JP2008088455A - Titanium or titanium alloy material subjected to noble metal plating - Google Patents

Titanium or titanium alloy material subjected to noble metal plating Download PDF

Info

Publication number
JP2008088455A
JP2008088455A JP2006267390A JP2006267390A JP2008088455A JP 2008088455 A JP2008088455 A JP 2008088455A JP 2006267390 A JP2006267390 A JP 2006267390A JP 2006267390 A JP2006267390 A JP 2006267390A JP 2008088455 A JP2008088455 A JP 2008088455A
Authority
JP
Japan
Prior art keywords
titanium material
noble metal
plating
titanium
metal plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006267390A
Other languages
Japanese (ja)
Inventor
Yoshitaka Shibuya
義孝 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP2006267390A priority Critical patent/JP2008088455A/en
Publication of JP2008088455A publication Critical patent/JP2008088455A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium material whose surface can be uniformly subjected to noble metal plating, and which is particularly suitable for application requiring corrosion resistance and low contact resistance, further, to provide a titanium material whose surface is uniformly subjected to noble metal plating, and to provide a method for producing the same. <P>SOLUTION: The titanium material for noble metal plating is characterized in that the average value of C and N detected upon analysis in a depth range of 5 to 30 nm (expressed in terms of SiO<SB>2</SB>) from the outermost surface by XPS (analysis area 800 μmϕ) is ≤5 at.%, respectively. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は貴金属めっき用チタン又はチタン合金材(以下チタンまたはチタン合金材を「チタン材」という。)に関する。また本発明は、とりわけ耐食性及び低接触抵抗が要求される用途に好適な、貴金属めっきが施されたチタン材に関する。更に本発明は、貴金属めっきが施されたチタン材の製造方法に関する。   The present invention relates to titanium or titanium alloy material for precious metal plating (hereinafter, titanium or titanium alloy material is referred to as “titanium material”). The present invention also relates to a titanium material on which noble metal plating has been applied, which is particularly suitable for applications requiring corrosion resistance and low contact resistance. Furthermore, this invention relates to the manufacturing method of the titanium material in which the noble metal plating was given.

チタン材は高耐食性を有するという点で特に優れており、この特性を活かして今日では医療・健康、装飾、スポーツ・レジャー等の民生分野のほか、航空・宇宙、化学、電気、建築・土木、輸送及び軍事等の多くの産業分野で利用されている。一方、チタンは導電性が銅などと比べて低く、更には表面に絶縁性の不動態膜(酸化皮膜)を形成しやすいといった性質を有していることから接触抵抗が比較的高い。このため、チタン材は耐食用途がメインであり、導電性を要する用途にはこれまで用いられてこなかった。
ところが、近年、耐食性の厳しい環境下での導電用途が現れてチタンが注目を浴びている。このような要請に応えるために、接触抵抗が高いという弱点を補うと共に、更なる耐食性の向上を目的として金めっき等の貴金属めっきをチタン材の表面に施すことが有効な手段の一つと考えられる。
Titanium materials are particularly superior in that they have high corrosion resistance, and today, taking advantage of these properties, in addition to civilian fields such as medicine / health, decoration, sports / leisure, aviation / space, chemistry, electricity, architecture / civil engineering, It is used in many industrial fields such as transportation and military. Titanium, on the other hand, has a relatively low contact resistance compared to copper and the like, and further has a property of easily forming an insulating passive film (oxide film) on the surface. For this reason, the titanium material is mainly used for corrosion resistance and has not been used for applications requiring conductivity.
However, in recent years, titanium has been attracting attention as a conductive application in an environment where the corrosion resistance is severe. In order to meet such demands, it is considered to be one of effective means to compensate for the weak point of high contact resistance and to apply precious metal plating such as gold plating on the surface of titanium material for the purpose of further improving corrosion resistance. .

しかしながら、今述べたようにチタン材は表面に酸化皮膜を形成しやすいといった性質を有しており、これがめっき層との密着性を低下させるため、チタン材表面に密着性の高いめっき皮膜を安定して形成することは難しかった。そこで、これまでチタン材へのめっきの密着性を向上させるための前処理が提案されている。
例えば、特開平3-47991号公報には、硝酸、塩酸、フッ酸等の酸性溶液中でエッチングを施した表面上にニッケル層の陰極めっきを施すことを特徴とする、耐火性金属元素を含有するチタンベース合金上に、ニッケル層の電気めっきを施す方法が記載されている。
また、特開平6-93494号公報には、チタン材を、ギ酸、酢酸、又はこれらの塩の内の、少なくとも1種を含有した電解浴中で、10〜300Vの電圧で陽極酸化処理することを特徴とするめっきの前処理が記載されている。該文献では具体例として銅めっき層を電気めっきにより形成している。
However, as described above, the titanium material has a property that it is easy to form an oxide film on the surface, and this reduces the adhesion to the plating layer. It was difficult to form. Therefore, a pretreatment for improving the adhesion of the plating to the titanium material has been proposed so far.
For example, Japanese Patent Laid-Open No. 3-47991 contains a refractory metal element, characterized in that a nickel layer is subjected to cathode plating on a surface etched in an acidic solution such as nitric acid, hydrochloric acid, or hydrofluoric acid. A method for electroplating a nickel layer on a titanium base alloy is described.
JP-A-6-93494 discloses anodizing a titanium material at a voltage of 10 to 300 V in an electrolytic bath containing at least one of formic acid, acetic acid, or a salt thereof. A plating pretreatment characterized by the following is described: In this document, a copper plating layer is formed by electroplating as a specific example.

金めっきを始めとする貴金属めっきは古くから装飾用に利用されてきた。今日では電気伝導性、低接触抵抗、耐食性、半田付け性、耐摩耗性、平滑性及び/又は光反射性等を付与する目的で各種の工業用途に利用されており、特に電子工業の分野では重宝されている。ところが、金めっきをチタン材に施す技術については本発明者による調査からはあまり発見されず、以下のような文献が見出される程度である。
例えば、めっき法によるチタン材への金めっき技術を具体的に開示したものではないが、特開2001-29777号公報では燃料電池のセパレータの耐久性の改良及び低コスト化を目的として、アノード側又はカソード側導電性セパレータの少なくとも一方の表面にAu等の貴金属元素被膜を配置した金属板を開示しており、その金属板の材料の一つとしてチタンが開示されている。該文献ではAuをチタン上にrfスパッタ法により島状に形成し、該島状の個々の貴金属元素被膜の面積を0.04mm2とし、それら全体の占める割合を面積比で50%とした実施例が記載されている。
また、これもチタン材への金めっき技術に関するものではないが、特開2004-296381号公報ではニッケルめっきによる下地処理を行わずにステンレス鋼板の表面に金が面積率2.3〜94%で被覆されていることを特徴とする燃料電池用金属製セパレータが開示されている。金の被覆はめっき法により施すことが記載されている。
Precious metal plating such as gold plating has been used for decoration since ancient times. Today, it is used in various industrial applications for the purpose of imparting electrical conductivity, low contact resistance, corrosion resistance, solderability, wear resistance, smoothness and / or light reflectivity, especially in the field of electronic industry. It is useful. However, a technique for applying gold plating to a titanium material is not so much discovered from the investigation by the present inventor, and the following documents are found.
For example, although a gold plating technique for a titanium material by a plating method is not specifically disclosed, Japanese Patent Laid-Open No. 2001-29777 discloses an anode side for the purpose of improving the durability and cost reduction of a fuel cell separator. Alternatively, a metal plate in which a noble metal element film such as Au is disposed on at least one surface of the cathode-side conductive separator is disclosed, and titanium is disclosed as one of the materials of the metal plate. In this document, Au is formed in an island shape on titanium by rf sputtering, the area of each island-like noble metal element coating is 0.04 mm 2, and the ratio of the total area is 50% in area ratio. An example is given.
Also, this is not related to the gold plating technique on the titanium material. However, in Japanese Patent Application Laid-Open No. 2004-296281, the surface area of the stainless steel plate is not affected by the gold plating, and the area ratio is 2.3 to 94%. A metal separator for a fuel cell, characterized by being coated, is disclosed. It is described that the gold coating is applied by a plating method.

