JP2006097088A - Gold-plated structure, and separator made of the gold-plated structure for fuel cell - Google Patents

Gold-plated structure, and separator made of the gold-plated structure for fuel cell Download PDF

Info

Publication number
JP2006097088A
JP2006097088A JP2004284967A JP2004284967A JP2006097088A JP 2006097088 A JP2006097088 A JP 2006097088A JP 2004284967 A JP2004284967 A JP 2004284967A JP 2004284967 A JP2004284967 A JP 2004284967A JP 2006097088 A JP2006097088 A JP 2006097088A
Authority
JP
Japan
Prior art keywords
gold
plated
titanium
gold plating
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004284967A
Other languages
Japanese (ja)
Other versions
JP4494155B2 (en
Inventor
Shigeki Shimizu
水 茂 樹 清
Takaharu Takasaki
崎 隆 治 高
Tomotaka Kojima
島 智 敬 小
Kazuya Shibata
田 和 也 柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pure Chemical Co Ltd
Original Assignee
Japan Pure Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pure Chemical Co Ltd filed Critical Japan Pure Chemical Co Ltd
Priority to JP2004284967A priority Critical patent/JP4494155B2/en
Publication of JP2006097088A publication Critical patent/JP2006097088A/en
Application granted granted Critical
Publication of JP4494155B2 publication Critical patent/JP4494155B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gold-plated structure which is superior in electroconductivity, corrosion resistance, mechanical properties, and the like, is lightweight, has superior workability, and is inexpensively mass-produced, and to provide a separator for a fuel cell. <P>SOLUTION: The gold-plated structure has gold-plated parts and non-plated parts on the surface of a titanium substrate, wherein each of the gold-plated parts has an insular shape with a diameter of 100 nm to 1 nm, and are interspersed on the surface of the titanium substrate. The separator for the fuel cell is formed of the gold-plated structure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金めっき構造体に関するものである。より詳細には、本発明は、導電性、耐食性、機械的特性等が優れており、軽量で、加工性に優れ、低コストで量産可能な金めっき構造体に関するものである。   The present invention relates to a gold plating structure. More specifically, the present invention relates to a gold-plated structure that is excellent in electrical conductivity, corrosion resistance, mechanical properties, etc., is lightweight, excellent in workability, and can be mass-produced at low cost.

このような本発明による金めっき構造体は、上記の特性をいかして広範な用途に利用可能なものであって、特に燃料電池のセパレーターとして好適なものである。   Such a gold-plated structure according to the present invention can be used in a wide range of applications by taking advantage of the above characteristics, and is particularly suitable as a separator for a fuel cell.

一般に、燃料電池は、複数のセルより成り、各セル構造の最外側に配置されているのがセパレーターである。燃料電池の単位セル構造の概念図を図1に示す。
ここで、セパレーターは以下のような多様な特性を要求される構造体である。
第1は、セル構造単位を維持するための機械的な強度である。
第2は、燃料の水素ガスをセル内部に送付する溝を安価に形成できる加工性である。
第3は、セル内部にて発生する電子を拡散層と接触することにより集めることが可能な接触抵抗の低さである。
第4は、セル内部のプロトン透過膜にて発生する硫酸に対する十分な耐食性である。
In general, a fuel cell is composed of a plurality of cells, and a separator is disposed on the outermost side of each cell structure. A conceptual diagram of a unit cell structure of a fuel cell is shown in FIG.
Here, the separator is a structure that requires various characteristics as follows.
The first is the mechanical strength for maintaining the cell structural unit.
The second is workability that can form a groove for sending fuel hydrogen gas into the cell at low cost.
The third is a low contact resistance that allows electrons generated inside the cell to be collected by contacting the diffusion layer.
The fourth is sufficient corrosion resistance against sulfuric acid generated in the proton permeable membrane inside the cell.

燃料電池用金属セパレーター及びその製造方法としては、特開2003−234109号公報に記載の技術があり、固体高分子型燃料電池のセパレーターおよびその製造方法としては、特開平10−334927号公報に記載の技術がある。
特開2003−234109号公報 特開平10−334927号公報
As a metal separator for a fuel cell and a method for producing the same, there is a technology described in Japanese Patent Application Laid-Open No. 2003-234109, and as a separator for a polymer electrolyte fuel cell and a method for producing the same, described in Japanese Patent Application Laid-Open No. 10-334927. There is a technology.
JP 2003-234109 A JP-A-10-334927

現在、セパレーターとしては、黒鉛板、またはステンレス板を表面加工したものが一般的であるが、本発明者らが知る限りでは上記の条件がすべて満足されている構造体はまだ得られていない。   At present, as a separator, a graphite plate or a stainless steel plate is generally processed, but as far as the present inventors know, a structure satisfying all the above conditions has not yet been obtained.

黒鉛板は、黒鉛本来の導電性、耐食性を利用したものである。しかしながら、黒鉛は機械的な強度が不十分なために、厚い黒鉛板を用いる必要があり、かつ、この黒鉛表面に水素ガスを送付するための溝を形成するには、黒鉛板表面を機械的に切削する方法を選ばねばならず、製造コスト的に不利という弱点を有している。   The graphite plate utilizes the original conductivity and corrosion resistance of graphite. However, since graphite has insufficient mechanical strength, it is necessary to use a thick graphite plate, and in order to form a groove for sending hydrogen gas to this graphite surface, the surface of the graphite plate is mechanically Therefore, it is necessary to select a method of cutting, which has a disadvantage of disadvantage in terms of manufacturing cost.

ステンレス板は、ステンレス板の機械強度、加工性を利用したものである。ステンレス板に不足する導電性は、ステンレス表面に金めっき等の貴金属めっきを施すことにより補っているが、金めっき皮膜が薄くて、ピンホールがあるとステンレスの腐食がおきやすくなる。一方、ピンホールをなくすために金めっきを厚くすると、製造コストが高くなるという弱点を有している。   The stainless plate utilizes the mechanical strength and workability of the stainless plate. The lack of electrical conductivity of the stainless steel plate is compensated by applying a precious metal plating such as gold plating on the stainless steel surface. However, if the gold plating film is thin and there is a pinhole, corrosion of the stainless steel tends to occur. On the other hand, if the gold plating is thickened to eliminate pinholes, the manufacturing cost increases.

本発明者らは、チタンの優れた機械強度、耐食性、加工性に注目し、チタン基材上に各種の金めっき皮膜を形成させることにより、上記の特性を満足する構造体の探索を行った。   The inventors focused on the excellent mechanical strength, corrosion resistance, and workability of titanium, and searched for a structure satisfying the above characteristics by forming various gold plating films on the titanium base material. .

従来、チタン上の金めっきは、めがね、時計等の装飾品に用いられることが多かった。このような装飾品用途においては、光沢ある金色の発色が必要とされ、数百ナノメーターのレベルの金めっき皮膜が必要とされている。数百ナノメーターの金皮膜にはピンホールは少なく、均一な皮膜構造がチタン上に形成されていることから、強度および耐食性の点では適したものである。金皮膜の厚さに伴うコストは装飾品という用途のために、重大な問題点にはならなかった。   Conventionally, gold plating on titanium has often been used for decorative items such as glasses and watches. In such a decorative product application, a glossy gold color is required, and a gold plating film having a level of several hundred nanometers is required. A gold film of several hundred nanometers has few pinholes and a uniform film structure is formed on titanium, which is suitable in terms of strength and corrosion resistance. The cost associated with the thickness of the gold film has not been a significant problem for decorative applications.

一方、セパレーター構造材に金めっきを適用する場合、コスト面より、極限の薄さを要求される。しかも、そのような極限の薄さでも十分な接触抵抗を有し、かつめっき皮膜の密着性、耐食性をも満足することが要求される。   On the other hand, when gold plating is applied to the separator structure material, an extremely thin thickness is required from the viewpoint of cost. In addition, such an extremely thin thickness is required to have sufficient contact resistance and satisfy the adhesion and corrosion resistance of the plating film.

