JP2006100213A - Manufacturing method of square battery - Google Patents

Manufacturing method of square battery Download PDF

Info

Publication number
JP2006100213A
JP2006100213A JP2004287906A JP2004287906A JP2006100213A JP 2006100213 A JP2006100213 A JP 2006100213A JP 2004287906 A JP2004287906 A JP 2004287906A JP 2004287906 A JP2004287906 A JP 2004287906A JP 2006100213 A JP2006100213 A JP 2006100213A
Authority
JP
Japan
Prior art keywords
electrode body
protective tape
battery
electrode
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004287906A
Other languages
Japanese (ja)
Inventor
Toru Amezutsumi
徹 雨堤
Shoichi Inamine
正一 稲嶺
Hiroji Maeda
廣二 前田
Akihito Tanaka
章仁 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004287906A priority Critical patent/JP2006100213A/en
Publication of JP2006100213A publication Critical patent/JP2006100213A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0016Honeycomb structures assembled from subunits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2072Other inorganic materials, e.g. ceramics the material being particulate or granular
    • B01D39/2075Other inorganic materials, e.g. ceramics the material being particulate or granular sintered or bonded by inorganic agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00129Extrudable mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a square battery allowing a protective tape to be efficiently arranged in an electrode body composed by stacking positive and negative electrode plates by interlaying a separator. <P>SOLUTION: An insulating protective tape material 251 formed of polypropylene or the like is paid out from a roll 5; its end 252 is held by a chuck 8; and it is stretched. The electrode body 20 is faced to an exterior can 30 by interlaying the protective tape material 251 in this state; and the electrode body 20 is depressed into the exterior can 30 along with the protective tape material 251 and housed in the exterior can 30. A redundant part of the protective tape material is cut by a heat cutter 10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、角形電池の製造方法に関する。   The present invention relates to a method for manufacturing a rectangular battery.

近年、携帯電話機や携帯情報端末(PDA)などの携帯型電子機器が急速に普及している。これらの電子機器には高エネルギー密度の電源としてニッケル水素電池やリチウムイオン電池などの角形外装缶を有する電池が多用されている。角形電池は、円筒形電池に比べてスペースを有効活用できるので、上記電子機器における小型化・省スペース化の要求に対して有利である。   In recent years, portable electronic devices such as mobile phones and personal digital assistants (PDAs) are rapidly spreading. In these electronic devices, a battery having a rectangular outer can such as a nickel metal hydride battery or a lithium ion battery is frequently used as a high energy density power source. Since the square battery can use space more effectively than the cylindrical battery, it is advantageous for the demand for downsizing and space saving in the electronic device.

角形電池には、一般に角形外装缶に電解液を含む発電素体が収納される。発電素体は、例えばいずれも短冊状のセパレータ、正極、負極とを重ねてなる直方体の電極体に電解液を含浸したものである。電極体の体積は、電池の高エネルギー密度を得るために外装缶の容積近くまで大きくされる。
上記構成を持つ角形外装缶を有する電池の製造方法では、一例として、まずニッケルメッキ鋼板からなる外装缶に電極体を収納する。その後、外装缶の開口部に封口体を装着し、外装缶と封口体の境界をレーザー溶接する。そして封口体に設けた注入口により必要量の電解液を注入し、注入口を封止栓で塞ぎ、電池内部を密閉する。
A prismatic battery generally contains a power generating element containing an electrolyte in a rectangular outer can. For example, the power generating element is obtained by impregnating an electrolytic solution in a rectangular parallelepiped electrode body in which strip-shaped separators, a positive electrode, and a negative electrode are stacked. The volume of the electrode body is increased close to the volume of the outer can in order to obtain a high energy density of the battery.
In the method for manufacturing a battery having a rectangular outer can having the above-described configuration, as an example, the electrode body is first housed in an outer can made of a nickel-plated steel plate. Thereafter, a sealing body is attached to the opening of the outer can, and the boundary between the outer can and the sealing body is laser-welded. Then, a necessary amount of electrolyte is injected through an injection port provided in the sealing body, the injection port is closed with a sealing plug, and the inside of the battery is sealed.

ここで、電極体を外装缶に挿入する際において、外装缶と電極体との若干の位置ずれ等の理由から、最外面に位置する電極体の下部が、外装缶開口部周辺と接触する場合がある。そして、このような接触により、外装缶側と接触した電極部分に塗布されていた活物質が削られるという問題が生じる。
このように削り取られた活物質は、外装缶開口部に付着すると製造時における封口体のレーザー溶接での封口性を低下させ、電解液の漏液原因となる。また、当該活物質が外装缶の内部に落下すれば、後に不要なショートの原因となりうるので好ましくない。
Here, when the electrode body is inserted into the outer can, the lower part of the electrode body located on the outermost surface is in contact with the periphery of the outer can opening due to a slight misalignment between the outer can and the electrode body. There is. And the problem that the active material currently apply | coated to the electrode part which contacted the exterior can side is scraped by such contact arises.
When the active material scraped off in this way adheres to the opening of the outer can, the sealing performance of the sealing body during laser welding at the time of manufacture is deteriorated, causing the electrolyte to leak. Moreover, if the active material falls into the outer can, it may cause an unnecessary short circuit later, which is not preferable.