特開平3-47991号公報Japanese Patent Laid-Open No. 3-47991 特開平6-93494号公報JP-A-6-93494 特開2001-29777号公報JP 2001-29777 A 特開2004-296381号公報JP 2004-296281 A

しかしながら、これらの文献において、チタン材と金めっきの関係については充分に記載されておらず、特にチタン材に金めっきを施したときの耐食性と接触抵抗の関係については未だに詳細に解明されていない。また、見かけ上(装飾上)は均一にめっきされた従来ではめっき良好と評価される状態でもSEMによる微視的な観察ではかなりまだらであり、高耐食性及び低接触抵抗を有するという点においては、充分なめっきでないことが判明した。チタン材は高耐食性のほか、低密度及び高強度といったような特性も有していることから今後も多くの産業分野への利用が期待される分野であり、耐食性及び接触抵抗の観点からチタン材と金めっき等の貴金属めっきとの関係を明らかにし、これに基づいて高耐食性及び低接触抵抗を有するチタン材を提案しておくことはチタン材の応用分野の可能性を広げる上で有用であろう。   However, in these documents, the relationship between the titanium material and the gold plating is not sufficiently described, and in particular, the relationship between the corrosion resistance and the contact resistance when the titanium material is plated with gold is not yet elucidated in detail. . In addition, the appearance (decoration) is uniformly plated in the past, and even if it is evaluated as good plating, it is considerably mottled by microscopic observation by SEM, and in terms of having high corrosion resistance and low contact resistance, It was found that the plating was not sufficient. In addition to high corrosion resistance, titanium materials have characteristics such as low density and high strength, and are expected to be used in many industrial fields in the future. From the viewpoint of corrosion resistance and contact resistance, titanium materials It is useful to expand the possibilities of titanium material application fields by clarifying the relationship between gold and precious metal plating such as gold plating, and proposing a titanium material with high corrosion resistance and low contact resistance based on this relationship. Let's go.

そこで、本発明は、とりわけ耐食性及び低接触抵抗が要求される用途に好適な、表面に均一に貴金属めっきを施すことのできるチタン材を提供することを課題とする。また、本発明は表面に均一に貴金属めっきが施されたチタン材を提供することを別の課題とする。更に本発明は表面に均一に貴金属めっきが施されたチタン材の製造方法を提供することを別の課題とする。   Then, this invention makes it a subject to provide the titanium material which can perform a noble metal plating uniformly on the surface especially suitable for the use as which corrosion resistance and low contact resistance are requested | required. Another object of the present invention is to provide a titanium material whose surface is uniformly precious metal plated. Furthermore, this invention makes it another subject to provide the manufacturing method of the titanium material by which the noble metal plating was uniformly given to the surface.

本発明者は、貴金属めっきに好適なチタン材の条件を鋭意検討したところ、材料表面から上記C(炭素)及びN(窒素)成分が極力除去されたチタン材に対して貴金属を直接めっきすると、チタン材表面に驚くほど均一な貴金属めっきが成膜されることを見出した。
一方、チタン材表面のC、N濃度が高いと、貴金属めっき前に湿式前処理を充分に行ってもC、Nが除去できず、SEMよって微視的に観察した場合には貴金属めっきが大きな島状のムラとなって付着し、低接触抵抗を確保できない。特にこの状態では、貴金属めっきを過剰に施しても、貴金属めっきされた部分に過剰に厚く付着するだけで、めっきの付着していない部分の領域が少なくならない。
As a result of diligent examination of conditions for a titanium material suitable for noble metal plating, the present inventor directly plated the noble metal on a titanium material from which the above C (carbon) and N (nitrogen) components were removed as much as possible. It has been found that a surprisingly uniform noble metal plating is formed on the surface of the titanium material.
On the other hand, if the C and N concentration on the surface of the titanium material is high, C and N cannot be removed even if the wet pretreatment is sufficiently performed before the noble metal plating, and the noble metal plating is large when microscopically observed by SEM. It adheres as island-shaped unevenness and cannot secure low contact resistance. Particularly in this state, even if the precious metal plating is applied excessively, the precious metal plating is only excessively thickly attached, and the area of the portion where the plating is not attached is not reduced.

チタンの冷間圧延加工材等の場合には、冷間圧延後に再結晶焼鈍が行われ、チタンは活性な金属であることから、焼鈍は非酸化性ガス中や真空中で行われる。従って、空気中のNやC成分は通常の焼鈍条件で遮断されていると思われる。しかしながら、圧延工程で用いられる圧延油がチタン材表面に付着しており、圧延油をきっちり、除去していかないと焼鈍の際、残った油分が分解して、チタンと反応し、焼鈍後の表面にC、N成分がある種の化合物となって残留する。   In the case of a titanium cold-rolled material or the like, recrystallization annealing is performed after cold rolling, and since titanium is an active metal, annealing is performed in a non-oxidizing gas or in a vacuum. Therefore, it is considered that N and C components in the air are blocked under normal annealing conditions. However, the rolling oil used in the rolling process adheres to the surface of the titanium material, and if the rolling oil is not completely removed, the remaining oil decomposes and reacts with titanium during annealing, and the surface after annealing. The C and N components remain as certain compounds.

上記の知見を基礎として完成した本発明は、一側面において、最表面から5〜30nmの深さ範囲(SiO2換算)でXPS(分析エリア800μmφ)により分析したときに検出されるC及びNの平均値が各々5at.%以下である貴金属めっき用チタン材である。 The present invention completed on the basis of the above knowledge, in one aspect, C and N detected when analyzed by XPS (analysis area 800 μmφ) in a depth range (SiO 2 conversion) of 5 to 30 nm from the outermost surface. The average value is 5 at. % Of noble metal plating titanium material.

また、本発明は別の一側面において、貴金属で表面を直接めっきしたチタン材であって、被めっき箇所において貴金属最表面から5〜30nmの深さ範囲(SiO2換算)でXPS(分析エリア800μmφ)により分析したときに検出されるC及びNの平均値が各々2at.%以下であるチタン材である。 In another aspect of the present invention, there is provided a titanium material whose surface is directly plated with a noble metal, and an XPS (analysis area 800 μmφ) in a depth range (SiO 2 conversion) of 5 to 30 nm from the outermost surface of the noble metal at a plated portion. The average values of C and N detected when analyzed by 2) are 2 at. % Titanium or less.

また、本発明は更に別の一側面において、貴金属で表面を直接めっきしたチタン材であって、被めっき箇所のSEM像(倍率:5,000倍)の視野(15×20μm)において1μm2以上の正方形を形成する未めっき部分が一つも存在しないチタン材である。 Further, the present invention, in yet another aspect, is a titanium material whose surface is directly plated with a noble metal, and is 1 μm 2 or more in a field of view (15 × 20 μm) of an SEM image (magnification: 5,000 times) of a portion to be plated. This titanium material has no unplated portion forming the square.

本発明は更に別の一側面において、貴金属で表面を直接めっきしたチタン材であって、該貴金属はチタン材の表面上に粒子状に存在しているチタン材である。   In yet another aspect of the present invention, a titanium material whose surface is directly plated with a noble metal, the noble metal being a titanium material that exists in the form of particles on the surface of the titanium material.

本発明の一実施形態においては、前記粒子の平均粒径は10〜400nmである。   In one Embodiment of this invention, the average particle diameter of the said particle | grain is 10-400 nm.

本発明の一実施形態においては、前記貴金属はAu−Pd合金である。   In one embodiment of the present invention, the noble metal is an Au-Pd alloy.

本発明は更に別の一側面において、最表面から5〜30nmの深さ範囲(SiO2換算)でXPS(分析エリア800μmφ)により分析したときに検出されるC及びNの平均値が各々2at.%以下であるチタン材の表面に対して貴金属めっきを施す工程を含む貴金属めっきが施されたチタン材の製造方法である。 In another aspect of the present invention, the average values of C and N detected when analyzed by XPS (analysis area 800 μmφ) in a depth range of 5 to 30 nm (converted to SiO 2 ) from the outermost surface are each 2 at. It is a manufacturing method of the titanium material in which the noble metal plating was performed including the process of performing noble metal plating with respect to the surface of the titanium material which is% or less.

本発明の一実施形態においては、前記貴金属めっきが電気めっきにより行われる。   In one embodiment of the present invention, the noble metal plating is performed by electroplating.

