JP2006100652A - Photovoltaic device - Google Patents

Photovoltaic device Download PDF

Info

Publication number
JP2006100652A
JP2006100652A JP2004286198A JP2004286198A JP2006100652A JP 2006100652 A JP2006100652 A JP 2006100652A JP 2004286198 A JP2004286198 A JP 2004286198A JP 2004286198 A JP2004286198 A JP 2004286198A JP 2006100652 A JP2006100652 A JP 2006100652A
Authority
JP
Japan
Prior art keywords
height
photovoltaic device
valleys
photoelectric conversion
eva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004286198A
Other languages
Japanese (ja)
Inventor
Takeshi Yamamoto
武志 山本
Takeshi Nakajima
武 中島
Eiji Maruyama
英治 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004286198A priority Critical patent/JP2006100652A/en
Publication of JP2006100652A publication Critical patent/JP2006100652A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric converter with high reliability and excellent anti-environmental performance by preventing the adhesion strength between a photoelectric conversion element (cell) and a sealing resin from being decreased. <P>SOLUTION: The photovoltaic device is module-designed by sealing the photoelectric conversion element employing a single crystal silicon substrate 1 subjected to charge electron control, and having an irregular surface in the microne order between a front glass and a backside member by means of a hot melt type filling member. The device has an SiOx layer 20 wherein the unevenness pitch of the irregularities of the outermost surface on at least the light incident side is controlled to be 0.8 h or below, in which h is the unevenness pitch of the irregularities of the single crystal silicon substrate 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、光起電力装置に関し、特に、表面ガラスと裏面材との間にホットメルト型充填材で封止されてモジュール化される光起電力装置に関するものである。   The present invention relates to a photovoltaic device, and in particular, to a photovoltaic device that is sealed with a hot-melt filler between a front glass and a back material and modularized.

近年、光起電力装置として、単結晶シリコンや多結晶シリコン等の結晶系半導体を用いた太陽電池の研究および実用化が盛んに行なわれている。中でも、非晶質シリコンと結晶系シリコンとを組合せることにより構成されたヘテロ半導体接合を有する太陽電池は、その接合を200℃以下のプラズマCVD法などの低温プロセスで形成することができ、かつ、高い変換効率が得られることから、注目を集めている。このような光起電力素子において、光電変換効率を向上させるためには、高い短絡電流(Isc)および開放電圧(Voc)を維持しつつ曲線因子(F.F.)を向上させる必要がある。   In recent years, as photovoltaic devices, research and practical application of solar cells using crystalline semiconductors such as single crystal silicon and polycrystalline silicon have been actively conducted. Among them, a solar cell having a hetero semiconductor junction constituted by combining amorphous silicon and crystalline silicon can form the junction by a low temperature process such as a plasma CVD method at 200 ° C. or less, and Because of its high conversion efficiency, it has attracted attention. In such a photovoltaic device, in order to improve the photoelectric conversion efficiency, it is necessary to improve the fill factor (FF) while maintaining a high short circuit current (Isc) and an open circuit voltage (Voc).

そこで、n型単結晶シリコン基板と水素を含有したp型非晶質シリコン層との間に、水素を含有した実質的に真性な非晶質シリコン層(i型非晶質シリコン層)が挿入された所謂HIT構造を有する太陽電池が開発されている(例えば、特許文献1参照)。   Therefore, a substantially intrinsic amorphous silicon layer containing hydrogen (i-type amorphous silicon layer) is inserted between the n-type single crystal silicon substrate and the p-type amorphous silicon layer containing hydrogen. A solar cell having a so-called HIT structure has been developed (see, for example, Patent Document 1).

上記したHIT構造を有する太陽電池においては、光閉じ込め効果を得る為に、単結晶シリコン基板表面にミクロンサイズのピラミッド状の凹凸が形成されている。そして、この単結晶シリコン基板上に、i型非晶質シリコン層、pまたはn型非晶質シリコン層、酸化物透明導電膜が順次設けられ、酸化物透明導電膜上に電極ペーストからなる集電極が設けられる。   In the solar cell having the above-described HIT structure, micron-sized pyramidal irregularities are formed on the surface of the single crystal silicon substrate in order to obtain a light confinement effect. Then, an i-type amorphous silicon layer, a p-type or n-type amorphous silicon layer, and an oxide transparent conductive film are sequentially provided on the single crystal silicon substrate, and an electrode paste is formed on the oxide transparent conductive film. An electrode is provided.

屋根などに設置する太陽光発電システムにおいては、表面ガラスと裏面材との間にEVA(エチレン・ビニル・アセテート)などのホットメルト型充填材で上記したHIT構造を有する光電変換素子を封止してモジュール化されて用いられている。
特開平11−224954号公報
In a photovoltaic power generation system installed on a roof or the like, a photoelectric conversion element having the above-mentioned HIT structure is sealed with a hot-melt filler such as EVA (ethylene vinyl acetate) between the front glass and the back material. It is modularized and used.
JP-A-11-224954

上記したモジュール化した光起電力装置に過度の耐環境試験を行なった場合、凹凸の谷部での光電変換素子(セル)とEVAとの間の密着強度が相対的に低下している場合があった。屋根などに設置する太陽光発電システムにおいては、従来の民生用太陽電池装置に比べて高い耐環境信頼性が要求される。   When an excessive environmental resistance test is performed on the above-described modularized photovoltaic device, the adhesion strength between the photoelectric conversion element (cell) and the EVA in the uneven valley may be relatively lowered. there were. A solar power generation system installed on a roof or the like requires higher environmental reliability than a conventional consumer solar cell device.