このような問題を解決する対策として、外装缶に最初に挿入される電極体部分(すなわち電極体の下部)に絶縁性の保護テープを貼着し、外装缶側に電極体が接触しても、活物質の剥離を防止する技術が考案されている。
実開平6−54208号公報 特開平10−208769号公報 特許第3359498号公報
As a measure to solve such a problem, an insulating protective tape is attached to the electrode body portion (that is, the lower portion of the electrode body) that is first inserted into the outer can, and the electrode body contacts the outer can side. A technique for preventing the peeling of the active material has been devised.
Japanese Utility Model Publication No. 6-54208 JP-A-10-208769 Japanese Patent No. 3359498

しかしながら、従来の保護テープを用いる製造方法によれば、前記保護テープは電極体に対して所定の位置に設けるため、一定の長さに切断した保護テープを各電極体に貼着するステップを必要とする。この貼着ステップが増えた分、角形電池の生産効率が低下するという問題がある。
また、電極体は電池の容量密度を上げる目的で電極体を外装缶と同程度の大きさに形成し、且つ外装缶に挿入しやすくするために当該電極体に保護テープを加圧して貼着させ、その厚みを薄くする場合があるが、このように電極体に貼着された保護テープは長時間にわたって形態を保持しにくい。これは、長時間経過するうちに保護テープが電極体の膨張力に負け、電極体が再び元の大きさに戻ろうとするためであって、これにより前記挿入が困難となる場合がある。
However, according to the conventional manufacturing method using the protective tape, the protective tape is provided at a predetermined position with respect to the electrode body, and thus a step of attaching the protective tape cut to a certain length to each electrode body is required. And There is a problem that the production efficiency of the prismatic battery is reduced by the increase in the sticking step.
In addition, the electrode body is formed in the same size as the outer can for the purpose of increasing the capacity density of the battery, and in order to facilitate insertion into the outer can, the electrode body is pressurized and attached to the electrode body. In some cases, the thickness of the protective tape is reduced. However, the protective tape attached to the electrode body in this way is difficult to maintain its form for a long time. This is because the protective tape loses the expansion force of the electrode body over a long period of time, and the electrode body tends to return to its original size, which may make the insertion difficult.

したがって、電極体に保護テープを貼着したのちは速やかに外装缶へ収納しなければならないが、生産管理の都合や、生産ラインの故障等により比較的長時間放置されると、電極体に貼着された保護テープが延びてしまうことがある。このように保護テープが延びると、外装缶に良好に収納することが困難になるほか、電極体がうまく収納できない製造不良が発生することにもなる。特にこの製造不良は、角形電池の寸法が薄いほど顕著になる傾向がある。   Therefore, after attaching the protective tape to the electrode body, it must be immediately stored in the outer can. However, if it is left for a relatively long period of time due to production control or a production line failure, it must be applied to the electrode body. The worn protective tape may be extended. When the protective tape extends in this manner, it becomes difficult to store the protective member in the outer can, and a manufacturing defect that prevents the electrode body from being stored well may occur. In particular, this manufacturing defect tends to become more prominent as the size of the rectangular battery is thinner.

以上のことから、角形電池の製造方法について、未だ解決すべき課題が残されている。
本発明は上記課題に鑑みてなされたものであって、効率よい保護テープの配設と電極体の挿入を可能とする角形電池の製造方法を提供することを目的とする。
From the above, problems to be solved still remain for the method of manufacturing a rectangular battery.
This invention is made | formed in view of the said subject, Comprising: It aims at providing the manufacturing method of the square battery which enables arrangement | positioning of an efficient protective tape, and insertion of an electrode body.

上記課題を解決するため、本発明は、正負極板をセパレータを介して重ねてなる電極体を、外装缶に収納する電極体収納ステップを経る角形電池の製造方法であって、前記電極体収納ステップでは、張架された保護テープに電極体を押下させ、保護テープを変形させながら電極体を外装缶開口部へ案内し、当該電極体と保護テープを外装缶に挿入するものとした。   In order to solve the above-mentioned problems, the present invention provides a method for manufacturing a prismatic battery that includes an electrode body housing step of housing an electrode body in which positive and negative electrode plates are stacked via a separator in an outer can. In the step, the electrode body was pressed against the stretched protective tape, the electrode body was guided to the outer can opening while the protective tape was deformed, and the electrode body and the protective tape were inserted into the outer can.

ここで、前記電極体収納ステップでは、ロール状の保護テープを繰り出してその一部を張架し、電極体と保護テープを外装缶に挿入するとともに、保護テープの余分を切断することもできる。   Here, in the electrode body storing step, a roll-shaped protective tape is drawn out and a part thereof is stretched, and the electrode body and the protective tape are inserted into the outer can, and the excess of the protective tape can be cut.

本発明の製造方法では、外装缶へ電極体を収納する前に、予め張架された保護テープを介して電極体を外装缶内部へ挿入する方法をとる。これにより保護テープは電極体に貼着しなくても、電極体の両主面と下部にわたりUの字状に変形してこれを被覆するので、従来のように別途電極体へ保護テープを貼着するためのステップが不要となる。また、本発明では、予め保護テープが張架されているので、電極体の挿入時に保護テープの張力が作用し、電極体の下部に、前記Uの字状の変形に応じて電極体内部に沿って内向きの応力が発生する。このような各作用により、電極体の先端の形状が整えられるので、これを迅速に外装缶に収納することが可能となる。   In the manufacturing method of the present invention, before the electrode body is stored in the outer can, the electrode body is inserted into the outer can through a protective tape stretched in advance. As a result, even if the protective tape is not attached to the electrode body, it is deformed into a U-shape covering both the main surface and the lower part of the electrode body, so that the protective tape is separately attached to the electrode body as in the past. There is no need for a step to wear. In the present invention, since the protective tape is stretched in advance, the tension of the protective tape acts when the electrode body is inserted, and the lower part of the electrode body is placed inside the electrode body in accordance with the U-shaped deformation. Inward stress is generated along. By such each action, the shape of the tip of the electrode body is adjusted, so that it can be quickly stored in the outer can.