本発明によれば、とりわけ耐食性及び低接触抵抗が要求される用途に好適な、表面に均一に貴金属めっきを施すことのできるチタン材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the titanium material which can perform a noble metal plating uniformly on the surface suitable for the use by which corrosion resistance and low contact resistance are requested | required especially can be provided.

チタン材
本発明に用いることのできるチタン材の組成は特に制限を受けるものではなく、用途に応じて適宜選択すれば良く、例えば、純チタン(例えばJIS 1種〜3種)、耐食性や強度を向上させるための元素を添加したチタン合金も使用可能である。この中でも、めっき性、耐食性及び接触抵抗の観点からは純チタンが好ましい。
Titanium material The composition of the titanium material that can be used in the present invention is not particularly limited, and may be appropriately selected depending on the application. For example, pure titanium (for example, JIS 1 to 3 types), corrosion resistance and strength Titanium alloys to which elements for improvement are added can also be used. Among these, pure titanium is preferable from the viewpoint of plating properties, corrosion resistance, and contact resistance.

本発明に係るチタン材の形状は特に制限されるものではないが、例えば板状、繊維状、スポンジ状とすることができ、これらに更に加工を加えて所望の形状に成形することもできる。
また、本発明の一実施形態においては、二枚の板状チタン材で他の金属材料を挟んで形成したクラッド材とすることもできる。斯かるクラッド材も本発明においてはチタン材に含まれるものとする。特に、チタン材よりも廉価な金属材料、例えばステンレス、鉄、Al及びCu等と組み合わせることで低コスト化を図ることができる。
The shape of the titanium material according to the present invention is not particularly limited. For example, the titanium material can be formed into a plate shape, a fiber shape, or a sponge shape, and can be further processed to be formed into a desired shape.
Moreover, in one Embodiment of this invention, it can also be set as the clad material formed by pinching | interposing another metal material with two plate-shaped titanium materials. Such a clad material is also included in the titanium material in the present invention. In particular, the cost can be reduced by combining with a metal material that is less expensive than a titanium material, such as stainless steel, iron, Al, and Cu.

表面に均一に貴金属めっきを施すことのできる本発明に係るチタン材は、一実施形態において、最表面から5〜30nmの深さ範囲(SiO2換算)でXPS(分析エリア800μmφ)により分析したときに検出されるC及びNの平均値が各々5at.%以下、好ましくは合計で5at.%以下である。このようなチタン材に後述する通常の前処理を施すと、前処理後のチタン材は最表面から5〜30nmの深さ範囲(SiO2換算)でXPS(分析エリア800μmφ)により分析したときに検出されるC及びNの平均値が各々2at.%以下、好ましくは各々1at.%以下となる。 In one embodiment, the titanium material according to the present invention capable of uniformly precious metal plating on the surface is analyzed by XPS (analysis area 800 μmφ) at a depth range (SiO 2 conversion) of 5 to 30 nm from the outermost surface. The average values of C and N detected in each are 5 at. % Or less, preferably 5 at. % Or less. When normal pretreatment described later is applied to such a titanium material, the pretreated titanium material is analyzed by XPS (analysis area 800 μmφ) in a depth range (SiO 2 conversion) of 5 to 30 nm from the outermost surface. The average value of C and N detected is 2 at. % Or less, preferably 1 at. % Or less.

チタン材の製造方法
C及びNは、めっき工程や前処理でチタン材表面に付着するものではなく、それ以前の工程でチタン材表面に付着するものなので、チタン材の製造段階でC及びNの付着を制限することが重要となる。
冷間圧延後のチタン材は一般に圧延油を除去するため、脱脂洗浄工程に入る。その後、焼鈍工程に入り、非酸化性ガス中や真空中のバッチ式の炉で行われる。
C及びNの平均値が各々5at.%以下であるような本発明のチタン材を得るには、焼鈍前の脱脂洗浄工程で圧延油分が十分除去される必要がある。十分除去されていないと焼鈍中に圧延油が分解し、圧延油成分のCやNがチタン材と反応し、表面にC及びNの化合物を生成してしまうからである。
ところが、チタン材の表面は一般的に粗くなりやすく、また、チタンの圧延は、他の金属の圧延と比べ、圧延中に金属粉を発生しやすい。表面が粗い場合、表面の凸状の部分、特には、ピット状の部分に入り込んだ圧延油は、単に洗浄液等に浸漬しただけでは十分除去できない。また、金属粉が除去されないまま脱脂洗浄工程を終えると金属粉と材料表面の間に油分が残ってしまう。
そこで、脱脂洗浄工程において、攪拌、振動、ブラッシング及び超音波処理等により洗浄効果を高めることにより、表面の凸状(ピット状)の部分に溜まった油分の除去、金属粉の除去され、チタン素材表面の油分を減少させることができる。この結果、非酸化性ガス中や真空中のバッチ式焼鈍後において、C及びNの平均値が各々5at.%以下の表面を有するチタン材を得ることが可能となる。脱脂洗浄工程後に、物理研磨又は化学研磨を行ってもよいが、工程が増えるため、脱脂洗浄工程で作りこむことが好ましい。
また、焼鈍前の脱脂洗浄工程で浸漬のみとし、焼鈍後に研磨を実施してもC及びNの平均値が各々5at.%以下の表面を有するチタン材を得ることは可能であるが、C及びNの化合物が硬い及び酸にとけにくいため、除去しにくくなるので、コスト的には焼鈍前に行うことが望ましい。
用途によっては、焼鈍をしないで冷間圧延上がりのチタン材のままで次の前処理工程に移ることも可能である。
The manufacturing methods C and N of the titanium material are not attached to the surface of the titanium material in the plating process or pretreatment, but are attached to the surface of the titanium material in the previous process. It is important to limit adhesion.
In general, the titanium material after cold rolling is subjected to a degreasing cleaning process in order to remove rolling oil. Then, it enters into an annealing process and is performed in a batch type furnace in non-oxidizing gas or vacuum.
The average value of C and N is 5 at. In order to obtain the titanium material of the present invention that is not more than%, it is necessary to sufficiently remove the rolling oil in the degreasing and washing step before annealing. This is because if not sufficiently removed, the rolling oil decomposes during annealing, and C and N of the rolling oil component react with the titanium material to generate C and N compounds on the surface.
However, the surface of the titanium material generally tends to be rough, and the rolling of titanium tends to generate metal powder during rolling compared to rolling of other metals. When the surface is rough, the rolling oil that has entered the convex portion of the surface, particularly the pit-like portion, cannot be sufficiently removed by simply immersing it in a cleaning solution or the like. In addition, when the degreasing and cleaning process is completed without removing the metal powder, oil remains between the metal powder and the material surface.
Therefore, in the degreasing and cleaning process, by enhancing the cleaning effect by stirring, vibration, brushing, ultrasonic treatment, etc., the oil content accumulated in the convex (pit-shaped) part of the surface, metal powder is removed, titanium material The oil content on the surface can be reduced. As a result, after batch-type annealing in a non-oxidizing gas or in vacuum, the average values of C and N are each 5 at. It is possible to obtain a titanium material having a surface of no more than%. After the degreasing and cleaning step, physical polishing or chemical polishing may be performed. However, since the number of steps increases, it is preferable that the degreasing and cleaning step is performed.
Moreover, even if it is only immersion in the degreasing washing process before annealing and polishing is performed after annealing, the average value of C and N is 5 at. It is possible to obtain a titanium material having a surface of less than or equal to%. However, since the C and N compounds are hard and difficult to dissolve in acids, it is difficult to remove them.
Depending on the application, it is possible to proceed to the next pretreatment step without annealing and with the titanium material after cold rolling.

