JP2006100457A - Electronic device and its manufacturing method - Google Patents

Electronic device and its manufacturing method Download PDF

Info

Publication number
JP2006100457A
JP2006100457A JP2004283020A JP2004283020A JP2006100457A JP 2006100457 A JP2006100457 A JP 2006100457A JP 2004283020 A JP2004283020 A JP 2004283020A JP 2004283020 A JP2004283020 A JP 2004283020A JP 2006100457 A JP2006100457 A JP 2006100457A
Authority
JP
Japan
Prior art keywords
resin layer
semiconductor device
wiring board
adhesive resin
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004283020A
Other languages
Japanese (ja)
Inventor
Masato Nakamura
真人 中村
Kazuhito Kurosawa
和仁 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004283020A priority Critical patent/JP2006100457A/en
Publication of JP2006100457A publication Critical patent/JP2006100457A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/8388Hardening the adhesive by cooling, e.g. for thermoplastics or hot-melt adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain the mounting structure of a semiconductor device which is repairable and has high reliability against impact. <P>SOLUTION: A first adhesive resin layer 2 which is stuck to a mounting wiring board, hardened, and peeled and removed, and a second adhesive resin layer 3 which is stuck to a semiconductor device and hardened with higher mechanical strength and a smaller coefficient of thermal expansion than the first layer 2, are layered between the semiconductor device 1 and a soldered mounting wiring board 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は小型パソコンや、携帯電話機、ビデオカメラ等、電子機器に使用される半導体装置の実装構造体及び実装方法に関し、特にリペア、リワークが可能な半導体装置の実装技術に関する。   The present invention relates to a mounting structure and mounting method for a semiconductor device used in an electronic device such as a small personal computer, a mobile phone, and a video camera, and more particularly to a mounting technology for a semiconductor device that can be repaired and reworked.

携帯電話機に代表されるモバイル機器は、多機能化が著しい一方で、小型、軽量化への要求も非常に高い。そのため、実装される半導体装置には、従来のQFP(Quad Flat Package)に代表される、リード接続型の半導体装置に替わり、BGA(Ball Grid Array)、CSP(Chip Scale Package)といった、はんだバンプ接続型の半導体装置が数多く使用されている。   While mobile devices represented by mobile phones are remarkably multifunctional, demands for miniaturization and weight reduction are very high. For this reason, the mounted semiconductor device is replaced with a lead bump type semiconductor device represented by a conventional QFP (Quad Flat Package), and solder bump connection such as BGA (Ball Grid Array) and CSP (Chip Scale Package). Many types of semiconductor devices are used.

しかし、携帯電話機やPDA等、人が持ち運ぶ事を前提としたモバイル機器は、使用者の不注意による落下等の衝撃に対して高い信頼性が要求されるという、従来の据え置き型の電子機器に無い特徴を持つ。   However, mobile devices such as mobile phones and PDAs, which are supposed to be carried by people, are not compatible with conventional stationary electronic devices that require high reliability against impacts such as dropping due to carelessness by the user. Has no features.

一般にBGA、CSP等のはんだバンプ接続型の半導体装置は、衝撃がダイレクトにはんだ接続部に伝わるため、リードによる応力緩和機能を持つリード接続型半導体装置と比較し、信頼性に劣る。そのため、信頼性を向上させるために様々な補強が行われている。中でも、バンプ接続型の半導体装置と実装用配線基板の間に、熱硬化性接着剤を注入して補強する、いわゆるアンダーフィルが使われるケースが非常に多い。   In general, solder bump connection type semiconductor devices such as BGA and CSP are inferior in reliability as compared with lead connection type semiconductor devices having a stress relieving function by leads because the impact is directly transmitted to the solder connection portion. Therefore, various reinforcements are performed in order to improve reliability. In particular, so-called underfill, in which a thermosetting adhesive is injected and reinforced between a bump-connected semiconductor device and a mounting wiring board, is very often used.

バンプ接続型半導体装置は、高機能化、多機能化のための端子数増加や小型化、軽量化が進み、それに応じて、はんだバンプピッチやはんだボールの微細化が進んでいる。   Bump connection type semiconductor devices have been increased in number of terminals, miniaturized, and reduced in weight for higher functionality and multi-function, and solder bump pitch and solder balls have been miniaturized accordingly.

また、これを受ける実装用配線基板のランドも小径化している。その結果、接続面積が減少してしまい、接続部の強度が低下し、信頼性が低下する。したがって、アンダーフィルによる補強の重要性は、益々高くなっている。   Further, the land of the mounting wiring board that receives this is also reduced in diameter. As a result, the connection area decreases, the strength of the connection portion decreases, and the reliability decreases. Therefore, the importance of reinforcement by underfill is increasing.

上記の様に、アンダーフィルは衝撃信頼性を向上するために非常に有効な技術であるが、一方で、2つの大きな欠点が有る。   As described above, underfill is a very effective technique for improving impact reliability, but has two major drawbacks.

1つは、熱疲労信頼性の低下である。一般にアンダーフィルとして用いられる樹脂は、はんだに比べて、熱膨張係数が大きい。稼動時の発熱で温度が上昇すると、樹脂がはんだよりも大きく膨張するため、はんだ接続部に歪が発生する。   One is a decrease in thermal fatigue reliability. In general, a resin used as an underfill has a larger coefficient of thermal expansion than solder. When the temperature rises due to heat generated during operation, the resin expands more than the solder, causing distortion in the solder connection.