さらに本発明によれば、外装缶への収納直前しか電極体が保護テープと接触しないので、長期間保護テープを電極体へ貼着するような過程が存在せず、保護テープの不要な延び等の問題を回避することができる。   Furthermore, according to the present invention, since the electrode body is in contact with the protective tape only immediately before storage in the outer can, there is no process of sticking the protective tape to the electrode body for a long period of time, unnecessary extension of the protective tape, etc. The problem can be avoided.

<実施の形態1>
1.角形電池の構成
図1は、本発明の角形電池の一適用例であるリチウムマンガン電池の主要構成を示す一部切欠図である。この図に示す構成は当然ながら一例であって、本発明はこの構成に限定されない。
<Embodiment 1>
1. FIG. 1 is a partially cutaway view showing a main configuration of a lithium manganese battery which is an application example of the prismatic battery of the present invention. The configuration shown in this figure is only an example, and the present invention is not limited to this configuration.

当図のように、リチウムマンガン電池1(以下、単に電池1という)は、主として封口体10、電極体20、角形外装缶30(以下、単に外装缶30という)の各部品から構成される。ここで当該電池1は、一例として、縦32mm(z方向)×横31mm(y方向)×奥行(x方向)9mmのサイズに作製されている。
外装缶30は、ニッケルメッキ鋼板を絞り加工してなる有底缶の角形筐体である。その内部には電極体20が収納されるとともに、開口部301において、後述の封口体10の周縁部105とレーザー溶接により封口される。
As shown in the figure, the lithium manganese battery 1 (hereinafter simply referred to as the battery 1) is mainly composed of the sealing body 10, the electrode body 20, and the rectangular outer can 30 (hereinafter simply referred to as the outer can 30). Here, as an example, the battery 1 is manufactured in a size of 32 mm (z direction) × 31 mm (y direction) × depth (x direction) 9 mm.
The outer can 30 is a bottomed can rectangular casing formed by drawing a nickel-plated steel sheet. The electrode body 20 is housed inside, and the opening 301 is sealed with a peripheral portion 105 of the sealing body 10 described later by laser welding.

封口体10は、ニッケルメッキ鋼板を打ち抜いてなる封口板104を主体とし、その電池内部側の主面にポリプロピレン製の絶縁板103、電池外側の主面中央に正極端子101をそれぞれ配した構成をもつ。前記周縁部105は、封口板104の周囲に確保されている。
絶縁板103は、外装缶30内部で電極体20が振動するのを防止する。
The sealing body 10 is mainly composed of a sealing plate 104 formed by punching a nickel-plated steel plate, and has a configuration in which a polypropylene insulating plate 103 is arranged on the main surface inside the battery and a positive electrode terminal 101 is arranged at the center of the main surface outside the battery. Have. The peripheral edge 105 is secured around the sealing plate 104.
The insulating plate 103 prevents the electrode body 20 from vibrating inside the outer can 30.

封口板104と絶縁板103の主面中央は穿孔加工されており、これにガスケット102を介して中空の正極リベット106がカシメ固定されている。正極リベット106は、外装缶30の内部側において、導電性タブ(不図示)で電極体20の正極板204と接続される。この正極リベット106の中空部が、電解液の注入口となる。
封口板104の上面(電池外面側)では、正極リベット106の中空部分を覆うようにして樹脂製の封止栓107が配され、正極リベット106の周囲が正極端子101と溶接されている。これにより、電池内部の電解液が漏れ出ないようになっている。また、封口板104の下面(電池内面側)は導電性タブ(不図示)で電極体20の負極板203と接続される。
The main surface centers of the sealing plate 104 and the insulating plate 103 are perforated, and a hollow positive electrode rivet 106 is caulked and fixed thereto via a gasket 102. The positive rivet 106 is connected to the positive electrode plate 204 of the electrode body 20 with a conductive tab (not shown) on the inner side of the outer can 30. The hollow part of the positive electrode rivet 106 serves as an electrolyte injection port.
On the upper surface (battery outer surface side) of the sealing plate 104, a resin sealing plug 107 is disposed so as to cover the hollow portion of the positive electrode rivet 106, and the periphery of the positive electrode rivet 106 is welded to the positive electrode terminal 101. This prevents the electrolyte inside the battery from leaking out. The lower surface (battery inner surface side) of the sealing plate 104 is connected to the negative electrode plate 203 of the electrode body 20 with a conductive tab (not shown).

電極体20は、それぞれ短冊状の正極板204、セパレータ202、負極板203、セパレータ202を順次積層させたものである。なお、電池1のエネルギー密度を出来るだけ高くするために、電極体20の体積は外装缶30の容積近くまで確保するのが望ましい。
電極体20は、電池1の内部で電解液(ここでは非水電解液)に含浸される。
The electrode body 20 is formed by sequentially laminating a strip-like positive electrode plate 204, a separator 202, a negative electrode plate 203, and a separator 202, respectively. In order to increase the energy density of the battery 1 as much as possible, it is desirable to secure the volume of the electrode body 20 close to the volume of the outer can 30.
The electrode body 20 is impregnated with an electrolytic solution (here, a nonaqueous electrolytic solution) inside the battery 1.

正極板204は、ステンレス等の正極芯体表面に、正極活物質である二酸化マンガンを主体として、導電剤と結着剤を混合した正極合剤を塗布してなる。当該正極板204は、外装缶30の内部において、正極端子101と導電性タブ(不図示)で電気的に接続される。
負極板203は、リチウム金属材料を打ち抜き加工してなる。
The positive electrode plate 204 is formed by applying a positive electrode mixture in which a conductive agent and a binder are mixed, mainly composed of manganese dioxide as a positive electrode active material, to the surface of a positive electrode core body such as stainless steel. The positive electrode plate 204 is electrically connected to the positive electrode terminal 101 through a conductive tab (not shown) inside the outer can 30.
The negative electrode plate 203 is formed by punching a lithium metal material.