かかる目標は、純チタン材料上に、特殊な形状の金めっき薄膜を形成させることにより満たされることを本発明者らは見出した。   The inventors have found that this goal is met by forming a specially shaped gold-plated thin film on pure titanium material.

従って、本発明による金めっき構造体は、チタン基材の表面に、金めっき部と非めっき部とを有し、この金めっき部が直径100nm以下、1nm以上の島状で前記チタン基材の表面に点在していること、を特徴とするものである。   Therefore, the gold-plated structure according to the present invention has a gold-plated portion and a non-plated portion on the surface of the titanium substrate, and the gold-plated portion is an island shape having a diameter of 100 nm or less and 1 nm or more. It is characterized by being scattered on the surface.

このような本発明による金めっき構造体は、好ましい態様として、前記チタン基材表面の平均の金めっき厚さが30nm以下、1nm以上であるものを包含する。   Such a gold-plated structure according to the present invention includes, as a preferred embodiment, one having an average gold-plated thickness of 30 nm or less and 1 nm or more on the surface of the titanium substrate.

このような本発明による金めっき構造体は、好ましい態様として、前記金めっき部が直径50nm以下、1nm以上の島状で前記チタン基材の表面に点在しているものを包含する。   Such a gold-plated structure according to the present invention includes, as a preferred embodiment, one in which the gold-plated portion is island-shaped with a diameter of 50 nm or less and 1 nm or more and is scattered on the surface of the titanium substrate.

このような本発明による金めっき構造体は、好ましい態様として、金めっき厚さが15nm以下、1nm以上であるものを包含する。   Such a gold-plated structure according to the present invention includes, as a preferred embodiment, one having a gold plating thickness of 15 nm or less and 1 nm or more.

このような本発明による金めっき構造体は、好ましい態様として、前記チタン基材が、JIS規格1種に合致し、その厚さが0.4mm以下、0.1mm以上のものを包含する。   Such a gold-plated structure according to the present invention includes, as a preferred embodiment, one in which the titanium base material conforms to JIS standard type 1 and has a thickness of 0.4 mm or less and 0.1 mm or more.

このような本発明による金めっき構造体は、好ましい態様として、前記金めっき部が3価の金化合物を必須成分として含有する電解金めっき液によって形成されたものを包含する。   Such a gold-plated structure according to the present invention includes, as a preferred embodiment, one in which the gold-plated portion is formed of an electrolytic gold plating solution containing a trivalent gold compound as an essential component.

このような本発明による金めっき構造体は、好ましい態様として、チタン基材表面における金めっき部の占める割合が、10%以上、90%以下であるものを包含する。   Such a gold-plated structure according to the present invention includes, as a preferred embodiment, one in which the proportion of the gold-plated portion on the surface of the titanium substrate is 10% or more and 90% or less.

そして、本発明による燃料電池用セパレーターは、上記の金めっき構造体からなるものである。   And the separator for fuel cells by this invention consists of said gold plating structure.

本発明によれば、チタン基材上に金めっき部と非めっき部とを有しており、かつ金めっき厚さが極めて薄い金めっき構造体を得ることができる。この金めっき構造体は、金材料の必要量が少ないことから製造コストの点で好ましいものであると同時に、良好な接触抵抗、めっき密着性、耐食性および加工性を有するものである。従って、本発明によれば、低コストでかつ強度、耐食性にも優れた燃料電池用セパレーターを得ることができる。   According to the present invention, it is possible to obtain a gold-plated structure that has a gold-plated portion and a non-plated portion on a titanium substrate and has a very thin gold-plated thickness. This gold-plated structure is preferable in terms of manufacturing cost because it requires a small amount of gold material, and at the same time has good contact resistance, plating adhesion, corrosion resistance, and workability. Therefore, according to the present invention, it is possible to obtain a fuel cell separator that is low in cost and excellent in strength and corrosion resistance.

本発明のように30ナノメーター以下の極めて薄い金めっき層を、しかも部分的に形成させるだけで十分な強度および耐食性を有する金めっき構造体が得られたことは、従来、ピンホール防止のために数百ナノメーター程度の金めっき層を均一に形成させていたのことからすれば思いがけないことである。   In order to prevent pinholes, a gold-plated structure having sufficient strength and corrosion resistance can be obtained simply by partially forming a very thin gold-plated layer of 30 nanometers or less as in the present invention. In addition, it is unexpected that a gold plating layer of about several hundred nanometers was uniformly formed.

一方、チタン材料は、その表面に存在する酸化被膜によって接触抵抗的に満足できるものでなかったが、本発明では酸化皮膜が除去されたチタン基材表面に所定の金めっき部が形成されていることから燃料電池の集電体としての機能を十分発揮することができる。   On the other hand, the titanium material was not satisfactory in terms of contact resistance due to the oxide film existing on the surface thereof, but in the present invention, a predetermined gold plating part is formed on the surface of the titanium base material from which the oxide film has been removed. Therefore, the function as a current collector of the fuel cell can be sufficiently exhibited.

本発明による金めっき構造体は、金めっきの厚さ、形状ともに装飾用の金めっきとは全く異なるものである。すなわち、金めっき厚さは、装飾用が通常数百ナノメーター(nm)であるのに対し、本発明による金めっき構造体における金めっき厚さは、数十ナノメーター以下、具体的には30nm以下、である。塗膜形状は、装飾用ではチタン表面全面に金塗膜が均一に施されているのに対し、本発明の金めっき構造体ではチタン基材表面は金めっき部と非めっきとを有し、好ましくはこの金めっきが島状に分散されて形成されている。   The gold plating structure according to the present invention is completely different from the gold plating for decoration in the thickness and shape of the gold plating. That is, the gold plating thickness is usually several hundred nanometers (nm) for decoration, whereas the gold plating thickness in the gold plating structure according to the present invention is several tens of nanometers or less, specifically 30 nm. Below. As for the coating film shape, the gold coating film is uniformly applied to the entire titanium surface for decoration, whereas in the gold plating structure of the present invention, the titanium substrate surface has a gold plating part and non-plating, Preferably, the gold plating is formed in an island shape.

金めっきの対象物となるチタン基材も、装飾用はチタン合金または純チタンJIS2種が一般的であるのに対し、本発明のセパレーター用構造体では、純チタンJIS1種を用いることが好ましい。純チタンJIS1種を基材に使用することにより、金めっきを施す前、または後に、プレス加工によって燃料ガスの通路となる溝をチタン表面に形成することが容易になる。   The titanium base material that is the object of gold plating is generally made of titanium alloy or pure titanium JIS type 2 for decoration, whereas the separator structure of the present invention preferably uses pure titanium JIS type 1. By using pure titanium JIS type 1 as a base material, it becomes easy to form a groove serving as a fuel gas passage on the titanium surface by press working before or after gold plating.

かかる塗膜条件を満足する時、金めっき構造体は、接触抵抗も低く、硫酸への耐食性も良好で、かつ、島状の金めっきがチタン基材に強固に密着しており、燃料電池用セパレーターとしての要求特性を満足するものである。   When satisfying such coating conditions, the gold-plated structure has low contact resistance, good corrosion resistance to sulfuric acid, and the island-shaped gold plating is firmly adhered to the titanium base material. It satisfies the required characteristics as a separator.