この歪により、はんだ接続部にクラックが発生、進展し、最終的に断線に至るのである。したがって、アンダーフィルとして、用いられる樹脂は熱膨張係数がはんだに近い事が望ましい。   Due to this strain, cracks are generated and propagated in the solder connection portion, and finally the wire breaks. Therefore, it is desirable that the resin used as the underfill has a thermal expansion coefficient close to that of solder.

もう1つは、リペア、リワークの障害となることである。アンダーフィル材料としては主にエポキシ系の樹脂が使われている。エポキシ系の樹脂は熱的、化学的に非常に安定な物質で機械強度が高い。これらの性質は補強材料として理想的な反面、一度硬化させると除去は困難であるため、アンダーフィルとして使用した場合、不良が発生した半導体装置の交換や、はんだ接続部に破断が発生した場合の再接続を行う、リペア、リワークを困難もしくは、不可能とする欠点を持つ。その結果、製造工程内不良、市場不良を問わず、不良の原因が、バンプ接続型半導体装置及び、実装用配線基板とのはんだ接続部に有る場合、リペア、リワークが出来なくなり、基板を廃棄せざるを得ないため経済的な損失が大きい。   The other is an obstacle to repair and rework. An epoxy resin is mainly used as the underfill material. Epoxy resin is a thermally and chemically very stable material with high mechanical strength. While these properties are ideal as reinforcing materials, they are difficult to remove once cured, so when used as an underfill, replacement of defective semiconductor devices or when solder joints break It has the disadvantage of making reconnection, repair and rework difficult or impossible. As a result, if the cause of the defect is in the bump connection type semiconductor device and the solder connection part with the mounting wiring board, regardless of whether it is in-process defect or market defect, repair and rework cannot be performed, and the board is discarded. The economic loss is unavoidable.

この問題を解決するために、リペア、リワークが可能なアンダーフィル材料、及び技術として、150℃で軟化するエポキシ系樹脂をアンダーフィル材とした半導体装置(例えば、特許文献1)、加熱しながら半導体装置を実装基板から引き剥がす工程が可能な樹脂組成物を用いた半導体装置の実装構造(例えば、特許文献2)、エポキシ樹脂の化学構造にフッ素を導入する事で、分子のパッキング性を低下させ、樹脂の膨潤性を高めたことで、溶剤への浸漬による取り外しを可能としたリペアラブル・アンダーフィル(例えば、非特許文献1)等の技術が開示されている。   In order to solve this problem, an underfill material that can be repaired and reworked, and as a technique, a semiconductor device using an epoxy-based resin softened at 150 ° C. as an underfill material (for example, Patent Document 1), a semiconductor while heating A semiconductor device mounting structure using a resin composition capable of peeling the device from the mounting substrate (for example, Patent Document 2), and introducing fluorine into the chemical structure of the epoxy resin reduces the molecular packing property. In addition, a technique such as a repairable underfill (for example, Non-Patent Document 1) that can be removed by immersion in a solvent by increasing the swelling property of the resin is disclosed.

特開2001−220428号JP 2001-220428 A 特開平10−209342号JP-A-10-209342 9th Symposium on Microjoining and Assembly Technology in Electoronics(135〜138)9th Symposium on Microjoining and Assembly Technology in Electoronics (135-138)

前記の通り、アンダーフィルには、耐衝撃信頼性を向上させるために充分な強度等の機械特性を有し、熱膨張係数がはんだに近く、リペア、リワークが可能である事が理想である。しかしながら、市場で入手可能な樹脂材料で、上記の性質を全て満足する物は存在しない。   As described above, it is ideal that the underfill has mechanical properties such as sufficient strength to improve impact resistance reliability, has a thermal expansion coefficient close to that of solder, and can be repaired and reworked. However, there is no commercially available resin material that satisfies all of the above properties.

本発明の目的は、熱疲労信頼性、衝撃信頼性が高く、リペア、リワークが可能な、バンプ接続を行った電子装置を提供することにある。   An object of the present invention is to provide an electronic device with bump connection, which has high thermal fatigue reliability and impact reliability, and can be repaired and reworked.

本願は、上記目的を達成する技術を複数備えている。   The present application includes a plurality of techniques for achieving the above object.

代表的なものとしては、アンダーフィル補強のために、バンプ接続型半導体装置と実装用配線基板の間に充填する接着剤樹脂を、剥離や除去が可能な第一接着剤樹脂層と機械強度に優れ熱膨張係数の小さい第二接着剤樹脂層の二層構造とするものがある。   As a typical example, for reinforcing the underfill, the adhesive resin filled between the bump connection type semiconductor device and the mounting wiring board is made into a first adhesive resin layer that can be peeled off and removed and a mechanical strength. Some have a two-layer structure of a second adhesive resin layer having a small coefficient of thermal expansion.

このように二層構造とすることで、リペア、リワークが可能で、信頼性の高い電子装置を得ることができる。   With such a two-layer structure, repair and rework are possible, and a highly reliable electronic device can be obtained.

本発明によれば、熱疲労信頼性、衝撃信頼性が高く、リペア、リワークが可能な、バンプ接続を行った電子装置を提供することができる。   According to the present invention, it is possible to provide an electronic device with bump connection, which has high thermal fatigue reliability and impact reliability and can be repaired and reworked.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、本発明の実施の形態1による半導体装置の実装構造体の構造について説明する。   First, the structure of the semiconductor device mounting structure according to the first embodiment of the present invention will be described.

