装置全体の斜視図The perspective view of the whole cooling device in Embodiment 1 of this invention 本発明の実施の形態1における冷却装置の正面図Front view of cooling device according to Embodiment 1 of the present invention 本発明の実施の形態1における冷却装置の側面図Side view of cooling device according to Embodiment 1 of the present invention. 図2の冷却装置のリザーブタンクのA−A断面図AA sectional view of the reserve tank of the cooling device of FIG. 図4のリザーブタンクを抜き出した説明用の断面図Sectional drawing for description which extracted the reserve tank of FIG. 従来の冷却装置の構成を示すブロック図Block diagram showing the configuration of a conventional cooling device

符号の説明Explanation of symbols

1 ポンプ
1a 受熱部
2 リザーブタンク
3 ラジエータ
4 ベース
5 側板
6 天板
7 ラジエータパイプ
11 第1パイプ
12 第2パイプ
13 第3パイプ
14 第4パイプ
31,33 流入継手管
32,34 流出継手管
35 バイパス流路
DESCRIPTION OF SYMBOLS 1 Pump 1a Heat receiving part 2 Reserve tank 3 Radiator 4 Base 5 Side plate 6 Top plate 7 Radiator pipe 11 1st pipe 12 2nd pipe 13 3rd pipe 14 4th pipe 31, 33 Outflow joint pipe 32, 34 Outflow joint pipe 35 Bypass Flow path

Claims (5)

受熱部で受熱した冷媒液を循環させるためのポンプと、前記冷媒液が受熱した熱を放熱するラジエータと、冷媒液を収容し循環する冷媒液の気液分離を行って循環量を一定に保つリザーブタンクと、前記ポンプ,前記ラジエータ及び前記リザーブタンクの3要素間を互いに接続する循環流路とを備えるとともに、前記3要素が1方向に並んで配設された冷却装置であって、前記3要素の中間に配設された要素には、両側の2要素との間の循環流路をそれぞれ接続する2つの継手管と、前記2要素間同士をつなぐ循環流路を構成するために各要素からの2つの流路を中継するバイパス流路及びその接続を行う継手管が設けられたことを特徴とする冷却装置。 A pump for circulating the refrigerant liquid received by the heat receiving unit, a radiator for radiating the heat received by the refrigerant liquid, and gas-liquid separation of the refrigerant liquid that contains and circulates the refrigerant liquid to keep the circulation amount constant. A cooling device comprising a reserve tank, a circulation flow path connecting the three elements of the pump, the radiator, and the reserve tank to each other, wherein the three elements are arranged in one direction, The elements arranged in the middle of the elements include two joint pipes respectively connecting the circulation flow paths between the two elements on both sides, and each element for constituting a circulation flow path connecting the two elements. A cooling apparatus comprising a bypass flow path that relays two flow paths from and a joint pipe that connects the bypass flow path. 前記3要素が、下からポンプ、リザーブタンク、ラジエータの順に積み重ねられていることを特徴とする請求項1の冷却装置。 The cooling device according to claim 1, wherein the three elements are stacked in the order of a pump, a reserve tank, and a radiator from the bottom. 前記バイパス流路が、前記3要素で中間に配置された要素の表面に設けられたことを特徴とする請求項1または2記載の冷却装置。 The cooling device according to claim 1 or 2, wherein the bypass flow path is provided on a surface of an element arranged in the middle of the three elements. 前記リザーブタンクの高さが前記ラジエータの高さよりも低いことを特徴とする請求項2または3に記載の冷却装置。 The cooling device according to claim 2 or 3, wherein a height of the reserve tank is lower than a height of the radiator. 請求項1〜4のいずれかに記載の冷却装置を備え、前記冷却装置の受熱部が発熱部品に載置されたことを特徴とする冷却装置を備えた電子機器。 An electronic apparatus comprising the cooling device according to claim 1, wherein the heat receiving portion of the cooling device is placed on a heat-generating component.
JP2004287049A 2004-09-30 2004-09-30 Cooling apparatus and electronic appliance provided therewith Withdrawn JP2006100692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287049A JP2006100692A (en) 2004-09-30 2004-09-30 Cooling apparatus and electronic appliance provided therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287049A JP2006100692A (en) 2004-09-30 2004-09-30 Cooling apparatus and electronic appliance provided therewith