本発明を更に詳細に説明するために、本発明の金めっき構造体表面の5万倍の電子顕微鏡写真を図2に示す。図2において、白く点状に分散しているのが金めっきの島である。この図2に示されるように、金めっき部は、直径30〜50nm(ナノメーター)の粒状の島が独立して、あるいは複数連続して、チタン基材上に点在している。   In order to explain the present invention in more detail, an electron micrograph of 50,000 times the surface of the gold-plated structure of the present invention is shown in FIG. In FIG. 2, gold-plated islands are dispersed in white dots. As shown in FIG. 2, in the gold-plated portion, granular islands having a diameter of 30 to 50 nm (nanometers) are scattered on the titanium base material independently or continuously.

同じ金めっき構造体の断面をFIB(Focused Ion Beam)装置を用いて側面から観察した写真が図3である。この図3には、島状に分散した金めっき塗布部がチタン表面に破線状に並んでいることが示されている。   FIG. 3 is a photograph of a cross section of the same gold-plated structure observed from the side using a FIB (Focused Ion Beam) apparatus. FIG. 3 shows that the gold-plated coating portions dispersed in an island shape are arranged in a dotted line on the titanium surface.

この金めっき構造体を蛍光X線型膜厚計で測定したときにの金めっき膜厚は20nmであるが、これはチタン表面の0.1mm(10万nm)開口径から発する金の蛍光X線の強度より膜厚を測定したものである。めっきの膜厚測定装置は本発明のチタン基材上の金めっきの島の大きさ(数十nm径)よりもはるかに大きな測定個所(開口径)を測定しているので、金めっき塗膜が島状に分散している場合には、20nmという膜厚は塗布部と未塗布部との平均膜厚になる。   When this gold-plated structure is measured with a fluorescent X-ray film thickness meter, the gold-plated film thickness is 20 nm. This is a gold fluorescent X-ray emitted from a 0.1 mm (100,000 nm) opening diameter on the titanium surface. The film thickness was measured from the strength of the film. Since the plating film thickness measuring device measures the measurement location (opening diameter) much larger than the size of the gold plating island (several tens of nm diameter) on the titanium substrate of the present invention, the gold plating coating film Is dispersed in islands, the film thickness of 20 nm is the average film thickness of the coated and uncoated areas.

チタン表面上の金の島の面積比率が仮に66%ならば、20nmの膜厚が蛍光X線分析により得られた場合には、島(金塗布部)の局所的な厚さは20nmよりも大きく、30nmとなり、膜厚計の測定値よりも高いことになる。   If the area ratio of the gold island on the titanium surface is 66%, when the film thickness of 20 nm is obtained by fluorescent X-ray analysis, the local thickness of the island (gold coated portion) is more than 20 nm. It is large and becomes 30 nm, which is higher than the measured value of the film thickness meter.

一方、図2を見ると、チタン基材の表面には凹凸構造が存在しているのが見える。これはチタン基材を基材として供給するためのチタンの延伸工程、およびチタン基材の金めっき処理の前工程として行われる酸化チタン除去工程などにより発生するものである。このような基材表面の凹凸構造を考慮すると、膜厚計の開口径の0.1mm径のチタン表面の実際の面積は、0.1mm径の円の面積ではなく、これよりも大きい数値になる。凹凸構造の表面積が平坦な表面の1.2倍の場合には、実際の金塗布部の膜厚は蛍光X線装置から出力される20nmよりも小さくなり17nmと計算される。   On the other hand, when FIG. 2 is seen, it can be seen that an uneven structure exists on the surface of the titanium base material. This is caused by a titanium stretching process for supplying a titanium base material as a base material, a titanium oxide removing process performed as a pre-process for the gold plating treatment of the titanium base material, and the like. Considering such a concavo-convex structure on the surface of the base material, the actual area of the 0.1 mm diameter titanium surface, which is the opening diameter of the film thickness meter, is not the area of a 0.1 mm diameter circle, but a larger value than this. Become. When the surface area of the concavo-convex structure is 1.2 times that of a flat surface, the actual film thickness of the gold coated portion is smaller than 20 nm output from the fluorescent X-ray apparatus and is calculated to be 17 nm.

このように、島状構造とチタン基材の凹凸を考慮した金めっき部の局所的な膜厚表示は複雑なものになる。従って、本発明での金めっきの膜厚表示は、めっき業界で通常広く使用されている蛍光X線膜厚計の測定値(0.1mm開口径での平均膜厚)を用いることにする。すなわち、本発明におけるチタン基材表面の平均の金めっき厚さは、蛍光X線膜厚計の測定値(0.1mm開口径での平均膜厚)を意味する。   Thus, the local film thickness display of the gold-plated part in consideration of the island structure and the unevenness of the titanium base material becomes complicated. Therefore, the film thickness display of the gold plating in the present invention uses a measurement value (average film thickness at an opening diameter of 0.1 mm) of a fluorescent X-ray film thickness meter that is ordinarily widely used in the plating industry. That is, the average gold plating thickness on the surface of the titanium substrate in the present invention means a measured value (average film thickness at an opening diameter of 0.1 mm) of a fluorescent X-ray film thickness meter.

本発明の金めっき構造体において、金めっきの膜厚は蛍光X線方式の膜厚表示で30nm以下が望ましい。更に望ましいのは15nm以下である。30nmを超えると金めっき塗膜の密着性が低下する。めっき膜厚の下限は1nmであり、これ以下であると接触抵抗が高くなり、集電体としての機能が低下する。なお、30nm以下の金めっき膜厚条件では、装飾金めっきに必要とされるようなレモンイエローの金色は観測されない。また、均一な塗膜は形成されず、数十nm径の島状形状をした金塗布部が出現する。このような金めっき部が点状に分散した島状構造が、セパレーターとして必要とされる各種物性を満足するということは、従来の知見からは全く予期せぬものである。   In the gold plating structure of the present invention, the thickness of the gold plating is preferably 30 nm or less in the fluorescent X-ray film thickness display. More desirable is 15 nm or less. If it exceeds 30 nm, the adhesion of the gold-plated coating film decreases. The lower limit of the plating film thickness is 1 nm, and if it is less than this, the contact resistance increases, and the function as a current collector decreases. In addition, under the gold plating film thickness condition of 30 nm or less, the lemon yellow gold color required for decorative gold plating is not observed. Moreover, a uniform coating film is not formed, and a gold application part having an island shape with a diameter of several tens of nm appears. It is completely unexpected from the conventional knowledge that such an island-like structure in which gold-plated portions are dispersed in the form of dots satisfies various physical properties required as a separator.

チタン基材表面における金めっき部の占める割合は、10%以上、90%以下、特に20%以上、80%以下、が好ましい。ここで、金めっき部の占める割合は、電子顕微鏡写真の面積測定によって求められたものである。   The proportion of the gold-plated portion on the surface of the titanium substrate is preferably 10% or more and 90% or less, particularly preferably 20% or more and 80% or less. Here, the ratio which a gold plating part accounts is calculated | required by the area measurement of an electron micrograph.

本発明で使用している、金めっき表面の接触抵抗測定装置の測定端子部の構造を図4に示す。ここでは、電子部品のコネクター等に広く用いられている4端子法による測定方式を採用している。金めっきが全く施されていない純チタン基材1種の接触抵抗は200mΩ以上となり、集電体としての機能が無くなる。これは、金めっき部のないチタン基材の表面はすべて酸化チタンで被覆され、カーボンペーパーと接触しても、電子を受け取ることが出来なくなるためである。   FIG. 4 shows the structure of the measurement terminal portion of the contact resistance measuring device for the gold plating surface used in the present invention. Here, a measurement method based on a four-terminal method, which is widely used for connectors of electronic components, is employed. The contact resistance of one kind of pure titanium base material to which no gold plating is applied becomes 200 mΩ or more, and the function as a current collector is lost. This is because the surface of the titanium base material without the gold plating part is all covered with titanium oxide, and even if it comes into contact with the carbon paper, it cannot receive electrons.

