JP2006098716A - Optical waveguide and manufacturing method therefor - Google Patents

Optical waveguide and manufacturing method therefor Download PDF

Info

Publication number
JP2006098716A
JP2006098716A JP2004284616A JP2004284616A JP2006098716A JP 2006098716 A JP2006098716 A JP 2006098716A JP 2004284616 A JP2004284616 A JP 2004284616A JP 2004284616 A JP2004284616 A JP 2004284616A JP 2006098716 A JP2006098716 A JP 2006098716A
Authority
JP
Japan
Prior art keywords
optical waveguide
substrate
manufacturing
solution
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004284616A
Other languages
Japanese (ja)
Inventor
Shinji Inoue
信治 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004284616A priority Critical patent/JP2006098716A/en
Publication of JP2006098716A publication Critical patent/JP2006098716A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid failures due to thermal bonding in the manufacturing method of a stuck type optical waveguide made of a ferroelectric and other materials. <P>SOLUTION: In the manufacturing method of the optical waveguide, in which a plurality of base materials are jointed and at least the base materials on the light-propagating side are composed of ferroelectric materials, jointing is made possible at the room temperature, by selecting the base materials or forming thin film layers so that the main components of the jointing face are all silicon dioxide and by dropping a hydrogen fluoride contained solution or an alkaline solution on the jointing face to fuse the base materials. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光導波路の作製方法およびこの方法により作製された光導波路に関し、特に基材の張り合わせによって作製される強誘電体材料を用いたリッジ型光導波路に好適に利用される。   The present invention relates to a method for producing an optical waveguide and an optical waveguide produced by this method, and is particularly suitably used for a ridge type optical waveguide using a ferroelectric material produced by bonding substrates.

光情報通信システム、干渉計などの測定装置、光ディスク用のピックアップレーザ、印刷装置などの分野において、各種の光デバイスが使用されている。
これらの光デバイスのひとつとして、光導波路がある。光導波路は一般にコアとクラッドと呼ばれる部分から成り、コアがクラッドに対して屈折率が大きくなるように設計することにより、光をコア内に閉じ込めて伝播させている。
あるいは、こうした光導波路を強誘電体材料に形成することにより、光スイッチや波長変換素子として利用されている。波長変換素子として用いられる擬似位相整合素子は、LiNbO3やLiTaO3などの強誘電体バルク結晶の内部に周期分極反転構造を形成し、さらに、周期分極反転構造を横断するように光導波路を形成することにより、この光導波路を通過する光に対して位相整合を行うものである。擬似位相整合素子は、分極反転層の周期を調整することにより、所望の波長に対応した位相整合素子が作成される。
Various optical devices are used in the fields of optical information communication systems, measuring devices such as interferometers, pickup lasers for optical disks, and printing devices.
One of these optical devices is an optical waveguide. An optical waveguide is generally composed of a portion called a core and a clad, and light is confined and propagated in the core by designing the core so that the refractive index of the core is larger than that of the clad.
Alternatively, by forming such an optical waveguide in a ferroelectric material, it is used as an optical switch or a wavelength conversion element. The quasi phase matching element used as a wavelength conversion element forms a periodic polarization inversion structure inside a ferroelectric bulk crystal such as LiNbO 3 or LiTaO 3 and further forms an optical waveguide so as to cross the periodic polarization inversion structure. Thus, phase matching is performed on the light passing through the optical waveguide. In the quasi phase matching element, a phase matching element corresponding to a desired wavelength is created by adjusting the period of the polarization inversion layer.

