JP2006095847A - Manufacturing method for sulfur-containing material molded body - Google Patents

Manufacturing method for sulfur-containing material molded body Download PDF

Info

Publication number
JP2006095847A
JP2006095847A JP2004284299A JP2004284299A JP2006095847A JP 2006095847 A JP2006095847 A JP 2006095847A JP 2004284299 A JP2004284299 A JP 2004284299A JP 2004284299 A JP2004284299 A JP 2004284299A JP 2006095847 A JP2006095847 A JP 2006095847A
Authority
JP
Japan
Prior art keywords
sulfur
containing material
vibration
mold
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004284299A
Other languages
Japanese (ja)
Other versions
JP4553244B2 (en
Inventor
Minoru Kurakake
稔 倉掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2004284299A priority Critical patent/JP4553244B2/en
Publication of JP2006095847A publication Critical patent/JP2006095847A/en
Application granted granted Critical
Publication of JP4553244B2 publication Critical patent/JP4553244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a sulfur-containing material molded body which is hard to be affected by the shape or the size of a mold when a sulfur-containing material molded body is manufactured, can sufficiently perform an air bubble removal in a molten sulfur-containing material, is excellent in strength, and also, by which a more uniform strength can easily be obtained, and in addition, which is excellent in a surface state as well. <P>SOLUTION: By this manufacturing method for the sulfur-containing material molded body, after a vibration is applied to the molten sulfur-containing material which has been poured into the mold of a specified shape by using a vibrating device, the sulfur-containing material is molded and solidified. The vibration is performed by using the vibrating device equipped with a bar-like vibrating section under a state in which the external surface temperature of the vibrating section is kept at 120 to 160°C by inserting the vibrating section in at least one place of the molten sulfur-containing material which is poured into the mold. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、硫黄含有資材成形体を製造する際の型枠の形態や大きさによる影響を受け難く、強度に優れ、且つより均等な強度が得られる硫黄含有資材成形体の製造法に関する。   The present invention relates to a method for producing a sulfur-containing material molded body that is not easily affected by the form and size of a mold when producing a sulfur-containing material molded body, is excellent in strength, and provides a more uniform strength.

近年、コンクリートに代わる土木、建設資材として、耐酸性、機械的強度、遮水性等に優れる硫黄含有資材が多数提案されており、該硫黄含有資材を用いて、パネル、タイル、床材、魚礁、各種ブロック、土留用壁、擁壁、L型用壁、矢板等の土木、建設用成形体を製造することが提案されている。
このような硫黄含有資材の成形体を製造するには、硫黄含有資材の溶融温度が通常120℃以上であるため、120〜160℃程度に保持した溶融硫黄含有資材を、所定の型枠に流し込み成形固化させる方法等が採用される。
この際、得られる成形体の強度を向上させるために、例えば、特許文献1及び2には、溶融硫黄含有資材中の硫黄量と鉱物質粉末や骨材量とを所定割合とし、型枠内の溶融硫黄含有資材に振動を加えながら成形する方法が開示されている。
前記特許文献1及び2において、前記振動を加える方法としては、偏心重錘回転式の振動モーターを利用したテーブル振動機等を利用して、型枠に振動を加えて溶融硫黄含有資材に振動を加える方法が記載されるのみである。要するに、特許文献1及び2には、溶融硫黄含有資材へ型枠を介して間接的に振動を加える方法が記載されているにすぎない。
しかし、このような方法では、溶融硫黄含有資材中の硫黄量と鉱物質粉末や骨材量との割合制御が煩雑になり易く、しかも型枠がある程度大きくなる場合や型枠の形態が複雑である場合等には、型枠へ流し込む際の溶融硫黄含有資材へ侵入した気泡の除去が十分でなく、必ずしも所望の強度が得られるとは限らず、更には、得られる成形体における強度のばらつきが生じる恐れがある。
特開2000−281425号公報 特開2001−30213号公報
In recent years, a large number of sulfur-containing materials that are excellent in acid resistance, mechanical strength, water shielding, etc. have been proposed as civil engineering and construction materials that replace concrete, and using these sulfur-containing materials, panels, tiles, flooring materials, fish reefs, It has been proposed to manufacture various blocks, earth retaining walls, retaining walls, L-shaped walls, civil engineering works such as sheet piles, and molded articles for construction.
In order to produce a molded body of such a sulfur-containing material, since the melting temperature of the sulfur-containing material is usually 120 ° C. or higher, the molten sulfur-containing material maintained at about 120 to 160 ° C. is poured into a predetermined formwork. A method of forming and solidifying is employed.
At this time, in order to improve the strength of the obtained molded body, for example, Patent Documents 1 and 2 disclose that the amount of sulfur in the molten sulfur-containing material and the amount of mineral powder or aggregate are set to a predetermined ratio, A method of forming a molten sulfur-containing material while applying vibration is disclosed.
In Patent Documents 1 and 2, as the method for applying the vibration, a table vibrator using an eccentric weight rotation type vibration motor is used to apply vibration to the mold and vibrate the molten sulfur-containing material. Only the method of addition is described. In short, Patent Documents 1 and 2 only describe a method of indirectly applying vibration to a molten sulfur-containing material via a mold.
However, in such a method, the ratio control between the amount of sulfur in the molten sulfur-containing material and the amount of mineral powder or aggregate is likely to be complicated, and the formwork form is complicated when the formwork size becomes somewhat large. In some cases, it is not sufficient to remove bubbles that have entered the molten sulfur-containing material at the time of pouring into the mold, and the desired strength is not always obtained. May occur.
JP 2000-281425 A JP 2001-30213 A