この発明は、上記した事情に鑑みなされたものにして、光電変換素子(セル)と封止樹脂との間の密着強度の低下を防ぎ、高信頼性、高耐環境性に優れた光電変換装置を提供することを課題とする。   The present invention has been made in view of the above circumstances, and prevents a decrease in adhesion strength between the photoelectric conversion element (cell) and the sealing resin, and is excellent in high reliability and high environmental resistance. It is an issue to provide.

この発明は、荷電子制御されかつミクロンオーダーの凹凸表面を有する結晶系シリコンを用いた光起電力素子を表面ガラスと裏面材との間にホットメルト型充填材で封止されてモジュール化される光起電力装置において、結晶系シリコンの凹凸の山谷高さをhとすると、少なくとも光入射側に、最表面の凹凸の山谷高さが0.8h以下となるように制御した無機薄膜保護層を設けたことを特徴とする。   In the present invention, a photovoltaic element using crystalline silicon that is controlled by valence electrons and has an uneven surface on the order of microns is sealed with a hot-melt filler between a surface glass and a back surface material to be modularized. In the photovoltaic device, an inorganic thin film protective layer controlled so that the height of the ridges and valleys on the outermost surface is 0.8 h or less is provided at least on the light incident side, where h is the height of the ridges and valleys of crystalline silicon. It is provided.

また、結晶系シリコンの凹凸の山谷高さhに対して、少なくとも光入射側に無機薄膜保護層を最表面の凹凸の山谷高さが0.4h以下となるように制御するとよい。   Further, it is preferable to control the inorganic thin film protective layer at least on the light incident side so that the peak height of the concave and convex portions on the outermost surface is 0.4 h or less with respect to the peak height h of the concave and convex portions of the crystalline silicon.

また、前記無機薄膜保護層は少なくとも珪素を含んだものを用いるとよい。   The inorganic thin film protective layer may be one containing at least silicon.

また、前記ホットメルト型充填材とは、エチレンビニールアセテート(EVA)、ポリビニールブチラール(PVB)、エチレン−アクリル酸メチル共重合体(EMA)、エチレン−アクリル酸エチル共重合体(EEA)の中のいずれかから選択すればよい。   The hot-melt type fillers are ethylene vinyl acetate (EVA), polyvinyl butyral (PVB), ethylene-methyl acrylate copolymer (EMA), and ethylene-ethyl acrylate copolymer (EEA). You may choose from either.

この発明は、ミクロンオーダーの凹凸表面を有する結晶系シリコンを用いた光起電力素子を表面ガラスと裏面材との間にホットメルト型充填材で封止されてモジュール化される光起電力装置において、結晶系シリコンの凹凸山谷高さhに対して、少なくとも光入射側に無機薄膜保護層を最表面の凹凸山谷高さが0.4h以下となるように制御するべく形成することで、過度の対環境試験を行なった後での光電変換素子(セル)/充填材間の密着強度が大幅に改善し、高信頼性、高耐環境性に優れた光電変換装置を提供することができる。   The present invention relates to a photovoltaic device in which a photovoltaic element using crystalline silicon having a concavo-convex surface of micron order is sealed with a hot-melt filler between a front glass and a back material to form a module. By forming the inorganic thin film protective layer at least on the light incident side so as to control the uneven surface valley height of the outermost surface to be 0.4 h or less with respect to the uneven surface valley height h of the crystalline silicon, The adhesion strength between the photoelectric conversion element (cell) / filler after the environmental test is significantly improved, and a photoelectric conversion device having high reliability and high environmental resistance can be provided.

以下、この発明の実施形態につき、図面を参照して説明する。図1は、この発明が適用されるHIT構造を有する光電変換素子を用いた太陽電池モジュールの断面構造概念図である。図1の(b)は、(a)のb部分の部分拡大断面図、(c)はc部分の部分拡大断面図である。なお、基板上に形成される非晶質シリコン層の膜厚は、基板の膜厚に比べて非常に薄く、そのままの比率では、非晶質シリコン層等は記載できないので、これら図においては、あえて比率を無視して非晶質シリコン層等を記載している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram of a cross-sectional structure of a solar cell module using a photoelectric conversion element having a HIT structure to which the present invention is applied. FIG. 1B is a partially enlarged sectional view of a portion b of FIG. 1A, and FIG. 1C is a partially enlarged sectional view of a portion c. The film thickness of the amorphous silicon layer formed on the substrate is very thin compared to the film thickness of the substrate, and the amorphous silicon layer or the like cannot be described with the same ratio. The amorphous silicon layer and the like are described by ignoring the ratio.

このHIT構造の光電変換素子(セル)においては、光閉じ込め効果を得る為に、単結晶シリコン基板1表面にミクロンサイズのピラミッド状の凹凸が形成されている。単結晶シリコン基板1には、次に示す異方性エッチング工程によりピラミッド状の凹凸が形成される。   In this photoelectric conversion element (cell) having the HIT structure, micron-sized pyramidal irregularities are formed on the surface of the single crystal silicon substrate 1 in order to obtain a light confinement effect. The single crystal silicon substrate 1 is formed with pyramidal irregularities by the following anisotropic etching process.

まず、最初に約1Ω・cm、厚さ300μmのn型(100)単結晶シリコン基板1を用意し、この基板をNaOH(2.5mol/l、85℃)の溶液に浸け、続いて、NaOH/IPA(0.5mol/lNaOH、2mol/lIPA、85℃)の溶液に浸けエッチングを施す。その後、H2Oリンス(室温)で洗浄し、さらに、HF/H2O(2mol/l HF 室温)で洗浄する。 First, an n-type (100) single crystal silicon substrate 1 having a thickness of about 1 Ω · cm and a thickness of 300 μm is prepared, and this substrate is immersed in a solution of NaOH (2.5 mol / l, 85 ° C.), followed by NaOH. / IPA (0.5 mol / l NaOH, 2 mol / l IPA, 85 ° C.) is dipped and etched. Thereafter, the substrate is washed with H 2 O rinse (room temperature), and further washed with HF / H 2 O (2 mol / l HF room temperature).

