JP2006100587A - Method of manufacturing solid-state imaging device - Google Patents

Method of manufacturing solid-state imaging device Download PDF

Info

Publication number
JP2006100587A
JP2006100587A JP2004285101A JP2004285101A JP2006100587A JP 2006100587 A JP2006100587 A JP 2006100587A JP 2004285101 A JP2004285101 A JP 2004285101A JP 2004285101 A JP2004285101 A JP 2004285101A JP 2006100587 A JP2006100587 A JP 2006100587A
Authority
JP
Japan
Prior art keywords
solid
state imaging
wafer
transparent flat
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2004285101A
Other languages
Japanese (ja)
Inventor
Manjiro Watanabe
万次郎 渡辺
Yoshihisa Negishi
能久 根岸
Hiroshi Maeda
弘 前田
Hitoshi Shimamura
均 嶋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Fujifilm Microdevices Co Ltd
Original Assignee
Fujifilm Microdevices Co Ltd
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Microdevices Co Ltd, Fuji Photo Film Co Ltd filed Critical Fujifilm Microdevices Co Ltd
Priority to JP2004285101A priority Critical patent/JP2006100587A/en
Priority to CNB200580032270XA priority patent/CN100490128C/en
Priority to KR1020077006409A priority patent/KR100884508B1/en
Priority to EP05787658A priority patent/EP1800340A4/en
Priority to US11/663,561 priority patent/US20080003926A1/en
Priority to PCT/JP2005/018233 priority patent/WO2006035963A1/en
Priority to KR1020087023300A priority patent/KR100902520B1/en
Priority to TW094133634A priority patent/TWI305377B/en
Publication of JP2006100587A publication Critical patent/JP2006100587A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a solid-state imaging device with a high yield by providing a grinding method which can prevent a wafer from being damaged by glass fragments, at the time of grind-cutting a transparent glass board of a solid-state imaging device assembly made by joining a solid-state imaging element wafer and the transparent glass board with a narrow space left in-between. <P>SOLUTION: The method of manufacturing a solid-state imaging device comprises processes of forming many solid-state imaging elements 11A on a wafer 11, forming a spacer 13 having such a shape as to surround individual solid-state imaging elements 11A on a transparent flat board 12, forming grooves 12B having a prescribed depth in the transparent flat board 12, aligning the wafer 11 and the transparent flat board 12 and joining them together, grinding the transparent flat board 12 to divide it in correspondence with individual solid-state imaging elements 11A, and dividing the wafer 11 in correspondence with individual solid-state imaging elements 11A. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体撮像装置の製造方法に関し、特にウェーハレベルで一括製造された多数のチップサイズパッケージ(CSP)タイプの固体撮像装置を個々に分割する固体撮像装置の製造方法に関する。   The present invention relates to a method for manufacturing a solid-state imaging device, and more particularly to a method for manufacturing a solid-state imaging device in which a large number of chip size package (CSP) type solid-state imaging devices manufactured at the wafer level are individually divided.

デジタルカメラや携帯電話に用いられるCCDやCMOSからなる固体撮像装置は、益々小型化が要求されている。このため、固体撮像素子チップ全体をセラミックス等のパッケージに気密封止した従来の大型パッケージから、最近では固体撮像素子チップの大きさと略等しい大きさのチップサイズパッケージ(CSP)タイプに移行しつつある。   A solid-state imaging device composed of a CCD or a CMOS used for a digital camera or a mobile phone is increasingly required to be downsized. For this reason, the conventional large package in which the entire solid-state image sensor chip is hermetically sealed in a ceramic package or the like has recently been shifted to a chip size package (CSP) type having a size substantially equal to the size of the solid-state image sensor chip. .

このような中で、固体撮像素子チップの受光エリアのみに対し、下面縁部に枠部(スペーサ)を一体形成した透明材料からなる封止部材(透明ガラス板)を配置し、枠部(スペーサ)の外側に外部からの配線を行う電極(パッド)を配列した構造の固体撮像装置が提案されている(例えば、特許文献1参照。)。   Under such circumstances, a sealing member (transparent glass plate) made of a transparent material in which a frame portion (spacer) is integrally formed on the lower surface edge portion is disposed only for the light receiving area of the solid-state imaging device chip, and the frame portion (spacer ) Has been proposed (see, for example, Patent Document 1).

この特許文献1に記載された固体撮像装置をウェーハレベルで一括製造する場合は、先ずウェーハ(半導体基板)上に多数の固体撮像素子を形成する。一方、透明材料からなる封止部材(透明ガラス板)に固体撮像素子の受光エリアを囲う枠部(スペーサ)を多数一体形成する。   When the solid-state imaging device described in Patent Document 1 is collectively manufactured at the wafer level, a large number of solid-state imaging elements are first formed on a wafer (semiconductor substrate). On the other hand, a large number of frame portions (spacers) surrounding the light receiving area of the solid-state imaging device are integrally formed on a sealing member (transparent glass plate) made of a transparent material.

次に、この封止部材(透明ガラス板)を枠部(スペーサ)を介してウェーハに接合して、各固体撮像素子の受光エリアを密閉し、固体撮像装置がウェーハレベルで多数形成された積層体を製造する。次に、この積層体を個々の固体撮像装置に分割することによって、特許文献1に記載された固体撮像装置が得られる。
特開平07−202152号公報
Next, this sealing member (transparent glass plate) is bonded to the wafer via a frame portion (spacer) to seal the light receiving area of each solid-state imaging device, and a stack in which a large number of solid-state imaging devices are formed at the wafer level. Manufacture the body. Next, the solid-state imaging device described in Patent Document 1 is obtained by dividing the stacked body into individual solid-state imaging devices.
Japanese Patent Laid-Open No. 07-202152

ところが、前述の特許文献1には、多数の固体撮像装置がウェーハレベルで形成された積層体を個々の固体撮像装置に分割する方法について何ら記載されていない。しかし、一般的にウェーハ上に形成された多数の半導体装置を個々の半導体装置に分割するためには、ダイシング装置による研削切断が用いられている。     However, Patent Document 1 described above does not describe any method for dividing a stacked body in which a large number of solid-state imaging devices are formed at the wafer level into individual solid-state imaging devices. However, generally, in order to divide a large number of semiconductor devices formed on a wafer into individual semiconductor devices, grinding and cutting with a dicing device is used.