前処理
前処理は通常、いかなるめっきを施す場合でもめっき処理に入る前に行う付属的処理であり、チタンに貴金属めっきを施す場合には、浸漬脱脂→水洗→酸洗→水洗→活性化処理→水洗の順に前処理を行う。
上述したように、C及びNは、めっき処理工程において持ち込まれるわけではないので、めっきする直前のチタン素材においてC及びNの平均値が各々2at.%以下、好ましくは各々1at.%以下の表面を有するチタン材であることが重要である。
前処理を行う前の段階で、最表面から5〜30nmの深さ範囲(SiO2換算)でXPS(分析エリア800μmφ)により分析したときに検出されるC及びNの平均値が各々5at.%以下、好ましくは合計で5at.%以下であるチタン材の場合は、通常の前処理で上記要件を十分達成できる。一方、前処理を行う前の段階で、最表面から5〜30nmの深さ範囲(SiO2換算)でXPS(分析エリア800μmφ)により分析したときに検出されるC及びNの平均値が各々5at.%を超えるチタン材の場合でも、通常の前処理よりも厳しい条件で前処理を行えば上記要件の達成は可能である。
そのような前処理としては、活性化処理において攪拌、振動、超音波処理及びブラッシング等による活性化の反応を促進させる方法が挙げられる。攪拌にはプロペラによる攪拌、水流による攪拌等の方法があるが、これらの方法に限るものではない。超音波を用いることで攪拌が強くなり、チタン材料表面のC、N成分のほか、酸化皮膜(TiO2等)や不純物も効果的に除去されるため、特に超音波処理が有利である。また、酸洗時間を長くする等の酸洗の強化も活性化処理の促進と合わせるとより有効である。
The pre-treatment pre-treatment is an auxiliary treatment that is usually performed before any plating is performed, and when precious metal plating is applied to titanium, immersion degreasing → water washing → acid washing → water washing → activation treatment → Pre-treat in the order of water washing.
As described above, since C and N are not brought in in the plating process, the average value of C and N in the titanium material immediately before plating is 2 at. % Or less, preferably 1 at. It is important that the titanium material has a surface of less than or equal to%.
Before the pretreatment, the average values of C and N detected when analyzed by XPS (analysis area 800 μmφ) in a depth range (SiO 2 conversion) of 5 to 30 nm from the outermost surface are 5 at. % Or less, preferably 5 at. In the case of a titanium material that is less than or equal to%, the above requirements can be sufficiently achieved by ordinary pretreatment. On the other hand, the average value of C and N detected when analyzed by XPS (analysis area 800 μmφ) at a depth range (SiO 2 conversion) of 5 to 30 nm from the outermost surface in the stage before pretreatment is 5 atm. . Even in the case of a titanium material exceeding%, the above requirements can be achieved if the pretreatment is performed under conditions more severe than those of the normal pretreatment.
Examples of such pretreatment include a method of promoting an activation reaction by stirring, vibration, ultrasonic treatment, brushing, or the like in the activation treatment. Stirring includes methods such as stirring with a propeller and stirring with a water flow, but is not limited to these methods. By using ultrasonic waves, stirring is strengthened, and in addition to the C and N components on the surface of the titanium material, oxide films (TiO 2 and the like) and impurities are also effectively removed, so ultrasonic treatment is particularly advantageous. In addition, strengthening pickling such as increasing the pickling time is more effective when combined with the promotion of activation treatment.

前処理工程の中で脱脂処理においては水素ぜい性の点に留意すべきであり、この観点から脱脂処理は水素発生を伴う電解脱脂よりは浸漬脱脂により行うのが好ましい。例えば水酸化ナトリウムを含む浴組成の液に浸漬する。酸洗においては脱脂処理後の試験片の中和の点に留意すべきである。例えば硫酸を含む液組成の液に浸漬する。活性化処理液としては不動態皮膜の除去の点でフッ酸系処理液を用いるのが好ましい。例えば、フッ化水素アンモニウム及びアニオン系界面活性剤を含む浴組成の処理液に浸漬する。浸漬脱脂、酸洗及び活性化処理の各工程の合間には水洗を行うのが通常である。
前処理を行うことによってチタン材の表面におけるC及びNの平均値は各々2%程度までは低減することができる。
In the degreasing process, attention should be paid to hydrogen embrittlement in the pretreatment process. From this viewpoint, the degreasing process is preferably performed by immersion degreasing rather than electrolytic degreasing that involves hydrogen generation. For example, it is immersed in a solution having a bath composition containing sodium hydroxide. In pickling, attention should be paid to the neutralization of the specimen after the degreasing treatment. For example, it is immersed in a liquid having a liquid composition containing sulfuric acid. As the activation treatment solution, it is preferable to use a hydrofluoric acid treatment solution in terms of removal of the passive film. For example, it is immersed in a treatment liquid having a bath composition containing ammonium hydrogen fluoride and an anionic surfactant. Washing with water is usually performed between the steps of immersion degreasing, pickling and activation treatment.
By performing the pretreatment, the average values of C and N on the surface of the titanium material can be reduced to about 2% each.

貴金属めっき
本発明において「貴金属」とはAu、Ag及び白金族(Ru、Rh、Pd、Os、Ir、Pt)を指し、本発明の好適な一実施形態ではAu、Ru、Rh、Pd、Ir及びPtからなる群より選択される少なくとも1種以上の貴金属でチタン材の表面をめっきする。本発明の有利な一実施形態ではめっき被膜中に少なくともAuが含まれ、好ましくはAuが50〜100質量%、より好ましくはAuが80〜100質量%含まれる。例えばAu:90〜100質量%、Pd:0〜10質量%であるようなAuめっき又はAu−Pd合金めっきである。このような二種以上の元素を所望の重量比で含むめっき被膜は、例えばめっき浴中での各貴金属イオン濃度の比、電流密度、攪拌条件等を適宜調節することで得られる。
Precious metal plating In the present invention, “precious metal” refers to Au, Ag, and the platinum group (Ru, Rh, Pd, Os, Ir, Pt). In a preferred embodiment of the present invention, Au, Ru, Rh, Pd, Ir And the surface of the titanium material is plated with at least one kind of noble metal selected from the group consisting of Pt and Pt. In an advantageous embodiment of the invention, the plating film contains at least Au, preferably 50-100% by weight of Au, more preferably 80-100% by weight of Au. For example, Au plating or Au—Pd alloy plating in which Au is 90 to 100% by mass and Pd is 0 to 10% by mass. Such a plating film containing two or more elements in a desired weight ratio can be obtained, for example, by appropriately adjusting the ratio of each noble metal ion concentration in the plating bath, current density, stirring conditions, and the like.

本発明では上記貴金属をチタン材表面上に直接めっきする。すなわち、本発明ではチタン材上にNi等の下地めっきを施すことなく貴金属めっきを施す。これは、貴金属よりも卑な下地めっきを施すと、耐食性低下、めっき剥離を生じるためである。耐食性の理由による。また、チタン材表面に貴金属めっきを施す箇所は用途に応じて適宜選択することができ、チタン材表面の一部又は全部とすることができる。但し、ここでいう「一部又は全部」とは肉眼で判断される概念であり、SEM等によって微視的に観察して判断されるものではない。   In the present invention, the noble metal is directly plated on the surface of the titanium material. That is, in the present invention, noble metal plating is performed on the titanium material without applying a base plating such as Ni. This is because when base plating lower than that of the noble metal is applied, the corrosion resistance is reduced and the plating is peeled off. For reasons of corrosion resistance. Further, the location where the noble metal plating is applied to the surface of the titanium material can be appropriately selected according to the application, and can be a part or all of the surface of the titanium material. However, the “part or all” as used herein is a concept judged with the naked eye, and is not judged by microscopic observation with an SEM or the like.

チタン材に貴金属めっきを行う方法としては、例えば真空蒸着、物理蒸着(PVD)及び化学蒸着(CVD)、スパッタリング、イオンプレーティング等の乾式めっき、並びに電気めっき及び無電解めっき等の湿式めっきが挙げられるが、電気めっきが好ましい。めっき粒子の粒径や数の制御容易性の観点及びコスト面(特に設備費用)から有利なためである。電気めっきによる表面処理は、乾式めっきのように雰囲気を真空にする必要がなく、成膜速度が速いといった利点もある。また、細かい粒状のめっきを形成する場合には、電気めっきが適している。   Examples of methods for precious metal plating on titanium materials include vacuum plating, physical vapor deposition (PVD) and chemical vapor deposition (CVD), dry plating such as sputtering and ion plating, and wet plating such as electroplating and electroless plating. However, electroplating is preferred. This is because it is advantageous from the viewpoint of ease of control of the particle size and number of plating particles and cost (particularly, equipment costs). The surface treatment by electroplating has the advantage that the atmosphere does not need to be evacuated unlike dry plating, and the film forming speed is high. Moreover, when forming fine granular plating, electroplating is suitable.