そして、H2Oリンス(室温)処理をした後、HF/HNO3(1:10、室温)溶液に30秒間浸け、H2Oリンス(室温)処理を行う。その後、O3/H2O(15ppm、室温)5分間処理し、H2Oリンス(室温)、HF/H2O(2mol/l HF 室温)での洗浄、H2Oリンス(室温)処理の工程を行う。この処理により、洗浄および凹凸形成を行なった。 Then, after H 2 O rinsing (room temperature) treatment, the substrate is immersed in a HF / HNO 3 (1:10, room temperature) solution for 30 seconds to perform H 2 O rinsing (room temperature) treatment. Thereafter, O 3 / H 2 O (15 ppm, room temperature) is treated for 5 minutes, H 2 O rinse (room temperature), HF / H 2 O (2 mol / l HF room temperature), H 2 O rinse (room temperature) treatment The process is performed. By this treatment, cleaning and uneven formation were performed.

この手法で形成した凹凸は、平均山谷高さ(h)が約10μm、平均ピッチ(W)が約17μmであった。通常(100)単結晶シリコン基板1の異方性エッチングでは、平均山谷高さ(h)より、平均ピッチ(W)の方が大きくなる。   The unevenness formed by this method had an average mountain valley height (h) of about 10 μm and an average pitch (W) of about 17 μm. In the anisotropic etching of the normal (100) single crystal silicon substrate 1, the average pitch (W) is larger than the average peak / valley height (h).

次に、公知のプラズマCVD法により、単結晶シリコン基板1の表面側にi型非晶質シリコン層とp型非晶質シリコン層を積層した非晶質半導体層2、単結晶シリコン基板1の裏面側にi型非晶質シリコン層とn型非晶質シリコン層を積層した非晶質半導体層4が形成される。その後、非晶質半導体層2,4上にスパッタ法にて両面に酸化物透明導電膜3,5をそれぞれ成膜した。そして、表裏の電極ペーストにより集電極6,7が形成され、HIT構造の光電変換素子(セル)が形成される。   Next, the amorphous semiconductor layer 2 in which the i-type amorphous silicon layer and the p-type amorphous silicon layer are stacked on the surface side of the single crystal silicon substrate 1 and the single crystal silicon substrate 1 are formed by a known plasma CVD method. An amorphous semiconductor layer 4 in which an i-type amorphous silicon layer and an n-type amorphous silicon layer are stacked is formed on the back side. Thereafter, oxide transparent conductive films 3 and 5 were formed on both surfaces of the amorphous semiconductor layers 2 and 4 by sputtering. And the collector electrodes 6 and 7 are formed by the electrode paste of front and back, and the photoelectric conversion element (cell) of a HIT structure is formed.

上記した非晶質半導体層は、公知のRFプラズマCVD(13.56MHz)を用いて形成温度100℃〜250℃、反応圧力は26.6〜80.0Pa、RFパワーは10〜100Wにて形成した。p型非晶質シリコン層、n型非晶質シリコン層の膜厚はそれぞれ5nm、i型非晶質シリコン層の膜厚は5nmとした。   The amorphous semiconductor layer described above is formed using a known RF plasma CVD (13.56 MHz) at a forming temperature of 100 ° C. to 250 ° C., a reaction pressure of 26.6 to 80.0 Pa, and an RF power of 10 to 100 W. did. The thickness of the p-type amorphous silicon layer and the n-type amorphous silicon layer was 5 nm, and the thickness of the i-type amorphous silicon layer was 5 nm.

また、酸化物透明導電膜3,5としては、酸化物インジウム錫(ITO)膜を用いた。ITO(SnO2ドープ)膜は、公知のマグネトロンスパッタを用いて形成温度50〜250℃、ガス流量Ar〜200sccm、O2〜50sccm、パワー0.5〜3kw、磁場強度500〜3000Gaussにて表裏ともに100nmの膜厚にて形成した。 As the oxide transparent conductive films 3 and 5, an oxide indium tin (ITO) film was used. The ITO (SnO 2 doped) film is formed using a known magnetron sputtering at a forming temperature of 50 to 250 ° C., a gas flow rate of Ar to 200 sccm, an O 2 to 50 sccm, a power of 0.5 to 3 kw, and a magnetic field strength of 500 to 3000 Gauss. The film was formed with a thickness of 100 nm.

次に、ペーストからなる集電極6、7は、公知のスクリーン印刷法を用いて、主たるバインダー樹脂としてエポキシにて構成されているAg電極ペーストを用いて形成した。   Next, the collector electrodes 6 and 7 made of paste were formed using an Ag electrode paste made of epoxy as a main binder resin using a known screen printing method.

ところで、太陽電池モジュールは、表面ガラス10の上にEVA(エチレンビニールアセテート)シート11、銅箔からなるタブ電極12をAgペーストの集電極(バスバー電極)6,7上に半田付けした光電変換素子(セル)、EVAシート11、PVF(ポリフッ化ビニール)シート(裏面材)13を順次積層し、加熱および真空ラミネート処理を行なって作成している。   By the way, the solar cell module is a photoelectric conversion element in which an EVA (ethylene vinyl acetate) sheet 11 and a tab electrode 12 made of copper foil are soldered onto the collector electrodes (bus bar electrodes) 6 and 7 of Ag paste on the surface glass 10. (Cell), EVA sheet 11, and PVF (polyvinyl fluoride) sheet (back material) 13 are laminated in order, and are heated and vacuum laminated.

