JP2006097588A - Control device for internal combustion engine and method for calculating air fuel ratio - Google Patents

Control device for internal combustion engine and method for calculating air fuel ratio Download PDF

Info

Publication number
JP2006097588A
JP2006097588A JP2004285222A JP2004285222A JP2006097588A JP 2006097588 A JP2006097588 A JP 2006097588A JP 2004285222 A JP2004285222 A JP 2004285222A JP 2004285222 A JP2004285222 A JP 2004285222A JP 2006097588 A JP2006097588 A JP 2006097588A
Authority
JP
Japan
Prior art keywords
combustion
air
fuel ratio
cylinder pressure
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004285222A
Other languages
Japanese (ja)
Inventor
Junichi Mori
純一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004285222A priority Critical patent/JP2006097588A/en
Publication of JP2006097588A publication Critical patent/JP2006097588A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device for an internal combustion engine and a method for calculating air fuel ratio capable of always calculating air fuel ratio in a combustion chamber irrespective of a type of the internal combustion engine and fuel supply timing. <P>SOLUTION: The internal combustion engine 1 burns mixture of fuel and air in the combustion chamber to generate power, and is provided with ECU 20 and a cylinder pressure sensor 15 for acquiring cylinder pressure in the combustion chamber 3. The ECU 20 calculates combustion time Tc from start of combustion in the combustion chamber 3 until substantial completion of combustion based on cylinder pressure acquired with using the cylinder pressure sensor 15 and reaches air fuel ratio AF in the combustion chamber 3 based on the calculated combustion time Tc. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料および空気の混合気を燃焼室内で燃焼させて動力を発生する内燃機関の制御方法および空燃比算出方法に関する。   The present invention relates to a control method and an air-fuel ratio calculation method for an internal combustion engine that generates power by burning a fuel / air mixture in a combustion chamber.

従来から、内燃機関の圧縮行程がポリトロープ過程に従うこと、およびポリトロープ指数と燃焼室内における空燃比とが互いに相関を有するということが知られている。そして、これらの点を利用した内燃機関の空燃比算出方法として、圧縮行程中の2点において検出された筒内圧力に基づいてP・V=一定という関係を満たすポリトロープ指数nを求め、得られたポリトロープ指数nに対応した空燃比を求める手法が知られている(例えば、特許文献1参照。)。 Conventionally, it is known that the compression stroke of an internal combustion engine follows a polytropic process, and that the polytropic index and the air-fuel ratio in the combustion chamber have a correlation with each other. Then, as a method for calculating the air-fuel ratio of the internal combustion engine using these points, a polytropic index n satisfying the relationship of P · V n = constant is obtained based on the in-cylinder pressure detected at two points during the compression stroke, and obtained. A technique for obtaining an air-fuel ratio corresponding to the obtained polytropic index n is known (for example, see Patent Document 1).

特開平3−23349号公報JP-A-3-23349

しかしながら、燃焼室に対する燃料の供給タイミングは、内燃機関の形式や運転条件によって異なるものであり、あるサイクル(4ストロークエンジンの場合、吸気、圧縮、膨張、排気の4行程)に際して要求される燃料のすべてが圧縮行程の開始前までに燃焼室内に供給されるとは限らない。このため、上記従来の手法のように圧縮行程中の2点で検出された筒内圧力を用いても、燃焼室における空燃比を正確に求めることができない場合が多い。特に、吸気行程後に燃焼室に対して燃料が供給されるディーゼルエンジンやいわゆる直噴エンジンでは、圧縮行程の際に燃焼室内に全く燃料が存在しないこともあり得るので、上記従来の手法を適用することは、実質的に困難である。   However, the fuel supply timing to the combustion chamber differs depending on the type and operating conditions of the internal combustion engine, and the fuel required for a certain cycle (four strokes of intake, compression, expansion, and exhaust in the case of a four-stroke engine). Not all are supplied into the combustion chamber before the start of the compression stroke. For this reason, even if the in-cylinder pressure detected at two points during the compression stroke is used as in the conventional method, the air-fuel ratio in the combustion chamber cannot be obtained accurately. In particular, in a diesel engine or a so-called direct injection engine in which fuel is supplied to the combustion chamber after the intake stroke, there may be no fuel in the combustion chamber during the compression stroke, so the above-described conventional method is applied. That is practically difficult.

そこで、本発明は、内燃機関の形式や燃料供給タイミングによらず、燃焼室における空燃比を常に精度よく算出可能とする内燃機関の制御装置および空燃比算出方法の提供を目的とする。   Therefore, an object of the present invention is to provide an internal combustion engine control device and an air-fuel ratio calculation method that can always accurately calculate the air-fuel ratio in the combustion chamber regardless of the type of the internal combustion engine and the fuel supply timing.

本発明による内燃機関の制御装置は、燃料および空気の混合気を燃焼室内で燃焼させて動力を発生する内燃機関の制御装置において、筒内圧力を取得するための筒内圧検出手段と、筒内圧検出手段を用いて取得される筒内圧力に基づいて燃焼室内で燃焼が開始されてから当該燃焼が実質的に完了するまでの燃焼時間を算出する燃焼時間算出手段と、燃焼時間算出手段によって算出される燃焼時間に基づいて、燃焼室内における空燃比を導出する空燃比導出手段とを備えることを特徴とする。   An internal combustion engine control apparatus according to the present invention includes an in-cylinder pressure detecting means for acquiring an in-cylinder pressure, an in-cylinder pressure in an internal combustion engine control apparatus for generating power by burning a mixture of fuel and air in a combustion chamber. Based on the in-cylinder pressure acquired using the detecting means, the combustion time calculating means for calculating the combustion time from the start of combustion in the combustion chamber until the combustion is substantially completed, and the combustion time calculating means And air-fuel ratio deriving means for deriving the air-fuel ratio in the combustion chamber based on the combustion time to be performed.