一方、チタン基材上の金めっきの膜厚が1nm〜30nmの範囲にあるとき、チタン基材の接触抵抗は10mΩ付近となり、セル内で隣接するガス拡散層のカーボンペーパーと接触することにより、送られてくる電子を集める集電体として十分な導電性を示す。これは、金めっき部が島状に分断されていても、金めっき部が隣接するカーボンペーパーと接触して電子を受容し、その電子は下地のチタン基材を経由して運搬されるためである。現在、燃料電池のガス拡散層に使われているカーボンペーパーの抵抗は50〜200mΩであり、本発明のチタン基材よりもかなり高い抵抗値を示すので、本発明の金めっき構造体は集電体としての機能を満足することが出来る。   On the other hand, when the thickness of the gold plating on the titanium substrate is in the range of 1 nm to 30 nm, the contact resistance of the titanium substrate is around 10 mΩ, and by contacting with the carbon paper of the adjacent gas diffusion layer in the cell, It exhibits sufficient conductivity as a current collector that collects the electrons that are sent. This is because even if the gold plating part is divided into islands, the gold plating part comes into contact with the adjacent carbon paper and accepts electrons, and the electrons are transported via the underlying titanium substrate. is there. At present, the resistance of carbon paper used for the gas diffusion layer of the fuel cell is 50 to 200 mΩ, which is considerably higher than that of the titanium substrate of the present invention. Therefore, the gold-plated structure of the present invention is a current collector. It can satisfy the function as a body.

次に、金めっきが施されている塗布部(島)の大きさであるが、島の径が100nm以下が望ましい。更に望ましいのは50nm以下である。チタン基板上に析出する金は粒子状に析出して島を形成する。金粒子のサイズと島の径とは相関しており、粒子の径が大きいほど塗布部の膜厚の大きな島を形成する。   Next, although it is the magnitude | size of the application part (island) to which gold plating is given, the diameter of an island is desirable at 100 nm or less. More desirable is 50 nm or less. Gold deposited on the titanium substrate is deposited in the form of particles to form islands. The size of the gold particles correlates with the island diameter, and the larger the particle diameter, the larger the island thickness of the coating portion.

その結果、チタン基材上に同じ量の金が塗布されても(膜厚計で同じ金膜厚を示しても)、金の粒子が大きいほど(即ち、島の径が大きいほど)、チタン基材単位面積当たりの金とチタンとの接触面積が低下し、金めっき塗膜の密着性は低下する。一方、島の径が1nm未満になると、塗布膜厚も1nm未満となり接触抵抗が増大して集電体としての物性が低下する。従って、チタン基材上の金めっき部の径は1nm以上、100nmが望ましい。   As a result, even if the same amount of gold is applied on the titanium substrate (even if the film thickness meter shows the same gold film thickness), the larger the gold particles (that is, the larger the island diameter), the more titanium The contact area between gold and titanium per unit unit area of the base material is reduced, and the adhesion of the gold-plated coating film is reduced. On the other hand, when the island diameter is less than 1 nm, the coating film thickness is also less than 1 nm, the contact resistance is increased, and the physical properties of the current collector are lowered. Therefore, the diameter of the gold plating part on the titanium substrate is desirably 1 nm or more and 100 nm.

本発明による金めっき構造体は、基材のチタンを脱脂、エッチング、金めっきという一連の工程で処理することによって得ることができる。   The gold-plated structure according to the present invention can be obtained by treating titanium as a base material through a series of steps of degreasing, etching, and gold plating.

脱脂工程は、主として、チタン基材上に付着している有機化合物等を除去する工程である。この脱脂工程は、チタン材をめっきを施す際に従来から行われている方法をそのまま、あるいは必要ならば改変を加えて、実施することができる。例えば、脱脂液(特に好ましくは、チタン脱脂液「DG−1」、日本高純度化学社製)にチタン基材を浸漬することによって行うことができる。その際の処理時間は、30〜300秒程度、処理温度は25〜65℃程度が好ましい。   The degreasing step is mainly a step of removing an organic compound or the like attached on the titanium base material. This degreasing step can be carried out as it is, or if necessary, modified as it is, when a titanium material is plated. For example, it can be carried out by immersing the titanium base material in a degreasing liquid (particularly preferably, a titanium degreasing liquid “DG-1”, manufactured by Nippon Kogyo Chemical Co., Ltd.). In this case, the treatment time is preferably about 30 to 300 seconds, and the treatment temperature is preferably about 25 to 65 ° C.

脱脂処理されたチタン基材は、水洗された後、エッチング処理される。このエッチング処理は、主として、チタン基材表面に形成されているチタンの酸化膜を除去する工程である。この脱脂工程も、従来から行われている方法をそのままあるいは必要ならば改変を加えて行うことができる。例えば、エッチング液(フッ素系チタンエッチング液「ET−1」または(および)非フッ素系チタンエッチング液「ET−2」、いすれも日本高純度化学社製)に基材を浸漬して行うことができる。これらの脱脂処理およびエッチング処理ともに金めっき塗膜の基材への密着を妨害する因子を除去するために必要な工程である。その際の処理時間は、1分〜10分程度、処理温度は25〜85℃程度が好ましい。   The degreased titanium substrate is washed with water and then etched. This etching process is mainly a process of removing the titanium oxide film formed on the surface of the titanium substrate. This degreasing process can also be performed as it is or after modification as necessary. For example, by immersing the substrate in an etching solution (fluorine titanium etching solution “ET-1” or (and) non-fluorine titanium etching solution “ET-2”, both of which are manufactured by Nihon Kojun Chemical Co., Ltd.) Can do. Both of these degreasing and etching processes are steps necessary to remove factors that interfere with the adhesion of the gold-plated coating film to the substrate. In this case, the treatment time is preferably about 1 to 10 minutes, and the treatment temperature is preferably about 25 to 85 ° C.

本発明における金めっき処理は、電解金めっき液を用いて行うことができる。ここで使用される金めっき液としては、3価の金化合物を含有するものが望ましい。具体的にはシアン化第2金カリウム、シアン化第2金ナトリウム、塩化第2金、亜硫酸第2金カリウム、亜硫酸第2金ナトリウムなどの化合物を金源とするめっき液が使用可能である。このような金めっき液の好ましいものとしては、例えば、「テンペレジスト−TX」(日本高純度化学社製)を例示することができる。本発明での金めっき処理は、上記の電解金めっき液に、チタン基材を浸漬し、通電することによって行うことができる。金めっきの膜厚は、電解めっき工程での電流密度、通電時間、金めっき液中の金化合物濃度などを調節することにより行うことが出来る。   The gold plating treatment in the present invention can be performed using an electrolytic gold plating solution. The gold plating solution used here is preferably one containing a trivalent gold compound. Specifically, it is possible to use a plating solution containing a compound such as second gold potassium cyanide, second gold sodium cyanide, second gold chloride, second gold potassium sulfite and second gold sodium sulfite as a gold source. As a preferable example of such a gold plating solution, for example, “Tempe Resist-TX” (manufactured by Nippon High Purity Chemical Co., Ltd.) can be exemplified. The gold plating treatment in the present invention can be performed by immersing the titanium base material in the above electrolytic gold plating solution and energizing it. The thickness of the gold plating can be performed by adjusting the current density, the energization time, the gold compound concentration in the gold plating solution, etc. in the electrolytic plating process.