Publications (1)

Publication Number Publication Date
JP2006100692A true JP2006100692A (en) 2006-04-13

Family

ID=36240182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287049A Withdrawn JP2006100692A (en) 2004-09-30 2004-09-30 Cooling apparatus and electronic appliance provided therewith

Country Status (1)

Country Link
JP (1) JP2006100692A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035579A1 (en) 2006-09-19 2008-03-27 Nec Corporation Cooling apparatus
CN100533341C (en) * 2006-07-28 2009-08-26 富准精密工业(深圳)有限公司 Pump
CN101799711A (en) * 2010-03-22 2010-08-11 张国华 CPU phase-change radiator
US8261813B2 (en) 2008-04-24 2012-09-11 Hitachi, Ltd. Electronic device cooling apparatus and electronic device including the same
JP2020060360A (en) * 2018-10-13 2020-04-16 日本電産株式会社 Cooling device
JP7485126B2 (en) 2018-03-30 2024-05-16 ニデック株式会社 Cooling system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100533341C (en) * 2006-07-28 2009-08-26 富准精密工业(深圳)有限公司 Pump
WO2008035579A1 (en) 2006-09-19 2008-03-27 Nec Corporation Cooling apparatus
US8432695B2 (en) 2006-09-19 2013-04-30 Nec Corporation Cooling device
US8261813B2 (en) 2008-04-24 2012-09-11 Hitachi, Ltd. Electronic device cooling apparatus and electronic device including the same
CN101799711A (en) * 2010-03-22 2010-08-11 张国华 CPU phase-change radiator
JP7485126B2 (en) 2018-03-30 2024-05-16 ニデック株式会社 Cooling system
JP2020060360A (en) * 2018-10-13 2020-04-16 日本電産株式会社 Cooling device
JP7187962B2 (en) 2018-10-13 2022-12-13 日本電産株式会社 Cooling system

Similar Documents

Publication Publication Date Title
US20070070604A1 (en) Cooling device and electronic apparatus having cooling device
TW201115102A (en) Cooled electronic module with pump-enhanced, dielectric fluid immersion-cooling
US20070070600A1 (en) Electronic apparatus
US20110214840A1 (en) Boiling heat transfer device
JP6228730B2 (en) Radiator, electronic device and cooling device
JP5664397B2 (en) Cooling unit
JP2006207881A (en) Cooling device and electronic apparatus comprising the same
JP2010122887A (en) Server device
JP2005228810A (en) Liquid circulation cooling device
CN102834688A (en) Phase change cooler and electronic equipment provided with same
JP2005122503A (en) Cooling apparatus and electronic equipment incorporating the same
EP2816881A1 (en) Cooling device and cooling system
JP2008287733A (en) Liquid cooling system
JP6570635B2 (en) Cooling device for hydraulic mechanism and use of cooling device
JP2008227150A (en) Electronic apparatus
JP4899997B2 (en) Thermal siphon boiling cooler
JP2006100692A (en) Cooling apparatus and electronic appliance provided therewith
JP5117287B2 (en) Electronic equipment cooling system
US20170181319A1 (en) Cooling apparatus
JP2013033807A (en) Cooling device and electronic apparatus using the same
JP5760797B2 (en) Cooling unit
JP5193099B2 (en) Cooling system
JP4517962B2 (en) Cooling device for electronic equipment
CN115036279A (en) Heat sink and cooling unit
JP2007004765A (en) Liquid-cooled computer device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070628

RD01 Notification of change of attorney

Effective date: 20070712

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20071001