このため、例えばダイシング装置を使用して、ウェーハのパッド面を露出させるのに必要な幅を有する円盤状砥石(ダイシングブレード)を用い、砥石の最下点がパッド上部のウェーハと透明ガラス板との間に形成された空隙部分を通過するように透明ガラス板を研削切断し、続いて別の薄い円盤状砥石(ダイシングブレード)でウェーハ部分を研削切断する方法が考えられる。   For this reason, for example, using a dicing machine, a disc-shaped grindstone (dicing blade) having a width necessary to expose the pad surface of the wafer is used, and the lowest point of the grindstone is the wafer above the pad and the transparent glass plate. A method is conceivable in which the transparent glass plate is ground and cut so as to pass through the gap formed between the two, and then the wafer portion is ground and cut with another thin disc-like grindstone (dicing blade).

しかし、このような砥石を用いて研削切断する方法の場合、例えばウェーハと透明ガラス板との間に形成された空隙部の高さが100μm程度と極く狭い場合は、図6(a)、及び図6(a)のA−A’断面と一部拡大図を表わす図6(b)に示すように、透明ガラス板12の研削切断を進めていく中で生ずるガラス破片12Aが排出時に砥石52とウェーハ11との隙間に巻き込まれ、掻き回され、極端には引きずられることで、ウェーハ11側に損傷を与えてしまうという重大な問題があった。   However, in the case of the method of grinding and cutting using such a grindstone, for example, when the height of the gap formed between the wafer and the transparent glass plate is as narrow as about 100 μm, FIG. As shown in FIG. 6 (b), which is a cross-sectional view taken along the line AA 'of FIG. 6 (a) and a partially enlarged view, the glass fragments 12A generated during the grinding and cutting of the transparent glass plate 12 are removed when the grinding glass is discharged. There is a serious problem that the wafer 11 is damaged by being caught in the gap between the wafer 52 and the wafer 11, scratched, and extremely dragged.

本発明は、このような事情に鑑みてなされたもので、極く狭い空隙部を有して接合された固体撮像素子のウェーハと透明ガラス板とで構成された固体撮像装置集合体の透明ガラス板を研削切断するにあたり、研削切断中に生ずる透明ガラス板の破片によるウェーハの損傷を防止することの出来る固体撮像装置集合体の研削加工方法を提供し、歩留まりの高い固体撮像装置の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and is a transparent glass of a solid-state imaging device assembly composed of a wafer of a solid-state imaging element and a transparent glass plate that are joined with an extremely narrow gap. A method of manufacturing a solid-state imaging device with a high yield is provided by providing a solid-state imaging device assembly grinding method capable of preventing wafer damage caused by transparent glass plate fragments generated during grinding and cutting when grinding and cutting a plate. The purpose is to provide.

前記目的を達成するために、本発明に係る固体撮像装置の製造方法は、ウェーハの表面に多数の固体撮像素子を形成する工程と、前記ウェーハに接合される透明平板下面の前記固体撮像素子に対応する箇所に、個々の固体撮像素子を囲む形状の所定厚さの枠状のスペーサを形成する工程と、前記透明平板下面の前記スペーサ同士の間に所定深さの溝を形成する工程と、前記ウェーハと前記透明平板とを位置合わせして前記スペーサを介して接合する工程と、前記透明平板に研削加工を施し、前記個々の固体撮像素子に対応するように該透明平板を分割する工程と、前記ウェーハを個々の固体撮像素子に対応させて分割する工程と、を備えることを特徴とする。   In order to achieve the object, a method of manufacturing a solid-state imaging device according to the present invention includes a step of forming a large number of solid-state imaging elements on a surface of a wafer, and the solid-state imaging element on a lower surface of a transparent flat plate bonded to the wafer. A step of forming a frame-shaped spacer having a predetermined thickness in a shape surrounding each solid-state imaging device, and a step of forming a groove having a predetermined depth between the spacers on the lower surface of the transparent plate; Aligning and joining the wafer and the transparent flat plate through the spacer, grinding the transparent flat plate, and dividing the transparent flat plate so as to correspond to the individual solid-state imaging devices; And a step of dividing the wafer in correspondence with each solid-state image sensor.

本発明によれば、透明平板下面の前記スペーサ同士の間に所定深さの溝を形成する工程を有しているので、透明平板を研削切断する時に、研削砥石とウェーハ表面との隙間が十分取れるので、研削によって生ずる透明平板の破片が排出されやすく、破片によってウェーハの表面が損傷を受けることが緩和される。   According to the present invention, since there is a step of forming a groove of a predetermined depth between the spacers on the lower surface of the transparent flat plate, when the transparent flat plate is ground and cut, there is sufficient clearance between the grinding wheel and the wafer surface. Therefore, the transparent flat plate fragments generated by grinding are easily discharged, and the damage of the wafer surface due to the broken pieces is mitigated.

また、本発明は、前記透明平板を分割する工程は、前記透明平板の溝の幅寸法よりも大きな厚さ寸法を有する円盤状砥石で前記透明平板を研削切断することを特徴とする。   In the present invention, the step of dividing the transparent flat plate is characterized by grinding and cutting the transparent flat plate with a disk-shaped grindstone having a thickness dimension larger than the width dimension of the groove of the transparent flat plate.

これによれば、前もって透明平板に形成された溝幅よりも研削切断溝の幅の方が広いので、透明平板内に円盤状砥石の受け部分が形成され、透明平板の大きな破片が発生し難い。そのため、ウェーハの表面損傷が緩和される。   According to this, since the width of the grinding cut groove is wider than the groove width previously formed in the transparent flat plate, the receiving portion of the disc-shaped grindstone is formed in the transparent flat plate, and large pieces of the transparent flat plate are not easily generated. . Therefore, the surface damage of the wafer is alleviated.

また、本発明は、前記透明平板を分割する工程は、予め前記透明平板の溝と該溝の下方の前記スペーサ同士の間の空間とからなる空隙部に流動性材料を充填して、前記ウェーハの保護層を形成する工程を含むことを特徴とする。   Further, in the present invention, in the step of dividing the transparent flat plate, a flowable material is previously filled in a gap formed by a groove of the transparent flat plate and a space between the spacers below the groove. A step of forming a protective layer.