この実施形態では、このHIT構造の光電変換素子(セル)1枚を用いた簡易モジュール構造としており、表面ガラス10と反対の光電変換素子(セル)表面側は市販品と比べて透湿度が大幅に高く、信頼性試験をより厳しい条件で行う加速構造となっている。   In this embodiment, a simple module structure using one photoelectric conversion element (cell) of this HIT structure is used, and the surface of the photoelectric conversion element (cell) opposite to the surface glass 10 has a large moisture permeability compared to a commercially available product. It is an accelerated structure that performs reliability tests under stricter conditions.

従来のHIT構造の光電変換素子(セル)を用いて、図1に示す簡易モジュールを作成し、過度の耐湿試験(温度85℃、湿度85%、3000時間)を行った。試験後のサンプルの光起電力素子とEVA間の引き剥がし試験において、凹凸の谷部の密着強度が相対的に弱い領域が存在する事が確認された。これは、EVAが架橋する工程において、内部応力が発生し、凹凸の谷部で特に応力が集中していることが寄与している可能性がある。   A simple module shown in FIG. 1 was prepared using a photoelectric conversion element (cell) having a conventional HIT structure, and an excessive moisture resistance test (temperature 85 ° C., humidity 85%, 3000 hours) was performed. In the peeling test between the photovoltaic element and EVA of the sample after the test, it was confirmed that there was a region where the adhesion strength of the concave and convex valley portions was relatively weak. This may be due to the fact that internal stress is generated in the process of EVA cross-linking, and stress is particularly concentrated in the valleys of the unevenness.

本発明者等は、凹凸の山谷高さが密着強度を左右することを見いだし、光電変換素子(セル)上へ透明金属酸化物薄膜等を設け、この薄膜の凹凸を制御することで、密着強度を改善することを試みた。   The present inventors have found that the height of the uneven valleys affects the adhesion strength, and provided a transparent metal oxide thin film or the like on the photoelectric conversion element (cell), and controlled the unevenness of this thin film, thereby improving the adhesion strength. Tried to improve.

まず、光電変換素子(セル)上へ透明金属酸化物薄膜等を設け、ブラスト処理を行い凹凸の大きさを制御する第1の実施形態につき、図2ないし図5を参照して説明する。   First, a first embodiment in which a transparent metal oxide thin film or the like is provided on a photoelectric conversion element (cell) and blasting is performed to control the size of the unevenness will be described with reference to FIGS.

この発明の実施形態である凹凸の高さを制御する為に、図2に示すように、ペースト電極6、7を形成した光起電力素子上の光入射側、裏面側にイオンプレーティング法を用いてAr流量150sccm、ガン電流150Aの条件にて、SiOx膜20(X:1.5〜2)を20μm形成した。この膜厚は搬送速度で制御した。   In order to control the height of the unevenness according to the embodiment of the present invention, as shown in FIG. 2, ion plating is performed on the light incident side and the back side on the photovoltaic element on which the paste electrodes 6 and 7 are formed. The SiOx film 20 (X: 1.5-2) was formed to 20 μm under the conditions of an Ar flow rate of 150 sccm and a gun current of 150 A. This film thickness was controlled by the conveyance speed.

次に、ブラスト装置として、新東ブレーター製MB1−ML−011を用いて圧縮空気により、アルミナ(Al23)微粒子を基板表面に均一に照射し、同一条件で光入射側、裏面側の表面凹凸を処理時間により制御した。研磨剤としては、平均粒径5μmのAl23を用いた。 Next, as a blasting device, MB1ML-011 manufactured by Shinto Blator is used to uniformly irradiate the substrate surface with alumina (Al 2 O 3 ) fine particles by compressed air, and the light incident side and back surface side are irradiated under the same conditions. Surface irregularities were controlled by treatment time. As the abrasive, Al 2 O 3 having an average particle diameter of 5 μm was used.

図2は、SiOx膜20を形成直後の光入射側表面の断面SEMイメージ図であり、同図(b)は、同図(a)のb部分の部分拡大図である。今回用いた単結晶シリコン基板1は、平均山谷高さ(h)が約10μm、平均ピッチ(W)が約17μmであり、その上に垂直方向に20μmのSiOx層20を形成している。   FIG. 2 is a cross-sectional SEM image view of the light incident side surface immediately after the formation of the SiOx film 20, and FIG. 2B is a partially enlarged view of a portion b of FIG. The single crystal silicon substrate 1 used this time has an average ridge / valley height (h) of about 10 μm and an average pitch (W) of about 17 μm, and a 20 μm SiOx layer 20 is formed thereon.

PVDライクな手法で凹凸基板1上に膜を形成すると、山、谷それぞれで凹凸が鈍る事が知られているが、この実施形態では、山谷高さにして0.05μm程度の変化が見られ、表面凹凸高さhは9.95μmとなった。この凹凸の鈍りは、製法および薄膜の形成膜厚に依存すると考えられるが、スパッタリングやイオンプレーティングでは、変化はほぼ無視できること(山谷高さの1%以下)を確認した。   When a film is formed on the concavo-convex substrate 1 by a PVD-like method, it is known that the concavo-convex becomes dull at each of the peaks and troughs, but in this embodiment, a change of about 0.05 μm is seen in the height of the ridges and valleys. The surface irregularity height h was 9.95 μm. It is considered that the unevenness of the unevenness depends on the manufacturing method and the film thickness of the thin film, but it was confirmed that the change can be almost ignored in sputtering and ion plating (1% or less of the height of the valley).