一般に、内燃機関の燃焼室における空燃比と、当該燃焼室における混合気(燃料)の燃焼速度との間には所定の相関が認められることが知られている。また、燃焼室における混合気の燃焼速度は、燃焼室内で燃焼が開始されてから(混合気が火花点火されてから、あるいは、混合気が圧縮着火してから)当該燃焼が実質的に完了するまでの燃焼時間に密接に関連するものである。従って、燃焼速度と空燃比との相関を利用すれば、上記燃焼時間と燃焼室における空燃比との相関を求めることができる。そして、かかる燃焼時間は、どのような形式の内燃機関であっても、また、燃料供給タイミングがどのように設定されていたとしても、燃焼室内で燃焼が開始されてから当該燃焼が実質的に完了するまでの間に取得される筒内圧力に基づいて求めることができる。これにより、この内燃機関の制御装置のように、筒内圧力に基づいて燃焼開始から実質的な燃焼完了までの燃焼時間を求めた上で、得られた燃焼時間に基づいて燃焼室内における空燃比を得ることにより、内燃機関の形式や燃料供給タイミングによらず、燃焼室における空燃比を常に精度よく算出することが可能となる。   In general, it is known that a predetermined correlation is recognized between the air-fuel ratio in the combustion chamber of the internal combustion engine and the combustion speed of the air-fuel mixture (fuel) in the combustion chamber. Further, the combustion speed of the air-fuel mixture in the combustion chamber is such that the combustion is substantially completed after the combustion is started in the combustion chamber (after the air-fuel mixture is spark-ignited or after the air-fuel mixture is compressed and ignited). It is closely related to the combustion time until. Therefore, if the correlation between the combustion speed and the air-fuel ratio is used, the correlation between the combustion time and the air-fuel ratio in the combustion chamber can be obtained. The combustion time is substantially the same after the combustion is started in the combustion chamber, regardless of the type of internal combustion engine and the fuel supply timing. It can be determined based on the in-cylinder pressure acquired until completion. Thus, as in the control device for the internal combustion engine, after determining the combustion time from the start of combustion to the substantial completion of combustion based on the in-cylinder pressure, the air-fuel ratio in the combustion chamber is calculated based on the obtained combustion time. As a result, the air-fuel ratio in the combustion chamber can always be accurately calculated regardless of the type of the internal combustion engine and the fuel supply timing.

また、燃焼時間算出手段は、燃焼室に対して供給される燃料の量に基づいて燃焼時間中の理論熱発生量を求めると共に、筒内圧検出手段を用いて取得される筒内圧力に基づいて燃焼時間中に発生すると想定される想定熱発生量を求め、理論熱発生量と想定熱発生量とに基づいて燃焼時間を算出すると好ましい。   The combustion time calculation means obtains the theoretical heat generation amount during the combustion time based on the amount of fuel supplied to the combustion chamber, and based on the in-cylinder pressure acquired using the in-cylinder pressure detection means. It is preferable to obtain an assumed heat generation amount assumed to be generated during the combustion time, and calculate the combustion time based on the theoretical heat generation amount and the assumed heat generation amount.

このように、燃焼室に対して供給される燃料の量に基づいて理論的に求められる燃焼時間中の理論熱発生量と、筒内圧力に基づいて求められる燃焼時間中の想定熱発生量とを対比することにより、上記燃焼時間を精度よく求めることが可能となる。   Thus, the theoretical heat generation amount during the combustion time theoretically determined based on the amount of fuel supplied to the combustion chamber, and the assumed heat generation amount during the combustion time determined based on the in-cylinder pressure, By comparing the above, it is possible to accurately obtain the combustion time.

更に、燃焼時間算出手段は、所定のタイミングで前回の燃料供給量に基づいて理論熱発生量を求めると共に、前回の燃焼開始から当該燃焼の実質的な完了までの間に筒内圧検出手段を用いて取得された筒内圧力に基づいて想定熱発生量を算出すると好ましい。   Further, the combustion time calculation means obtains the theoretical heat generation amount based on the previous fuel supply amount at a predetermined timing, and uses the in-cylinder pressure detection means between the start of the previous combustion and the substantial completion of the combustion. It is preferable to calculate the assumed heat generation amount based on the in-cylinder pressure acquired in this way.

このように、燃焼室内で燃焼が開始されてから当該燃焼が実質的に完了するまでの燃焼時間は、前回の燃料供給量や前回の燃焼時に取得される筒内圧力に基づいて算出されればよく、これにより、燃焼室における空燃比を実用上良好に得ることが可能となる。   Thus, if the combustion time from when combustion is started in the combustion chamber until the combustion is substantially completed is calculated based on the previous fuel supply amount or the in-cylinder pressure acquired at the previous combustion, Well, this makes it possible to obtain a practically good air-fuel ratio in the combustion chamber.

そして、本発明の内燃機関の制御装置は、空燃比導出手段によって導出される空燃比と、予め定められている目標空燃比との偏差に基づいて、空燃比を目標空燃比に近づけるための補正量を算出する補正手段を更に備えると好ましい。   The control apparatus for an internal combustion engine according to the present invention corrects the air-fuel ratio closer to the target air-fuel ratio based on a deviation between the air-fuel ratio derived by the air-fuel ratio deriving means and a predetermined target air-fuel ratio. It is preferable that correction means for calculating the amount is further provided.

これにより、内燃機関の燃焼室における空燃比を高精度に制御することが可能となり、過渡時等における空燃比の目標値からのズレを良好に抑制することができる。   As a result, the air-fuel ratio in the combustion chamber of the internal combustion engine can be controlled with high accuracy, and deviation from the target value of the air-fuel ratio at the time of transition can be satisfactorily suppressed.