これによれば、透明平板の研削切断部分の下方空隙部には流動性材料が充填されてウェーハの保護層を形成しているので、研削によって生ずる透明平板の破片によるウェーハの表面損傷が防止される。   According to this, since the fluidity material is filled in the lower gap of the grinding cut portion of the transparent flat plate to form the protective layer of the wafer, the surface damage of the wafer due to the transparent flat plate fragments caused by grinding is prevented. The

以上説明したように本発明の固体撮像装置の製造方法によれば、極く狭い空隙部を有して接合された固体撮像素子ウェーハと透明ガラス板とで構成された固体撮像装置集合体の透明ガラス板を研削切断するにあたり、予め透明ガラス板の研削切断部に溝を形成して空隙部の高さを増加しているので、研削切断中に生ずる透明ガラス板の破片が排出され易く、破片によるウェーハの損傷を防止することができ、歩留まりの高い固体撮像装置の製造方法を得ることができる。   As described above, according to the method for manufacturing a solid-state image pickup device of the present invention, the solid-state image pickup device assembly constituted by the solid-state image pickup device wafer and the transparent glass plate bonded with an extremely narrow gap is transparent. When grinding and cutting the glass plate, since the grooves are formed in advance in the grinding and cutting portion of the transparent glass plate to increase the height of the gap, the pieces of the transparent glass plate generated during the grinding and cutting are easily discharged. Can prevent damage to the wafer and can provide a method for manufacturing a solid-state imaging device with a high yield.

以下添付図面に従って、本発明に係る固体撮像装置の製造方法の好ましい実施の形態について詳説する。なお、各図において同一部材には同一の番号または記号を付している。図1はCSPタイプの固体撮像装置の製造工程を表わす説明図である。図1(c)に示すように、半導体基板(ウェーハ)11上に固体撮像素子11Aが多数形成される。   A preferred embodiment of a method for manufacturing a solid-state imaging device according to the present invention will be described below in detail with reference to the accompanying drawings. In each figure, the same number or symbol is attached to the same member. FIG. 1 is an explanatory view showing a manufacturing process of a CSP type solid-state imaging device. As shown in FIG. 1C, a large number of solid-state imaging devices 11 </ b> A are formed on a semiconductor substrate (wafer) 11.

固体撮像素子11Aの製造には一般的な半導体素子製造工程が適用され、固体撮像素子11Aは、ウェーハ11に形成された受光素子であるフォトダイオード、励起電圧を外部に転送する転送電極、開口部を有する遮光膜、層間絶縁膜、層間絶縁膜の上部に形成されたインナーレンズ、インナーレンズの上部に中間層を介して設けられたカラーフィルタ、カラーフィルタの上部に中間層を介して設けられたマイクロレンズ等で構成された微細素子が平面アレー状に配列された構造になっている。   A general semiconductor element manufacturing process is applied to manufacture the solid-state imaging device 11A. The solid-state imaging device 11A includes a photodiode that is a light receiving element formed on the wafer 11, a transfer electrode that transfers excitation voltage to the outside, and an opening. Light shielding film, interlayer insulating film, inner lens formed on the upper part of the interlayer insulating film, color filter provided on the upper part of the inner lens via an intermediate layer, provided on the upper part of the color filter via an intermediate layer The microelements composed of microlenses and the like are arranged in a planar array.

固体撮像素子11Aはこのように構成されているため、外部から入射する光がマイクロレンズ及びインナーレンズによって集光されてフォトダイオードに照射され、有効開口率が上がるようになっている。   Since the solid-state imaging device 11A is configured in this way, light incident from the outside is condensed by the microlens and the inner lens and irradiated to the photodiode, so that the effective aperture ratio is increased.

また、固体撮像素子11Aの外側には図1(c)に示すように、外部との配線を行うためのパッド11B、11B、…が形成されている。   Further, as shown in FIG. 1C, pads 11B, 11B,... For wiring with the outside are formed outside the solid-state imaging device 11A.

図1に示した工程は、前述した固体撮像素子11Aが形成されたウェーハ11に透明ガラス板12(透明平板に相当)を貼付して固体撮像素子11Aの受光部を密閉し、次いで個々の固体撮像装置21に分割する工程を概念的に表わしたものである。   In the process shown in FIG. 1, a transparent glass plate 12 (corresponding to a transparent flat plate) is pasted on the wafer 11 on which the above-described solid-state imaging device 11A is formed, and the light-receiving portion of the solid-state imaging device 11A is sealed, and then each solid state The process of dividing into the imaging device 21 is represented conceptually.

先ず、図1(a)に示すように、透明ガラス板12に個々の固体撮像素子11Aを囲む枠形状で所定厚さを有するシリコンからなるスペーサ13を形成する。スペーサ13の形成は、透明ガラス板12に接着剤13Aを塗布し、そこにシリコン板を接着する。次いで、フォトリソグラフィーとドライエッチング技術を用いて必要な形状のスペーサ13を形成する。   First, as shown in FIG. 1A, a spacer 13 made of silicon having a predetermined thickness in a frame shape surrounding each solid-state imaging device 11A is formed on a transparent glass plate 12. The spacer 13 is formed by applying an adhesive 13A to the transparent glass plate 12 and bonding a silicon plate thereto. Next, a spacer 13 having a required shape is formed by using photolithography and dry etching technology.

次に、図1(b)に示すように、透明ガラス板12の前述した枠状のスペーサ13とスペーサ13との間に溝12Bを夫々を形成する。この溝12Bの形成は研削加工で形成してもよく、また、エッチングで形成してもよい。次に、スペーサ13の端面部分に接着剤13Bを転写する。なお、溝12Bの形成は透明ガラス板12にシリコン板を接着する前に行ってもよい。   Next, as shown in FIG. 1B, grooves 12 </ b> B are formed between the frame-shaped spacers 13 and the spacers 13 of the transparent glass plate 12. The groove 12B may be formed by grinding or may be formed by etching. Next, the adhesive 13 </ b> B is transferred to the end surface portion of the spacer 13. The groove 12B may be formed before the silicon plate is bonded to the transparent glass plate 12.

次に、このようにして1面にスペーサ13が設けられた透明ガラス板12をウェーハ11に対峙させ、ウェーハ11に対して位置合わせを行う。位置合せは予めウェーハ11及び透明ガラス板12の夫々にアライメントマークを設けておき、ウェーハ11のアライメントマークに対して透明ガラス板12のアライメントマークを重ね合わせることによって行う。   Next, the transparent glass plate 12 provided with the spacer 13 on one surface in this way is opposed to the wafer 11 and aligned with the wafer 11. The alignment is performed by providing an alignment mark on each of the wafer 11 and the transparent glass plate 12 in advance and overlaying the alignment mark on the transparent glass plate 12 on the alignment mark on the wafer 11.