次に、図3はブラスト処理後の光入射側表面の断面SEMイメージ図である。ブラスト処理により、20μm厚のSiOx層20の膜厚が10.6μmに減少し、更に、表面凹凸高さh2が約4μmとなった。このように、ブラスト処理時間の増加に伴い、SiOx層20の膜厚が減少し、表面凹凸高さが小さくなることを利用して光起電力素子サンプルを作成した。また、同一サンプルの裏面側も全く同じ手法により、表面凹凸高さを揃えたサンプルとした。   Next, FIG. 3 is a cross-sectional SEM image of the light incident side surface after blasting. As a result of the blast treatment, the film thickness of the 20 μm thick SiOx layer 20 was reduced to 10.6 μm, and the surface unevenness height h2 was about 4 μm. Thus, a photovoltaic element sample was prepared by utilizing the fact that the film thickness of the SiOx layer 20 decreased and the surface unevenness height became smaller as the blast treatment time increased. Further, the back surface side of the same sample was also made a sample with uniform surface unevenness height by the same method.

このサンプルを用いて前述した方法で簡易モジュールを作成し、耐湿試験(温度85℃、湿度85%、3000時間)を行なった。試験後のEVAと表面凹凸制御光起電力素子の間の密着性を評価した。評価は、図4に示す引き剥がし強度測定器40を用いて測定した。測定は、光入射側の半田コート銅箔タブ12の端部をクリップ41で挟み、図示しないハンドルを回すことにより、銅箔タブ12が剥離するまでクリップ41を引っ張て引き剥がし強度の最大値を測定することにより、強度を測定している。   Using this sample, a simple module was prepared by the method described above, and a moisture resistance test (temperature 85 ° C., humidity 85%, 3000 hours) was performed. The adhesion between the EVA after the test and the surface roughness control photovoltaic device was evaluated. The evaluation was performed using a peel strength measuring device 40 shown in FIG. For measurement, the end of the solder-coated copper foil tab 12 on the light incident side is sandwiched between the clips 41, and a handle (not shown) is rotated to pull the clip 41 until the copper foil tab 12 is peeled off, and to pull the maximum strength. By measuring, the strength is measured.

密着強度は、コーティングなしの山谷高さ10μmの光電変換素子(セル)/EVA間の密着強度にて規格化し、規格化強度として評価した。   The adhesion strength was normalized by the adhesion strength between the photoelectric conversion element (cell) / EVA having a height of 10 μm without any coating and evaluated as normalized strength.

その結果を図5に示す。図5より、SiOx膜20を形成し、ブラスト処理をしない場合でも規格化強度が13〜18%程度改善した。これは、ITO膜表面に比べてSiOx膜表面の方がEVAとの良好な密着性を実現できることを示しており、表面での−OH基の量と関係があると考えられる。更に、山谷高さを制御して小さくするに従って規格化強度が改善し、山谷高さ4μm以下で規格化強度2以上の極めて良好な密着性が確認された。SiOx膜の表面の状態は、1μm以上の膜厚であれば膜厚変化には依存しないと考えられ、本密着強度の改善は凹凸表面の山谷高さを小さくすることにより、EVAの膜応力の集中を抑制したことによると考えられる。   The result is shown in FIG. From FIG. 5, the normalized strength was improved by about 13 to 18% even when the SiOx film 20 was formed and blasting was not performed. This indicates that the SiOx film surface can achieve better adhesion with EVA than the ITO film surface, and is considered to be related to the amount of —OH groups on the surface. Furthermore, the normalized strength was improved as the height of the valleys was controlled and decreased, and very good adhesiveness with a height of 4 μm or less and a normalized strength of 2 or more was confirmed. The state of the surface of the SiOx film is considered to be independent of the film thickness change if the film thickness is 1 μm or more. The improvement of the adhesion strength is achieved by reducing the height of the valleys on the uneven surface, thereby reducing the EVA film stress. This is thought to be due to the suppression of concentration.

次に、この発明の第2の実施形態につき図6ないし図10を参照して説明する。この第2の実施形態はポリシラザンを塗布して凹凸表面の山谷の高さを制御している。   Next, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, polysilazane is applied to control the height of peaks and valleys on the uneven surface.

Si−N(珪素ー窒素)結合を持つ化合物をシラザンと呼び、ポリシラザン(Polysilazane)は、−(SiH2NH)−を基本ユニットとする有機溶剤に可溶な無機ポリマーで、ベルヒドロポロシラザン(PHPS=側鎖全部が水素のポリシラザン)が正確な物質名である。前述した手法で図6に示す如く、平均山谷高さが約10μm、平均ピッチWが約17μmの光起電力素子を用意した。図6は、光入射側表面の断面SEMイメージ図であり、同図(b)は、同図(a)のb部分の部分拡大図である。 A compound having a Si—N (silicon-nitrogen) bond is called silazane. Polysilazane is an inorganic polymer soluble in an organic solvent having — (SiH 2 NH) — as a basic unit. PHPS = polysilazane whose entire side chain is hydrogen) is an accurate substance name. As shown in FIG. 6, a photovoltaic element having an average mountain valley height of about 10 μm and an average pitch W of about 17 μm was prepared by the above-described method. FIG. 6 is a cross-sectional SEM image of the light incident side surface, and FIG. 6B is a partially enlarged view of a portion b of FIG.

図6に示すITO膜3上にキシレン溶媒に体積濃度1〜20%でポリシラザンを溶解した溶液を準備し、本溶液に光起電力素子をディップし、エアーナイフで均一に基板表面に塗布した。その後、大気中で200℃、1時間の乾燥を行い本発明のサンプルを作成した。図7は、ポリシラザンの乾燥後の光入射側表面の断面SEMイメージ図の一例(山谷高さ〜4μm)である。   A solution in which polysilazane was dissolved in a xylene solvent at a volume concentration of 1 to 20% was prepared on the ITO film 3 shown in FIG. 6, and a photovoltaic device was dipped in this solution, and uniformly applied to the substrate surface with an air knife. Then, the sample of this invention was created by drying at 200 degreeC for 1 hour in air | atmosphere. FIG. 7 is an example of a cross-sectional SEM image diagram of the light incident side surface after drying of polysilazane (Yamatani height to 4 μm).