このように、光導波路、波長変換素子などのデバイスとして光導波路を作製する場合、光導波路層(コア)とその周囲の層との屈折率差が重要になる。すなわち、光導波路層と周囲層との境界面での屈折率差が急峻であれば、光を導波路内に完全に閉じ込めることができるが、境界で屈折率が緩やかに変化する場合は、光導波路内を通過する光がしみ出し、減衰することになる。   Thus, when an optical waveguide is produced as a device such as an optical waveguide or a wavelength conversion element, the difference in refractive index between the optical waveguide layer (core) and the surrounding layers is important. That is, if the refractive index difference at the boundary surface between the optical waveguide layer and the surrounding layer is steep, light can be completely confined in the waveguide, but if the refractive index changes slowly at the boundary, Light passing through the waveguide oozes out and attenuates.

また同時にデバイスへの応用面からの要求により、光導波路を通過する光の形状(導波光モード形状)を、できるだけ上下、左右の対称性のよい光にすることが求められるため、光導波路層と周囲層との境界面(屈折率差が生じる境界面)の形状を、上下左右対称にする必要がある。理想的には、光ファイバーのコア層とクラッド層のように、光導波路層の断面形状を、円形にすることが望ましいが、強誘電体結晶基体上に形成される光導波路は、平坦な基板上に作る必要があり、半導体プロセスで用いるパターンエッチングなどのプロセスにより製造しなければならないことから、光導波路層の断面形状を円形にすることができない。そのため、通常は、特許文献1に記載されるように、光導波路層断面が山形に加工されたリッジ型構造体とされている。リッジ型光導波路では、左右方向には基板層が空気層に挟設された構成となり、屈折率差と左右対称性を兼ねた構成が実現されている一方、上下方向での実現が難しい。   At the same time, due to the demand from the application to the device, the shape of the light passing through the optical waveguide (guided light mode shape) is required to be as good as possible in the vertical and horizontal symmetry as much as possible. It is necessary to make the shape of the boundary surface with the surrounding layer (the boundary surface where the refractive index difference occurs) symmetric vertically and horizontally. Ideally, it is desirable that the cross-sectional shape of the optical waveguide layer is circular, such as the core layer and the cladding layer of the optical fiber, but the optical waveguide formed on the ferroelectric crystal substrate is on a flat substrate. The cross-sectional shape of the optical waveguide layer cannot be made circular because it must be manufactured by a process such as pattern etching used in a semiconductor process. Therefore, normally, as described in Patent Document 1, a ridge-type structure in which the cross section of the optical waveguide layer is processed into a chevron is used. In the ridge-type optical waveguide, the substrate layer is sandwiched between the air layers in the left-right direction, and a structure that combines both the refractive index difference and the left-right symmetry is realized, but is difficult to realize in the up-down direction.

上下方向における屈折率差を形成する方法の従来例として、特許文献1のように、基体の加工面側からプロトン交換処理を施して交換処理部を形成し、この交換処理部の一部にリッジ型構造体を形成し、その次にプロトン交換処理部を熱拡散処理することにより、光導波路を形成することが知られている。しかし、この方法では上面が空気層−プロトン交換層の境界面であるのに対し、下面ではプロトン交換層−プロトン非交換層の境界であり、明確な境界とはなっていない。そのため、上面での屈折率差は急峻で屈折率差が大きいのに対し、下端面では上端面に比べて屈折率変化が急峻ではなくしかも屈折率差が小さく、上下方向での境界面の形状が異なり、光導波路としての上下対称性が良くないものであった。   As a conventional example of a method for forming a refractive index difference in the vertical direction, as in Patent Document 1, a proton exchange treatment is performed from the processed surface side of the substrate to form an exchange treatment portion, and a ridge is formed in a part of the exchange treatment portion. It is known to form an optical waveguide by forming a mold structure and then subjecting the proton exchange treatment part to thermal diffusion treatment. However, in this method, the upper surface is the boundary between the air layer and the proton exchange layer, whereas the lower surface is the boundary between the proton exchange layer and the proton non-exchange layer, and is not a clear boundary. Therefore, the refractive index difference at the top surface is steep and the refractive index difference is large, whereas the refractive index change is not steep at the lower end surface compared to the upper end surface and the refractive index difference is small, and the shape of the boundary surface in the vertical direction However, the vertical symmetry as an optical waveguide was not good.