次に、ウェーハ11に対して位置合わせされた透明ガラス板12をスペーサ13、接着剤13Bを介してウェーハ11に接着する。これにより、図1(c)に示すように、ウェーハ11と透明ガラス板12との間に空隙部14を有し固体撮像素子11Aの受光部が密閉された構造の固体撮像装置21がウェーハレベルで多数形成された積層体20が製造される。   Next, the transparent glass plate 12 aligned with the wafer 11 is bonded to the wafer 11 via the spacer 13 and the adhesive 13B. Thereby, as shown in FIG.1 (c), the solid-state imaging device 21 of the structure which has the space | gap part 14 between the wafer 11 and the transparent glass plate 12, and the light-receiving part of solid-state image sensor 11A was sealed is wafer level. Thus, the laminate 20 formed in a large number is manufactured.

なお、固体撮像素子11A同士の間の溝12Bが形成された空間部分は、空隙部14よりも溝12Bの分だけ高さの高い空隙部14Aになっている。   Note that the space portion in which the groove 12B between the solid-state imaging elements 11A is formed is a gap portion 14A that is higher than the gap portion 14 by the amount of the groove 12B.

次に、厚さ0.6〜1.2mm程度の砥石で空隙部14A内まで切り込んで積層体20の透明ガラス板12のみを研削切断して、透明ガラス板12を分割し、ウェーハ11上のパッド11B、11B、…を露出させる(図1(d))。   Next, the transparent glass plate 12 is divided by cutting by cutting only the transparent glass plate 12 of the laminate 20 by cutting into the gap portion 14 </ b> A with a grindstone having a thickness of about 0.6 to 1.2 mm. The pads 11B, 11B,... Are exposed (FIG. 1 (d)).

次に、ウェーハ11のパッド11Bとパッド11Bとの間の部分を別の薄い砥石で研削切断し、個々の固体撮像装置21に分割する(図1(e))。なお、積層体20はウェーハ11の裏面に図示しないダイシングシートが貼付されて研削切断加工される。そのため、個々の固体撮像装置21に分割されても、バラバラになることがない。   Next, a portion between the pad 11B and the pad 11B of the wafer 11 is ground and cut with another thin grindstone and divided into individual solid-state imaging devices 21 (FIG. 1 (e)). The laminate 20 is ground and cut by attaching a dicing sheet (not shown) to the back surface of the wafer 11. Therefore, even if it is divided into individual solid-state imaging devices 21, it does not fall apart.

なお、ウェーハ11が単結晶シリコンウェーハを用いるのが一般的であるので、スペーサ13の材質は、ウェーハ11及び透明ガラス板12と熱膨張係数等の物性が類似した材質が望ましいため、多結晶シリコンが好適である。   Since the wafer 11 is typically a single crystal silicon wafer, the material of the spacer 13 is preferably a material having physical properties similar to those of the wafer 11 and the transparent glass plate 12, such as a thermal expansion coefficient. Is preferred.

この図1(d)で示した透明ガラス板12の研削切断工程では、固体撮像装置21の薄型化により、ウェーハ11と透明ガラス板12との空隙部14の高さは100μm程度と極度に狭いため、透明ガラス板12に溝12Bを形成しない場合は、前述の図6(a)、及び図6(b)で説明したように、透明ガラス板12の研削切断を進めていく中で生ずるガラス破片12Aが砥石52とウェーハ11との隙間に巻き込まれ、掻き回され、或いは引きずられて、ウェーハ11側に損傷を与える。   In the grinding and cutting process of the transparent glass plate 12 shown in FIG. 1D, the height of the gap 14 between the wafer 11 and the transparent glass plate 12 is extremely narrow, about 100 μm, due to the thinning of the solid-state imaging device 21. For this reason, when the groove 12B is not formed in the transparent glass plate 12, as described with reference to FIGS. 6 (a) and 6 (b), the glass generated during the progress of grinding and cutting of the transparent glass plate 12. The debris 12A is caught in the gap between the grindstone 52 and the wafer 11, and is scratched or dragged to damage the wafer 11 side.

本発明では透明ガラス板12に溝12Bを形成し、研削切断部分における透明ガラス板12とウェーハ11との間の空隙部14Aを大きく取っているので、ガラス破片12Aが容易に排出されウェーハ11を損傷することがない。   In the present invention, the groove 12B is formed in the transparent glass plate 12, and the gap 14A between the transparent glass plate 12 and the wafer 11 in the ground cut portion is made large, so that the glass fragments 12A are easily discharged and the wafer 11 is removed. There is no damage.

次に、透明ガラス板12の研削切断についてその具体的な実施例を図2によって説明する。先ず、厚さl1 =500μmの透明ガラス板12には幅900μm深さl2 =300μmの溝12Bを予め形成し、厚さl3 =100μmのスペーサ13を介してウェーハ11に貼付して、ウェーハレベルの固体撮像装置21の集合体である積層体20を形成しておく(図2(a))。 Next, a specific example of grinding and cutting the transparent glass plate 12 will be described with reference to FIG. First, a groove 12B having a width of 900 μm and a depth of l 2 = 300 μm is formed in advance on the transparent glass plate 12 having a thickness of l 1 = 500 μm, and affixed to the wafer 11 via a spacer 13 having a thickness of l 3 = 100 μm. A laminated body 20 that is an aggregate of the wafer level solid-state imaging device 21 is formed (FIG. 2A).

この積層体20を図2(b)、図2(c)に示すように、ダイシング装置のウェーハテーブル51に吸着載置し、ダイシングブレード(砥石)52の刃先の最下点が空隙部14A内に50μm入り込む位置にセットして透明ガラス板12を研削切断し、パッド11B、11B、…を露出させた。なお、図2(b)は研削切断方向と直交する方向の断面を表わし、図2(c)は図2(b)におけるA−A’断面を表わしたものである。   2 (b) and 2 (c), the laminated body 20 is sucked and placed on the wafer table 51 of the dicing apparatus, and the lowest point of the cutting edge of the dicing blade (grinding stone) 52 is in the gap portion 14A. The transparent glass plate 12 was ground and cut at a position where it entered 50 μm to expose the pads 11B, 11B,. 2B represents a cross section in a direction orthogonal to the grinding cutting direction, and FIG. 2C represents an A-A ′ cross section in FIG.

ダイシングブレード52は粒径8〜40μmのダイヤモンド砥粒をニッケルで結合したメタルボンドブレードで、直径100mm、厚さ1.0mmを用い、その回転数は4,000〜6,000rpmとした。また、ウェーハテーブル51の送り速度を0.2〜1.0mm/secとした。   The dicing blade 52 is a metal bond blade in which diamond abrasive grains having a particle diameter of 8 to 40 μm are bonded with nickel. The dicing blade 52 has a diameter of 100 mm and a thickness of 1.0 mm, and has a rotational speed of 4,000 to 6,000 rpm. Further, the feeding speed of the wafer table 51 was set to 0.2 to 1.0 mm / sec.