図8は、ポリシラザンの濃度と乾燥後のSiOx膜25の表面山谷高さの関係である。ポリシラザン溶液は液状である為に、表面凹凸の谷部への堆積が相対的に大きくなる。この実施形態でも、ポリシラザン濃度を高めるほど、凹凸の谷部でのSiOx膜の堆積が厚くなり、結果として、例えば、図7の如く表面山谷高さが小さくなった。   FIG. 8 shows the relationship between the concentration of polysilazane and the height of the surface peaks and valleys of the SiOx film 25 after drying. Since the polysilazane solution is liquid, deposition on the valleys of the surface irregularities is relatively large. Also in this embodiment, the higher the polysilazane concentration is, the thicker the SiOx film is deposited on the uneven valleys. As a result, for example, the height of the surface valleys is reduced as shown in FIG.

図8の条件で作成した表面凹凸高さを制御した光起電力素子(セル)を用いて、前述した手順で簡易モジュールを作成し、第1の実施形態と同様に耐湿試験(温度85℃、湿度85%、3000時間)を行なった。試験後のEVA/表面凹凸制御光起電力素子の間の密着性を評価した。評価は、光入射側の半田コート銅箔タブの端部をクリップで挟み、図4に示す引き剥がし強度測定器にて同様に強度を評価した。   Using a photovoltaic element (cell) with controlled surface unevenness height created under the conditions of FIG. 8, a simple module is created by the procedure described above, and a moisture resistance test (temperature 85 ° C., as in the first embodiment). (Humidity 85%, 3000 hours). The adhesion between the EVA / surface roughness control photovoltaic element after the test was evaluated. For evaluation, the end of the solder-coated copper foil tab on the light incident side was sandwiched with clips, and the strength was similarly evaluated with a peel strength measuring instrument shown in FIG.

その結果を図9に示す。規格化密着強度は、ポリシラザン塗布なしの場合のEVA/光起電力素子(セル)の密着強度で規格化した。   The result is shown in FIG. The normalized adhesion strength was normalized by the adhesion strength of EVA / photovoltaic element (cell) without polysilazane coating.

図9より、山谷高さ9.7μmにおいて規格化強度が13〜15%程度改善した。これは、凹凸減少効果に加えてITO表面に比べてSiOx表面の方がEVAとの良好な密着性を実現できることを示しており、第1の実施形態と同様に表面での−OH基の量と関係があると考えられる。更に、山谷高さを制御して小さくするに従って規格化強度が改善し、山谷高さ4μm以下で規格化強度2以上の極めて良好な密着性が確認された。   From FIG. 9, the normalized strength was improved by about 13 to 15% at the height of the valley and valleys of 9.7 μm. This indicates that in addition to the unevenness reducing effect, the SiOx surface can achieve better adhesion with EVA than the ITO surface, and the amount of —OH groups on the surface as in the first embodiment. It seems to be related. Furthermore, the normalized strength was improved as the height of the valleys was controlled and decreased, and very good adhesiveness with a height of 4 μm or less and a normalized strength of 2 or more was confirmed.

更に、ポリシラザン塗布前の平均凹凸山谷高さ約8μm、平均ピッチ約13μmの基板を用いて、前述同様にポリシラザン濃度により、SiOx膜25を形成後の表面平均凹凸山谷高さを制御したサンプルの簡易モジュールでの耐湿試験(温度85℃、湿度85%、3000時間)を行なった。図10は、試験後のEVA/表面凹凸制御光起電力素子の間の密着性を評価した結果である。規格化密着強度は、ポリシラザン塗布前の平均凹凸山谷高さ約8μm、平均ピッチ約13μmの場合のEVA/光起電力素子の密着強度で規格化した。図10より、平均凹凸山谷高さ6.4μmで既に1.5以上の規格化密着強度、平均凹凸山谷高さ3.2μmで規格化密着強度2以上が得られた。   Furthermore, using a substrate having an average unevenness and valley height of about 8 μm and an average pitch of about 13 μm before polysilazane coating, a simple sample in which the surface average unevenness and valley height after formation of the SiOx film 25 is controlled by the polysilazane concentration as described above. The module was subjected to a moisture resistance test (temperature 85 ° C., humidity 85%, 3000 hours). FIG. 10 shows the results of evaluating the adhesion between the EVA and the surface unevenness control photovoltaic element after the test. The normalized adhesion strength was normalized by the adhesion strength of the EVA / photovoltaic element when the average unevenness and valley height before application of polysilazane was about 8 μm and the average pitch was about 13 μm. As shown in FIG. 10, a normalized adhesion strength of 1.5 or more was already obtained at an average irregularity mountain valley height of 6.4 μm, and a normalized adhesion strength of 2 or more was obtained at an average irregularity mountain valley height of 3.2 μm.

以上の如く第1、第2の実施形態ともに平均凹凸山谷高さにして図5,図9の場合には4μm、図10の場合には、3.2μmすなわち0.4hで規格化強度2以上が実現されている。また図5,図9の場合には8μm、図10の場合には6.4μmすなわち0.8hで規格化強度1.5以上が確認された。両実施形態において、SiOx膜厚が大きく異なることにより、表面の凹凸山谷高さ制御によるEVA/光起電力素子間の応力分散が密着性改善に寄与していると考えられる。   As described above, in both the first and second embodiments, the average unevenness and valley height is set to 4 μm in the case of FIGS. 5 and 9, and in the case of FIG. 10, the normalized strength is 2 or more at 3.2 μm, that is, 0.4 h. Is realized. 5 and 9, a normalized strength of 1.5 or more was confirmed at 8 μm and in the case of FIG. 10 at 6.4 μm, that is, 0.8 h. In both the embodiments, the SiOx film thickness is greatly different, so that it is considered that the stress distribution between the EVA / photovoltaic element by controlling the height of the irregularities on the surface contributes to the improvement of the adhesion.