本発明による内燃機関の空燃比算出方法は、燃料室内における筒内圧力を取得するための筒内圧検出手段を備え、燃料および空気の混合気を燃焼室内で燃焼させて動力を発生する内燃機関の空燃比算出方法において、
(a)筒内圧検出手段を用いて取得される筒内圧力に基づいて、燃焼室内で燃焼が開始されてから当該燃焼が実質的に完了するまでの燃焼時間を算出するステップと、
(b)ステップ(a)にて算出した燃焼時間に基づいて、燃焼室内における空燃比を導出するステップとを含むことを特徴とする。
An air-fuel ratio calculation method for an internal combustion engine according to the present invention includes an in-cylinder pressure detecting means for acquiring an in-cylinder pressure in a fuel chamber, and an internal combustion engine for generating power by burning a mixture of fuel and air in a combustion chamber. In the air-fuel ratio calculation method,
(A) calculating a combustion time from the start of combustion in the combustion chamber until the combustion is substantially completed based on the in-cylinder pressure acquired using the in-cylinder pressure detecting means;
And (b) deriving an air-fuel ratio in the combustion chamber based on the combustion time calculated in step (a).

本発明によれば、内燃機関の形式や燃料供給タイミングによらず、燃焼室における空燃比を常に精度よく算出可能とする内燃機関の制御装置および空燃比算出方法の実現が可能となる。   According to the present invention, it is possible to realize an internal combustion engine control apparatus and an air-fuel ratio calculation method that can always accurately calculate the air-fuel ratio in the combustion chamber regardless of the type of the internal combustion engine and the fuel supply timing.

以下、図面を参照しながら、本発明を実施するための最良の形態について詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1は、本発明による制御装置が適用された内燃機関を示す概略構成図である。同図に示される内燃機関1は、シリンダブロック2に形成された燃焼室3の内部で燃料および空気の混合気を燃焼させ、燃焼室3内でピストン4を往復移動させることにより動力を発生するものである。なお、図1には1気筒のみが示されるが、内燃機関1は多気筒エンジンとして構成されると好ましく、本実施形態の内燃機関1は、例えば4気筒エンジンとして構成される。   FIG. 1 is a schematic configuration diagram showing an internal combustion engine to which a control device according to the present invention is applied. The internal combustion engine 1 shown in FIG. 1 generates power by burning a fuel / air mixture in a combustion chamber 3 formed in a cylinder block 2 and reciprocating a piston 4 in the combustion chamber 3. Is. Although only one cylinder is shown in FIG. 1, the internal combustion engine 1 is preferably configured as a multi-cylinder engine, and the internal combustion engine 1 of the present embodiment is configured as a four-cylinder engine, for example.

各燃焼室3の吸気ポートは、吸気マニホールドを介して吸気管5に接続され、各燃焼室3の排気ポートは、排気マニホールドを介して排気管6に接続されている。また、内燃機関1のシリンダヘッドには、吸気ポートを開閉する吸気弁Viと、排気ポートを開閉する排気弁Veとが燃焼室3ごとに配設されている。各吸気弁Viおよび各排気弁Veは、可変バルブタイミング機能を有する動弁機構(図示省略)によって開閉させられる。更に、内燃機関1は、気筒数に応じた数の点火プラグ7を有し、点火プラグ7は、対応する燃焼室3内に臨むようにシリンダヘッドに配設されている。   The intake port of each combustion chamber 3 is connected to the intake pipe 5 via an intake manifold, and the exhaust port of each combustion chamber 3 is connected to the exhaust pipe 6 via an exhaust manifold. In addition, an intake valve Vi that opens and closes an intake port and an exhaust valve Ve that opens and closes an exhaust port are provided for each combustion chamber 3 in the cylinder head of the internal combustion engine 1. Each intake valve Vi and each exhaust valve Ve are opened and closed by a valve operating mechanism (not shown) having a variable valve timing function. Further, the internal combustion engine 1 has a number of spark plugs 7 corresponding to the number of cylinders, and the spark plugs 7 are disposed in the cylinder heads so as to face the corresponding combustion chambers 3.

吸気管5は、図1に示されるように、サージタンク8に接続されている。サージタンク8には、給気管L1が接続されており、給気管L1は、エアクリーナ9を介して図示されない空気取入口に接続されている。そして、給気管L1の中途(サージタンク8とエアクリーナ9との間)には、スロットルバルブ(本実施形態では、電子制御式スロットルバルブ)10が組み込まれている。一方、排気管6には、図1に示されるように、三元触媒を含む前段触媒装置11aおよびNOx吸蔵還元触媒を含む後段触媒装置11bが接続されている。   The intake pipe 5 is connected to a surge tank 8 as shown in FIG. An air supply pipe L1 is connected to the surge tank 8, and the air supply pipe L1 is connected to an air intake port (not shown) via an air cleaner 9. A throttle valve (electronically controlled throttle valve in this embodiment) 10 is incorporated in the middle of the supply pipe L1 (between the surge tank 8 and the air cleaner 9). On the other hand, as shown in FIG. 1, a front-stage catalyst device 11 a including a three-way catalyst and a rear-stage catalyst device 11 b including a NOx storage reduction catalyst are connected to the exhaust pipe 6.