図1は本発明の実施の形態1による半導体装置の実装構造体の断面構造を示す断面図である。   1 is a cross-sectional view showing a cross-sectional structure of a mounting structure of a semiconductor device according to a first embodiment of the present invention.

図1において、半導体装置の実装体構造は、バンプ接続型の半導体の一例であるBGA型半導体装置1、熱可塑性接着剤からなる第一接着剤樹脂層2、熱硬化性接着剤樹脂からなる第二接着剤樹脂層3、実装用配線基板4、基板ランド5、はんだバンプ6から構成され、BGA型半導体装置1と実装用配線基板の間が、熱可塑性接着樹脂からなる第一接着剤樹脂層2と熱硬化性接着剤樹脂からなる第二接着剤樹脂層3で充填された構造となっている。   In FIG. 1, the mounting structure of the semiconductor device includes a BGA type semiconductor device 1 which is an example of a bump connection type semiconductor, a first adhesive resin layer 2 made of a thermoplastic adhesive, and a first adhesive resin layer made of a thermosetting adhesive resin. A first adhesive resin layer composed of a two-adhesive resin layer 3, a mounting wiring board 4, a board land 5, and a solder bump 6, and between the BGA type semiconductor device 1 and the mounting wiring board is made of a thermoplastic adhesive resin. 2 and a second adhesive resin layer 3 made of a thermosetting adhesive resin.

熱可塑性接着樹脂及び熱硬化性接着剤樹脂は、エポキシ系樹脂、オキセタン系樹脂、反応性アクリル系樹脂、シアネートエステル系樹脂、シリコーン系樹脂、ウレタン系樹脂、ポリエステル系樹脂、シアノアクリレート系樹脂、フェノールアルデヒド系樹脂、メラミンアルデヒド系樹脂、尿素アルデヒド系樹脂、レゾルシノールアルデヒド樹脂、キシレンアルデヒド樹脂、およびフラン樹脂からなエポキシ樹脂、ウレタン樹脂等如何なる樹脂を用いても良い。また、樹脂の以外の成分として、無機フィラー、カップリング剤、界面活性剤の中から1種類、もしくは複数を含んでいても良い。   Thermoplastic adhesive resins and thermosetting adhesive resins are epoxy resins, oxetane resins, reactive acrylic resins, cyanate ester resins, silicone resins, urethane resins, polyester resins, cyanoacrylate resins, phenols. Any resin such as an aldehyde resin, a melamine aldehyde resin, a urea aldehyde resin, a resorcinol aldehyde resin, a xylene aldehyde resin, and an epoxy resin or a urethane resin made of a furan resin may be used. Moreover, as a component other than the resin, one or more of inorganic fillers, coupling agents, and surfactants may be contained.

熱可塑性接着樹脂層2は、加熱することで軟化、流動し、冷めると硬化して接着する性質を有するもので、リペア工程で、熱硬化性接着剤樹脂層3と実装用配線基板4を容易に分離出来る必要が有る。   The thermoplastic adhesive resin layer 2 has a property of softening and flowing when heated, and curing and adhering when cooled, and the thermosetting adhesive resin layer 3 and the wiring board 4 for mounting can be easily formed in a repair process. It must be separable.

一方、リペア工程における熱処理は、周辺の部品へのダメージや作業性、作業効率を考えた場合、低温である事が好ましい。しかし、リペア、リワークは、一般にはんだを溶融させて行うので、熱可塑性接着剤樹脂層2が軟化、流動を開始する温度は、はんだの融点以下である事が望ましい。   On the other hand, it is preferable that the heat treatment in the repair process is performed at a low temperature in consideration of damage to the surrounding parts, workability, and work efficiency. However, since repair and rework are generally performed by melting the solder, it is desirable that the temperature at which the thermoplastic adhesive resin layer 2 softens and starts flowing is below the melting point of the solder.

また、BGA型半導体装置1等の半導体素子は稼動による発熱で温度が上昇するので、リペア工程以外で、熱可塑性接着剤樹脂からなる第一接着剤層2が軟化、流動した場合、信頼性の低下を引き起こす。したがって、熱可塑性接着剤樹脂からなる第一接着剤樹脂層2は、稼動時のピーク温度以下では、硬化した状態を保つ必要がある。   Further, since the temperature of the semiconductor element such as the BGA type semiconductor device 1 rises due to heat generated by the operation, the reliability of the first adhesive layer 2 made of the thermoplastic adhesive resin is softened and fluidized except in the repair process. Causes a drop. Therefore, the first adhesive resin layer 2 made of the thermoplastic adhesive resin needs to be kept in a cured state below the peak temperature during operation.

次に、実施の形態1における、熱可塑性接着剤樹脂からなる第一接着剤樹脂層2及び熱硬化性接着剤樹脂からなる第二接着剤樹脂層3の厚さについて、熱膨張係数αを例として、以下に説明する。   Next, the thermal expansion coefficient α is taken as an example for the thicknesses of the first adhesive resin layer 2 made of thermoplastic adhesive resin and the second adhesive resin layer 3 made of thermosetting adhesive resin in the first embodiment. Will be described below.