本発明に使用されるチタン基材であるが、純チタンのJIS規格1種のものが望ましい。従来、装飾品や不溶性陽極用には2種のものが使われてきた。JIS規格の1種と2種を比較すると、2種の方が強度に優れ、1種の方が加工度に優れている。燃料電池セパレーターへの応用を考えると、1種のチタン基材であることが好ましい。1種チタンはプレス加工が可能で、セパレーター用の微細なガス通路をプレス加工で安価に形成することが可能となるからである。   Although it is a titanium base material used for this invention, the thing of 1 type of the JIS specification of pure titanium is desirable. Conventionally, two types of decorative objects and insoluble anodes have been used. Comparing 1 type and 2 types of JIS standards, 2 types are superior in strength and 1 type is excellent in workability. In consideration of application to a fuel cell separator, it is preferable to use one kind of titanium substrate. This is because type 1 titanium can be pressed and a fine gas passage for a separator can be formed at low cost by pressing.

チタン基材の厚さは、0.4mm以下、0.1mm以上が望ましい。セパレーターとして特に望ましい板厚は0.2mm以下、0.15mm以上である。   The thickness of the titanium substrate is desirably 0.4 mm or less and 0.1 mm or more. Particularly desirable plate thicknesses for the separator are 0.2 mm or less and 0.15 mm or more.

プレス加工はチタン基材の金めっき工程前または後のいずれでも行うことが可能である。プレス加工は、燃料電池用セパレーターの具体的な形状および大きさ等に応じて行うことができる。例えば図5(a)および(b)に示されるように、チタン基材に、高さ2mm、幅1.5mmの三角形状の凸部が平行に3mm間隔で形成されるようにプレス加工することができる。   The press working can be performed either before or after the gold plating process of the titanium substrate. The press working can be performed according to the specific shape and size of the fuel cell separator. For example, as shown in FIGS. 5A and 5B, a titanium base material is pressed so that triangular convex portions having a height of 2 mm and a width of 1.5 mm are formed in parallel at intervals of 3 mm. Can do.

以下、実施例により本発明の具体例を説明する。ここで使用した分析装置、評価装置は、以下の通りである。
膜厚計:SEA5100 微小部蛍光X線分析計(セイコーインスツルメンツ社製)
電子顕微鏡:S−4300 高分解能走査電子顕微鏡(日立製作所社製)
FIB:FB−2100 収束イオンビーム加工観察装置(日立製作所社製)
接触抵抗:CRS−113−Au 電気接点シミュレーター(山崎精機研究所社製)
また、チタン表面の金めっき部の面積比率は、電子顕微鏡写真をA4サイズの紙に印刷し、島状の金めっき部をハサミで切り抜き、電子天秤で秤量することにより求めた。
Hereinafter, specific examples of the present invention will be described by way of examples. The analysis apparatus and evaluation apparatus used here are as follows.
Film thickness meter: SEA5100 Micro fluorescent X-ray analyzer (manufactured by Seiko Instruments Inc.)
Electron microscope: S-4300 High-resolution scanning electron microscope (manufactured by Hitachi, Ltd.)
FIB: FB-2100 Focused ion beam processing observation device (manufactured by Hitachi, Ltd.)
Contact resistance: CRS-113-Au Electrical contact simulator (manufactured by Yamazaki Seiki Laboratory Co., Ltd.)
The area ratio of the gold-plated portion on the titanium surface was determined by printing an electron micrograph on A4 size paper, cutting out the island-shaped gold-plated portion with scissors, and weighing with an electronic balance.

<実施例1>
プレス加工した厚さ0.16mmのJIS1種チタン基材(図5)をチタン脱脂液(「DG−1」、日本高純度化学社製)にて5Vで15秒間電解(陰極)脱脂し、水洗後、フッ素系チタンエッチング液(「ET−1」、日本高純度化学社製)に室温にて2分間浸漬して、表面の酸化物層を除去した。
<Example 1>
The press-processed 0.16 mm thick JIS type 1 titanium substrate (FIG. 5) was electrolyzed (cathode) degreased at 5 V for 15 seconds with a titanium degreasing solution (“DG-1”, manufactured by Nippon Kogyo Kagaku Co., Ltd.) and washed with water. Thereafter, the surface oxide layer was removed by immersing in a fluorine-based titanium etching solution (“ET-1”, manufactured by Nippon Kosei Kagaku Co., Ltd.) at room temperature for 2 minutes.

水洗後、非フッ素系チタンエッチング液(「ET−2」、日本高純度化学社製)にて60℃で10分間エッチングし、水洗した。この前処理したチタン基材に、金めっき液(「テンペレジスト−TX」、日本高純度化学社製)を用い、室温、電流密度10A/dmにて30秒間めっきし、膜厚20nmの金めっき構造体を作成した。この金めっき構造体は、図6,7の電顕写真に示すように、直径35〜50μmの島が1つまたは複数個連続したものであり、金めっき部の占める割合が50−58%のものであった。 After washing with water, etching was performed at 60 ° C. for 10 minutes with a non-fluorine-based titanium etching solution (“ET-2”, manufactured by Nippon Pure Chemical Co., Ltd.), followed by washing with water. This pre-treated titanium substrate was plated for 30 seconds at room temperature and a current density of 10 A / dm 2 using a gold plating solution (“Tempe Resist-TX”, manufactured by Nippon Kogyo Kagaku Co., Ltd.). A plating structure was created. As shown in the electron micrographs of FIGS. 6 and 7, this gold-plated structure is composed of one or more islands having a diameter of 35 to 50 μm, and the proportion of the gold-plated portion is 50 to 58%. It was a thing.

得られた金めっき皮膜の密着性をセロテープ剥離法で測定した。ここで、セロテープ粘着面上に金めっきの微点が転写されない場合を、密着性良好と判断し、一方、転写された場合を密着性不十分と判断した。この観測は光学顕微鏡を用いて行った。   The adhesion of the obtained gold plating film was measured by a cello tape peeling method. Here, when the fine point of the gold plating was not transferred onto the adhesive surface of the cello tape, it was determined that the adhesiveness was good, whereas when it was transferred, it was determined that the adhesiveness was insufficient. This observation was performed using an optical microscope.

金めっき構造体の接触抵抗は、4端子法で測定した。接触抵抗は、荷重を0から50gfまで変化させて測定し、50gfでの値で判断した。
耐食性の評価は、作成した試験片を10%の硫酸水溶液に室温で1週間浸漬し、浸漬後の接触抵抗を上記のように測定した。
結果は、表1に示される通りである。
The contact resistance of the gold-plated structure was measured by the 4-terminal method. The contact resistance was measured by changing the load from 0 to 50 gf, and judged by the value at 50 gf.
The corrosion resistance was evaluated by immersing the prepared test piece in a 10% aqueous sulfuric acid solution at room temperature for 1 week, and measuring the contact resistance after immersion as described above.
The results are as shown in Table 1.

<実施例2>
JIS1種チタン基材(25×50×0.16mm)を用い、チタン脱脂液(「DG−1」)にて5Vで15秒間電解脱脂し、水洗後、フッ素系チタンエッチング液(「ET−1」)に室温にて1分間浸漬し、表面の酸化物層を除去した。水洗後、非フッ素系チタンエッチング液(「ET−2」)にて60℃で10分間エッチングし、水洗した。この前処理したチタン基材に、テンペレジスト−TX金めっき液を用い、室温、電流密度10A/dmにて15秒間めっきし、膜厚10nmの金めっき構造体を作成した。この金めっき構造体は、図8に示すように、直径25〜35 μmの島が1つまたは複数個連続したものであり、金めっき部の占める割合が54%のものであった。
実施例1と同様に評価した金めっき皮膜の密着性、接触抵抗および耐食性の結果を表1に示す。
<Example 2>
JIS type 1 titanium substrate (25 × 50 × 0.16 mm) was used, electrolytic degreasing with titanium degreasing liquid (“DG-1”) at 5 V for 15 seconds, water washing, and then fluorine-based titanium etching liquid (“ET-1”) )) At room temperature for 1 minute to remove the oxide layer on the surface. After washing with water, etching was performed at 60 ° C. for 10 minutes with a non-fluorinated titanium etching solution (“ET-2”), followed by washing with water. The pretreated titanium substrate was plated with a Tempe resist-TX gold plating solution at room temperature and a current density of 10 A / dm 2 for 15 seconds to prepare a gold-plated structure having a thickness of 10 nm. As shown in FIG. 8, this gold-plated structure was composed of one or more islands having a diameter of 25 to 35 μm, and the proportion of the gold-plated portion was 54%.
The results of adhesion, contact resistance and corrosion resistance of the gold plating film evaluated in the same manner as in Example 1 are shown in Table 1.