更に、内燃機関1は、図1に示されるように、複数のインジェクタ12を有し、インジェクタ12は、対応する燃焼室3内に臨むようにシリンダヘッドに配設されている。また、内燃機関1の各ピストン4は、いわゆる深皿頂面型に構成されており、その上面には、凹部4aが形成されている。そして、内燃機関1では、各燃焼室3内に空気を吸入させた状態で、各インジェクタ12から各燃焼室3内のピストン4の凹部4aに向けてガソリン等の燃料が直接噴射される。これにより、内燃機関1では、点火プラグ7の近傍に燃料と空気との混合気の層が周囲の空気層と分離された状態で形成(成層化)されるので、極めて希薄な混合気を用いて安定した成層燃焼を実行することが可能となる。   Further, as shown in FIG. 1, the internal combustion engine 1 has a plurality of injectors 12, and the injectors 12 are arranged in the cylinder head so as to face the corresponding combustion chambers 3. Each piston 4 of the internal combustion engine 1 is configured as a so-called deep dish top surface type, and a recess 4a is formed on the upper surface thereof. In the internal combustion engine 1, fuel such as gasoline is directly injected from each injector 12 toward the recess 4 a of the piston 4 in each combustion chamber 3 in a state where air is sucked into each combustion chamber 3. As a result, in the internal combustion engine 1, the fuel / air mixture layer is formed (stratified) in the vicinity of the spark plug 7 so as to be separated from the surrounding air layer. And stable stratified combustion can be performed.

上述の各点火プラグ7、スロットルバルブ10、各インジェクタ12および動弁機構等は、内燃機関1の制御装置として機能するECU20に電気的に接続されている。ECU20は、何れも図示されないCPU、ROM、RAM、入出力ポートおよび記憶装置等を含むものである。ECU20には、吸入空気量を検出するエアフローメータAFM等の各種センサがA/D変換器等を介して電気的に接続されている。ECU20は、記憶装置に記憶されている各種マップ等を用いると共に各種センサの検出値等に基づいて、所望の出力が得られるように、点火プラグ7、スロットルバルブ10、インジェクタ12、動弁機構等を制御する。   Each of the spark plugs 7, the throttle valve 10, the injectors 12, the valve operating mechanism and the like described above are electrically connected to an ECU 20 that functions as a control device for the internal combustion engine 1. The ECU 20 includes a CPU, a ROM, a RAM, an input / output port, a storage device, etc., all not shown. Various sensors such as an air flow meter AFM for detecting the intake air amount are electrically connected to the ECU 20 via an A / D converter or the like. The ECU 20 uses the various maps stored in the storage device and the spark plug 7, the throttle valve 10, the injector 12, the valve operating mechanism, etc. so as to obtain a desired output based on the detection values of various sensors. To control.

図1に示されるように、ECU20に接続されるセンサ類には、クランク角センサ14が含まれる。クランク角センサ14は、クランクシャフトに固定されるロータプレート(シグナルプレート)等を含む磁気センサまたは光電式センサ等であり、クランクシャフトの回転角度を示すパルス信号を微小時間ごとにECU20に与える。また、内燃機関1は、半導体素子、圧電素子あるいは光ファイバ検出素子等を含む筒内圧センサ(筒内圧検出手段)15を気筒数に応じた数だけ有している。各筒内圧センサ15は、対応する燃焼室3内に受圧面が臨むようにシリンダヘッドに配設されており、それぞれ、図示されないA/D変換器を介してECU20に電気的に接続されている。各筒内圧センサ15は、燃焼室3内でその受圧面に加わる圧力(筒内圧力)に応じた電圧信号(検出値を示す信号)を出力する。各筒内圧センサ15の検出値は、所定時間(所定クランク角)おきにECU20に順次与えられ、絶対圧力に補正された上でECU20の所定の記憶領域(バッファ)に所定量ずつ格納保持される。そして、本発明では、これらの筒内圧センサ15およびECU20等により、内燃機関1の燃焼室3における空燃比を算出する空燃比算出装置が構成される。   As shown in FIG. 1, the crank angle sensor 14 is included in the sensors connected to the ECU 20. The crank angle sensor 14 is a magnetic sensor or a photoelectric sensor including a rotor plate (signal plate) fixed to the crankshaft, and the like, and provides a pulse signal indicating the rotation angle of the crankshaft to the ECU 20 every minute time. Further, the internal combustion engine 1 has in-cylinder pressure sensors (in-cylinder pressure detecting means) 15 including a semiconductor element, a piezoelectric element, an optical fiber detection element, or the like, corresponding to the number of cylinders. Each in-cylinder pressure sensor 15 is disposed on the cylinder head so that the pressure receiving surface faces the corresponding combustion chamber 3, and is electrically connected to the ECU 20 via an A / D converter (not shown). . Each in-cylinder pressure sensor 15 outputs a voltage signal (a signal indicating a detection value) corresponding to the pressure (in-cylinder pressure) applied to the pressure receiving surface in the combustion chamber 3. The detection value of each in-cylinder pressure sensor 15 is sequentially given to the ECU 20 every predetermined time (predetermined crank angle), corrected to an absolute pressure, and stored and held in a predetermined storage area (buffer) of the ECU 20 by a predetermined amount. . In the present invention, the in-cylinder pressure sensor 15, the ECU 20, and the like constitute an air-fuel ratio calculation device that calculates the air-fuel ratio in the combustion chamber 3 of the internal combustion engine 1.

次に、図2〜図4を参照しながら、上述の内燃機関1の各燃焼室3における空燃比を算出する手順について説明する。   Next, a procedure for calculating the air-fuel ratio in each combustion chamber 3 of the internal combustion engine 1 will be described with reference to FIGS.