また、上記実施形態では、光入射側の光起電力素子/EVA間密着強度を評価したが、裏面側の光起電力素子(セル)/EVA間密着強度も同じ傾向を確認した。   Moreover, in the said embodiment, although the adhesive strength between photovoltaic elements / EVA by the side of light incidence was evaluated, the same tendency was confirmed also in the adhesive strength between photovoltaic elements (cell) / EVA by the side of a back surface.

また、本効果は、透明導電膜としてITOを用いた場合だけではなく、ZnO等の他の導電性金属酸化膜を用いた場合にも有効であることは言うまでも無い。   Needless to say, this effect is effective not only when ITO is used as the transparent conductive film but also when another conductive metal oxide film such as ZnO is used.

なお、上記した実施形態においては、ホットメルト型充填材としてはEVAを用いたが、EVA以外にポリビニルブチラール(PVB)、エチレン−アクリル酸メチル共重合体(EMA)、エチレン−アクリル酸エチル共重合体(EEA)など太陽光透過率が高く耐環境性が良好な材料であれば良いことは容易に想像できる。   In the above-described embodiment, EVA is used as the hot-melt filler, but in addition to EVA, polyvinyl butyral (PVB), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer It can be easily imagined that a material having high sunlight transmittance and good environmental resistance such as coalescence (EEA) may be used.

さらに、上記した実施形態においては、HIT構造の太陽電池光電変換素子(セル)を用いた場合について説明したが、他の結晶系太陽電池光電変換素子(セル)、例えば、単結晶の接合型太陽電池光電変換素子(セル)や、多結晶の太陽電池光電変換素子(セル)など、基板に凹凸形状が設けられている太陽電池光電変換素子(セル)に対して、この発明は適用できる。   Furthermore, in the above-described embodiment, the case of using a solar cell photoelectric conversion element (cell) having a HIT structure has been described. However, other crystalline solar cell photoelectric conversion elements (cells), for example, a single crystal junction type solar cell The present invention can be applied to a solar cell photoelectric conversion element (cell) having an uneven shape on a substrate, such as a battery photoelectric conversion element (cell) or a polycrystalline solar cell photoelectric conversion element (cell).

この発明が適用されるHIT構造を有する光電変換素子を用いた太陽電池モジュールの断面構造概念図であり、同図(b)は、同図(a)のb部分の部分拡大断面図、同図(c)は同図(a)のc部分の部分拡大断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram of a cross-sectional structure of a solar cell module using a photoelectric conversion element having a HIT structure to which the present invention is applied, and FIG. (C) is the elements on larger scale of c section of the figure (a). この発明の第1の実施形態を示し、SiOx膜形成直後の光入射側表面の断面SEMイメージ図であり、同図(b)は、同図(a)のb部分の部分拡大図である。1 is a cross-sectional SEM image of a light incident side surface immediately after formation of a SiOx film, showing a first embodiment of the present invention, and FIG. 2B is a partially enlarged view of a portion b in FIG. この発明の第1の実施形態を示し、ブラスト処理後の光入射側表面の断面SEMイメージ図を示す。The 1st Embodiment of this invention is shown and the cross-sectional SEM image figure of the light-incidence side surface after a blast process is shown. 引き剥がし強度の測定機を示す概略構成図である。It is a schematic block diagram which shows the measuring machine of peeling strength. SiOxコートおよびブラスト処理により表面凹凸山谷高さを制御した光起電力素子を用いた簡易モジュールにて、耐湿試験後のEVA/光起電力素子の凹凸山谷高さと規格化密着強度を示す特性図である。In a simple module using a photovoltaic device whose surface unevenness and valley height is controlled by SiOx coating and blast treatment, it is a characteristic diagram showing unevenness and valley height and normalized adhesion strength of EVA / photovoltaic element after moisture resistance test is there. ポリシラザン塗布前の入射側表面の断面SEMイメージ図を示し、同図(b)は、同図(a)のb部分の部分拡大図である。The cross-sectional SEM image figure of the incident side surface before polysilazane application | coating is shown, The figure (b) is the elements on larger scale of b part of the figure (a). ポリシラザンの乾燥後の光入射側表面の断面SEMイメージ図の一例を示す図である。It is a figure which shows an example of the cross-sectional SEM image figure of the light-incidence side surface after drying of polysilazane. ポリシラザン濃度と平均凹凸山谷高さの関係を示す特性図である。It is a characteristic view which shows the relationship between polysilazane density | concentration and average uneven | corrugated mountain valley height. ポリシラザンコートにより表面凹凸山谷高さを制御した光起電力素子を用いた簡易モジュールにて、耐湿試験後のEVA/光起電力素子の凹凸山谷高さと規格化密着強度を示す特性図である。It is a characteristic view which shows the uneven | corrugated mountain valley height and normalized adhesion strength of the EVA / photovoltaic element after a moisture resistance test in a simple module using a photovoltaic element in which the surface uneven mountain valley height is controlled by polysilazane coating. ポリシラザン塗布前の平均凹凸山谷高さ約8μm、平均ピッチ約13μmの基板を用いて、前述同様にポリシラザン濃度によりSiOx形成後の表面平均凹凸山谷高さを制御したサンプルの簡易モジュールでの耐湿試験後のEVA/光起電力素子の間の密着性を評価した結果を示す特性図である。After a moisture resistance test with a simple module of a sample in which the surface average unevenness and valley height after SiOx formation was controlled by polysilazane concentration using a substrate having an average unevenness and valley height of about 8 μm and an average pitch of about 13 μm before polysilazane coating. It is a characteristic view which shows the result of having evaluated the adhesiveness between EVA / photovoltaic element.