<実施例3>
実施例2と同じチタン基材に同様のめっき前処理を行い、金めっき液(「テンペレジストーTX」)、室温、電流密度10A/dmで3秒間めっきし、膜厚2nmの金めっき構造体を作成した。この金めっき構造体は、直径8〜12μmの島が1つまたは複数個連続したものであり、金めっき部の占める割合が30%のものであった。図9にSEM画像を示す。
実施例1と同様に評価した金めっき皮膜の密着性、接触抵抗および耐食性の結果を表1に示す。
<Example 3>
The same titanium substrate as in Example 2 is subjected to the same pre-plating treatment, and then plated for 3 seconds at a gold plating solution (“Tempresist TX”), room temperature, and a current density of 10 A / dm 2 , and a gold plating structure with a film thickness of 2 nm. Created the body. In this gold-plated structure, one or a plurality of islands having a diameter of 8 to 12 μm are continuous, and the proportion of the gold-plated portion is 30%. FIG. 9 shows an SEM image.
The results of adhesion, contact resistance and corrosion resistance of the gold plating film evaluated in the same manner as in Example 1 are shown in Table 1.

<比較例1>
実施例2と同じチタン基材に同様のめっき前処理を行い、金めっき液(「テンペレジスト−TX」)に結晶調整剤としてTlSO(Tlとして10ppm)を添加した金めっき液を用い、室温、電流密度10A/dmにて30秒間めっきし、膜厚30nmの金めっき構造体を作成した。
<Comparative Example 1>
The same titanium base material as that of Example 2 was subjected to the same plating pretreatment, and a gold plating solution in which Tl 2 SO 4 (10 ppm as Tl) was added as a crystal modifier to a gold plating solution (“Tempresist-TX”) was used. Then, plating was performed at room temperature and a current density of 10 A / dm 2 for 30 seconds to prepare a gold-plated structure with a film thickness of 30 nm.

図10にSEM画像を示す。金の島径は150nm程度になっており、金とチタンとの接触面積が低下したため、金めっき塗膜の密着性は不十分であり、めっき直後から剥離する傾向が見られた。
実施例1と同様に評価した金めっき皮膜の密着性、接触抵抗および耐食性の結果を表1に示す。
FIG. 10 shows an SEM image. Since the gold island diameter was about 150 nm and the contact area between gold and titanium was reduced, the adhesion of the gold plating film was insufficient and a tendency to peel off immediately after plating was observed.
The results of adhesion, contact resistance and corrosion resistance of the gold plating film evaluated in the same manner as in Example 1 are shown in Table 1.

<比較例2>
JIS1種チタン基材(25×50×0.16mm)を用い、チタン脱脂液(「DG−1」)にて5Vで15秒間電解脱脂し、水洗後、フッ素系チタンエッチング液(「ET−1」)に室温にて1分間浸漬し、表面の酸化物層を除去した。その後、金めっき液(テンペレジスト−TX、室温、電流密度1.0A/dmで5秒間めっきし、膜厚1nm未満の金めっき構造体を作成した。
実施例1と同様に評価した金めっき皮膜の密着性、接触抵抗および耐食性の結果を表1に示す。膜厚が1nm未満では金の皮膜形成が不十分で、満足される接触抵抗値が得られなかった。
<Comparative example 2>
JIS type 1 titanium substrate (25 × 50 × 0.16 mm) was used, electrolytic degreasing with titanium degreasing liquid (“DG-1”) at 5 V for 15 seconds, water washing, and then fluorine-based titanium etching liquid (“ET-1”) )) At room temperature for 1 minute to remove the oxide layer on the surface. Thereafter, a gold plating solution (Tempresist-TX, room temperature, current density of 1.0 A / dm 2 was plated for 5 seconds to prepare a gold plating structure having a film thickness of less than 1 nm.
The results of adhesion, contact resistance and corrosion resistance of the gold plating film evaluated in the same manner as in Example 1 are shown in Table 1. When the film thickness was less than 1 nm, the gold film was not sufficiently formed, and a satisfactory contact resistance value could not be obtained.

<比較例3>
実施例2と同様のめっき前処理を行い、1価の金化合物から成るアシドストライク(日本高純度化学製)金めっき液を用い、電流密度4.0A/dm、室温にて15秒間めっきし、膜厚10nmの金めっき構造体を作成した。
<Comparative Example 3>
The same plating pretreatment as in Example 2 was performed, and an acid strike (manufactured by Nihon Kojun Kagaku) gold plating solution composed of a monovalent gold compound was used for plating for 15 seconds at a current density of 4.0 A / dm 2 and room temperature. A gold-plated structure having a thickness of 10 nm was prepared.

実施例1と同様に評価した金めっき皮膜の密着性、接触抵抗および耐食性の結果を表1に、SEM画像を図11に示す。
このように1価の金化合物を用いると、金粒子はかなり分散して点在し、島径も100nm以上となるため、密着性は不十分であり、めっき直後から剥離の傾向が見られた。
The results of adhesion, contact resistance and corrosion resistance of the gold plating film evaluated in the same manner as in Example 1 are shown in Table 1, and the SEM image is shown in FIG.
Thus, when a monovalent gold compound is used, the gold particles are dispersed and scattered, and the island diameter is 100 nm or more. Therefore, the adhesion is insufficient, and a tendency to peel off immediately after plating was observed. .

上記の表1から明らかなように、実施例1乃至3で作成した金めっき構造体は、金の島径が20〜50nmの範囲であり、密着性が良好であった。接触抵抗値も燃料電池用のセパレーターとして使用するのに充分なレベルであり、且つ硫酸浸漬前後で値の変化は小さく、耐食性の点でも良好であった。
これに対し、比較例1及び3では、金の島径が100nm以上となり、密着性が不十分であった。比較例2では、金の皮膜形成が不十分で満足される接触抵抗が得られなかった。
As is apparent from Table 1 above, the gold plating structures prepared in Examples 1 to 3 had a gold island diameter in the range of 20 to 50 nm and good adhesion. The contact resistance value was also a level sufficient to be used as a separator for a fuel cell, and the change in the value before and after immersion in sulfuric acid was small and the corrosion resistance was also good.
On the other hand, in Comparative Examples 1 and 3, the gold island diameter was 100 nm or more, and the adhesion was insufficient. In Comparative Example 2, a satisfactory contact resistance was not obtained due to insufficient gold film formation.

<発明の効果>
以上の通り本発明のセパレーター用金めっき構造体によれば、耐食性に優れたチタン基材上に金を島状に分散させてめっきした構造であるため、従来の燃料電池用セパレーターに比べ、低コスト且つ強度、耐食性にも優れたセパレーターとしての利用が可能となる。特に、金めっきの島径を調整することにより、接触抵抗が低く、密着性の優れた薄い金めっき構造体の形成に効果を発揮する。また、純チタンJIS1種を基材に使用することにより、金めっきを施す前、または後に、プレス加工によって燃料ガスの通路となる溝をチタン表面に形成することが容易になるので、量産性が向上する。
<Effect of the invention>
As described above, according to the gold-plated structure for a separator of the present invention, since it is a structure in which gold is dispersed and plated on a titanium base material excellent in corrosion resistance, it is lower than conventional separators for fuel cells. It can be used as a separator having excellent cost, strength and corrosion resistance. In particular, by adjusting the island diameter of the gold plating, it is effective in forming a thin gold plating structure having low contact resistance and excellent adhesion. In addition, by using pure titanium JIS type 1 as a base material, it becomes easy to form a groove serving as a fuel gas passage on the titanium surface by press working before or after gold plating. improves.