内燃機関1が始動され、所定回数のサイクル(吸気、圧縮、膨張、排気の4行程)が完了すると、ECU20は、図2に示される空燃比算出ルーチンの実行を開始し、燃焼室3ごとに空燃比を算出する。本ルーチンを開始すると、ECU20は、まず、燃焼室3ごとに排気弁Veが開放されたか否か(排気行程が開始されたか否か)判定する(S10)。そして、ECU20は、S10にてある燃焼室3において排気弁Veが開放されたと判断すると、当該燃焼室3における排気弁Veの開放直前の点火時期(前回の点火時期に対応したクランク角)θSA、排気弁Veの開放直前の燃料噴射時間(前回の燃料噴射時間)τおよび前回の目標空燃比AFを所定の記憶領域から読み出す(S12)。 When the internal combustion engine 1 is started and a predetermined number of cycles (four strokes of intake, compression, expansion, and exhaust) are completed, the ECU 20 starts executing the air-fuel ratio calculation routine shown in FIG. Calculate the air-fuel ratio. When this routine is started, the ECU 20 first determines whether or not the exhaust valve Ve is opened for each combustion chamber 3 (whether an exhaust stroke is started) (S10). When the ECU 20 determines that the exhaust valve Ve is opened in the combustion chamber 3 in S10, the ignition timing (crank angle corresponding to the previous ignition timing) θ SA immediately before the exhaust valve Ve in the combustion chamber 3 is opened. , the fuel injection time of the immediately preceding the opening of the exhaust valve Ve reading the τ and previous target air-fuel ratio AF T (fuel injection time last) from a predetermined storage area (S12).

S12の処理の後、ECU20は、取得した前回の燃料噴射時間τに基づいて、前回の点火から実質的な燃焼完了までの間に当該燃焼室3において発生する熱量の理論値である理論熱発生量Qを算出する(S14)。この場合、理論熱発生量Qは、燃料の低位発熱量をqとし、インジェクタ12の単位時間あたりの燃料噴射量をfとすると、次の(1)式のように表される。ただし、(1)式において、αは、損失や未燃燃料等を考慮した係数であり、その値は経験的、実験的に求められる(例えば、70〜80%)。 After the process of S12, the ECU 20 generates theoretical heat, which is a theoretical value of the amount of heat generated in the combustion chamber 3 between the previous ignition and the substantial completion of combustion based on the acquired previous fuel injection time τ. to calculate the amount Q T (S14). In this case, the theoretical heat generation amount Q T is expressed as the following equation (1), where q is the lower heating value of the fuel and f is the fuel injection amount per unit time of the injector 12. However, in the formula (1), α is a coefficient considering loss, unburned fuel, and the like, and the value is obtained empirically and experimentally (for example, 70 to 80%).

Figure 2006097588
Figure 2006097588

理論熱発生量Qを求めると、ECU20は、所定の記憶領域から、前回の点火時期θSAから排気弁Veが開放されるまで(排気弁Veの開弁時のクランク角をθEVOとする)の間に取得された筒内圧力を示す筒内圧データP(θSA),…,P(θ),…,P(θEVO)を読み出す(S16)。更に、ECU20は、次の(2)式を用いて、点火時期θSAから所定クランク角dθごとに各クランク角θについて熱発生率dQ/dθを算出する(S18)。ただし、(2)式において、κは、比熱比であり、V(θ)は、クランク角がθとなった際の筒内容積であって、クランク角ごとに予め算出された上で記憶装置に記憶されている。 When the theoretical heat generation amount Q T is obtained, the ECU 20 starts from the predetermined storage area until the exhaust valve Ve is opened from the previous ignition timing θ SA (the crank angle when the exhaust valve Ve is opened is θ EVO ). ), P (θ SA ),..., P (θ),..., P (θ EVO ) indicating the in-cylinder pressure acquired during (). Furthermore, ECU 20 uses the following equation (2), calculates the heat generation rate dQ / d [theta] for theta each crank angle from the ignition timing theta SA at every predetermined crank angle d [theta] (S18). However, in equation (2), κ is a specific heat ratio, and V (θ) is an in-cylinder volume when the crank angle becomes θ, and is calculated in advance for each crank angle and then stored in the storage device. Is remembered.

Figure 2006097588
Figure 2006097588

S18にて、あるクランク角について熱発生率dQ/dθを算出すると、ECU20は、算出した熱発生率dQ/dθを順次積算することにより、前回の点火以降に当該燃焼室3において発生する想定熱発生量Qを求め(S20)、S14にて算出した理論熱発生量Qと想定熱発生量Qとの偏差の絶対値が所定の閾値ε以下となっているか、すなわち、求めた想定熱発生量QがS14にて算出した理論熱発生量Qと概ね等しくなっているか否か判定する(S22)。ECU20は、S22にて想定熱発生量Qが理論熱発生量Qと概ね等しくなったと判断するまで、S18およびS20の処理を繰り返し、S22にて肯定判断を行った段階で、想定熱発生量Qが理論熱発生量Qとが概ね等しくなった時点、すなわち、燃焼が実質的に完了した時点におけるクランク角θを求める(S24)。そして、ECU20は、S24にて求めたクランク角θと、S12にて取得した前回の点火時期θSAとに基づいて、前回の点火から実質的な燃焼完了までの時間である燃焼時間Tcを
Tc=θ−θSA
として算出する(S26)。
When the heat generation rate dQ / dθ is calculated for a certain crank angle in S18, the ECU 20 sequentially accumulates the calculated heat generation rates dQ / dθ, thereby assuming the assumed heat generated in the combustion chamber 3 after the previous ignition. determine the amount of generated Q a (S20), whether the absolute value of the deviation of the calculated theoretical heat release amount Q T and assumed heat generation amount Q a at S14 is held below a predetermined threshold epsilon, i.e., assuming obtained It determines whether the heat generation amount Q a is approximately equal to the theoretical heat generation amount Q T calculated in S14 (S22). ECU20 until it determines that the assumed heat generation amount Q A is approximately equal to the theoretical heat generation amount Q T at S22, it repeats the processing of S18 and S20, at the stage of performing a positive determination in S22, assuming heat generation The crank angle θ T at the time when the amount Q A becomes substantially equal to the theoretical heat generation amount Q T , that is, when combustion is substantially completed is obtained (S24). Then, ECU 20 includes a crank angle theta T obtained in S24, based on the preceding ignition timing theta SA acquired in S12, the burn time Tc is the time from the preceding ignition until substantial combustion completion Tc = θ T −θ SA
(S26).