そこで、上下対称性を改善するため、屈折率の異なる別基板を上下方向に張り合わせた光導波路が考案されている(例えば特許文献2、3)。
特開2002−365680号公報 特許2574594号公報 特開2004−145261号公報
Therefore, in order to improve vertical symmetry, an optical waveguide has been devised in which different substrates having different refractive indexes are bonded in the vertical direction (for example, Patent Documents 2 and 3).
JP 2002-365680 A Japanese Patent No. 2574594 JP 2004-145261 A

特許文献2に記載された張り合わせ型のリッジ型光導波路素子では、SiO2を介して水酸基または酸素による熱処理結合がなされているが、光導波路を形成する強誘電体材料、特に分極反転を用いた擬似位相整合波長変換素子においては、熱処理によって分極が乱れ、変換効率が低下するなどの悪影響が出てしまう。
また、特許文献3に記載された張り合わせ型のリッジ型光導波路素子では、Ta2O5などの薄膜層を介して接合し、屈折率の小さい層を挟み込む手法が提案されているが、これも熱処理を行うことが前提となっており、熱処理による悪影響が避けられない。
The bonded ridge type optical waveguide device described in Patent Document 2 is heat-treated by hydroxyl group or oxygen through SiO 2 , but uses a ferroelectric material that forms the optical waveguide, particularly polarization inversion. In the quasi phase matching wavelength conversion element, the polarization is disturbed by the heat treatment, and adverse effects such as a decrease in conversion efficiency occur.
In addition, in the bonded ridge type optical waveguide device described in Patent Document 3, there is proposed a technique in which bonding is performed through a thin film layer such as Ta 2 O 5 and a layer having a low refractive index is sandwiched. It is assumed that heat treatment is performed, and an adverse effect due to the heat treatment is unavoidable.

本発明では、熱処理を行うことなしに張り合わせ型の光導波路を作製し、熱による悪影響の出ない、擬似位相整合波長変換素子にも適した光導波路の作製方法を提供することを目的とする。   An object of the present invention is to provide a method for producing an optical waveguide suitable for a quasi phase matching wavelength conversion element, in which bonded optical waveguides are produced without performing heat treatment, and adverse effects due to heat do not occur.

上記課題を解決するためになされた本発明の光導波路作製方法は、複数の基材が接合され且つ少なくとも光が伝播される側の基材が強誘電体材料からなる光導波路の作製手法であって、接合面の主成分をいずれも二酸化シリコンとし、接合面に基材を溶融させるための溶液を介在させて接合することを特徴としている。   The optical waveguide manufacturing method of the present invention made to solve the above problems is a method of manufacturing an optical waveguide in which a plurality of base materials are joined and at least the base material on which light is propagated is made of a ferroelectric material. The main component of the bonding surface is silicon dioxide, and bonding is performed by interposing a solution for melting the base material on the bonding surface.

この方法によれば、熱処理工程を経ることなく常温で基体を接合させることができ、作製が容易で且つ熱処理のための設備が不要で、強誘電体材料を基材とした光導波路の作製において熱処理による分極不均一性を生じることがない。また特に擬似位相整合を利用した周期分極反転を用いた光導波路において、熱処理による周期分極反転の乱れが生じさせることがないため、変換効率に優れた光導波路を提供することができる。   According to this method, the substrate can be bonded at room temperature without going through a heat treatment step, and it is easy to produce and does not require equipment for heat treatment. In the production of an optical waveguide based on a ferroelectric material, There is no polarization non-uniformity caused by heat treatment. In particular, in an optical waveguide using periodic polarization reversal using quasi-phase matching, disturbance of periodic polarization reversal due to heat treatment does not occur, so that an optical waveguide with excellent conversion efficiency can be provided.