接着剤樹脂をBGA接続型半導体装置1と実装用配線基板4の間を充填した場合に、熱疲労信頼性が製品の目標仕様を満たす上限の熱膨張係数をα1、熱可塑性接着樹脂層2の熱膨張係数をα2、熱硬化性接着剤樹脂層3の熱膨張係数をα3とする。   When the adhesive resin is filled between the BGA connection type semiconductor device 1 and the wiring board 4 for mounting, the upper limit of the thermal expansion coefficient that satisfies the target specification of the product is α1, and the thermoplastic adhesive resin layer 2 The thermal expansion coefficient is α2, and the thermal expansion coefficient of the thermosetting adhesive resin layer 3 is α3.

また、はんだバンプの接続高さをt1、熱可塑性接着樹脂からなる第一接着剤樹脂層2の厚さをt2、熱硬化性接着剤樹脂からなる第二接着剤樹脂層3の厚さをt3とする。この場合、
t1=t2+t3 (式1)
α1>α2×t2/(t2+t3)+α3×t3/(t2+t3) (式2)
で計算される厚さにすれば、熱疲労に対する信頼性を確保することが出来る。
The solder bump connection height is t1, the thickness of the first adhesive resin layer 2 made of thermoplastic adhesive resin is t2, and the thickness of the second adhesive resin layer 3 made of thermosetting adhesive resin is t3. And in this case,
t1 = t2 + t3 (Formula 1)
α1> α2 × t2 / (t2 + t3) + α3 × t3 / (t2 + t3) (Formula 2)
If the thickness is calculated by (1), reliability against thermal fatigue can be ensured.

他の信頼性項目(例えば耐衝撃信頼性)に関しても、同様の計算を行い、全て項目を満足するための上限の厚さを求めて、第一及び第二接着剤樹脂層の厚さを決めれば良い。   For other reliability items (for example, impact resistance reliability), the same calculation can be performed to find the upper limit thickness to satisfy all the items, and the thickness of the first and second adhesive resin layers can be determined. It ’s fine.

次に、バンプ接続型半導体装置の実装用配線基板への実装方法の例について説明する。   Next, an example of a method for mounting the bump connection type semiconductor device on the wiring board for mounting will be described.

まず初めに、実装用配線基板4に第一接着剤樹脂層2を形成する工程として、100℃以上の温度になると軟化、流動を開始する接着剤樹脂を、厚さ50μmのフィルム上に成形し、
次いで、実装用配線基板4のランドに対応する位置を、機械的に打ち抜き、穴を開ける。
First, as a step of forming the first adhesive resin layer 2 on the wiring board 4 for mounting, an adhesive resin that starts to soften and flow when a temperature of 100 ° C. or higher is formed on a film having a thickness of 50 μm. ,
Next, a position corresponding to the land of the mounting wiring board 4 is mechanically punched to make a hole.

次いで、前記接着剤樹脂フィルムと実装用配線基板を位置合わせしてから、温度150℃、押圧50Nで10秒処理し、接着剤樹脂フィルムと実装用配線基板4を接着し、熱可塑性接着樹脂からなる第一接着剤樹脂層2を形成する。   Next, after aligning the adhesive resin film and the wiring board for mounting, processing is performed at a temperature of 150 ° C. and a pressure of 50 N for 10 seconds, the adhesive resin film and the wiring board for mounting 4 are bonded, and from the thermoplastic adhesive resin The first adhesive resin layer 2 is formed.

次いで、前記の実装用配線基板にSn3Ag0.5Cuはんだペーストをスクリーン印刷する。次いで、チップマウンタを使用し、BGA型半導体装置1を前記実装用配線基板に搭載する。BGA型半導体装置は15mm角、バンプピッチ0.8mm、はんだボール径0.5mm、はんだボール材料がSn3Ag0.5Cuはんだ、19×19の4列、208ピンのエリアアレイ型を用いた。また、実装用配線基板は、φ0.5mmのCu−Ni―Au製ランドを、BGA型半導体装置のはんだバンプの対応する位置に形成した実装用配線基板を用いた。   Next, Sn3Ag0.5Cu solder paste is screen-printed on the mounting wiring board. Next, using a chip mounter, the BGA type semiconductor device 1 is mounted on the wiring board for mounting. As the BGA type semiconductor device, a 15 mm square, a bump pitch of 0.8 mm, a solder ball diameter of 0.5 mm, a solder ball material of Sn3Ag0.5Cu solder, 19 × 19 4 rows, 208 pin area array type was used. As the mounting wiring board, a mounting wiring board in which a land of φ-0.5 mm made of Cu—Ni—Au was formed at a position corresponding to the solder bump of the BGA type semiconductor device was used.

次いで、ピーク温度250℃に設定したリフロー炉に通し、実装用配線基板4とBGA型半導体装置1をはんだ接続する。   Next, the wiring board 4 for mounting and the BGA type semiconductor device 1 are soldered through a reflow furnace set at a peak temperature of 250 ° C.

次いで、マイクロディスペンサを用い、実装用配線基板4に搭載したBGA型半導体装置1の直行する2辺に、熱硬化性接着剤樹脂を塗布する。   Next, a thermosetting adhesive resin is applied to the two orthogonal sides of the BGA type semiconductor device 1 mounted on the mounting wiring board 4 using a microdispenser.