ところで、内燃機関の燃焼室における空燃比と、当該燃焼室における混合気(燃料)の燃焼速度との間には、図3に示されるような相関が認められることが一般に知られている。また、燃焼室における混合気の燃焼速度は、燃焼室内で燃焼が開始されてから当該燃焼が実質的に完了するまでの燃焼時間Tcに密接に関連するものである。従って、図3の燃焼速度と空燃比との相関を利用すれば、上記燃焼時間Tcと燃焼室における空燃比AFとの相関を実験的に求めることが可能である。このような点を踏まえて、内燃機関1では、図4に示されるような燃焼時間Tcと燃焼室における空燃比AFとの相関を規定する空燃比マップが予め作成されており、ECU20の記憶装置に格納されている。そして、ECU20は、S24の処理の後、上記空燃比マップからS24にて求めた燃焼時間Tcに対応した空燃比AFを読み出す(S28)。   Incidentally, it is generally known that a correlation as shown in FIG. 3 is recognized between the air-fuel ratio in the combustion chamber of the internal combustion engine and the combustion speed of the air-fuel mixture (fuel) in the combustion chamber. The combustion speed of the air-fuel mixture in the combustion chamber is closely related to the combustion time Tc from the start of combustion in the combustion chamber until the combustion is substantially completed. Therefore, the correlation between the combustion time Tc and the air-fuel ratio AF in the combustion chamber can be experimentally obtained by utilizing the correlation between the combustion speed and the air-fuel ratio in FIG. In consideration of such points, in the internal combustion engine 1, an air-fuel ratio map that prescribes a correlation between the combustion time Tc and the air-fuel ratio AF in the combustion chamber as shown in FIG. Stored in Then, after the process of S24, the ECU 20 reads out the air-fuel ratio AF corresponding to the combustion time Tc obtained in S24 from the air-fuel ratio map (S28).

ここで、点火プラグ7の点火によって燃焼室3内で燃焼が開始されてから当該燃焼が実質的に完了するまでの間の燃焼時間Tcは、上述のように、前回の燃料噴射時間τに基づいて理論的に求められる燃焼時間Tc中の理論熱発生量Qと、前回の点火から実質的な燃焼完了までの間に筒内圧センサ15を用いて取得された筒内圧力に基づいて算出される想定熱発生量Qとを対比することにより、ガソリンエンジンやディーゼルエンジンといった内燃機関の形式や、吸気行程噴射や上死点後噴射といった燃料供給タイミングを問わず、精度よく求めることが可能なものである。従って、S12からS26までの処理により、筒内圧力に基づいて燃焼時間Tcを求めた上で、空燃比マップから燃焼時間Tcに対応した空燃比AFを得ることにより、内燃機関の形式や燃料供給タイミングによらず、燃焼室3における空燃比を常に精度よく得ることが可能となる。 Here, the combustion time Tc from the start of combustion in the combustion chamber 3 by ignition of the spark plug 7 until the combustion is substantially completed is based on the previous fuel injection time τ as described above. Calculated based on the theoretical heat generation amount Q T during the combustion time Tc theoretically obtained and the in-cylinder pressure obtained using the in-cylinder pressure sensor 15 between the previous ignition and the substantial completion of combustion. by comparing the assumed heat generation amount Q a that, the form and the internal combustion engine such as gasoline engines and diesel engines, regardless of the fuel supply timing such intake stroke injection and after TDC injection, which can precisely obtain Is. Therefore, after obtaining the combustion time Tc based on the in-cylinder pressure by the processing from S12 to S26, and obtaining the air-fuel ratio AF corresponding to the combustion time Tc from the air-fuel ratio map, the type of the internal combustion engine and the fuel supply Regardless of the timing, the air-fuel ratio in the combustion chamber 3 can always be obtained with high accuracy.

S28にて燃焼室3における空燃比AFを求めると、ECU20は、S12にて取得した目標空燃比AFとS28にて求めた空燃比AFとの偏差の絶対値が所定の許容誤差δ以上となっているか、すなわち、求めた空燃比AFが目標空燃比AFから所定量以上外れているか否か判定する(S30)。ECU20は、S32にて目標空燃比AFと空燃比AFとの偏差の絶対値が所定の許容誤差δ以上であると判断すると、目標空燃比AFと空燃比AFとの偏差に応じたインジェクタ12の燃料噴射時間の補正量を設定する(S32)。これにより、内燃機関1の燃焼室3における空燃比AFを高精度に制御することが可能となり、過渡時等における空燃比AFの目標空燃比AFからのズレを良好に抑制することができる。なお、S32では、燃料噴射時間の補正量と共に、あるいは燃料噴射時間の補正量の代わりに、スロットルバルブ10の開度の補正量が設定されてもよい。S32の処理の実行後、またはS30にて否定判断を行った後、ECU20は、S10以降の処理を繰り返し実行する。 When determining the air-fuel ratio AF in the combustion chamber 3 at S28, ECU 20 is the absolute value of the deviation between the air-fuel ratio AF determined by the target air-fuel ratio AF T and S28 obtained in S12 is a predetermined tolerance δ above and or going on, i.e., it determines whether or not the air-fuel ratio AF determined deviates more than a predetermined amount from the target air-fuel ratio AF T (S30). Injector ECU20 is in accordance with the deviation of the absolute value of the deviation between the target air-fuel ratio AF T and the air-fuel ratio AF at S32, it is determined that the predetermined tolerance δ above, the target air-fuel ratio AF T and the air-fuel ratio AF A correction amount of 12 fuel injection times is set (S32). This makes it possible to control the air-fuel ratio AF in the combustion chamber 3 of the internal combustion engine 1 with high accuracy, it is possible to favorably suppress the deviation from the target air-fuel ratio AF T of the air-fuel ratio AF in the transient or the like. In S32, a correction amount for the opening degree of the throttle valve 10 may be set together with the fuel injection time correction amount or instead of the fuel injection time correction amount. After executing the process of S32 or making a negative determination in S30, the ECU 20 repeatedly executes the processes after S10.