以下、本発明に係る光導波路とその作製方法について図1を用いて説明する。なお、以下に説明する実施形態では強誘電体材料を基材とした高調波波長変換素子として使用されるリッジ型光導波路の作製方法を例に説明するが、本発明はこれに限定されるものではなく、発明の趣旨を逸脱しない範囲で適用しうるものである。   Hereinafter, an optical waveguide and a manufacturing method thereof according to the present invention will be described with reference to FIGS. In the embodiment described below, a method for producing a ridge-type optical waveguide used as a harmonic wavelength conversion element using a ferroelectric material as a base material will be described as an example. However, the present invention is not limited to this. Instead, the present invention can be applied without departing from the spirit of the invention.

(a)
光導波路が形成される第1基体となる強誘電体材料Aを準備する。材質としてはニオブ酸リチウム(LiNbO3)、タンタル酸リチウム(LiTaO3)の他、KNbO3系の非線形結晶光学効果を有する結晶を使用することができる。ただし、材料はこれらに限られるのではなく、光導波路デバイスとして適用可能な強誘電体材料であれば使用できる。
また、第1基体には高調波波長変換素子として機能させるため、電圧印加などの公知の手法により、所望する波長に整合させるように事前に周期的分極反転が施されている。周期分極反転構造は、例えば基体表面に電極パターニングを行い、電圧を印加して周期分極反転層を形成することによって得られる。強誘電体材料に周期分極反転層を形成する方法については、周知の技術であるので説明を省略する。
(A)
A ferroelectric material A serving as a first substrate on which an optical waveguide is formed is prepared. As materials, lithium niobate (LiNbO 3 ) and lithium tantalate (LiTaO 3 ), as well as KNbO 3 -based crystals having a nonlinear crystal optical effect can be used. However, the material is not limited to these, and any ferroelectric material applicable as an optical waveguide device can be used.
Moreover, in order to make the first substrate function as a harmonic wavelength conversion element, periodic polarization inversion is performed in advance so as to match a desired wavelength by a known method such as voltage application. The periodically poled structure is obtained, for example, by performing electrode patterning on the substrate surface and applying a voltage to form a periodically poled layer. Since the method of forming the periodically poled layer on the ferroelectric material is a well-known technique, the description thereof is omitted.

(b)
次に、第1基体Aの少なくとも接合面側(図では下側)に、SiO2もしくはSiO2を主成分とする薄膜Bを形成する。形成する厚さは、光が閉じ込め得る厚さ(例えば0.5μm程度)で良い。薄膜を形成する手法としては、スパッタ成膜装置やCVD装置など、公知の成膜手法で良い。
(B)
Next, a thin film B mainly composed of SiO 2 or SiO 2 is formed on at least the bonding surface side (the lower side in the figure) of the first base A. The thickness to be formed may be a thickness that can be confined by light (for example, about 0.5 μm). As a method for forming the thin film, a known film forming method such as a sputter film forming device or a CVD device may be used.

(c)
第2基体Cを準備する。第2基体Cは第1基体Aを支持するために用いられる部材であり、第1基体Aを支持することが可能な堅牢性を有する材料であればよい。第2基体としては、石英ガラス、ソーダ石灰ガラス、鉛ガラス、ホウケイ酸ガラスなどガラス基板全般の他、第1基体と同様に接合面にシリコン酸化膜を施したその他の材質のもの、例えばプラスチック基板、金属基板、半導体基板などが使用できる。
なお、第2基体Cを第1基体Aと同一材料とし,(b)同様に接合面側にSiO2もしくはSiO2を主成分とする薄膜Bを形成することとすると、温度変化に対する膨張率が等しくなり、剥離や歪が生じにくい構造とすることができる。
(C)
A second substrate C is prepared. The second substrate C is a member used to support the first substrate A, and may be any material having a fastness capable of supporting the first substrate A. Examples of the second substrate include glass substrates such as quartz glass, soda lime glass, lead glass, and borosilicate glass, as well as other materials having a silicon oxide film applied to the bonding surface in the same manner as the first substrate, such as a plastic substrate. Metal substrates, semiconductor substrates, etc. can be used.
If the second substrate C is made of the same material as the first substrate A, and the thin film B mainly composed of SiO 2 or SiO 2 is formed on the bonding surface side as in (b), the expansion coefficient with respect to temperature change is It becomes equal and can be set as the structure which is hard to produce peeling and distortion.