セパレータ202は、ポリプロピレン製の不織布であって、正極板204と負極板203の絶縁に用いられる。その耐熱温度は120℃程度に設定されている。なお図1でセパレータ202は便宜上、正負極板203、204とほぼ同サイズの短冊状に図示しているが、実際にはこれを袋状とし、当該袋の中に正極板204を入れることで、負極板203と絶縁を図っている。   The separator 202 is a polypropylene non-woven fabric, and is used for insulation between the positive electrode plate 204 and the negative electrode plate 203. The heat resistant temperature is set to about 120 ° C. In FIG. 1, for convenience, the separator 202 is illustrated as a strip having substantially the same size as the positive and negative plates 203 and 204. In practice, the separator 202 is formed into a bag shape and the positive plate 204 is placed in the bag. Insulation with the negative electrode plate 203 is intended.

ここで、直方体状の電極体20の両面にあたる負極板203等の表面には、これらを電極体20の下部を通してU字断面状に覆うように、保護テープ250が設けられている。この保護テープ250はポリプロピレン等絶縁性の材料等からなるフィルム材料や不織布を電極体20の幅にあわせて加工してなるものであって、外装缶30内部に対して電極体20の表面を保護する役目を持つ。すなわち、当該保護テープ250は電池製造ステップにおいて、電極体20の下部が外装缶開口部301等と接触し、電極体20の最外面に位置する電極(この場合正極板203)の活物質が欠落するのを防止するために設けられるものである。   Here, a protective tape 250 is provided on the surface of the negative electrode plate 203 or the like corresponding to both surfaces of the rectangular parallelepiped electrode body 20 so as to cover them in a U-shaped cross section through the lower part of the electrode body 20. This protective tape 250 is formed by processing a film material or non-woven fabric made of an insulating material such as polypropylene according to the width of the electrode body 20, and protects the surface of the electrode body 20 against the inside of the outer can 30. Have a role to do. That is, in the battery manufacturing step, the lower part of the electrode body 20 is in contact with the outer can opening 301 or the like, and the active material of the electrode (in this case, the positive electrode plate 203) located on the outermost surface of the electrode body 20 is missing. It is provided to prevent this.

保護テープ250のサイズとしては、少なくとも電極体20の下部とその付近の極板(この場合負極板203)の表面を被覆する程度あればよいが、図1に示すように、電極体20の最外面の極板全面をほぼ覆うように設けると、極板と外装缶30との接触にかかる問題を効果的に防止できるのでさらに好適である。保護テープの材料としては、電解液に対して耐性を持つ各種絶縁材料を用いることが可能である。   The size of the protective tape 250 may be at least as long as it covers at least the lower part of the electrode body 20 and the surface of the electrode plate in the vicinity thereof (in this case, the negative electrode plate 203), but as shown in FIG. Providing the outer electrode plate so as to substantially cover the entire surface of the outer surface is more preferable because it can effectively prevent the problem of contact between the electrode plate and the outer can 30. As a material for the protective tape, various insulating materials resistant to the electrolytic solution can be used.

ここで本発明の特徴は、当該保護テープ250の配設方法を含む電極体20の外装缶30への収納ステップ(電極体収納ステップ)にある。本発明では、従来のように電極体収納ステップに先立ち、予め所定の大きさに切断された保護テープ250を電極体20に貼着するステップを要しない。このため、電極体20に起因する保護テープ250の変質を防ぐとともに、電池の製造効率を向上させる効果が期待できる。   The feature of the present invention lies in the step of storing the electrode body 20 in the outer can 30 including the method of disposing the protective tape 250 (electrode body storing step). In the present invention, prior to the electrode body storing step as in the prior art, the step of attaching the protective tape 250 previously cut to a predetermined size to the electrode body 20 is not required. For this reason, while preventing the quality change of the protective tape 250 resulting from the electrode body 20, the effect of improving the manufacturing efficiency of a battery can be anticipated.

以下、この特徴について、全体的な電池の製造方法とともに説明する。

2。角形電池の製造方法
(1)正極板の作製
活物質としての二酸化マンガンと、導電剤としてのカーボンブラックと、これら両者の結着剤としてのフッ素樹脂とを、質量比85:10:5で混合し、正極合剤を得る。この正極合剤をパンチングメタル(ステンレス製)よりなるロール状導電性芯体の両面に塗着し、250℃で乾燥する。その後、これを所定の大きさ(一例として幅29mm×高さ22mm×厚み2.6mm)に切断する。これにより正極板204が完成する。この正極板204を複数作製し、各正極板204の表面の活物質を一部剥離して導電性タブを配設する。

(2)負極板の作製ステップ
圧延打ち抜き加工により、リチウム金属からなる短冊状の負極板203(幅26mm×高さ19mm×厚み1.0mm)を作製する。この負極板203を複数作製し、各負極板203にニッケル製の導電性タブを配設する。

(3)電極体の作製ステップ
上記作製した各正極板204を、ポリプロピレンを主体とする不織布からなる袋状のセパレータ202(厚み0.1mm)で被包し、これと各負極板203とを交互に重ねることにより、最外面に負極板203が位置し、且つ、負極板3枚の間に2枚の正極板204を配した積層体としての電極体20を作製した。その後、各極性の導電性タブ同士を溶接した。

(4)電極体収納ステップ
図2は、電極体収納ステップの様子を示す模式図である。図2(a)から(c)に共通して、5は保護テープ材料を巻回してなるロール、251はロール5から繰り出された保護テープ材料、252は保護テープ材料251の端部、6および7は保護テープ材料251を案内するローラ、8は伸縮自在のアームに支えられたクランプ状チャック(治具)である。また9は、電極体20を外装缶30に収納するための挿入治具である。
Hereinafter, this feature will be described together with an overall battery manufacturing method.