なお、S28にて用いられる空燃比マップは、内燃機関1の負荷に応じて複数作成されてもよい。このように、負荷に応じた複数の空燃比マップを用いる場合には、図2のS28の前に、スロットルバルブ10の開度等に基づいて内燃機関1の負荷を求めた上で、得られた負荷に対応したマップを読み出すようにすればよい。また、本実施形態の内燃機関1は、いわゆる直噴エンジンとして説明されたが、これに限られるものではなく、本発明が吸気管(ポート)噴射式の内燃機関に適用され得ることはいうまでもない。更に、本発明がディーゼルエンジンに適用され得ることもいうまでもない。   A plurality of air-fuel ratio maps used in S28 may be created according to the load of the internal combustion engine 1. As described above, when a plurality of air-fuel ratio maps corresponding to loads are used, the map is obtained after obtaining the load of the internal combustion engine 1 based on the opening degree of the throttle valve 10 and the like before S28 in FIG. The map corresponding to the loaded load may be read out. Moreover, although the internal combustion engine 1 of this embodiment was demonstrated as what is called a direct injection engine, it is not restricted to this, It cannot be overemphasized that this invention can be applied to an internal combustion engine of an intake pipe (port) injection type. Nor. Furthermore, it goes without saying that the present invention can be applied to a diesel engine.

本発明による制御装置が適用された内燃機関を示す概略構成図である。It is a schematic block diagram which shows the internal combustion engine to which the control apparatus by this invention was applied. 図1の内燃機関において実行される空燃比算出ルーチンを説明するためのフローチャートである。2 is a flowchart for illustrating an air-fuel ratio calculation routine executed in the internal combustion engine of FIG. 燃焼室内の混合気の燃焼速度と、燃焼室内における空燃比との相関を示すグラフである。It is a graph which shows the correlation with the combustion speed of the air-fuel | gaseous mixture in a combustion chamber, and the air fuel ratio in a combustion chamber. 燃焼室内で燃焼が開始されてから当該燃焼が実質的に完了するまでの間の燃焼時間と、燃焼室内における空燃比との相関を示すグラフである。It is a graph which shows the correlation of the combustion time after the combustion is started in a combustion chamber until the said combustion is substantially completed, and the air fuel ratio in a combustion chamber.

符号の説明Explanation of symbols

1 内燃機関
3 燃焼室
4 ピストン
7 点火プラグ
12 インジェクタ
14 クランク角センサ
15 筒内圧センサ
20 ECU
Ve 排気弁
Vi 吸気弁
1 Internal combustion engine 3 Combustion chamber 4 Piston 7 Spark plug 12 Injector 14 Crank angle sensor 15 In-cylinder pressure sensor 20 ECU
Ve Exhaust valve Vi Intake valve

Claims (5)