(d)
第1基体Aと第2基体Cとを接合する。接合面は接合に先立って洗浄されることが望ましい。洗浄には、アセトン、メタノールによる有機洗浄、H2SO4とH22 の混合液を用いた洗浄、NH3 とH22と水の混合液を用いた洗浄、純水を用いた洗浄を組み合わせることにより行われる。
次に、両基体の接合面にフッ化水素酸を含む溶液またはアルカリ溶液を滴下する。滴下された溶液は両基体の接合面に沿って拡散する。 なお、ここで用いるフッ化水素酸を含む溶液は、フッ化水素酸と水との混合液、例えば1%の混合比のものや、バッファードフッ化水素酸(フッ化アンモニウムとフッ化水素酸の混合液)、あるいは市販されているフッ化水素酸原液(46%)を用いることができ、また、アルカリ溶液は、KOH、NaOH、NH4OHなどの無機アルカリ溶液、TMAH(水酸化テトラメチルアンモニウム)などの有機アルカリ溶液等を用いることができる。
溶液が塗布された接合面を室温下において適宜位置合わせを行って重ね合わせる。好ましくは基体に荷重、例えば31gf/cm2 を加え、適当な時間、例えば24時間放置して接合が完了する。
(D)
The first substrate A and the second substrate C are joined. It is desirable that the bonding surface be cleaned prior to bonding. For cleaning, organic cleaning with acetone and methanol, cleaning using a mixed solution of H 2 SO 4 and H 2 O 2 , cleaning using a mixed solution of NH 3 , H 2 O 2 and water, and pure water were used. This is done by combining washing.
Next, a solution containing hydrofluoric acid or an alkaline solution is dropped onto the bonding surfaces of both substrates. The dropped solution diffuses along the joint surfaces of both substrates. In addition, the solution containing hydrofluoric acid used here is a mixture of hydrofluoric acid and water, for example, having a mixing ratio of 1%, or buffered hydrofluoric acid (ammonium fluoride and hydrofluoric acid). Or a commercially available hydrofluoric acid stock solution (46%), and an alkaline solution is an inorganic alkaline solution such as KOH, NaOH, NH 4 OH, TMAH (tetramethyl hydroxide). An organic alkali solution such as ammonium) can be used.
The bonding surfaces to which the solution is applied are appropriately aligned at room temperature and overlapped. Preferably, a load, for example 31 gf / cm 2 , is applied to the substrate and left for an appropriate time, for example 24 hours, to complete the bonding.

(e)
接合が完了した基体のうち光導波路が形成される第1基体A側を研磨して薄片化する。研磨後の厚みは最終的な光導波路の厚みとなるため、使用目的に応じた波長によって決まる一定の厚さとなるようにする。
(E)
Of the substrates that have been joined, the first substrate A side on which the optical waveguide is formed is polished and thinned. Since the thickness after polishing is the final thickness of the optical waveguide, it is set to a constant thickness determined by the wavelength according to the purpose of use.

(f)
導波路の幅となる幅に、フォトリソグラフィの手法を用いてマスク材Dをパターニングする。強誘電体材料は一般にドライエッチングなどの手法ではエッチングレートが遅いため、レジストの他、一旦CrやNiなどの金属材料をレジストにてパターニングして強誘電体材料基板のマスク材として使用するとなお良い。
(F)
The mask material D is patterned using a photolithography technique to a width that becomes the width of the waveguide. Ferroelectric materials generally have a slow etching rate in methods such as dry etching, so it is better to pattern a metal material such as Cr or Ni with a resist and use it as a mask material for a ferroelectric material substrate. .