符号の説明Explanation of symbols

1 単結晶シリコン基板
2、4 非晶質半導体層
3、5 酸化物透明導電膜
6,7 集電極
10 表面ガラス
11 EVA
12 銅箔タブ
13 PVF(ポリフッ化ビニール)シート
20 SiOx層
DESCRIPTION OF SYMBOLS 1 Single crystal silicon substrate 2, 4 Amorphous semiconductor layer 3, 5 Oxide transparent conductive film 6, 7 Collector electrode 10 Surface glass 11 EVA
12 Copper foil tab 13 PVF (polyvinyl fluoride) sheet 20 SiOx layer

Claims (4)

荷電子制御されかつミクロンオーダーの凹凸表面を有する結晶系シリコンを用いた光起電力素子を表面ガラスと裏面材との間にホットメルト型充填材で封止されてモジュール化される光起電力装置において、結晶系シリコンの凹凸の山谷高さをhとすると、少なくとも光入射側に、最表面の凹凸の山谷高さが0.8h以下となるように制御した無機薄膜保護層を設けたことを特徴とする光起電力装置。 Photovoltaic device in which a photovoltaic element using crystalline silicon having an uneven surface of micron order is controlled by a charged electron and sealed with a hot-melt type filler between the surface glass and the back surface material. In this case, an inorganic thin-film protective layer that is controlled so that the height of the ridges and valleys on the outermost surface is 0.8 h or less is provided at least on the light incident side, where h is the height of the ridges and valleys of the crystalline silicon. A featured photovoltaic device. 結晶系シリコンの凹凸の山谷高さhに対して、少なくとも光入射側に無機薄膜保護層を最表面の凹凸の山谷高さが0.4h以下となるように制御することを特徴とする請求項1に記載の光起電力装置。 The inorganic thin-film protective layer is controlled at least on the light incident side so that the height of the ridges and valleys on the outermost surface is 0.4 h or less with respect to the height h of the ridges and valleys of crystalline silicon. 2. The photovoltaic device according to 1. 前記無機薄膜保護層は少なくとも珪素を含んでいることを特徴とする請求項1または2に記載の光起電力装置。 The photovoltaic device according to claim 1 or 2, wherein the inorganic thin film protective layer contains at least silicon. 前記ホットメルト型充填材とは、エチレンビニールアセテート(EVA)、ポリビニールブチラール(PVB)、エチレン−アクリル酸メチル共重合体(EMA)、エチレン−アクリル酸エチル共重合体(EEA)の中のいずれかから選択されることを特徴とする請求項1ないし3に記載の光起電力装置。
The hot melt type filler is any of ethylene vinyl acetate (EVA), polyvinyl butyral (PVB), ethylene-methyl acrylate copolymer (EMA), and ethylene-ethyl acrylate copolymer (EEA). The photovoltaic device according to claim 1, wherein the photovoltaic device is selected from the above.
JP2004286198A 2004-09-30 2004-09-30 Photovoltaic device Pending JP2006100652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004286198A JP2006100652A (en) 2004-09-30 2004-09-30 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004286198A JP2006100652A (en) 2004-09-30 2004-09-30 Photovoltaic device

Publications (1)

Publication Number Publication Date
JP2006100652A true JP2006100652A (en) 2006-04-13

Family

ID=36240150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004286198A Pending JP2006100652A (en) 2004-09-30 2004-09-30 Photovoltaic device

Country Status (1)

Country Link
JP (1) JP2006100652A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371799B1 (en) 2007-03-19 2014-03-07 산요덴키가부시키가이샤 Photovoltaic device and manufacturing method for same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371799B1 (en) 2007-03-19 2014-03-07 산요덴키가부시키가이샤 Photovoltaic device and manufacturing method for same

Similar Documents

Publication Publication Date Title
JP6980079B2 (en) Solar cell
US6613973B2 (en) Photovoltaic element, producing method therefor, and solar cell modules
US7303788B2 (en) Method for manufacturing solar cell module having a sealing resin layer formed on a metal oxide layer
JP2003347571A (en) Photovoltaic element and photovoltaic device
CN103703567A (en) Solar cell, solar cell manufacturing method, and solar cell module
JP5739076B2 (en) Solar cell module and manufacturing method thereof
EP1542290B1 (en) Photovoltaic device
CN104064622A (en) Solar energy battery resisting potential-induced attenuation and manufacture method thereof
US20160233368A1 (en) Solar cell
JP5584846B1 (en) SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
JP4222992B2 (en) Photovoltaic device
JP6785775B2 (en) Photoelectric conversion element, solar cell module equipped with it, and photovoltaic power generation system
JP4493514B2 (en) Photovoltaic module and manufacturing method thereof
JP5022341B2 (en) Photoelectric conversion device
JP3078936B2 (en) Solar cell
JP2002111036A (en) Solar battery module and its execution method
WO2014050193A1 (en) Photoelectric conversion module
WO2019087590A1 (en) Double-sided electrode type solar cell and solar cell module
JP6689757B2 (en) Photoelectric conversion element, solar cell module including the same, and photovoltaic power generation system
JP3548379B2 (en) Photovoltaic device and manufacturing method thereof
JP2006100652A (en) Photovoltaic device
JP2005260150A (en) Photovoltaic device and method of manufacturing the same
JP6653696B2 (en) Photoelectric conversion element
JP2001085708A (en) Solar battery module
JP2014229877A (en) Solar cell and manufacturing method therefor, and solar cell module

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512