2. Manufacturing method of prismatic battery (1) Production of positive electrode plate Manganese dioxide as an active material, carbon black as a conductive agent, and fluororesin as a binder of both are mixed at a mass ratio of 85: 10: 5. And a positive electrode mixture is obtained. This positive electrode mixture is applied to both surfaces of a roll-shaped conductive core made of punching metal (made of stainless steel) and dried at 250 ° C. Then, this is cut into a predetermined size (for example, width 29 mm × height 22 mm × thickness 2.6 mm). Thereby, the positive electrode plate 204 is completed. A plurality of the positive plates 204 are produced, and a part of the active material on the surface of each positive plate 204 is peeled off to dispose conductive tabs.

(2) Step of producing negative electrode plate A strip-shaped negative electrode plate 203 (width 26 mm × height 19 mm × thickness 1.0 mm) made of lithium metal is produced by rolling and punching. A plurality of the negative electrode plates 203 are produced, and a nickel conductive tab is disposed on each negative electrode plate 203.

(3) Electrode Body Production Step Each of the produced positive electrode plates 204 is encapsulated with a bag-like separator 202 (thickness: 0.1 mm) made of a nonwoven fabric mainly composed of polypropylene, and this and the negative electrode plates 203 are alternately arranged. The electrode body 20 was manufactured as a laminate in which the negative electrode plate 203 was positioned on the outermost surface and two positive electrode plates 204 were disposed between the three negative electrode plates. Thereafter, the conductive tabs of each polarity were welded together.

(4) Electrode body accommodation step FIG. 2 is a schematic view showing an electrode body accommodation step. 2A to 2C, 5 is a roll formed by winding a protective tape material, 251 is a protective tape material fed out of the roll 5, 252 is an end of the protective tape material 251, 6 and Reference numeral 7 denotes a roller for guiding the protective tape material 251, and 8 denotes a clamp chuck (jig) supported by an extendable arm. Reference numeral 9 denotes an insertion jig for storing the electrode body 20 in the outer can 30.

まず図2(a)にあるように、ローラ5から案内ローラ6,7の周面に案内させつつ、幅30mm×厚み50μmの保護テープ材料251(ポリエチレンテレフタレート製フィルム)を繰り出す。そして保護テープ材料251の端部252をチャック8で把持する。ここで、チャック8を端部252を下流側に引っ張るように付勢させることで、当該保護テープ材料251を張架するステップを行う。この状態で、保護テープ材料251を介して外装缶30(幅31mm×高さ31mm×厚み9mm、材質:ニッケルメッキ鋼板・厚さ0.25mm)と電極体20とを対向配置(ここでは鉛直方向に配置)させ、所定の配置ステップを行う。外装缶30は、開口部301が電極体20を向くように配置する。   First, as shown in FIG. 2A, a protective tape material 251 (polyethylene terephthalate film) having a width of 30 mm and a thickness of 50 μm is fed out while being guided from the roller 5 to the peripheral surfaces of the guide rollers 6 and 7. Then, the end portion 252 of the protective tape material 251 is gripped by the chuck 8. Here, the step of stretching the protective tape material 251 is performed by urging the chuck 8 so as to pull the end portion 252 downstream. In this state, the outer can 30 (width 31 mm × height 31 mm × thickness 9 mm, material: nickel-plated steel plate / thickness 0.25 mm) and the electrode body 20 are arranged to face each other through the protective tape material 251 (in this case, in the vertical direction) And a predetermined arrangement step is performed. The outer can 30 is disposed such that the opening 301 faces the electrode body 20.

当該配置ステップが完了したら、次に挿入治具9を用い、電極体20を保護テープ材料251を介したまま外装缶30の開口部301側(すなわち鉛直方向)に押下する。これにより、図2(b)に示すように電極体20を保護テープ材料251の表面に対して押圧する。
ここで、前記配置ステップ直後では、保護テープ材料は電極体20と非接触にあり、従来のように電極体20に対して貼着されることはない。このため、当該貼着ステップにかかる手間が大幅に省略できる。
When the arrangement step is completed, the insertion jig 9 is then used to push the electrode body 20 toward the opening 301 (that is, in the vertical direction) of the outer can 30 with the protective tape material 251 interposed therebetween. Thereby, the electrode body 20 is pressed against the surface of the protective tape material 251 as shown in FIG.
Here, immediately after the arrangement step, the protective tape material is not in contact with the electrode body 20 and is not attached to the electrode body 20 as in the prior art. For this reason, the effort concerning the said sticking step can be saved significantly.

なお前記保護テープ材料251を張架するときの張力は2から4Nが好ましく、本例では3Nとしている。
次に電極体20は、その下部が保護テープ材料251と接触してこれをU字断面状に撓ませることにより、保護テープ250が電極体20の一部を包み込むように変形し、この変形部分で電極体20が内側方向に加圧される。このため、電極体20の下部が良好に形態を保たれ、外装缶30の開口部301に案内され易い状態となり、スムーズに収納される効果がなされる。
The tension when the protective tape material 251 is stretched is preferably 2 to 4N, and in this example, 3N.
Next, the electrode body 20 is deformed so that the lower portion of the electrode body 20 comes into contact with the protective tape material 251 and is bent into a U-shaped cross section so that the protective tape 250 wraps a part of the electrode body 20. Thus, the electrode body 20 is pressurized inward. For this reason, the lower part of the electrode body 20 is maintained in a good shape, and is easily guided to the opening 301 of the outer can 30, so that the effect of being stored smoothly is achieved.