次いで、100℃に熱したオーブン中に30分間入れ、実装用配線基板上の第一樹脂層とBGA型半導体装置の間に、熱硬化性接着剤樹脂を浸透、硬化させ、第二接着剤樹脂層を形成し、BGA型半導体装置の実装体を得る。   Next, it is placed in an oven heated to 100 ° C. for 30 minutes, and a thermosetting adhesive resin is infiltrated and cured between the first resin layer on the wiring board for mounting and the BGA type semiconductor device, and the second adhesive resin A layer is formed to obtain a BGA type semiconductor device mounting body.

上記の様にして得た、BGA型半導体装置1の実装構造体に関し、まず、リペア性について示す。   Regarding the mounting structure of the BGA type semiconductor device 1 obtained as described above, the repairability will be described first.

BGA型半導体装置の実装構造体を250℃に熱したホットプレート上に置き加熱したところ、まず、熱可塑性接着剤からなる第一接着剤樹脂層が軟化、流動を開始した。さらに加熱を続け、はんだバンプを溶融させた後、第一接着剤樹脂層と第二接着剤樹脂層の間に金属製のブレードを差し込んで持ち上げたところ、第一接着剤樹脂層内で、剥離が発生し、BGA型半導体装置1と実装用配線基板4を分離する事が出来た。   When the mounting structure of the BGA type semiconductor device was placed on a hot plate heated to 250 ° C. and heated, the first adhesive resin layer made of the thermoplastic adhesive softened and started to flow. After further heating and melting the solder bumps, when a metal blade was inserted between the first adhesive resin layer and the second adhesive resin layer and lifted, peeling occurred within the first adhesive resin layer. As a result, the BGA type semiconductor device 1 and the mounting wiring board 4 could be separated.

次いで、スパチュラ等を用い、実装用配線基板上に残った第一接着剤樹脂層の残渣の除去を行った。   Subsequently, the residue of the 1st adhesive agent resin layer which remained on the wiring board for mounting was removed using the spatula etc.

次いで、はんだ残渣を、はんだ吸い取り用編組銅線で除去した。   Subsequently, the solder residue was removed with a braided copper wire for sucking out solder.

次いで、前記の方法で、第一接着剤樹脂層を再び形成し、前記の方法で、新しいBGA型半導体装置の搭載、接続と第二接着剤樹脂の充填、硬化を行った。   Next, the first adhesive resin layer was formed again by the above method, and mounting, connection, filling of the second adhesive resin, and curing were performed by the above method.

以上の工程でリペアを行うことにより得た、BGA型半導体装置の実装体の衝撃信頼性、熱疲労信頼性を確認したところ、リペア前と比較して、遜色無かった。   When the impact reliability and thermal fatigue reliability of the mounting body of the BGA type semiconductor device obtained by performing the repair in the above steps were confirmed, it was not inferior compared with that before the repair.

次に、図2により、実施の形態1により得られたBGA型半導体装置1の実装構造体の熱疲労信頼性についての評価結果について説明する。   Next, the evaluation result about the thermal fatigue reliability of the mounting structure of the BGA type semiconductor device 1 obtained by Embodiment 1 is demonstrated with reference to FIG.

図2は、はんだ接続した、同じBGA型半導体装置1と実装用配線基板4の間を接着剤樹脂で充填し、−40/80℃(10分/10分)の温度サイクル試験を行い、はんだ接続部の破断寿命を調べ、接着剤樹脂の熱膨張係数に対してプロットしたものである。   FIG. 2 shows a soldered connection between the same BGA type semiconductor device 1 and the mounting wiring board 4 filled with an adhesive resin, and a temperature cycle test of −40 / 80 ° C. (10 minutes / 10 minutes) is performed. The fracture life of the connecting portion was examined and plotted against the thermal expansion coefficient of the adhesive resin.

温度サイクル試験における目標破断寿命を1000回とすれば、式2におけるα1は約100ppmと読み取れる。実施の形態1に用いた、第一接着剤樹脂層と第二接着剤樹脂層2の熱膨張係数は、それぞれ62、305ppmで、接続高さは約300μmである。   If the target fracture life in the temperature cycle test is 1000 times, α1 in Equation 2 can be read as about 100 ppm. The thermal expansion coefficients of the first adhesive resin layer and the second adhesive resin layer 2 used in Embodiment 1 are 62 and 305 ppm, respectively, and the connection height is about 300 μm.

これらの値を用い、(式1)(式2)を解くと、第一接着剤樹脂層の厚さt2は約50μm以下にすれば良い事が分かる。   By using these values and solving Equation 1 and Equation 2, it can be seen that the thickness t2 of the first adhesive resin layer should be about 50 μm or less.

実施の形態1により得られた、t2=50μmのBGA型半導体装置1の実装構造体の温度サイクル試験を行ったところ、破断寿命は約1100回で計算から導いた値と良く一致した。   When the temperature cycle test of the mounting structure of the BGA type semiconductor device 1 with t2 = 50 μm obtained in the first embodiment was conducted, the fracture life was in good agreement with the value derived from the calculation at about 1100 times.

本発明の実施の形態2による半導体装置の実装構造体の構造について説明する。図2は本発明の実施の形態2による半導体装置の実装構造体の断面構造を示す断面図である。   The structure of the semiconductor device mounting structure according to the second embodiment of the present invention will be described. 2 is a cross-sectional view showing a cross-sectional structure of a mounting structure of a semiconductor device according to a second embodiment of the present invention.