このように、透明ガラス板12に形成した溝12Bの幅(900μm)よりも厚さの厚い(1,000μm)ダイシングブレード52を用いて透明ガラス板12を研削切断することによって、透明ガラス板12内にダイシングブレード52の受部が形成されて、研削抵抗を受けるので、研削切断時に透明ガラス板12の大きな破片が生じ難い。   Thus, the transparent glass plate 12 is ground and cut using the dicing blade 52 having a thickness (1,000 μm) thicker than the width (900 μm) of the groove 12B formed in the transparent glass plate 12. Since the receiving part of the dicing blade 52 is formed therein and receives a grinding resistance, large pieces of the transparent glass plate 12 are unlikely to be generated during grinding and cutting.

なお、ダイシングブレード52はダイヤモンド砥粒をフェノール樹脂等で結合したレジンボンドブレードの方が砥粒の自生作用が活発で切削性は良い。しかし摩耗が早いので、切込み深さを確保するためには頻繁に高さ調整をする必要があるため、実施例においてはメタルボンドブレードを使用した。   The dicing blade 52 is a resin-bonded blade in which diamond abrasive grains are bonded with a phenol resin or the like. However, since the wear is fast, it is necessary to frequently adjust the height in order to secure the depth of cut, so a metal bond blade was used in the examples.

加工後の積層体20をダイシング装置に備えられた観察光学系を用いてモニター画面で観察したところ、ウェーハ11表面の傷は、大きさ10μmを超える傷が1チップあたり1〜2個点在するものの回路配線を断線させるような大きく深い傷は見当たらず、大きさ10μm以下の傷も1チップあたり20〜30個程度で、許容範囲以内であった。   When the processed laminated body 20 is observed on a monitor screen using an observation optical system provided in the dicing apparatus, the surface of the wafer 11 has 1 to 2 scratches exceeding 10 μm in size per chip. However, there were no large and deep scratches that could break the circuit wiring, and there were about 20 to 30 scratches per chip, within the allowable range.

次に、本発明の別の実施形態について図3、及び図4により説明する。この別の実施形態は、前述の実施の形態に対し、空隙部14A内にウェーハ11表面の保護層を形成する工程を追加したものである。なお、図3における積層体20は、実際にはウェーハレベルで製造されているが、図では簡略化のため、1つの研削加工部分のみで記載している。   Next, another embodiment of the present invention will be described with reference to FIGS. In this other embodiment, a process of forming a protective layer on the surface of the wafer 11 in the gap portion 14A is added to the above-described embodiment. In addition, although the laminated body 20 in FIG. 3 is actually manufactured at the wafer level, in the figure, for simplification, it is described with only one grinding portion.

先ず、図3に示すように、透明ガラス板12に溝12Bが形成された積層体20の空隙部14Aに、ウェーハ11を保護する保護層15の流動性材料(ゲル状のものも含む)を充填する。そのために、積層体20を保護層15の流動性材料が満たされたトレー81A中に漬し、真空ポンプ82で減圧した真空チャンバ81内に所定時間留める。これにより、積層体20の空隙部14A内の空気が排出され、空隙部14A内に流動性の保護層15の材料が容易に充填される。   First, as shown in FIG. 3, a fluid material (including a gel-like material) for the protective layer 15 that protects the wafer 11 is formed in the gap 14 </ b> A of the laminate 20 in which the grooves 12 </ b> B are formed in the transparent glass plate 12. Fill. For this purpose, the laminate 20 is dipped in a tray 81A filled with the fluid material of the protective layer 15 and kept in the vacuum chamber 81 decompressed by the vacuum pump 82 for a predetermined time. Thereby, the air in the gap portion 14A of the laminate 20 is discharged, and the material of the fluid protective layer 15 is easily filled in the gap portion 14A.

次に、図4に示すように、積層体20をダイシング装置のウェーハテーブル51上に固定し、ダイシングブレード(砥石)52の刃先の最下点が空隙部14A内に僅かに入り込む位置にセットして透明ガラス板12を研削切断する。この時、透明ガラス板12の研削切断を進めていく中でガラス破片12Aが生じても、空隙部14Aの隙間が大きくまた空隙部14A内に保護層15が存在するので、ウェーハ11が傷付けられることがない。   Next, as shown in FIG. 4, the laminated body 20 is fixed on the wafer table 51 of the dicing apparatus, and set to a position where the lowest point of the cutting edge of the dicing blade (grinding stone) 52 slightly enters the gap portion 14A. Then, the transparent glass plate 12 is ground and cut. At this time, even if the glass fragments 12A are generated while the transparent glass plate 12 is being ground and cut, the gap of the gap 14A is large and the protective layer 15 is present in the gap 14A, so that the wafer 11 is damaged. There is nothing.

なお、図4(a)は研削切断方向と直交する方向の断面を表わし、図4(b)は図4(a)におけるA−A’断面を表わしている。   4A shows a cross section in a direction orthogonal to the grinding cutting direction, and FIG. 4B shows an A-A ′ cross section in FIG.

次に、ウェーハ11部分を別の薄いダイシングブレードでフルカットし、最後にスピン洗浄器で洗浄液を噴射して保護層15を取り除く。   Next, the wafer 11 is fully cut with another thin dicing blade, and finally the cleaning liquid is sprayed with a spin cleaner to remove the protective layer 15.

次に、この別の実施形態における透明ガラス板12の研削切断についてその具体的な実施例を説明する。積層体20を保護層15となる流動性材料に浸漬し、真空チャンバ81を使用して空隙部14Aに流動性材料を充填した。使用した流動性材料は、水又はオイルとした。また、充填する際の真空チャンバ81の真空度は5〜80kPa程度とした。   Next, specific examples of the grinding and cutting of the transparent glass plate 12 in another embodiment will be described. The laminate 20 was immersed in a fluid material that will be the protective layer 15, and the vacuum chamber 81 was used to fill the void portion 14 </ b> A with the fluid material. The flowable material used was water or oil. Moreover, the vacuum degree of the vacuum chamber 81 at the time of filling was set to about 5 to 80 kPa.