その後、電極体20は挿入治具9による押下を受け続け、保護テープ材料251とともに外装缶30内部に挿入される(挿入ステップ)。その後、ある程度電極体20が収納されると、余分な保護テープ材料251の部分はヒートカッター10で切断される。これにより長尺状の保護テープ251から保護テープ250が形成され、この保護テープ250とともに電極体20が外装缶30内部に完全に収納される(図2(c))。   Thereafter, the electrode body 20 continues to be pressed by the insertion jig 9 and is inserted into the outer can 30 together with the protective tape material 251 (insertion step). Thereafter, when the electrode body 20 is accommodated to some extent, the excess protective tape material 251 is cut by the heat cutter 10. Thus, the protective tape 250 is formed from the long protective tape 251, and the electrode body 20 is completely accommodated inside the outer can 30 together with the protective tape 250 (FIG. 2C).

このように本発明の電極体収納ステップによれば、外装缶30へ電極体20を収納する電極体収納ステップの前に、別途電極体20へ保護テープを貼着するためのステップ、および貼着にかかる接着剤が不要となり、この貼着ステップにかかる手間・コストを大幅に削減できる。
さらに、本発明では、予め張架された保護テープ材料251を介して電極体20を外装缶30内部へ挿入する方法を採用しているので、この時点まで保護テープ251は電極体20に接触せず、当該電極体20による保護テープ250の不要な延び等の問題を回避できる。
Thus, according to the electrode body accommodation step of the present invention, before the electrode body accommodation step of housing the electrode body 20 in the outer can 30, a step for separately attaching a protective tape to the electrode body 20, and adhesion This eliminates the need for an adhesive, and can greatly reduce the labor and cost of this sticking step.
Furthermore, in the present invention, a method of inserting the electrode body 20 into the outer can 30 through the preliminarily stretched protective tape material 251 is adopted, so that the protective tape 251 is not in contact with the electrode body 20 until this point. Therefore, problems such as unnecessary extension of the protective tape 250 by the electrode body 20 can be avoided.

また、この方法によれば、電極体20の下部がUの字状に被覆された保護テープ251より形態保持されているので、前記配設ステップから挿入ステップまでは、挿入治具9の押下により一気に各ステップを行うことができる。この点でも、本発明では迅速に作業を行えるため、製造効率の向上が期待できる。

上記のように電極体収納ステップが完了したのちは、封口体10と負極の導電性タブを溶接し、正極の導電性タブを正極リベットに溶接する。
Further, according to this method, since the lower part of the electrode body 20 is held by the protective tape 251 covered in a U shape, the insertion jig 9 is pressed from the disposing step to the inserting step. Each step can be performed at once. Also in this respect, since the present invention can perform work quickly, an improvement in manufacturing efficiency can be expected.

After the electrode body storing step is completed as described above, the sealing body 10 and the negative electrode conductive tab are welded, and the positive electrode conductive tab is welded to the positive electrode rivet.

そして外装缶30に所定の電解液を注液後、封口体10の周縁部105と外装缶開口部301をレーザーによって溶接し、当該外装缶30の内部を封止することで、電池1が完成する。
なお、本発明では上記した電極体収納ステップのプロセスの他に、例えば電極体と外装缶とを対向配置させる前に、張架した保護テープ材料の表面に電極体を押下して張力を加え、この状態で外装缶と電極体を対向配置させ、外装缶に挿入するというプロセスを取ってもよい。
Then, after pouring a predetermined electrolyte into the outer can 30, the peripheral portion 105 of the sealing body 10 and the outer can opening 301 are welded by laser, and the inside of the outer can 30 is sealed, whereby the battery 1 is completed. To do.
In addition, in the present invention, in addition to the process of the electrode body storage step described above, for example, before placing the electrode body and the outer can opposite to each other, a tension is applied by pressing the electrode body on the surface of the stretched protective tape material, In this state, the outer can and the electrode body may be arranged opposite to each other and inserted into the outer can.

3.実施例の作製
ここで、上記の如く作製した電池を実施例電池Aとした。
そして、保護テープを電極体収納ステップ前に予め取り付けて作製した電池を比較例電池Bとし、保護テープのない電池を比較例電池Cとした。
これらの電池A、B、Cについて以下の実験を行い、各性能を考察した。
3. Production of Examples The battery produced as described above was designated as Example Battery A.
And the battery which attached the protective tape beforehand before the electrode body accommodation step and was produced was made into the comparative example battery B, and the battery without a protective tape was made into the comparative example battery C.
The following experiments were performed on these batteries A, B, and C, and each performance was considered.

3−1.漏液試験
各電池A,B,Cで熱衝撃試験(−30℃で2時間放置後、70℃で2時間放置を1サイクルとして30サイクル実施)を行い、その後の漏液率を調査した。この結果を次の表1に示す。
3-1. Liquid Leakage Test Each battery A, B, and C was subjected to a thermal shock test (after being left at −30 ° C. for 2 hours and then left at 70 ° C. for 2 hours for 30 cycles), and the subsequent liquid leakage rate was investigated. The results are shown in Table 1 below.

Figure 2006100213
表1に示すように、保護テープを用いた実施例電池Aおよび比較例電池Bでは、封口時のレーザー溶接不良による漏液が発生しないことがわかった。これは、保護テープの使用により極板の活物質が外装缶開口部に付着せず、良好にレーザー封口がなされたものと考えられる。
Figure 2006100213
As shown in Table 1, in Example Battery A and Comparative Example Battery B using a protective tape, it was found that no leakage occurred due to poor laser welding during sealing. This is probably because the active material of the electrode plate did not adhere to the outer can opening due to the use of the protective tape, and the laser sealing was performed well.

3−2.挿入試験
次に、比較例電池Bについて電極体に保護テープを貼着した状態、実施例電池Aは電極体のままで、それぞれ電極体を24時間放置し、その後それぞれの方法で外装缶に収納した。そして、適切に外装缶を収納できた割合(挿入率)を目視で確認した。
その結果を表2に示す。
3-2. Insertion test Next, in the battery of Comparative Example B, the protective tape was applied to the electrode body, while the Example battery A was left as an electrode body, each electrode body was left for 24 hours, and then stored in an outer can by each method. did. And the ratio (insertion rate) which was able to accommodate the exterior can appropriately was confirmed visually.
The results are shown in Table 2.