実施の形態2は、実施の形態1において、熱可塑性接着剤からなる第一接着剤樹脂層が、アルコールに可溶な樹脂からなる第一接着剤樹脂層としたことと、第一接着剤樹脂層の形成方法と、リペア、リワーク方法が異なる。   In Embodiment 2, the first adhesive resin layer made of a thermoplastic adhesive in Embodiment 1 is the first adhesive resin layer made of a resin soluble in alcohol, and the first adhesive resin The layer formation method is different from the repair / rework method.

まず、第一接着剤樹脂層の形成方法を説明する。アルコールに可溶な接着剤樹脂もしくは、前記接着剤樹脂を溶剤に溶解したものを、実装配線基板4上のBGA型半導体装置1の搭載エリアのランド以外の部分にスクリーン印刷する。次いで、熱硬化もしくは、溶剤の乾燥、もしくは熱硬化と溶剤の乾燥の両方を行い、アルコールに可溶な樹脂からなる第一接着剤樹脂層6を形成する。   First, a method for forming the first adhesive resin layer will be described. An alcohol-soluble adhesive resin or a solution obtained by dissolving the adhesive resin in a solvent is screen-printed on a portion other than the land in the mounting area of the BGA type semiconductor device 1 on the mounting wiring board 4. Next, heat curing, solvent drying, or both heat curing and solvent drying are performed to form the first adhesive resin layer 6 made of a resin soluble in alcohol.

上記の様にして得た、アルコールに可溶な樹脂からなる第一接着剤樹脂層6を形成した実装用配線基板4に実施例1に示した方法で、BGA型半導体装置をはんだ接続し、次いで、熱硬化性樹脂からなる第二接着剤樹脂層3を形成し、BGA型半導体装置の実装構造体を得る。   The BGA type semiconductor device was soldered by the method shown in Example 1 to the mounting wiring board 4 on which the first adhesive resin layer 6 made of a resin soluble in alcohol was formed as described above, Next, a second adhesive resin layer 3 made of a thermosetting resin is formed to obtain a BGA type semiconductor device mounting structure.

次に上記に示した方法で得た、BGA型半導体装置の実装構造体のリペア、リワークについて示す。まず、BGA型半導体装置の実装構造体をアルコールに浸漬し、第一接着剤樹脂層6を完全に溶解させる。次いで、250℃に熱したホットプレート上に置き加熱し、はんだバンプを溶融させた後、BGA型半導体装置をピンセットで持ち上げる事で、BGA型半導体装置1と実装用配線基板4を分離する事が出来た。次いで、実施の形態1に記載の方法で、はんだ残渣を除去する。次いで、前記の方法で、第一接着剤樹脂層6を再び形成し、前記の方法で、新しいBGA型半導体装置の搭載、接続と第二接着剤樹脂の充填、硬化を行った。以上の工程でリペアを行う事により得た、BGA型半導体装置の実装体の、衝撃信頼性、熱疲労信頼性を確認したところ、リペア前と比較して、遜色無かった。   Next, repair and rework of the mounting structure of the BGA type semiconductor device obtained by the method described above will be described. First, the mounting structure of the BGA type semiconductor device is immersed in alcohol, and the first adhesive resin layer 6 is completely dissolved. Next, after placing on a hot plate heated to 250 ° C. and heating to melt the solder bumps, the BGA type semiconductor device 1 and the mounting wiring board 4 can be separated by lifting the BGA type semiconductor device with tweezers. done. Next, the solder residue is removed by the method described in the first embodiment. Next, the first adhesive resin layer 6 was formed again by the above method, and mounting, connection, filling of the second adhesive resin, and curing were performed by the above method. When the impact reliability and thermal fatigue reliability of the mounting body of the BGA type semiconductor device obtained by performing the repair in the above steps were confirmed, it was not inferior compared with that before the repair.

ここでは、第一接着剤樹脂層6をアルコールに溶解可能な樹脂とし、アルコールにより、前記第一接着剤樹脂層6を除去する方法を示したが、実装配線基板4及び実装配線基板4上に実装された他の部品に損傷を与えない溶剤であれば、如何なる溶剤に溶解する接着剤樹脂を第一接着剤樹脂層に使用しても良く、また、第一接着剤樹脂層の溶解に使用しても良い。   Here, a method has been described in which the first adhesive resin layer 6 is a resin that can be dissolved in alcohol, and the first adhesive resin layer 6 is removed with alcohol. An adhesive resin that dissolves in any solvent may be used for the first adhesive resin layer as long as it is a solvent that does not damage other mounted components. It can also be used to dissolve the first adhesive resin layer. You may do it.

本発明の実施の形態1による半導体装置の実装構造体の構造を示す断面図である。It is sectional drawing which shows the structure of the mounting structure of the semiconductor device by Embodiment 1 of this invention. 従来技術による、温度サイクル試験の評価結果を示す図である。It is a figure which shows the evaluation result of the temperature cycle test by a prior art. 本発明の実施の形態2による半導体装置の実装構造体の構造を示す断面図である。It is sectional drawing which shows the structure of the mounting structure of the semiconductor device by Embodiment 2 of this invention.