ダイシングブレード52は粒径8〜40μmのダイヤモンド砥粒をニッケルで結合したメタルボンドブレードで、直径100mm、厚さ1.0mmを用い、その回転数は4,000〜6,000rpmとした。また、ウェーハテーブル51の送り速度を0.2〜1.0mm/secとした。   The dicing blade 52 is a metal bond blade in which diamond abrasive grains having a particle diameter of 8 to 40 μm are bonded with nickel. The dicing blade 52 has a diameter of 100 mm and a thickness of 1.0 mm, and has a rotational speed of 4,000 to 6,000 rpm. Further, the feeding speed of the wafer table 51 was set to 0.2 to 1.0 mm / sec.

加工にあたっては、ダイシング装置のウェーハテーブル51の周囲を堰で囲って水又はオイルを満たし、中に積層体20をドブ漬けにして固定し、常温環境下でドブ漬けのまま透明ガラス板12を研削切断し、パッド11B、11B、…を露出させた。   In processing, the periphery of the wafer table 51 of the dicing apparatus is surrounded by a weir and filled with water or oil, and the laminated body 20 is soaked and fixed inside, and the transparent glass plate 12 is ground while being soaked at room temperature. It cut | disconnected and the pad 11B, 11B, ... was exposed.

加工後の積層体20をモニター画面で観察したところ、ガラス破片12Aによるウェーハ11の表面の傷は、回路配線を断線させるような大きく深い傷は見当たらず、大きさ10μm以下の傷も1チップあたり10個以下で、十分許容範囲以内であった。   When the laminated body 20 after processing was observed on a monitor screen, the scratches on the surface of the wafer 11 due to the glass fragments 12A were not found to be large and deep so as to break the circuit wiring. The number was less than the allowable range.

なお、積層体20の空隙部14Aに常温以下の温度で固化する流動性材料を充填し、この状態で積層体20を冷蔵庫内に保管して、流動性材料を固化させて保護層15とすることもできる。この状態で透明ガラス板12を研削切断する。この場合、研削水の温度を充填して固化した材料の融点以下にして用いる。   The air gap 14A of the laminate 20 is filled with a fluid material that solidifies at a temperature below room temperature, and the laminate 20 is stored in the refrigerator in this state to solidify the fluid material to form the protective layer 15. You can also. In this state, the transparent glass plate 12 is cut by grinding. In this case, it is used below the melting point of the material solidified by filling the temperature of the grinding water.

例えば、常温以下の温度で固化する流動性材料として10℃で凍結するシリコンオイル系の高分子溶液を用いた場合は、この溶液を積層体20の空隙部14Aに充填した後、この積層体20を冷蔵庫内(0〜6℃程度)に保管して溶液を凍結固化させる。この場合は、ダイシング装置のウェーハテーブル51には冷凍チャックテーブルなど冷却機能を有するテーブル(テーブル表面温度0〜6℃程度)を用い、積層体20をチャックする。   For example, when a silicone oil polymer solution frozen at 10 ° C. is used as a fluid material that solidifies at a temperature below room temperature, the laminate 20 is filled with the solution after filling the voids 14 </ b> A of the laminate 20. Is stored in a refrigerator (about 0 to 6 ° C.) to freeze and solidify the solution. In this case, the laminated body 20 is chucked by using a table having a cooling function such as a freezing chuck table (table surface temperature of about 0 to 6 ° C.) as the wafer table 51 of the dicing apparatus.

また、0〜6℃程度に冷却した研削水を供給することによって積層体20及びその周囲を溶液の融点以下に保った状態とし、この状態で透明ガラス板12を研削切断する。   Further, by supplying grinding water cooled to about 0 to 6 ° C., the laminated body 20 and its surroundings are kept below the melting point of the solution, and the transparent glass plate 12 is ground and cut in this state.

なお、充填する流動性材料として水などマイナス温度下で固化するものを用いた場合は、 研削水には不凍液であるエチレングリコールを混合して、マイナス温度下でも氷結を防止し、液性を保持する。   In addition, when a material that solidifies under minus temperature, such as water, is used as the fluid material to be filled, ethylene glycol, an antifreeze solution, is mixed with the grinding water to prevent freezing and maintain liquidity even under minus temperature. To do.

また、保護層15となる流動性材料として、ゼラチン又は寒天等の含有溶液で、一旦低温で冷却固化させると常温環境下に戻しても流動化しにくい材料を用い、空隙部14Aに充填後、積層体20を冷蔵庫内(4〜8℃程度)で冷却し、流動性材料をプリン状に固化させて保護層15を形成することもできる。   In addition, as a fluid material to be the protective layer 15, a material containing gelatin or agar is used, and once the material is cooled and solidified at a low temperature, it is difficult to fluidize even if it is returned to a normal temperature environment. The protective layer 15 can also be formed by cooling the body 20 in a refrigerator (about 4 to 8 ° C.) and solidifying the fluid material into a pudding shape.

何れの場合も、空隙部14Aの高さが溝12Bによって増大していることに加え、空隙部14A内に流動性材料を充填して保護層15を形成しているので、透明ガラス板12の研削切断を進めていく中でガラス破片12Aが生じても容易に排出され、ウェーハ11の傷が抑制される。   In any case, in addition to the height of the gap portion 14A being increased by the groove 12B, the protective layer 15 is formed by filling the gap portion 14A with a fluid material. Even if glass fragments 12A are generated during the grinding and cutting, they are easily discharged and the damage to the wafer 11 is suppressed.

また、透明ガラス板12を研削切断するにあたり、図5に示すように、超音波振動子付研削液ノズル55から超音波振動が付与された研削液を供給しながら研削切断することにより、ガラス破片12A自体に振動が伝わり、ガラス破片12Aがよりスムーズに排出されるので、ガラス破片12Aによるウェーハ11表面の損傷がより一層緩和される。   Further, when the transparent glass plate 12 is cut by grinding, as shown in FIG. 5, the glass fragments are obtained by grinding and cutting while supplying a grinding liquid to which ultrasonic vibration is applied from a grinding liquid nozzle 55 with an ultrasonic vibrator. Since vibration is transmitted to 12A itself and the glass fragments 12A are discharged more smoothly, damage to the surface of the wafer 11 by the glass fragments 12A is further alleviated.

この場合の実施例として、発振装置は例えば、メガソニックシステムズ社製の型式:MSG−331等が用いられ、発振器56の発振周波数は1.5〜3.0MHz程度、超音波出力は10〜40W程度が好適である。   As an embodiment in this case, for example, a model MSG-331 manufactured by Megasonic Systems is used as the oscillation device, the oscillation frequency of the oscillator 56 is about 1.5 to 3.0 MHz, and the ultrasonic output is 10 to 40 W. The degree is preferred.