燃料および空気の混合気を燃焼室内で燃焼させて動力を発生する内燃機関の制御装置において、
筒内圧力を取得するための筒内圧検出手段と、
前記筒内圧検出手段を用いて取得される筒内圧力に基づいて前記燃焼室内で燃焼が開始されてから当該燃焼が実質的に完了するまでの燃焼時間を算出する燃焼時間算出手段と、
前記燃焼時間算出手段によって算出される前記燃焼時間に基づいて、前記燃焼室内における空燃比を導出する空燃比導出手段とを備えることを特徴とする内燃機関の制御装置。
In a control device for an internal combustion engine that generates power by burning a mixture of fuel and air in a combustion chamber,
In-cylinder pressure detecting means for acquiring the in-cylinder pressure;
A combustion time calculating means for calculating a combustion time from when combustion is started in the combustion chamber until the combustion is substantially completed based on an in-cylinder pressure acquired using the in-cylinder pressure detecting means;
An internal combustion engine control device comprising: an air-fuel ratio deriving unit that derives an air-fuel ratio in the combustion chamber based on the combustion time calculated by the combustion time calculating unit.
前記燃焼時間算出手段は、前記燃焼室に対して供給される燃料の量に基づいて前記燃焼時間中の理論熱発生量を求めると共に、前記筒内圧検出手段を用いて取得される筒内圧力に基づいて前記燃焼時間中に発生すると想定される想定熱発生量を求め、前記理論熱発生量と前記想定熱発生量とに基づいて前記燃焼時間を算出することを特徴とする請求項1に記載の内燃機関の制御装置。   The combustion time calculating means obtains the theoretical heat generation amount during the combustion time based on the amount of fuel supplied to the combustion chamber, and calculates the in-cylinder pressure obtained using the in-cylinder pressure detecting means. The calculated heat generation amount assumed to be generated during the combustion time is obtained based on the theoretical heat generation amount and the assumed heat generation amount, and the combustion time is calculated on the basis of the theoretical heat generation amount. Control device for internal combustion engine. 前記燃焼時間算出手段は、所定のタイミングで前回の燃料供給量に基づいて前記理論熱発生量を求めると共に、前回の燃焼開始から当該燃焼の実質的な完了までの間に前記筒内圧検出手段を用いて取得された筒内圧力に基づいて前記想定熱発生量を算出することを特徴とする請求項2に記載の内燃機関の制御装置。   The combustion time calculating means obtains the theoretical heat generation amount based on the previous fuel supply amount at a predetermined timing, and the in-cylinder pressure detecting means between the start of the previous combustion and the substantial completion of the combustion. The control apparatus for an internal combustion engine according to claim 2, wherein the assumed heat generation amount is calculated based on the in-cylinder pressure acquired by using the in-cylinder pressure. 前記空燃比導出手段によって導出される空燃比と、予め定められている目標空燃比との偏差に基づいて、前記空燃比を前記目標空燃比に近づけるための補正量を算出する補正手段を更に備えることを特徴とする請求項1から3の何れかに記載の内燃機関の制御装置。   Further provided is a correction means for calculating a correction amount for bringing the air-fuel ratio closer to the target air-fuel ratio based on a deviation between the air-fuel ratio derived by the air-fuel ratio deriving means and a predetermined target air-fuel ratio. The control apparatus for an internal combustion engine according to any one of claims 1 to 3. 燃料室内における筒内圧力を取得するための筒内圧検出手段を備え、燃料および空気の混合気を前記燃焼室内で燃焼させて動力を発生する内燃機関の空燃比算出方法において、
(a)前記筒内圧検出手段を用いて取得される筒内圧力に基づいて、前記燃焼室内で燃焼が開始されてから当該燃焼が実質的に完了するまでの燃焼時間を算出するステップと、
(b)ステップ(a)にて算出した前記燃焼時間に基づいて、前記燃焼室内における空燃比を導出するステップとを含むことを特徴とする内燃機関の空燃比算出方法。
In a method for calculating an air-fuel ratio of an internal combustion engine, comprising an in-cylinder pressure detecting means for acquiring an in-cylinder pressure in a fuel chamber, and generating a power by burning a fuel / air mixture in the combustion chamber,
(A) calculating a combustion time from the start of combustion in the combustion chamber until the combustion is substantially completed based on the in-cylinder pressure acquired using the in-cylinder pressure detecting means;
And (b) deriving an air-fuel ratio in the combustion chamber based on the combustion time calculated in step (a).
JP2004285222A 2004-09-29 2004-09-29 Control device for internal combustion engine and method for calculating air fuel ratio Pending JP2006097588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004285222A JP2006097588A (en) 2004-09-29 2004-09-29 Control device for internal combustion engine and method for calculating air fuel ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004285222A JP2006097588A (en) 2004-09-29 2004-09-29 Control device for internal combustion engine and method for calculating air fuel ratio

Publications (1)

Publication Number Publication Date
JP2006097588A true JP2006097588A (en) 2006-04-13

Family

ID=36237642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004285222A Pending JP2006097588A (en) 2004-09-29 2004-09-29 Control device for internal combustion engine and method for calculating air fuel ratio

Country Status (1)

Country Link
JP (1) JP2006097588A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174658A (en) * 2009-01-27 2010-08-12 Toyota Motor Corp Control device for internal combustion engine
JP2011169253A (en) * 2010-02-19 2011-09-01 Toyota Motor Corp Air-fuel ratio detecting device of internal combustion engine
WO2011141989A1 (en) 2010-05-10 2011-11-17 トヨタ自動車株式会社 Control device for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174658A (en) * 2009-01-27 2010-08-12 Toyota Motor Corp Control device for internal combustion engine
JP2011169253A (en) * 2010-02-19 2011-09-01 Toyota Motor Corp Air-fuel ratio detecting device of internal combustion engine
WO2011141989A1 (en) 2010-05-10 2011-11-17 トヨタ自動車株式会社 Control device for internal combustion engine
US9416738B2 (en) 2010-05-10 2016-08-16 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control device for carrying out injection amount feedback control

Similar Documents

Publication Publication Date Title
JP4353078B2 (en) Control device and control method for internal combustion engine
JP4096835B2 (en) Control device for internal combustion engine and misfire determination method for internal combustion engine
JP4784868B2 (en) Control device for internal combustion engine
JP4803100B2 (en) Control device for internal combustion engine
JP4281445B2 (en) Control device for internal combustion engine and control method for internal combustion engine
WO2006054790A1 (en) Control device for internal combustion engine and air-fuel ratio calculation method
JP4022885B2 (en) Control device for internal combustion engine and method for calculating intake air amount of internal combustion engine
JP4277279B2 (en) Control device and control method for internal combustion engine
JP4274055B2 (en) Control device and control method for internal combustion engine
JP4507201B2 (en) Control device for multi-cylinder internal combustion engine
JP2008025406A (en) Controller of internal combustion engine
JP4387384B2 (en) Control device for internal combustion engine
JP2006097588A (en) Control device for internal combustion engine and method for calculating air fuel ratio
JP4375213B2 (en) Control device and control method for internal combustion engine
JP4277280B2 (en) Crank angle measuring device and measuring method
JP2008309006A (en) Control device for internal combustion engine
JP2008297922A (en) Internal combustion engine controlling device
JP4207870B2 (en) Internal combustion engine control device and misfire determination method
JP2007224810A (en) Fuel injection device and method for internal combustion engine
JP2010071107A (en) Control device for internal combustion engine
JP4576884B2 (en) Control device and control method for internal combustion engine
JP4399787B2 (en) Control device and control method for internal combustion engine
JP4269931B2 (en) In-cylinder pressure measuring device and in-cylinder pressure measuring method
JP2005351146A (en) Control device and control method of internal combustion engine
JP2005351149A (en) Knocking detecting device and knocking detecting method of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A131 Notification of reasons for refusal

Effective date: 20090526

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091002