(g)
ドライエッチングなどの手法により、第1基体Aを公知のリッジ型構造体となるようにエッチング加工する。加工方法については、ドライエッチングの他、直接機械加工、イオンミリング、レーザアブレーション等の公知の加工方法でも勿論構わない。
(G)
The first substrate A is etched so as to become a known ridge structure by a technique such as dry etching. As a processing method, of course, a known processing method such as direct machining, ion milling, or laser ablation may be used in addition to dry etching.

(h)
マスク材Dを除去する。リッジ形状部分(光導波路E)に導入される光は、リッジ形状の左右と上の空気層、及び下面の層B(第1基体Aよりも屈折率が小さい)との境界で全反射しながら導光される。光導波路はこれで完成されているが、光導波路は上下の屈折率を同じに揃えることが対称性が確保され性能が上がるため、完成したリッジ形状の上に屈折率調整層としてSiO2層Fを成膜した。これにより上下左右ともに対称性の良い光導波路とすることができる。ここでは光導波路部分には周期分極反転構造が形成されており、擬似位相整合素子として機能する。
(H)
The mask material D is removed. The light introduced into the ridge-shaped part (optical waveguide E) is totally reflected at the boundary between the left and right ridge-shaped air layers and the upper air layer and the lower layer B (having a lower refractive index than the first substrate A). Light is guided. Although the optical waveguide has been completed with this, since the symmetry is ensured and the performance is improved by making the upper and lower refractive indexes the same, the SiO 2 layer F is formed as a refractive index adjustment layer on the completed ridge shape. Was deposited. Thereby, it is possible to obtain an optical waveguide having good symmetry in the vertical and horizontal directions. Here, a periodically poled structure is formed in the optical waveguide portion, and functions as a quasi-phase matching element.

(変形実施例)
光導波路の形状は上記実施例のものに限定されるものではない。光導波路の上下の界面での屈折率が同一となるように設定するため、上例では導波路上面にSiO2層Fを形成したが、逆に、図2に示すように、第2基体C側に空隙Gを形成し、光導波路の上下が空気層となるようにして対象性を確保するようにしても良い。但し、用途や要求性能によっては近似値でも十分許容できる場合もある。また、光導波路の形状もリッジ型に限定されず公知の溝型などでも良い。
(Modified Example)
The shape of the optical waveguide is not limited to that of the above embodiment. In order to set the refractive indexes at the upper and lower interfaces of the optical waveguide to be the same, in the above example, the SiO 2 layer F is formed on the upper surface of the waveguide. On the contrary, as shown in FIG. A gap G may be formed on the side, and the target may be secured by forming an air layer above and below the optical waveguide. However, an approximate value may be sufficiently acceptable depending on the application and required performance. The shape of the optical waveguide is not limited to the ridge type, and may be a known groove type.

本発明は、光情報通信システム、干渉計などの測定装置、光ディスク用のピックアップレーザ、印刷装置等の分野において使用される光導波路を用いた光スイッチや強誘電体に周期構造を形成した波長変換素子、第2高調波発生素子、各種光デバイスなどの光導波路および光導波路デバイスの作製に利用することができる。   The present invention relates to an optical information communication system, a measuring device such as an interferometer, a pickup laser for an optical disk, an optical switch using an optical waveguide used in the field of a printing device, and a wavelength conversion in which a periodic structure is formed in a ferroelectric. It can be used to fabricate optical waveguides such as elements, second harmonic generation elements, various optical devices, and optical waveguide devices.

本発明に係る光導波路の作製方法を説明する図である。It is a figure explaining the manufacturing method of the optical waveguide which concerns on this invention. 本発明に係る光導波路の別の構成例を示す図である。It is a figure which shows another structural example of the optical waveguide which concerns on this invention.