Figure 2006100213
この表2に示されるように、実施例電池Aは、挿入時に保護テープの張力により電極体下部の広がりが抑制されるので、良好に外装缶に収納できた。
これに対し、比較例電池5では外装缶収納前に保護テープを貼着したため、貼着後の放置間で電極体の下部が広がってしまうものが発生し、その分、挿入率が低下した。
Figure 2006100213
As shown in Table 2, Example Battery A was able to be satisfactorily accommodated in the outer can because the expansion of the lower part of the electrode body was suppressed by the tension of the protective tape at the time of insertion.
On the other hand, in the comparative battery 5, since the protective tape was pasted before housing the outer can, there was a case where the lower part of the electrode body spread during the standing after the pasting, and the insertion rate was reduced accordingly.

このような各実験に基づく結果から、本発明の有効性が確認された。

<その他の事項>
上記実施の形態では、本発明をリチウムマンガン電池に適用する例について説明したが、当然ながら電池の種類はこれに限定されず、この他、リチウムイオン電池、ニッケル水素電池等、各種電池に適用してもよい。
From the results based on such experiments, the effectiveness of the present invention was confirmed.

<Other matters>
In the above embodiment, the example in which the present invention is applied to the lithium manganese battery has been described. However, the type of the battery is naturally not limited to this, and the present invention is applied to various batteries such as a lithium ion battery and a nickel metal hydride battery. May be.

また、上記実施の形態では、保護テープ材料を介して電極体を外装缶側に移動させて挿入するステップ例を示したが、本発明はこれに限定せず、電極体と外装缶とを相対的に移動させることで、電極体収納ステップを行えばよい。したがって、電極体を下方、外装缶を上方にそれぞれ配置させてもよい。
或いは、例えば電極体に対し、外装缶側を移動させて当該電極体を外装缶内部に挿入させるようにしてもよい。この場合、電極体は外装缶開口部周辺に張架された保護テープ材料と当接し、これによって外装缶内部に案内されやすく誘導される。しかしながら、より本発明の効果を良好に得るためには図2に示したように、長手方向に広く張架させた保護テープを利用しつつ、外装缶に対して電極体側を移動させて収納するのが望ましい。
Further, in the above embodiment, the example of the step of inserting the electrode body by moving it to the outer can side through the protective tape material has been shown, but the present invention is not limited to this, and the electrode body and the outer can are relative to each other. The electrode body storing step may be performed by moving the electrode body. Therefore, the electrode body may be disposed below and the outer can may be disposed above.
Alternatively, for example, the electrode body may be inserted into the exterior can by moving the exterior can side with respect to the electrode body. In this case, the electrode body comes into contact with the protective tape material stretched around the outer can opening, and is thereby easily guided into the outer can. However, in order to obtain the effect of the present invention more satisfactorily, as shown in FIG. 2, the electrode body side is moved and stored with respect to the outer can while using a protective tape stretched widely in the longitudinal direction. Is desirable.

さらに、上記実施の形態では、短冊(スタック)状の電極、セパレータを積層してなる電極体の構成について説明したが、本発明は、帯状の正負極板をセパレータを介して巻き回してなる巻回体構造の電極体に適用しても、一定の効果を望むことが可能である。
また、実施の形態1では保護テープの幅を電極体の極板幅と略同等のものを使用する例を示したが、本発明では図3(a)に示すバリエーションのように、極板幅よりも幅広の保護テープを使用することも可能である。このような幅広の保護テープを用いると、電極体の両主面部分に加え、その側部についても保護効果が得られるようになるので望ましい。
Furthermore, in the above embodiment, the configuration of the electrode body formed by laminating strip (stack) electrodes and separators has been described. However, the present invention is a winding formed by winding a belt-like positive and negative electrode plate through a separator. Even when applied to an electrode body having a revolving structure, it is possible to desire a certain effect.
In the first embodiment, an example in which the width of the protective tape is substantially the same as the electrode plate width of the electrode body is shown. In the present invention, as shown in FIG. It is also possible to use a wider protective tape. It is desirable to use such a wide protective tape because a protective effect can be obtained not only on both main surface portions of the electrode body but also on the side portions thereof.

さらに、上記実施の形態1ではテープ材料の幅方向と電極体の幅方向とを一致させて外装缶に挿入する方法としているが(図2を参照)、本発明では図3(b)に示すバリエーションのように、この方法から電極体の角度を90度回転させ、テープ材料の長手方向と電極体の幅方向とを合わせるように配設してもよい。当該配設関係以外は、上記と同様に設定し、電極体を外装缶に収納させる。この方法によれば、上記のように電極体の両主面部分とその側部を良好に保護しつつ外装缶に挿入することが可能となるので好適である。ただし、この方法では電極体の積層方向に沿った内部に押圧力が比較的弱くなるので、この点で注意が必要である。
また、上記実施の形態では、ロールを用いた製造方法を示したが、保護テープ材料には当該ロールに限定されず、所定の長さに切断した保護テープを張架して用いても、同様の効果が奏される。
Furthermore, in the first embodiment, the tape material width direction and the electrode body width direction are made to coincide with each other and inserted into the outer can (see FIG. 2), but in the present invention, it is shown in FIG. 3 (b). As a variation, the angle of the electrode body may be rotated by 90 degrees from this method, and the longitudinal direction of the tape material and the width direction of the electrode body may be aligned. Except for the arrangement relationship, the setting is made in the same manner as described above, and the electrode body is accommodated in the outer can. This method is preferable because it can be inserted into the outer can while protecting both main surface portions and side portions of the electrode body as described above. However, in this method, since the pressing force is relatively weak inside the electrode body in the stacking direction, care must be taken in this respect.
Moreover, in the said embodiment, although the manufacturing method using a roll was shown, it is not limited to the said roll for protective tape material, Even if it stretches and uses the protective tape cut | disconnected to predetermined length, it is the same The effect of.