本発明に係る貴金属めっきを施したチタン材の被めっき箇所は均一に成膜されており、一実施形態においては、SEM像(倍率:5,000倍)の視野(15×20μm)において未めっき部分(すなわち貴金属が付着していない部分)が1μm2以上である正方形が観察されることはない。また、好ましい実施形態においては該未めっき部分が0.25μm2以上である正方形が観察されることはなく、より好ましい実施形態においては該未めっき部分が0.04μm2以上である正方形が観察されることはない。 The portion to be plated of the titanium material plated with the noble metal according to the present invention is uniformly formed, and in one embodiment, unplated in the field of view (15 × 20 μm) of the SEM image (magnification: 5,000 times). A square having a portion (that is, a portion to which noble metal is not attached) of 1 μm 2 or more is not observed. In a preferred embodiment, a square in which the unplated portion is 0.25 μm 2 or more is not observed. In a more preferred embodiment, a square in which the unplated portion is 0.04 μm 2 or more is observed. Never happen.

本発明に係る貴金属めっきを施したチタン材の当初の接触抵抗、そしてこれを腐食環境に曝したときの接触抵抗の上昇率は主として貴金属のめっき粒子がチタン材表面を覆う微視的な面積割合(面積率)に依存し、該面積率(理論的には0%〜100%の範囲が考えられ得る。)はSEMによる微視的な観察で少なくとも10%、有利には15%とすることが所望の耐食性及び接触抵抗を満足するのに必要である。一方で、面積率をあまり高くしても耐食性の効果が飽和する傾向にあること及びコスト高になることから好ましくは10〜95%、より好ましくは30〜95%、更により好ましくは40〜80%、典型的には60〜70%である。   The initial contact resistance of the titanium material subjected to the noble metal plating according to the present invention, and the rate of increase of the contact resistance when the titanium material is exposed to a corrosive environment is mainly a microscopic area ratio in which the noble metal plating particles cover the titanium material surface. Depending on the (area ratio), the area ratio (theoretically, a range of 0% to 100% can be considered) should be at least 10%, preferably 15% in microscopic observation with an SEM. Is necessary to satisfy the desired corrosion resistance and contact resistance. On the other hand, even if the area ratio is too high, the effect of corrosion resistance tends to saturate and the cost is high, so it is preferably 10 to 95%, more preferably 30 to 95%, and even more preferably 40 to 80. %, Typically 60-70%.

また、めっき粒子の粒径が340nm以下である場合には、貴金属めっきを施したチタン材の当初の接触抵抗、そしてこれを腐食環境に曝したときの接触抵抗の上昇率はめっき粒子の粒径にはほとんど依存しないことが経験的に分かった。めっき粒子の粒径が340nmを超えるとめっきの密着性が有意に悪化し始め、そのため腐食環境下等でめっきが剥がれやすくなり、接触抵抗の上昇も大きくなるので好ましくない。   When the particle size of the plating particles is 340 nm or less, the initial contact resistance of the titanium material subjected to noble metal plating, and the rate of increase of the contact resistance when exposed to a corrosive environment are the particle size of the plating particles. It has been empirically found that it is almost independent of. When the particle size of the plating particles exceeds 340 nm, the adhesion of the plating starts to deteriorate significantly, so that the plating easily peels off under a corrosive environment and the increase in contact resistance is not preferable.

このように、めっき粒子の粒径が340nm以下であれば接触抵抗及び耐食性は粒径にほとんど依存しなくなるため、貴金属の面積率を同一とした場合にはめっき粒子の粒径が小さい方が要求される貴金属の付着量を少なくすることができ、経済性を向上させることができる。例えば、貴金属の面積率を同一とした場合、粒径を1/10にすることができれば、同等の接触抵抗及び耐食性を維持しながら、付着量を1/10に軽減することが可能となる。   Thus, if the particle size of the plating particles is 340 nm or less, the contact resistance and corrosion resistance hardly depend on the particle size. Therefore, if the area ratio of the noble metal is the same, the smaller the particle size of the plating particles is required. The amount of the precious metal deposited can be reduced, and the economy can be improved. For example, when the area ratio of the noble metal is the same, if the particle size can be reduced to 1/10, the amount of adhesion can be reduced to 1/10 while maintaining equivalent contact resistance and corrosion resistance.

従って、チタン材表面上にできるだけ微細なめっき粒子を所望の面積率を達成するような個数(例えば粒径5nmのめっき粒子で面積率50%を達成するには25,000個/μm2程度もの粒子の生成が必要となる。)をできるだけ均一に付着させること望ましいが、本発明によれば、めっき粒子の平均的な粒径を300nm以下とすることができ、更には100nm以下とすることができ、好ましくは50nm以下とすることができ、最も小さい場合で10nmとすることができる。 Therefore, the number of the finest possible plating particles on the surface of the titanium material that can achieve the desired area ratio (for example, about 25,000 / μm 2 to achieve the area ratio of 50% with the plating particles having a particle diameter of 5 nm) It is desirable that the particles be generated as uniformly as possible. However, according to the present invention, the average particle size of the plated particles can be 300 nm or less, and more preferably 100 nm or less. Preferably 50 nm or less, and 10 nm in the smallest case.

本発明に係る貴金属めっきを施したチタン材の具体的な製造条件を電気めっき法を用いた場合を例にして説明する。本発明に使用可能なめっき浴はシアン浴(シアン化第一金系、シアン化第二金系)や非シアン浴(無機亜硫酸金系、有機亜硫酸金系)が挙げられるが、密着性の観点からは非シアン浴が好ましい。
めっき粒子の粒径及び数(面積率)は、陽極と陰極の極間距離、電流密度、めっき時間、温度及び攪拌方法を調節することにより制御することができる。極間距離は100mm以下とするのが好ましく、可能なかぎり極間距離は短くした方が、無めっきが少なく、均一にめっき粒子がつくという観点で好ましい。電流密度は亜硫酸浴では0.1〜0.5A/dm2とするのが好ましい。0.5A/dm2以上にしてしまうとめっきが粗く脆くなる場合がある。めっき時間は電流密度に依存するが、めっき付着量の観点で、可能なかぎり短いほうが好ましく、通常は数秒から数分であり、例えば40秒以下である。温度は亜硫酸浴では50〜60℃とするのが好ましい。攪拌は、めっき液の循環流量等を変えることにより、めっき液の流速を制御することが好ましい。
Specific production conditions of the titanium material subjected to the noble metal plating according to the present invention will be described by taking the case of using an electroplating method as an example. Examples of plating baths that can be used in the present invention include cyan baths (first gold cyanide and second gold cyanide) and non-cyan baths (inorganic gold sulfite and organic gold sulfite). Is preferably a non-cyan bath.
The particle size and number (area ratio) of the plating particles can be controlled by adjusting the distance between the anode and the cathode, the current density, the plating time, the temperature, and the stirring method. The distance between the electrodes is preferably 100 mm or less, and the distance between the electrodes is preferably as short as possible from the viewpoint that there is less unplating and plating particles are uniformly formed. The current density is preferably 0.1 to 0.5 A / dm 2 in the sulfurous acid bath. If it is 0.5 A / dm 2 or more, the plating may become rough and brittle. Although the plating time depends on the current density, it is preferably as short as possible from the viewpoint of the amount of plating adhesion, and is usually several seconds to several minutes, for example, 40 seconds or less. The temperature is preferably 50 to 60 ° C. in a sulfurous acid bath. The stirring is preferably performed by controlling the flow rate of the plating solution by changing the circulation flow rate of the plating solution.

粒径及び面積率を調節をするためには特に極間距離、攪拌方法、電流密度の点に留意する必要がある。粒径を小さくするためには極間距離及び電流密度が重要である。
本発明の一実施形態では、例えば、陽極と陰極の極間距離は好ましくは10mm〜100mmである。ここで、極間距離とはアノードとチタン材との間の距離をいう。攪拌はチタン材への到達流速が早くなる、攪拌を強攪拌するほうが、粒子数(又は面積率)の増加の点で好ましい。
In order to adjust the particle size and area ratio, it is necessary to pay particular attention to the distance between the electrodes, the stirring method, and the current density. In order to reduce the particle size, the distance between the electrodes and the current density are important.
In one embodiment of the present invention, for example, the distance between the anode and the cathode is preferably 10 mm to 100 mm. Here, the distance between the electrodes refers to the distance between the anode and the titanium material. Stirring is preferable in terms of increase in the number of particles (or area ratio).