符号の説明Explanation of symbols

1…BGA型半導体装置、2…熱可塑性接着剤樹脂からなる第一接着剤樹脂層、3…熱硬化性接着剤樹脂からなる第二接着剤樹脂層、4…実装用配線基板、5…基板ランド、6…はんだバンプ、7…アルコール可溶性接着剤からなる第一接着剤樹脂層
DESCRIPTION OF SYMBOLS 1 ... BGA type semiconductor device, 2 ... First adhesive resin layer made of thermoplastic adhesive resin, 3 ... Second adhesive resin layer made of thermosetting adhesive resin, 4 ... Wiring board for mounting, 5 ... Board Land, 6 ... solder bump, 7 ... first adhesive resin layer made of alcohol-soluble adhesive

Claims (9)

半導体装置と、
該半導体装置がはんだで接続された実装用配線基板と、
前記半導体装置と前記実装用配線基板との間を充填する材料の異なる第一の樹脂層と第二の樹脂層を有し
前記第一の樹脂層が剥離可能な樹脂で構成され、
前記第二の樹脂層が第一接着剤樹脂層より機械強度が高い樹脂で構成されていることを特徴とする電子装置。
A semiconductor device;
A mounting wiring board to which the semiconductor device is connected by solder; and
The first resin layer has a first resin layer and a second resin layer with different materials filling between the semiconductor device and the mounting wiring board, and the first resin layer is made of a peelable resin,
The electronic device, wherein the second resin layer is made of a resin having higher mechanical strength than the first adhesive resin layer.
半導体装置と、
該半導体装置がはんだで接続された実装用配線基板と、
前記半導体装置と前記実装用配線基板との間を充填する材料の異なる第一の樹脂層と第二の樹脂層を有し
前記第一の樹脂層が剥離可能な樹脂で構成され、
前記第二の樹脂層が第一樹脂層より熱膨張係数が小さい樹脂で構成されていることを特徴とする電子装置。
A semiconductor device;
A mounting wiring board to which the semiconductor device is connected by solder; and
The first resin layer has a first resin layer and a second resin layer with different materials filling between the semiconductor device and the mounting wiring board, and the first resin layer is made of a peelable resin,
The electronic device, wherein the second resin layer is made of a resin having a smaller thermal expansion coefficient than the first resin layer.
請求項1又は2において、
前記第一の樹脂層は前記実装用配線基板側に配置され、
前記第二の樹脂層は前記半導体装置側に配置されていることを特徴とする電子装置。
In claim 1 or 2,
The first resin layer is disposed on the mounting wiring board side,
The electronic device, wherein the second resin layer is disposed on the semiconductor device side.
請求項1、2又は3において、
前記第一の樹脂層が、高温で軟化、流動し、室温付近の温度では硬化する熱可塑性を有する樹脂で構成されていることを特徴とする電子装置。
In claim 1, 2 or 3,
The electronic device is characterized in that the first resin layer is made of a resin having thermoplasticity that softens and flows at a high temperature and cures at a temperature near room temperature.
請求項1から4のいずれかにおいて、
前記はんだの融点以上の温度に加熱された場合、前記半導体装置が前記実装用配線基板から取り外し可能な状態になることを特徴とする電子装置。
In any one of Claim 1-4,
When heated to a temperature equal to or higher than the melting point of the solder, the semiconductor device can be removed from the mounting wiring board.
請求項1、2又は3において、
前記第一の樹脂層が、特定の溶剤に溶解可能な樹脂で構成されていることを特徴とする電子装置。
In claim 1, 2 or 3,
The electronic device, wherein the first resin layer is made of a resin that is soluble in a specific solvent.
実装用配線基板に第一接着剤樹脂層を形成する工程と、
半導体装置と前記実装用配線基板とをはんだ接続する工程と、
前記半導体装置と前記第一接着剤樹脂層の間に第二接着剤樹脂を充填する工程と、
前記第二接着剤樹脂を加熱し、硬化させる工程とを備えたことを特徴とする電子装置の製造方法。
Forming a first adhesive resin layer on the wiring board for mounting;
Solder connecting the semiconductor device and the mounting wiring board;
Filling a second adhesive resin between the semiconductor device and the first adhesive resin layer;
A method of manufacturing an electronic device, comprising: heating and curing the second adhesive resin.
請求項7において、
前記第一の樹脂層を、フィルム状に形成した接着剤樹脂を前記実装用配線基板に熱圧着して形成することを特徴とする電子装置の製造方法。
In claim 7,
An electronic device manufacturing method, wherein the first resin layer is formed by thermocompression bonding an adhesive resin formed in a film shape to the wiring board for mounting.
請求項7において、
樹脂を前記実装用配線基板に印刷する工程と、
乾燥、もしくは硬化、もしくは乾燥と硬化させて形成する工程により前記第一の樹脂層を形成することを特徴とする電子装置の製造方法。
In claim 7,
Printing a resin on the wiring board for mounting;
A method of manufacturing an electronic device, wherein the first resin layer is formed by a step of drying, curing, or drying and curing.
JP2004283020A 2004-09-29 2004-09-29 Electronic device and its manufacturing method Pending JP2006100457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004283020A JP2006100457A (en) 2004-09-29 2004-09-29 Electronic device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004283020A JP2006100457A (en) 2004-09-29 2004-09-29 Electronic device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006100457A true JP2006100457A (en) 2006-04-13