本発明の角形電池の製造方法は、たとえば一般電源用の角形リチウムイオン電池等の製造方法に適用することが可能である。   The method for manufacturing a prismatic battery of the present invention can be applied to a method for manufacturing, for example, a prismatic lithium ion battery for a general power source.

本発明の一適用例である角形電池の組図である。It is a set figure of the square battery which is one example of application of the present invention. 本発明の電極体収納ステップの模式図である。It is a schematic diagram of the electrode body accommodation step of this invention. 本発明のバリエーションを示す図である。It is a figure which shows the variation of this invention.

符号の説明Explanation of symbols

1 角形電池
5 ロール
6、7 案内ローラ
8 チャック(治具)
9 挿入治具
10 封口体
20 電極体
30 外装缶
202 セパレータ
203 負極
204 正極
250 保護テープ
251 保護テープ材料
252 端部
301 開口部
1 Square battery 5 Roll 6, 7 Guide roller 8 Chuck (jig)
9 Inserting jig 10 Sealing body 20 Electrode body 30 Exterior can 202 Separator 203 Negative electrode 204 Positive electrode 250 Protective tape 251 Protective tape material 252 End 301 Opening

Claims (2)

正負極板をセパレータを介して重ねてなる電極体を、外装缶に収納する電極体収納ステップを経る角形電池の製造方法であって、
前記電極体収納ステップでは、
張架された保護テープに電極体を押下させ、保護テープを変形させながら電極体を外装缶開口部へ案内し、当該電極体と保護テープを外装缶に挿入する
ことを特徴とする角形電池の製造方法。
A method for producing a prismatic battery that undergoes an electrode body housing step of housing an electrode body in which positive and negative electrode plates are stacked via a separator, in an outer can,
In the electrode body storing step,
An electrode body is pressed onto a stretched protective tape, the electrode body is guided to the outer can opening while the protective tape is deformed, and the electrode body and the protective tape are inserted into the outer can. Production method.
前記電極体収納ステップでは、
ロール状の保護テープを繰り出してその一部を張架し、
電極体と保護テープを外装缶に挿入するとともに、保護テープの余分を切断することを特徴とする請求項1に記載の角形電池の製造方法。
In the electrode body storing step,
Roll out the protective tape and stretch a part of it.
The method for manufacturing a prismatic battery according to claim 1, wherein the electrode body and the protective tape are inserted into an outer can and the excess of the protective tape is cut.
JP2004287906A 2004-09-30 2004-09-30 Manufacturing method of square battery Pending JP2006100213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287906A JP2006100213A (en) 2004-09-30 2004-09-30 Manufacturing method of square battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287906A JP2006100213A (en) 2004-09-30 2004-09-30 Manufacturing method of square battery

Publications (1)

Publication Number Publication Date
JP2006100213A true JP2006100213A (en) 2006-04-13

Family

ID=36239794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287906A Pending JP2006100213A (en) 2004-09-30 2004-09-30 Manufacturing method of square battery

Country Status (1)

Country Link
JP (1) JP2006100213A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008234868A (en) * 2007-03-16 2008-10-02 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2012155888A (en) * 2011-01-24 2012-08-16 Amaz Techno-Consultant Llc Square shaped battery electrode body unit
JP2013222630A (en) * 2012-04-17 2013-10-28 Sharp Corp Secondary battery and method for manufacturing the same
JP2014239053A (en) * 2008-03-14 2014-12-18 日本電気株式会社 Film-covered electrical device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008234868A (en) * 2007-03-16 2008-10-02 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2014239053A (en) * 2008-03-14 2014-12-18 日本電気株式会社 Film-covered electrical device
JP2012155888A (en) * 2011-01-24 2012-08-16 Amaz Techno-Consultant Llc Square shaped battery electrode body unit
JP2013222630A (en) * 2012-04-17 2013-10-28 Sharp Corp Secondary battery and method for manufacturing the same

Similar Documents

Publication Publication Date Title
CN102893439B (en) Battery
WO2015129320A1 (en) Electrode for secondary cell, secondary cell, and method for manufacturing electrode for secondary cell and secondary cell
JP4580620B2 (en) Method for manufacturing spiral electrode group used in battery
US8110309B2 (en) Secondary battery
JP4075034B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
WO2015198526A1 (en) Rolled-type battery
JP2013171618A (en) Laminate outer body battery
JP2004071301A (en) Manufacturing method of case for storage element
KR102025288B1 (en) Taping Machine for Bonding Insulative Tape to Peripheral Sealing Part of Battery Cell
JP2007053002A (en) Manufacturing method of battery
WO2017010046A1 (en) Wound type battery
KR100670482B1 (en) Jelly-roll electrode assembly and the secondary batter employing the same
CN107851768A (en) The manufacture method of electrochemical device
WO2017010042A1 (en) Winding-type battery
JP4359809B2 (en) Storage element module and manufacturing method thereof
JP2000348754A (en) Rolled electrode type battery
JP2000208129A (en) Lithium secondary battery
JP2007141774A (en) Manufacturing method of storage element
JP3707945B2 (en) Cylindrical battery
JP3763233B2 (en) Flat battery and method of manufacturing the same
JP2006100213A (en) Manufacturing method of square battery
JP2002134102A (en) Battery electrode plate and its producing method, and battery
KR20050096002A (en) Can type lithium ion secondary battery
JP2016103446A (en) Lithium secondary battery
JPH06215755A (en) Thin type battery and manufacture thereof