また、研削液への超音波エネルギーの付与は、研削液ノズルからの吐出直前が最も効果的であるので、超音波振動子付研削液ノズル55の超音波振動子の組み込みはできるだけノズルの先端に近い方がよい。   In addition, since the ultrasonic energy is most effectively applied to the grinding fluid immediately before discharge from the grinding fluid nozzle, the ultrasonic vibrator of the grinding fluid nozzle with ultrasonic vibrator 55 is incorporated at the tip of the nozzle as much as possible. Closer is better.

以上のように、本発明によれば、100μm程度の極く狭い空隙部を有して接合された固体撮像素子ウェーハと透明ガラス板とで構成された固体撮像装置集合体の透明ガラス板を研削切断するにあたり、予め透明ガラス板に溝を形成しておくことによって研削切断部位の空隙部の高さを増大させているので、研削切断中に生ずる透明ガラス板の破片によるウェーハの損傷を防止することができ、歩留まりの高い固体撮像装置の製造方法を得ることができる。   As described above, according to the present invention, the transparent glass plate of the solid-state imaging device assembly composed of the solid-state imaging device wafer and the transparent glass plate joined with a very narrow gap of about 100 μm is ground. When cutting, since the height of the gap portion of the grinding cut portion is increased by forming grooves in the transparent glass plate in advance, damage to the wafer due to transparent glass plate fragments generated during grinding cutting is prevented. Therefore, a method for manufacturing a solid-state imaging device with a high yield can be obtained.

本発明の実施の形態を説明する固体撮像装置の組立工程を表わす概念図The conceptual diagram showing the assembly process of the solid-state imaging device explaining embodiment of this invention 本発明の実施の形態を説明する研削切断工程の概念図The conceptual diagram of the grinding cutting process explaining embodiment of this invention 本発明の別の実施形態を説明する保護膜形成工程の概念図The conceptual diagram of the protective film formation process explaining another embodiment of this invention 本発明の別の実施形態を説明する研削切断工程の概念図The conceptual diagram of the grinding cutting process explaining another embodiment of this invention 研削液に超音波振動を付与した研削切断を説明する概念図Conceptual diagram explaining grinding and cutting with ultrasonic vibration applied to the grinding fluid 従来の研削切断を説明する概念図Conceptual diagram explaining conventional grinding and cutting

符号の説明Explanation of symbols

11…ウェーハ、11A…固体撮像素子、12…透明ガラス板(透明平板)、12A…ガラス破片、12B…溝、13…スペーサ、14、14A…空隙部、15…保護層、20…積層体、21…固体撮像装置、52…ダイシングブレード(円盤状砥石)   DESCRIPTION OF SYMBOLS 11 ... Wafer, 11A ... Solid-state image sensor, 12 ... Transparent glass plate (transparent flat plate), 12A ... Glass fragment, 12B ... Groove, 13 ... Spacer, 14, 14A ... Gap part, 15 ... Protective layer, 20 ... Laminate, 21 ... Solid-state imaging device, 52 ... Dicing blade (disc-shaped grindstone)

Claims (3)

ウェーハの表面に多数の固体撮像素子を形成する工程と、
前記ウェーハに接合される透明平板下面の前記固体撮像素子に対応する箇所に、個々の固体撮像素子を囲む形状の所定厚さの枠状のスペーサを形成する工程と、
前記透明平板下面の前記スペーサ同士の間に所定深さの溝を形成する工程と、
前記ウェーハと前記透明平板とを位置合わせして前記スペーサを介して接合する工程と、
前記透明平板に研削加工を施し、前記個々の固体撮像素子に対応するように該透明平板を分割する工程と、
前記ウェーハを個々の固体撮像素子に対応させて分割する工程と、
を備えることを特徴とする固体撮像装置の製造方法。
Forming a large number of solid-state imaging devices on the surface of the wafer;
Forming a frame-shaped spacer having a predetermined thickness in a shape surrounding each solid-state image sensor at a position corresponding to the solid-state image sensor on the lower surface of the transparent flat plate to be bonded to the wafer;
Forming a groove of a predetermined depth between the spacers on the lower surface of the transparent flat plate;
Aligning the wafer and the transparent flat plate and bonding them via the spacer;
Grinding the transparent flat plate, and dividing the transparent flat plate so as to correspond to the individual solid-state imaging devices;
Dividing the wafer in correspondence with each solid-state imaging device;
A method for manufacturing a solid-state imaging device.
前記透明平板を分割する工程は、前記透明平板の溝の幅寸法よりも大きな厚さ寸法を有する円盤状砥石で前記透明平板を研削切断することを特徴とする、請求項1に記載の固体撮像装置の製造方法。   2. The solid-state imaging according to claim 1, wherein in the step of dividing the transparent flat plate, the transparent flat plate is ground and cut with a disc-shaped grindstone having a thickness larger than a width of a groove of the transparent flat plate. Device manufacturing method. 前記透明平板を分割する工程は、予め前記透明平板の溝と該溝の下方の前記スペーサ同士の間の空間とからなる空隙部に流動性材料を充填して、前記ウェーハの保護層を形成する工程を含むことを特徴とする、請求項1又は請求項2に記載の固体撮像装置の製造方法。   In the step of dividing the transparent flat plate, a fluid material is previously filled in a gap formed by a groove of the transparent flat plate and a space between the spacers below the groove to form a protective layer of the wafer. The manufacturing method of the solid-state imaging device according to claim 1, further comprising a step.
JP2004285101A 2004-09-29 2004-09-29 Method of manufacturing solid-state imaging device Abandoned JP2006100587A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004285101A JP2006100587A (en) 2004-09-29 2004-09-29 Method of manufacturing solid-state imaging device
CNB200580032270XA CN100490128C (en) 2004-09-29 2005-09-27 Method of grinding multilayer body and method of manufacturing solid state image pickup device
KR1020077006409A KR100884508B1 (en) 2004-09-29 2005-09-27 Method of grinding multilayer body
EP05787658A EP1800340A4 (en) 2004-09-29 2005-09-27 Method of grinding multilayer body and method of manufacturing solid state image pickup device
US11/663,561 US20080003926A1 (en) 2004-09-29 2005-09-27 Method of Grinding Multilayer Body and Method of Manufacturing Solid State Image Pickup Device
PCT/JP2005/018233 WO2006035963A1 (en) 2004-09-29 2005-09-27 Method of grinding multilayer body and method of manufacturing solid state image pickup device
KR1020087023300A KR100902520B1 (en) 2004-09-29 2005-09-27 Method of manufacturing solid state image pickup device
TW094133634A TWI305377B (en) 2004-09-29 2005-09-28 Method of grinding multilayer body and method of manufacturing solid state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004285101A JP2006100587A (en) 2004-09-29 2004-09-29 Method of manufacturing solid-state imaging device