後処理
貴金属めっきをチタン材表面に施した後は、Ar、He、Ne等の不活性雰囲気で加熱処理するのが密着性の観点で好ましい。この加熱処理においては温度を250℃以上、好ましくは300〜350℃とし、時間を数分以上、好ましくは30〜40分程度とすることが密着性及び接触抵抗の観点でより有利である。
After the post-treatment noble metal plating is applied to the surface of the titanium material, it is preferable from the viewpoint of adhesion to heat-treat in an inert atmosphere such as Ar, He, or Ne. In this heat treatment, it is more advantageous from the viewpoint of adhesion and contact resistance that the temperature is 250 ° C. or higher, preferably 300 to 350 ° C., and the time is several minutes or longer, preferably about 30 to 40 minutes.

本発明に係る貴金属めっきを施したチタン材は一実施形態において、pH=2の硫酸溶液に温度90℃で168時間浸すことにより行った耐食試験前後の接触抵抗の比(試験後の平均接触抵抗/試験前の平均接触抵抗)が2.0以下であり、好ましくは1.5以下であり、より好ましくは1.3以下であり、最も好ましくは1.0である。この値が1.0であるというのは、耐食試験後に接触抵抗の上昇が全く見られないことを示す。   In one embodiment, a titanium material subjected to noble metal plating according to the present invention is a ratio of contact resistance before and after a corrosion test conducted by immersing in a sulfuric acid solution having a pH = 2 at a temperature of 90 ° C. for 168 hours (average contact resistance after the test). / Average contact resistance before the test) is 2.0 or less, preferably 1.5 or less, more preferably 1.3 or less, and most preferably 1.0. A value of 1.0 indicates that no increase in contact resistance is observed after the corrosion resistance test.

本発明及びその利点をより理解するために以下に本発明の実施例を記載するが、本発明はこれらの実施例に限定されるものではない。   In order to better understand the present invention and its advantages, examples of the present invention will be described below, but the present invention is not limited to these examples.

試験片の材料
すべての比較例及び実施例において、チタン材として厚さ0.1mmの純チタン(JIS1種)の板状の冷間圧延終了後の材料を用いた。材料については冷間圧延後の脱脂洗浄条件を変化させた以下の3種類を準備した。
(A)試験片を市販のアルカリ剤洗浄液に十分浸漬し、浸漬中にブラシで表面を洗浄したもの(浸漬時間60秒間)
(B)試験片を市販のアルカリ剤洗浄液に十分浸漬したが、ブラシで表面を洗浄しなかったもの(浸漬時間60秒間)
(C)試験片を市販のアルカリ剤洗浄液に浸漬したが、ブラシで表面を洗浄しなかったもの(浸漬時間10秒間)
これら3種類の材料に対して焼鈍を実施し、前処理前のチタン素材を得た。
In all the comparative examples and examples of the test piece material, a plate-like cold rolled material of 0.1 mm thick pure titanium (JIS type 1) was used as the titanium material. About the material, the following three types which changed the degreasing washing conditions after cold rolling were prepared.
(A) The test piece was sufficiently immersed in a commercially available alkaline agent cleaning solution, and the surface was cleaned with a brush during the immersion (immersion time 60 seconds)
(B) The test piece was sufficiently immersed in a commercially available alkaline agent cleaning solution, but the surface was not cleaned with a brush (immersion time 60 seconds)
(C) The test piece was immersed in a commercially available alkaline cleaning solution, but the surface was not cleaned with a brush (immersion time: 10 seconds)
These three kinds of materials were annealed to obtain a titanium material before pretreatment.

前処理
前処理前のチタン素材すべてに対し、表1に記載の条件に従って、浸漬脱脂→水洗→酸洗→水洗→活性化処理→水洗の順に前処理を行った。
但し、酸洗・活性化処理は条件の異なる以下の3条件を用いた。
(a)酸洗については浸漬時間を15秒とし、活性化処理ではバッチ槽内に超音波を用いて攪拌力を強めた条件
(b)酸洗については浸漬時間を7秒とし、バッチ槽内に超音波を用いて攪拌力を強めた条件
(c)酸洗については浸漬時間を7秒とし、バッチ槽内に単に浸漬するのみの強制的な攪拌なく、自然に起きる攪拌で行う条件
For all pretreatment pretreatment before the titanium material according to the conditions described in Table 1, was pretreated in the order of immersion degreasing → water washing → pickling → water washing → activation → water washing.
However, the following three conditions with different conditions were used for the pickling / activation treatment.
(A) For pickling, the immersion time was 15 seconds, and in the activation treatment, the stirring force was increased using ultrasonic waves in the batch tank. (B) For pickling, the immersion time was 7 seconds, (C) Conditions for pickling, with a soaking time of 7 seconds, and with agitation that occurs naturally without forced stirring just by dipping in the batch tank

表2にすべての比較例及び実施例で用いたチタン材及び前処理条件一覧を示す。
Table 2 shows a list of titanium materials and pretreatment conditions used in all comparative examples and examples.

Au−Pd合金めっき
次に、前処理を施した各試験片の表面に対してAu−Pd合金めっきを電気めっきにより行った。めっき浴条件は以下の通りである。
浴種:亜硫酸浴
浴組成:Au4.0g/L、Pd2.0g/L
pH:9.05〜9.10
浴温:50℃
めっき液の攪拌:強攪拌
陽極:Pt−Ti
陽極と陰極の極間距離:50mm
電流密度:0.4A/dm2
めっき時間:5秒
Au—Pd alloy plating Next, Au—Pd alloy plating was performed on the surface of each pretreated test piece by electroplating. The plating bath conditions are as follows.
Bath type: sulfurous acid bath Bath composition: Au 4.0 g / L, Pd 2.0 g / L
pH: 9.05 to 9.10
Bath temperature: 50 ° C
Agitation of plating solution: Strong stirring Anode: Pt-Ti
Distance between anode and cathode: 50 mm
Current density: 0.4 A / dm 2
Plating time: 5 seconds

後処理
その後、Au−Pd合金めっきを施した各試験片に対してアルゴン雰囲気で加熱処理を350℃で30分間行った。
Post-treatment After that, heat treatment was performed at 350 ° C. for 30 minutes in an argon atmosphere on each test piece subjected to Au—Pd alloy plating.

結果
図1にNo.3、図2にNo.5、図3にNo.8の試験片表面のAu−Pd合金めっき粒子の状態を示すSEM像を例示的に示す。めっきを施した各試験片に対して、電着分布、平均粒径[nm]、単位面積あたりの粒子数[個/μm2]、面積率[%]、付着量[mg/cm2]及び密着性を調べた。結果を表3に示す。
Results FIG. 3 and FIG. 5 and FIG. The SEM image which shows the state of the Au-Pd alloy plating particle | grains of the test piece surface of 8 is shown as an example. For each plated test piece, the electrodeposition distribution, the average particle size [nm], the number of particles per unit area [pieces / μm 2 ], the area ratio [%], the adhesion amount [mg / cm 2 ] and The adhesion was examined. The results are shown in Table 3.

SEM観察は倍率5000倍と50000倍で行った。5000倍の写真はAu−Pd合金めっきの電着分布状況観察するために用いた。50000倍の写真は、平均粒径、単位面積あたりの粒子数を把握するために用いた。   SEM observation was performed at 5000 times and 50000 times magnification. The 5000 × photograph was used to observe the electrodeposition distribution of Au—Pd alloy plating. The photo of 50000 times was used to grasp the average particle diameter and the number of particles per unit area.

電着分布は、任意に3箇所選択した5,000倍のSEM像の視野(15×20μm)において1μm2以上の正方形を形成する未めっき部分が一つでも存在するかを判断した。該未めっき部分の個数が0であった場合を○とし、1以上であった場合を×とした。 The electrodeposition distribution was determined as to whether or not there was any unplated portion forming a square of 1 μm 2 or more in the field of view (15 × 20 μm) of the SEM image of 5,000 times selected arbitrarily at three locations. The case where the number of the unplated portions was 0 was marked with ◯, and the case where it was 1 or more was marked with x.