Family

ID=36239994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004283020A Pending JP2006100457A (en) 2004-09-29 2004-09-29 Electronic device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006100457A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049115A (en) * 2007-08-17 2009-03-05 Seiko Epson Corp Semiconductor device, and manufacturing method thereof
JP2009253283A (en) * 2008-04-02 2009-10-29 General Electric Co <Ge> Demountable interconnect structure
US7969028B2 (en) 2007-06-15 2011-06-28 Panasonic Corporation Semiconductor device mounting structure, manufacturing method, and removal method of semiconductor device
US7993984B2 (en) 2007-07-13 2011-08-09 Panasonic Corporation Electronic device and manufacturing method
JP2011211072A (en) * 2010-03-30 2011-10-20 Fujitsu Ltd Printed wiring board and method of fabricating printed wiring board
JP2011211002A (en) * 2010-03-30 2011-10-20 Fujitsu Ltd Printed circuit board unit, electronic device, and method of fabricating printed circuit board
WO2013157197A1 (en) * 2012-04-19 2013-10-24 パナソニック株式会社 Electronic component mounting method and electronic component mounting line
US9610758B2 (en) 2007-06-21 2017-04-04 General Electric Company Method of making demountable interconnect structure
CN107636812A (en) * 2015-06-17 2018-01-26 英特尔公司 The high K sealants system of bi-material layers

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7969028B2 (en) 2007-06-15 2011-06-28 Panasonic Corporation Semiconductor device mounting structure, manufacturing method, and removal method of semiconductor device
US9953910B2 (en) 2007-06-21 2018-04-24 General Electric Company Demountable interconnect structure
US9610758B2 (en) 2007-06-21 2017-04-04 General Electric Company Method of making demountable interconnect structure
US7993984B2 (en) 2007-07-13 2011-08-09 Panasonic Corporation Electronic device and manufacturing method
JP2009049115A (en) * 2007-08-17 2009-03-05 Seiko Epson Corp Semiconductor device, and manufacturing method thereof
TWI548045B (en) * 2008-04-02 2016-09-01 通用電機股份有限公司 Demountable interconnect structure
KR101571898B1 (en) * 2008-04-02 2015-11-26 제너럴 일렉트릭 캄파니 Demountable interconnect structure
JP2009253283A (en) * 2008-04-02 2009-10-29 General Electric Co <Ge> Demountable interconnect structure
JP2011211002A (en) * 2010-03-30 2011-10-20 Fujitsu Ltd Printed circuit board unit, electronic device, and method of fabricating printed circuit board
JP2011211072A (en) * 2010-03-30 2011-10-20 Fujitsu Ltd Printed wiring board and method of fabricating printed wiring board
WO2013157197A1 (en) * 2012-04-19 2013-10-24 パナソニック株式会社 Electronic component mounting method and electronic component mounting line
JPWO2013157197A1 (en) * 2012-04-19 2015-12-21 パナソニックIpマネジメント株式会社 Electronic component mounting method and electronic component mounting line
US10034389B2 (en) 2012-04-19 2018-07-24 Panasonic Intellectual Property Management Co., Ltd. Electric component mounting method
CN107636812A (en) * 2015-06-17 2018-01-26 英特尔公司 The high K sealants system of bi-material layers

Similar Documents

Publication Publication Date Title
KR100531393B1 (en) Semiconductor device and manufacturing method of the same
JP3905100B2 (en) Semiconductor device and manufacturing method thereof
KR101174056B1 (en) Semiconductor device and its fabrication method
JP4729963B2 (en) PROJECT ELECTRODE FOR CONNECTING ELECTRONIC COMPONENT, ELECTRONIC COMPONENT MOUNTING BODY USING SAME, AND METHOD FOR PRODUCING THEM
JP3450236B2 (en) Semiconductor device and manufacturing method thereof
KR20090052300A (en) Electronic components mounting adhesive and electronic components mounting structure
JP4720438B2 (en) Flip chip connection method
Singh et al. Board-level thermal cycling and drop-test reliability of large, ultrathin glass BGA packages for smart mobile applications
US7969028B2 (en) Semiconductor device mounting structure, manufacturing method, and removal method of semiconductor device
JP2011077398A (en) Method of manufacturing semiconductor device
JP2006100457A (en) Electronic device and its manufacturing method
WO2010134230A1 (en) Semiconductor device and method for manufacturing same
JP2018137276A (en) Printed circuit board and manufacturing method thereof, and electronic device
JP5081267B2 (en) Circuit component built-in module and method for manufacturing circuit component built-in module
JP2010157693A (en) Semiconductor package substrate with metal bumps
JP2009021465A (en) Semiconductor device mounting structure, method of manufacturing same, and method of peeling semiconductor device
JP2011187635A (en) Semiconductor device, and method of manufacturing the same
JP2020077696A (en) Wiring board and semiconductor device using the same
JP2008244191A (en) Method for manufacturing circuit board including built-in components
JP7196936B2 (en) Method for manufacturing wiring board for semiconductor device, and wiring board for semiconductor device
JP2018137301A (en) Manufacturing method of printed circuit board, printed circuit board, and electronic device
JP4065264B2 (en) Substrate with relay substrate and method for manufacturing the same
JP4605176B2 (en) Semiconductor mounting substrate, semiconductor package manufacturing method, and semiconductor package
JP4159556B2 (en) Manufacturing method of semiconductor device and adhesive
JP2014082526A (en) Method for manufacturing electronic apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20060425

Free format text: JAPANESE INTERMEDIATE CODE: A7424