一般的な燃料電池の構造を示す概念図Conceptual diagram showing the structure of a typical fuel cell 本発明による金めっき構造体の表面を示す電子顕微鏡写真(倍率:5万倍)Electron micrograph showing the surface of the gold-plated structure according to the present invention (magnification: 50,000 times) 本発明による金めっき構造体の断面を示すFIB(Focused Ion Beam)装置による写真The photograph by the FIB (Focused Ion Beam) apparatus which shows the cross section of the gold plating structure by this invention 金めっき構造体について実施された4端子法による接触電気抵抗測定の概要を示す図The figure which shows the outline | summary of the contact electrical resistance measurement by the 4 terminal method implemented about the gold plating structure 図5(a)はプレス加工されたチタン基材の断面図であり、図5(b)は同チタン基材の上面図である。Fig.5 (a) is sectional drawing of the press-processed titanium base material, FIG.5 (b) is a top view of the titanium base material. 実施例1で得られた本発明による金めっき構造体の表側表面を示す電子顕微鏡写真(倍率:5万倍)Electron micrograph showing the front surface of the gold-plated structure according to the present invention obtained in Example 1 (magnification: 50,000 times) 実施例1で得られた本発明による金めっき構造体の裏側表面を示す電子顕微鏡写真(倍率:5万倍)Electron micrograph showing the back side surface of the gold-plated structure according to the present invention obtained in Example 1 (magnification: 50,000 times) 実施例2で得られた本発明による金めっき構造体の表側表面を示す電子顕微鏡写真(倍率:5万倍)Electron micrograph showing the front surface of the gold-plated structure according to the present invention obtained in Example 2 (magnification: 50,000 times) 実施例3で得られた本発明による金めっき構造体の表側表面を示す電子顕微鏡写真(倍率:5万倍)Electron micrograph showing the front surface of the gold-plated structure according to the present invention obtained in Example 3 (magnification: 50,000 times) 比較例1で得られた金めっき体の表側表面を示す電子顕微鏡写真(倍率:5万倍)Electron micrograph showing the front surface of the gold-plated body obtained in Comparative Example 1 (magnification: 50,000 times) 比較例3で得られた金めっき体の表側表面を示す電子顕微鏡写真(倍率:5万倍)Electron micrograph showing the front surface of the gold-plated body obtained in Comparative Example 3 (magnification: 50,000 times)

Claims (8)

チタン基材の表面に、金めっき部と非めっき部とを有し、この金めっき部が直径100nm以下、1nm以上の島状で前記チタン基材の表面に点在していることを特徴とする、金めっき構造体。   It has a gold-plated part and a non-plated part on the surface of the titanium base material, and the gold-plated part is scattered on the surface of the titanium base material in an island shape having a diameter of 100 nm or less and 1 nm or more. A gold-plated structure. 前記チタン基材表面の平均の金めっき厚さが30nm以下、1nm以上である請求項1に記載の金めっき構造体。   The gold plating structure according to claim 1, wherein an average gold plating thickness on the surface of the titanium substrate is 30 nm or less and 1 nm or more. 前記金めっき部が直径50nm以下、1nm以上の島状で前記チタン基材の表面に点在している、請求項1に記載の金めっき構造体。   The gold-plated structure according to claim 1, wherein the gold-plated portions are island-shaped with a diameter of 50 nm or less and 1 nm or more and are scattered on the surface of the titanium substrate. 金めっき厚さが15nm以下、1nm以上である、請求項1〜3のいずれか1項に記載の金めっき構造体。   The gold plating structure according to any one of claims 1 to 3, wherein the gold plating thickness is 15 nm or less and 1 nm or more. 前記チタン基材が、JIS規格1種に合致し、その厚さが0.4mm以下、0.1mm以上のものである、請求項1〜4のいずれか1項に記載の金めっき構造体。   The gold-plated structure according to any one of claims 1 to 4, wherein the titanium base material conforms to JIS standard type 1 and has a thickness of 0.4 mm or less and 0.1 mm or more. 前記金めっき部が3価の金化合物を必須成分として含有する電解金めっき液によって形成された、請求項1〜5のいずれか1項に記載の金めっき構造体。   The gold plating structure according to any one of claims 1 to 5, wherein the gold plating part is formed by an electrolytic gold plating solution containing a trivalent gold compound as an essential component. チタン基材表面における金めっき部の占める割合が、10%以上、90%以下である、請求項1〜6のいずれか1項に記載の金めっき構造体。   The gold plating structure according to any one of claims 1 to 6, wherein a proportion of the gold plating portion on the surface of the titanium base material is 10% or more and 90% or less. 請求項1〜7のいずれか1項に記載の金めっき構造体からなる、燃料電池用セパレーター。   The separator for fuel cells which consists of a gold plating structure of any one of Claims 1-7.
JP2004284967A 2004-09-29 2004-09-29 Gold-plated structure and fuel cell separator comprising this gold-plated structure Active JP4494155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004284967A JP4494155B2 (en) 2004-09-29 2004-09-29 Gold-plated structure and fuel cell separator comprising this gold-plated structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004284967A JP4494155B2 (en) 2004-09-29 2004-09-29 Gold-plated structure and fuel cell separator comprising this gold-plated structure

Publications (2)

Publication Number Publication Date
JP2006097088A true JP2006097088A (en) 2006-04-13
JP4494155B2 JP4494155B2 (en) 2010-06-30

Family

ID=36237176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004284967A Active JP4494155B2 (en) 2004-09-29 2004-09-29 Gold-plated structure and fuel cell separator comprising this gold-plated structure

Country Status (1)

Country Link
JP (1) JP4494155B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146250A (en) * 2005-11-29 2007-06-14 Nikko Kinzoku Kk Titanium or titanium alloy material plated with noble metal
JP2007270257A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk Titanium and titanium alloy material plated with noble metal
JP2008091207A (en) * 2006-10-02 2008-04-17 Sumitomo Metal Ind Ltd Adhesive layer for polymer electrolyte fuel cell, member for bipolar plate, bipolar plate layered product, cell structure, and polymer electrolyte fuel cell
EP2061111A1 (en) 2007-11-15 2009-05-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium substrate for forming separator for fuel cell and method of manufacturing the separator
EP2096698A1 (en) 2008-02-27 2009-09-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Surface treatment method of titanium material for electrodes
JP2009277503A (en) * 2008-05-14 2009-11-26 Toyota Motor Corp Fuel cell, and fuel cell stack
WO2010007918A1 (en) * 2008-07-16 2010-01-21 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and fuel cell
JP2010024508A (en) * 2008-07-22 2010-02-04 Toyota Motor Corp Metal-plating treatment method
DE102010002734A1 (en) 2009-03-11 2010-09-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe-shi Titanium electrode material and titanium electrode material surface treatment method
CN102484261A (en) * 2009-08-21 2012-05-30 现代Hysco株式会社 Metal separator plate for fuel cell having coating film formed on surface and method for producing same
US8211495B2 (en) 2006-04-14 2012-07-03 Toyota Jidosha Kabushiki Kaisha Noble metal plating of titanium components
JP2012190816A (en) * 2012-07-04 2012-10-04 Toyota Motor Corp Fuel cell separator and fuel cell
US20170033372A1 (en) * 2014-04-15 2017-02-02 Jfe Steel Corporation Stainless-steel foil for separator of polymer electrolyte fuel cell
KR20170031233A (en) 2014-08-19 2017-03-20 신닛테츠스미킨 카부시키카이샤 Metal material and current-carrying component using said metal material
WO2017170067A1 (en) * 2016-03-29 2017-10-05 新日鐵住金株式会社 Cell for solid polymer fuel cell, and solid polymer fuel cell stack
KR20180022869A (en) * 2015-08-12 2018-03-06 제이에프이 스틸 가부시키가이샤 Metal plate for separator of polymer electrolyte fuel cell, and metal plate for producing same
WO2022065455A1 (en) * 2020-09-24 2022-03-31 国立大学法人筑波大学 Structure, method for producing structure, and electrochemical device