Publications (1)

Publication Number Publication Date
JP2006100587A true JP2006100587A (en) 2006-04-13

Family

ID=36240097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004285101A Abandoned JP2006100587A (en) 2004-09-29 2004-09-29 Method of manufacturing solid-state imaging device

Country Status (2)

Country Link
JP (1) JP2006100587A (en)
CN (1) CN100490128C (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166585A (en) * 2006-12-28 2008-07-17 Fujifilm Corp Manufacturing method of solid-state imaging device
JP2009218720A (en) * 2008-03-07 2009-09-24 Oki Semiconductor Co Ltd Semiconductor device, camera module, and method of manufacturing semiconductor device
WO2010029876A1 (en) * 2008-09-11 2010-03-18 富士フイルム株式会社 Method for manufacturing solid-state imaging device
JP2010517432A (en) * 2007-01-26 2010-05-20 フレックストロニクス エーピー エルエルシー Wafer level camera module and manufacturing method thereof
US9419032B2 (en) 2009-08-14 2016-08-16 Nanchang O-Film Optoelectronics Technology Ltd Wafer level camera module with molded housing and method of manufacturing
US9426897B2 (en) 2011-03-08 2016-08-23 Murata Manufacturing Co., Ltd. Electronic component and method for manufacturing electronic component
JP2016184068A (en) * 2015-03-26 2016-10-20 セイコーエプソン株式会社 Electro-optic device, method for manufacturing electro-optic device, and electronic apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102456802A (en) * 2010-10-19 2012-05-16 展晶科技(深圳)有限公司 Manufacturing method of packaging structures of light emitting diodes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231919A (en) * 2001-02-06 2002-08-16 Olympus Optical Co Ltd Solid-state image pickup device and its manufacturing method
JP2004006834A (en) * 2002-04-22 2004-01-08 Fuji Photo Film Co Ltd Manufacturing method of solid state imaging apparatus
JP2004193599A (en) * 2002-11-27 2004-07-08 Seiko Epson Corp Semiconductor device, manufacturing method therefor, circuit board and electronic apparatus
JP2006128655A (en) * 2004-09-28 2006-05-18 Dainippon Printing Co Ltd Sensor chip and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231919A (en) * 2001-02-06 2002-08-16 Olympus Optical Co Ltd Solid-state image pickup device and its manufacturing method
JP2004006834A (en) * 2002-04-22 2004-01-08 Fuji Photo Film Co Ltd Manufacturing method of solid state imaging apparatus
JP2004193599A (en) * 2002-11-27 2004-07-08 Seiko Epson Corp Semiconductor device, manufacturing method therefor, circuit board and electronic apparatus
JP2006128655A (en) * 2004-09-28 2006-05-18 Dainippon Printing Co Ltd Sensor chip and its manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166585A (en) * 2006-12-28 2008-07-17 Fujifilm Corp Manufacturing method of solid-state imaging device
KR101385410B1 (en) * 2006-12-28 2014-04-14 후지필름 가부시키가이샤 A method of producing solid-state imaging device
JP2010517432A (en) * 2007-01-26 2010-05-20 フレックストロニクス エーピー エルエルシー Wafer level camera module and manufacturing method thereof
JP2009218720A (en) * 2008-03-07 2009-09-24 Oki Semiconductor Co Ltd Semiconductor device, camera module, and method of manufacturing semiconductor device
JP4667480B2 (en) * 2008-03-07 2011-04-13 Okiセミコンダクタ株式会社 The camera module
WO2010029876A1 (en) * 2008-09-11 2010-03-18 富士フイルム株式会社 Method for manufacturing solid-state imaging device
JP2010067836A (en) * 2008-09-11 2010-03-25 Fujifilm Corp Method of manufacturing solid state imaging apparatus
US8772070B2 (en) 2008-09-11 2014-07-08 Fujifilm Corporation Method for manufacturing solid-state imaging device
US9419032B2 (en) 2009-08-14 2016-08-16 Nanchang O-Film Optoelectronics Technology Ltd Wafer level camera module with molded housing and method of manufacturing
US9426897B2 (en) 2011-03-08 2016-08-23 Murata Manufacturing Co., Ltd. Electronic component and method for manufacturing electronic component
JP2016184068A (en) * 2015-03-26 2016-10-20 セイコーエプソン株式会社 Electro-optic device, method for manufacturing electro-optic device, and electronic apparatus

Also Published As

Publication number Publication date
CN101044616A (en) 2007-09-26
CN100490128C (en) 2009-05-20

Similar Documents

Publication Publication Date Title
KR100902520B1 (en) Method of manufacturing solid state image pickup device
TWI570885B (en) Active chip on carrier or laminated chip having microelectronic element embedded therein
JP4542768B2 (en) Solid-state imaging device and manufacturing method thereof
CN104364894B (en) Photographic device, semiconductor device and camera unit
TWI313057B (en) Manufacturing method of semiconductor device
JP5939810B2 (en) Device wafer processing method
US20120074565A1 (en) Semiconductor device provided with rear protective film on other side of semiconductor substrate and manufacturing method of the same
KR20110056290A (en) Method for manufacturing solid-state imaging device
CN100490128C (en) Method of grinding multilayer body and method of manufacturing solid state image pickup device
JP2008028325A (en) Method of manufacturing semiconductor device
US9041161B2 (en) Semiconductor device with a chip prevention member
JP2007123362A (en) Method of manufacturing device
JP6956788B2 (en) Board processing method and board processing system
CN104380466A (en) Method for manufacturing imaging device and method for manufacturing semiconductor device
JP2011176229A (en) Method of manufacturing solid-state imaging device
CN101752273B (en) Method of manufacturing semiconductor device
JP4018013B2 (en) Solid-state imaging device and method for manufacturing solid-state imaging device
WO2007069456A1 (en) Semiconductor device manufacturing method
JP2007258750A (en) Solid-state imaging apparatus and method of manufacturing same
JP2004296739A (en) Method for manufacturing solid state imaging device
US20210273000A1 (en) Solid-state imaging device, electronic apparatus, and method for producing solid-state imaging device
JP4734677B2 (en) Laminate grinding method
JP2006093458A (en) Method for manufacturing solid-state image pickup device
JP2006080123A (en) Method for manufacturing solid state imaging device
TW201034060A (en) Techniques for glass attachment in an image sensor package

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110728

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20110817