符号の説明Explanation of symbols

A 第1基体
B 薄膜
C 第2基体
D マスク材
E 光導波路(リッジ型構造)
F 屈折率調整層
G 空隙
A First substrate B Thin film C Second substrate D Mask material E Optical waveguide (ridge structure)
F Refractive index adjustment layer G Void

Claims (4)

複数の基材が接合され且つ少なくとも光が伝播される側の基材が強誘電体材料からなる光導波路の作製手法であって、接合面の主成分をいずれも二酸化シリコンとし、接合面に基材を溶融させるための溶液を介在させて接合することを特徴とする光導波路の作製方法。   A method of manufacturing an optical waveguide in which a plurality of base materials are joined and at least the base material on which light is propagated is made of a ferroelectric material. A method for producing an optical waveguide, comprising joining with a solution for melting a material interposed. 前記基材を溶融させるための溶液がフッ化水素酸を含む溶液またはアルカリ溶液であることを特徴とする請求項1記載の光導波路の作製方法。   The method for producing an optical waveguide according to claim 1, wherein the solution for melting the base material is a solution containing hydrofluoric acid or an alkaline solution. 強誘電体材料が分極を周期的に反転させたものであることを特徴とする請求項1または2記載の光導波路の作製方法。   3. The method of manufacturing an optical waveguide according to claim 1, wherein the ferroelectric material is one whose polarization is periodically reversed. 請求項1乃至3のいずれかに記載の方法により作製されてなることを特徴とする光導波路。   An optical waveguide manufactured by the method according to claim 1.
JP2004284616A 2004-09-29 2004-09-29 Optical waveguide and manufacturing method therefor Pending JP2006098716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004284616A JP2006098716A (en) 2004-09-29 2004-09-29 Optical waveguide and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004284616A JP2006098716A (en) 2004-09-29 2004-09-29 Optical waveguide and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2006098716A true JP2006098716A (en) 2006-04-13

Family

ID=36238605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004284616A Pending JP2006098716A (en) 2004-09-29 2004-09-29 Optical waveguide and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2006098716A (en)

Similar Documents

Publication Publication Date Title
JP5117126B2 (en) Wafer scale method for manufacturing optical waveguide devices and waveguide devices manufactured thereby
JPWO2006041172A1 (en) Optical waveguide substrate and harmonic generation device
JPH06289241A (en) Polarized light separating element
JP2021162634A (en) Optical waveguide element
US6046851A (en) Polarization beam splitter and method for making the same
JP2014222331A (en) Wavelength conversion element
JP2002277661A (en) Method for cutting out optical waveguide device
JP6228507B2 (en) Wavelength conversion element
JP4146788B2 (en) Optical waveguide connection module and method for fabricating the same
JP2006098716A (en) Optical waveguide and manufacturing method therefor
JP2009025555A (en) Manufacturing method of optical waveguide
JP2000284135A (en) Optical waveguide device having planar optical waveguide, integrated optical module consisted by using the same and method to mount the same
JP3999748B2 (en) Method for manufacturing wavelength conversion element
JP2006065046A (en) Manufacturing method for optical waveguide device and optical waveguide device
US7589886B1 (en) Wavelength converter structure and method for preparing the same
JPH0313907A (en) Production of substrate type optical waveguide
WO2024100865A1 (en) Optical waveguide element and method for manufacturing same
KR100721318B1 (en) Fabricating method for quasi-phase- matched waveguides
JP3999732B2 (en) Method for manufacturing wavelength conversion element
JP2503538B2 (en) Method for manufacturing diffraction grating type polarizing plate
TW201319648A (en) Optical device and optical device manufacturing method
KR100734839B1 (en) Wavelength conversion optical device and method of fabricating the same device
JP4649511B2 (en) Optical waveguide device
JP2004021005A (en) Optical waveguide substrate
JPH06174908A (en) Production of waveguide type diffraction grating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317