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146250A (en) * 2005-11-29 2007-06-14 Nikko Kinzoku Kk Titanium or titanium alloy material plated with noble metal
JP2007270257A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk Titanium and titanium alloy material plated with noble metal
US8211495B2 (en) 2006-04-14 2012-07-03 Toyota Jidosha Kabushiki Kaisha Noble metal plating of titanium components
JP2008091207A (en) * 2006-10-02 2008-04-17 Sumitomo Metal Ind Ltd Adhesive layer for polymer electrolyte fuel cell, member for bipolar plate, bipolar plate layered product, cell structure, and polymer electrolyte fuel cell
EP2061111A1 (en) 2007-11-15 2009-05-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium substrate for forming separator for fuel cell and method of manufacturing the separator
JP2009123528A (en) * 2007-11-15 2009-06-04 Kobe Steel Ltd Titanium substrate for fuel cell separator, and manufacturing method of fuel cell separator using the same
EP2096698A1 (en) 2008-02-27 2009-09-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Surface treatment method of titanium material for electrodes
JP2009277503A (en) * 2008-05-14 2009-11-26 Toyota Motor Corp Fuel cell, and fuel cell stack
JP2010027262A (en) * 2008-07-16 2010-02-04 Toyota Motor Corp Fuel cell separator and fuel cell
DE112009001684B4 (en) 2008-07-16 2020-08-06 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and fuel cell
DE112009001684T5 (en) 2008-07-16 2012-01-12 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and fuel cell
US9793554B2 (en) 2008-07-16 2017-10-17 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and fuel cell
WO2010007918A1 (en) * 2008-07-16 2010-01-21 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and fuel cell
JP2010024508A (en) * 2008-07-22 2010-02-04 Toyota Motor Corp Metal-plating treatment method
US8349519B2 (en) 2009-03-11 2013-01-08 Kobe Steel, Ltd. Titanium electrode material and surface treatment method of titanium electrode material
DE102010002734A1 (en) 2009-03-11 2010-09-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe-shi Titanium electrode material and titanium electrode material surface treatment method
US20120148941A1 (en) * 2009-08-21 2012-06-14 Hyundai Hysco Metal separator plate for fuel cell having coating film formed on surface and method for producing same
US8778566B2 (en) * 2009-08-21 2014-07-15 Hyundai Hysco Metal separator plate for fuel cell having coating film formed on surface and method for producing same
CN102484261A (en) * 2009-08-21 2012-05-30 现代Hysco株式会社 Metal separator plate for fuel cell having coating film formed on surface and method for producing same
JP2012190816A (en) * 2012-07-04 2012-10-04 Toyota Motor Corp Fuel cell separator and fuel cell
US10431832B2 (en) * 2014-04-15 2019-10-01 Jfe Steel Corporation Stainless-steel foil for separator of polymer electrolyte fuel cell
US20170033372A1 (en) * 2014-04-15 2017-02-02 Jfe Steel Corporation Stainless-steel foil for separator of polymer electrolyte fuel cell
KR20170031233A (en) 2014-08-19 2017-03-20 신닛테츠스미킨 카부시키카이샤 Metal material and current-carrying component using said metal material
US10230115B2 (en) 2014-08-19 2019-03-12 Nippon Steel & Sumitomo Metal Corporation Metallic material, and conductive component including the same
KR20180022869A (en) * 2015-08-12 2018-03-06 제이에프이 스틸 가부시키가이샤 Metal plate for separator of polymer electrolyte fuel cell, and metal plate for producing same
CN107851813A (en) * 2015-08-12 2018-03-27 杰富意钢铁株式会社 The dividing plate of polymer electrolyte fuel cell is with metallic plate and its manufacture metallic plate
US20180175401A1 (en) * 2015-08-12 2018-06-21 Jfe Steel Corporation Metal sheet for separators of polymer electrolyte fuel cells, and metal sheet for manufacturing the same
KR102029648B1 (en) * 2015-08-12 2019-10-08 제이에프이 스틸 가부시키가이샤 Metal sheet for separators of polymer electrolyte fuel cells, and metal sheet for manufacturing the same
US10516174B2 (en) * 2015-08-12 2019-12-24 Jfe Steel Corporation Metal sheet for separators of polymer electrolyte fuel cells, and metal sheet for manufacturing the same
CN107851813B (en) * 2015-08-12 2021-06-18 杰富意钢铁株式会社 Metal plate for separator of solid polymer fuel cell and metal plate for producing same
JP6278158B1 (en) * 2016-03-29 2018-02-14 新日鐵住金株式会社 Polymer polymer fuel cell and polymer electrolyte fuel cell stack
WO2017170067A1 (en) * 2016-03-29 2017-10-05 新日鐵住金株式会社 Cell for solid polymer fuel cell, and solid polymer fuel cell stack
WO2022065455A1 (en) * 2020-09-24 2022-03-31 国立大学法人筑波大学 Structure, method for producing structure, and electrochemical device

Also Published As

Publication number Publication date
JP4494155B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
JP4494155B2 (en) Gold-plated structure and fuel cell separator comprising this gold-plated structure
KR100859614B1 (en) Composite copper foil and method for production thereof
KR20160058795A (en) Metal-plated stainless steel material, and production method for metal-plated stainless steel material
CN102762777A (en) Porous metal foil and method for manufacturing the same
JP6444860B2 (en) Method for making a metal coating
US10113238B2 (en) Gold plate coated stainless material and method of producing gold plate coated stainless material
JP2007146250A (en) Titanium or titanium alloy material plated with noble metal
JP2007103075A (en) Substrate and material for separator of polymer electrolyte fuel cell, and material therefor
KR102155398B1 (en) Treated surface aluminum material and manufacturing method therefor
JP4316413B2 (en) Copper alloy foil with roughened surface and copper alloy foil roughening method
JP2011032557A (en) Method of forming gold plating pattern on stainless substrate
JP5403642B2 (en) Corrosion resistant conductive material
JP2010150647A (en) Copper alloy tinned strip having solder wettability and insertion/extraction performance
US10629917B2 (en) Separator for fuel cells, fuel cell, fuel cell stack, and method of manufacturing separator for fuel cells
JP2002254180A (en) High corrosion resistivity material and manufacturing method therefor
JP4847179B2 (en) Titanium or titanium alloy material with precious metal plating
KR20070005332A (en) Electroless plating method and plating film obtained by the electroless plating method
JP5891849B2 (en) Fuel cell separator and method for producing the same
JP5333149B2 (en) Method for forming gold plating layer on stainless steel substrate and plating apparatus used therefor
JP6028446B2 (en) Method of forming gold plating pattern on stainless steel substrate and stainless steel substrate having gold plating pattern
JP2008088455A (en) Titanium or titanium alloy material subjected to noble metal plating
JP2009256770A (en) Ultrathin plated layer and method for producing the same
KR100499793B1 (en) Electroless plating method
Choi et al. Acid Palladium-Nickel Electroplating Using Ethylenediamine as Complexing Agent
JP2009084590A (en) Method for producing metal plated stainless steel sheet material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

R150 Certificate of patent or registration of utility model

Ref document number: 4494155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250