平均粒径は、任意に3箇所選択した50,000倍のSEM像の視野(1.5×2.0μm)から平均的と思われる粒子を10個選択してその算術平均を求めた。   The average particle size was determined by selecting 10 particles considered to be average from the field of view of a 50,000 times SEM image (1.5 × 2.0 μm) arbitrarily selected at three locations, and calculating the arithmetic average thereof.

単位面積あたりの粒子数は、任意に3箇所選択した50,000倍のSEM像(の視野(1.5×2.0μm)の粒子数を数えて、求めた。   The number of particles per unit area was determined by counting the number of particles in a field of view (1.5 × 2.0 μm) of 50,000 times SEM images arbitrarily selected at three locations.

面積率は、めっき粒子がSEM像よりほぼ球状であることが分かるので、各めっき粒子を真球と仮定して電着分布の判定が○であったサンプルについてのみ平均粒径及び単位面積当たりの粒子数から算出した。   As for the area ratio, it can be seen from the SEM image that the plating particles are almost spherical. Therefore, assuming that each plating particle is a true sphere, the average particle diameter and the unit area per unit area were determined only for the samples in which the determination of the electrodeposition distribution was ○. Calculated from the number of particles.

付着量は、得られた各試験片を王水に溶解させ、その溶液に含まれるAu及びPdの重量を誘導結合プラスマ発生分析装置(ICP)を用いて定量分析し、その値から算出した。   The amount of adhesion was calculated from the value obtained by dissolving each test piece obtained in aqua regia, quantitatively analyzing the weight of Au and Pd contained in the solution using an inductively coupled plasma generation analyzer (ICP).

密着性は、得られた各試験片の金めっき表面に1mm間隔で碁盤の目を罫書き、テープ剥離試験実施した。また、各試験片を任意に180°曲げて元の状態に戻し、曲げ部のテープ剥離試験を行った。剥離が全くない場合を○とし、一部でもある場合には×とした。
なおめっき被膜の電着組成は、試験片を王水に溶解させ、その溶液中に含まれるAu及びPbの重量を誘導結合プラズマ発光分析装置(ICP)(Seiko Instruments社製型式SPS300)を用いて調べた結果、各試験片共、Au約91質量%、Pd約9質量%であった。
For adhesion, a tape peeling test was performed by scoring grid marks at 1 mm intervals on the gold-plated surface of each test piece obtained. Further, each test piece was arbitrarily bent by 180 ° to return to the original state, and a tape peeling test of the bent portion was performed. When there was no peeling at all, it was marked with ◯, and when it was partly, it was marked with ×.
In addition, the electrodeposition composition of the plating film is obtained by dissolving a test piece in aqua regia and measuring the weight of Au and Pb contained in the solution using an inductively coupled plasma emission spectrometer (ICP) (model SPS300 manufactured by Seiko Instruments). As a result of investigation, each test piece was found to be about 91 mass% Au and about 9 mass% Pd.

また、すべての実施例及び比較例において、各工程後(前処理前、金めっき前(前処理後、後処理後)のチタン材表面のX線光電子分光分析(XPS、アルバック・ファイ株式会社製型式5600MCスパッタ速度:SiO2換算で1.2nm/min)を行った。その結果を表4に示す。表4に示したNとCの量は、各サンプルにつき、最表層から5〜30nmにおける平均値を示す。平均値は、分析で得られたXPSのデータから、1nmごとに各元素の量を拾って計算した。 Moreover, in all Examples and Comparative Examples, X-ray photoelectron spectroscopic analysis (XPS, manufactured by ULVAC-PHI Co., Ltd.) of the titanium material surface after each step (before pretreatment and before gold plating (after pretreatment and after treatment)) (Type 5600MC sputtering rate: 1.2 nm / min in terms of SiO 2 ) The results are shown in Table 4. The amounts of N and C shown in Table 4 are from 5 to 30 nm from the outermost layer for each sample. The average value is calculated by picking up the amount of each element every 1 nm from the XPS data obtained by the analysis.

更に、各試験片に対して耐食試験を行い、試験前後の接触抵抗を調べた。耐食試験は、40×50mmのサイズの各試験片にpH=2の液量350ccの硫酸水溶液に温度90℃で168時間(1週間)浸すことにより行った。
接触抵抗の測定は図2に示すようにサンプル全面に荷重を加える方法にて行った。40×50mmのサンプルを上下から、同サイズの銅板(10mmt)に1.0μmのNi下地めっきをし、その上に0.5μmのAuめっきしたサンプルで鋏み、接触させ、ロードセルで10kg/cm2の荷重を加え、電流密度100mA/cm2で電流を流した時の接触抵抗を4端子法で測定した。(この測定方法では、銅板及びチタン板の比抵抗も含むが、ここではそれを含んだ値を接触抵抗とする。)
Furthermore, the corrosion resistance test was performed with respect to each test piece, and the contact resistance before and after the test was examined. The corrosion resistance test was performed by immersing each test piece having a size of 40 × 50 mm in a sulfuric acid aqueous solution having a pH = 2 liquid amount of 350 cc at a temperature of 90 ° C. for 168 hours (one week).
The contact resistance was measured by applying a load to the entire surface of the sample as shown in FIG. A 40 × 50 mm sample was plated from above and below on a copper plate (10 mmt) of the same size with a 1.0 μm Ni underplating, and then a 0.5 μm Au-plated sample was put on and contacted, and 10 kg / cm 2 with a load cell. The contact resistance when a current was passed at a current density of 100 mA / cm 2 was measured by the 4-terminal method. (In this measurement method, the specific resistance of the copper plate and the titanium plate is also included, but here the value including this is taken as the contact resistance.)

また、耐食試験で使用した硫酸溶液中のTi濃度からTi溶出量をそれぞれ測定した。具体的には耐食試験後に200ccの液を分取し、50ccに濃縮して、ICP分析により求めた。   Moreover, Ti elution amount was measured from the Ti concentration in the sulfuric acid solution used in the corrosion resistance test. Specifically, 200 cc of liquid was collected after the corrosion resistance test, concentrated to 50 cc, and determined by ICP analysis.

接触抵抗及び耐食試験の結果は、pH=2の硫酸水溶液に温度90℃で168時間浸すことにより行った耐食試験前後の接触抵抗の比(試験後の平均接触抵抗/試験前の平均接触抵抗)が2.0以下であり、耐食試験によりTiの溶出量がない場合を○とし、それ以外の場合を×とした。
表5に接触抵抗及び耐食性試験結果を示す。
The results of the contact resistance and corrosion resistance test are the ratios of the contact resistance before and after the corrosion test conducted by immersing in a sulfuric acid aqueous solution at pH = 2 at a temperature of 90 ° C. for 168 hours (average contact resistance after test / average contact resistance before test). Is 2.0 or less, and the case where there is no elution amount of Ti by the corrosion resistance test is indicated by ◯, and the case other than that is indicated by ×.
Table 5 shows the contact resistance and corrosion resistance test results.

上記の比較例と発明例の結果から以下のことが確認できる。
・金めっき前のチタン材表面にNやCがあると、1μm全てのエリアで均一に貴金属が成膜できなく、要求特性(接触抵抗、耐食性)を評価すると、耐食試験後の接触抵抗が増加する。
・チタン材表面にあるNやCは、本発明に係る処理を行うことでほとんど除去でき、要求特性を満たす均一な貴金属が成膜される。
図5及び図6に、発明例1及び比較例8の被めっき物を貴金属表面からXPS分析したときのスパッタ時間(4分10秒及び25分0秒がそれぞれ深さ5nm及び30nmに相当)と各元素濃度の関係をそれぞれ例示的に示した。
The following can be confirmed from the results of the comparative example and the invention example.
・ If there is N or C on the surface of the titanium material before gold plating, noble metal can be deposited uniformly in all areas of 1 μm, and if the required characteristics (contact resistance, corrosion resistance) are evaluated, the contact resistance after the corrosion resistance test increases. To do.
-N and C on the surface of the titanium material can be almost removed by performing the treatment according to the present invention, and a uniform noble metal film that satisfies the required characteristics is formed.
FIGS. 5 and 6 show sputtering times (4 minutes 10 seconds and 25 minutes 0 seconds correspond to depths of 5 nm and 30 nm, respectively) when XPS analysis was performed on the objects to be plated of Invention Example 1 and Comparative Example 8 from the surface of the noble metal. The relationship between the element concentrations is shown as an example.

本発明に係る貴金属めっきを施したチタン材はチタン材の本来的特性である低密度、高強度、高耐食性及び高融点等に加え、更に高耐食性及び低接触抵抗を兼備したものと言うことができる。従って、本発明に係る貴金属めっきが施されたチタン材は高耐食性及び低接触抵抗が要求される用途に特に好適であり、例えば燃料電池用セパレータ、チタン電極、耐食性接地体等に利用することができる。   In addition to the low density, high strength, high corrosion resistance, high melting point, etc., which are the original characteristics of the titanium material, the titanium material plated with the noble metal according to the present invention is said to have both high corrosion resistance and low contact resistance. it can. Therefore, the titanium material plated with the noble metal according to the present invention is particularly suitable for applications requiring high corrosion resistance and low contact resistance. For example, it can be used for separators for fuel cells, titanium electrodes, corrosion-resistant grounding bodies, and the like. it can.

No.3におけるチタン材表面のめっき粒子の状態を示す50,000倍と5,000倍のSEM像である。No. 3 is a SEM image of 50,000 times and 5,000 times showing the state of the plated particles on the surface of the titanium material in No. 3. No.5におけるチタン材表面のめっき粒子の状態を示す50,000倍と5,000倍のSEM像である。No. 5 is a SEM image of 50,000 times and 5,000 times showing the state of the plated particles on the surface of the titanium material in FIG. No.8におけるチタン材表面のめっき状態を示す50,000倍と5,000倍のSEM像である。No. 8 is an SEM image of 50,000 times and 5,000 times showing the plating state of the titanium material surface in FIG. 接触抵抗の測定方法を示す概略図である。It is the schematic which shows the measuring method of contact resistance. 発明例1の試験片について、XPS分析したときの結果を示す図である。It is a figure which shows a result when XPS analysis is carried out about the test piece of Invention Example 1. 比較例8の試験片について、XPS分析したときの結果を示す図である。It is a figure which shows a result when an XPS analysis is performed on the test piece of Comparative Example 8.

Claims (8)

最表面から5〜30nmの深さ範囲(SiO2換算)でXPS(分析エリア800μmφ)により分析したときに検出されるC及びNの平均値が各々5at.%以下である貴金属めっき用チタン材。 The average values of C and N detected when analyzed by XPS (analysis area 800 μmφ) in a depth range of 5 to 30 nm from the outermost surface (in terms of SiO 2 ) are 5 at. % Precious metal plating titanium material. 貴金属で表面を直接めっきしたチタン材であって、被めっき箇所において貴金属最表面から5〜30nmの深さ範囲(SiO2換算)でXPS(分析エリア800μmφ)により分析したときに検出されるC及びNの平均値が各々2at.%以下であるチタン材。 A titanium material whose surface is directly plated with a noble metal, which is detected when analyzed by XPS (analysis area 800 μmφ) in a depth range (SiO 2 conversion) of 5 to 30 nm from the noble metal outermost surface at a plated portion The average value of N is 2 at. % Titanium material. 貴金属で表面を直接めっきしたチタン材であって、被めっき箇所のSEM像(倍率:5,000倍)の視野(15×20μm)において1μm2以上の正方形を形成する未めっき部分が一つも存在しないチタン材。 There is one unplated part that forms a square of 1 μm 2 or more in the field of view (15 × 20 μm) of the SEM image (magnification: 5,000 times) of the plated part, which is a titanium material directly plated with a noble metal Not titanium material. 貴金属で表面を直接めっきしたチタン材であって、該貴金属はチタン材の表面上に粒子状に存在している請求項2又は3に記載のチタン材。   The titanium material according to claim 2 or 3, wherein the surface of the titanium material is directly plated with a noble metal, and the noble metal is present in the form of particles on the surface of the titanium material. 前記粒子の平均粒径が10〜400nmである請求項4に記載のチタン材。   The titanium material according to claim 4, wherein the average particle diameter of the particles is 10 to 400 nm. 前記貴金属はAu−Pd合金である請求項2〜5の何れか一項に記載のチタン材。   The titanium material according to any one of claims 2 to 5, wherein the noble metal is an Au-Pd alloy. 最表面から5〜30nmの深さ範囲(SiO2換算)でXPS(分析エリア800μmφ)により分析したときに検出されるC及びNの平均値が各々2at.%以下であるチタン材の表面に対して貴金属めっきを施す工程を含む貴金属めっきが施されたチタン材の製造方法。 The average values of C and N detected when analyzed by XPS (analysis area 800 μmφ) in a depth range of 5 to 30 nm (in terms of SiO 2 ) from the outermost surface are 2 at. A method for producing a titanium material that has been subjected to noble metal plating, including a step of performing noble metal plating on the surface of a titanium material that is not more than%. 前記貴金属めっきが電気めっきにより行われる請求項7に記載の製造方法。   The manufacturing method according to claim 7, wherein the noble metal plating is performed by electroplating.
JP2006267390A 2006-09-29 2006-09-29 Titanium or titanium alloy material subjected to noble metal plating Pending JP2008088455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006267390A JP2008088455A (en) 2006-09-29 2006-09-29 Titanium or titanium alloy material subjected to noble metal plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006267390A JP2008088455A (en) 2006-09-29 2006-09-29 Titanium or titanium alloy material subjected to noble metal plating

Publications (1)

Publication Number Publication Date
JP2008088455A true JP2008088455A (en) 2008-04-17

Family

ID=39372921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267390A Pending JP2008088455A (en) 2006-09-29 2006-09-29 Titanium or titanium alloy material subjected to noble metal plating

Country Status (1)

Country Link
JP (1) JP2008088455A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247255A (en) * 2009-04-13 2010-11-04 Nippon Steel Corp Oxidation suppression method for silicon cutting powder, and oxidation suppression device for silicon cutting powder
WO2019193655A1 (en) 2018-04-03 2019-10-10 日本製鉄株式会社 Titanium plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247255A (en) * 2009-04-13 2010-11-04 Nippon Steel Corp Oxidation suppression method for silicon cutting powder, and oxidation suppression device for silicon cutting powder
WO2019193655A1 (en) 2018-04-03 2019-10-10 日本製鉄株式会社 Titanium plate
KR20200130426A (en) 2018-04-03 2020-11-18 닛폰세이테츠 가부시키가이샤 Titanium plate
US11566305B2 (en) 2018-04-03 2023-01-31 Nippon Steel Corporation Titanium plate

Similar Documents

Publication Publication Date Title
JP4859189B2 (en) Titanium or titanium alloy material with precious metal plating
JP5280957B2 (en) Conductive member and manufacturing method thereof
CN1324155C (en) Titatium material and method for manufacturing the same
US20060003174A1 (en) Titanium material and method for manufacturing the same
WO2007145164A1 (en) Rolled copper or copper alloy foil with roughened surface and method of roughening rolled copper or copper alloy foil
TWI261947B (en) Titanium system material for fuel cell separator, and manufacturing method therefor
RU2610811C9 (en) Aluminium zinc plating
JP2006097088A (en) Gold-plated structure, and separator made of the gold-plated structure for fuel cell
JPH0347999A (en) Support metal having improved surface mor- phology
US6913791B2 (en) Method of surface treating titanium-containing metals followed by plating in the same electrolyte bath and parts made in accordance therewith
CN112176371B (en) Electroplating process for plating gold on beryllium copper surface
CN113463148A (en) Method for electroplating gold on surface of titanium or titanium alloy substrate
CN1712573A (en) Surface cladding treatment of ferro-manganese aluminium alloy
JP2008088455A (en) Titanium or titanium alloy material subjected to noble metal plating
JP4847179B2 (en) Titanium or titanium alloy material with precious metal plating
KR101284367B1 (en) Plating method of magnesium alloy using alkali etchant
JP6743998B1 (en) Connector terminal material and connector terminal
JP7059877B2 (en) Terminal material for connectors and terminals for connectors
JP2002254180A (en) High corrosion resistivity material and manufacturing method therefor
JP4523234B2 (en) Fuel cell separator
JP5403642B2 (en) Corrosion resistant conductive material
TW202041723A (en) Apparatus for processing copper surface
JP7315120B1 (en) Terminal material with plated film and copper sheet for terminal material
Pearson Pretreatment of aluminium for electrodeposition
JP7303978B2 (en) Coating member and manufacturing method of coating member