本発明の課題は、硫黄含有資材成形体を製造する際の型枠の形態や大きさの影響を受け難く、溶融硫黄含有資材における気泡除去を充分に行うことができ、強度に優れ、且つより均等な強度が容易に得られ、更に表面状態にも優れる硫黄含有資材成形体の製造法を提供することにある。   The problem of the present invention is that it is hardly affected by the form and size of the mold when producing a sulfur-containing material molded body, can sufficiently remove bubbles in the molten sulfur-containing material, has excellent strength, and more It is an object of the present invention to provide a method for producing a sulfur-containing material molded body that can easily obtain uniform strength and is excellent in surface condition.

本発明によれば、所定形態の型枠内に流し込んだ溶融硫黄含有資材に、振動装置を用いて振動を加えた後、成形固化する硫黄含有資材成形体の製造法であって、前記振動を、棒状の振動部を備える振動装置を用いて、該振動部の外表面温度を120〜160℃に保持した状態で該振動部を型枠に流し込む溶融硫黄含有資材中の少なくとも1箇所に挿入して行うことを特徴とする硫黄含有資材成形体の製造法が提供される。   According to the present invention, there is provided a method for producing a sulfur-containing material molded body that is molded and solidified after applying vibration to a molten sulfur-containing material poured into a mold of a predetermined form using a vibration device, Then, using a vibration device including a rod-shaped vibration part, the vibration part is inserted into at least one place in the molten sulfur-containing material that is poured into the mold in a state where the outer surface temperature of the vibration part is maintained at 120 to 160 ° C. The method for producing a sulfur-containing material molded body is provided.

本発明の製造法は、棒状の振動部の外表面温度を120〜160℃に保持しうる振動装置を用いるので、溶融硫黄含有資材中に直接挿入して振動を加えることができ、型枠の大きさや形態に合わせて、複数箇所において振動を加えることもできるので、型枠の形態や大きさの影響を受け難く、溶融硫黄含有資材における気泡除去を充分に行うことができ、強度に優れ、且つより均等な強度が得られ、更に表面状態にも優れる様々な用途の硫黄含有資材成形体を簡便に得ることができる。   Since the manufacturing method of the present invention uses a vibration device that can maintain the outer surface temperature of the rod-shaped vibration part at 120 to 160 ° C., it can be directly inserted into the molten sulfur-containing material to apply vibrations. According to the size and form, vibration can be applied at multiple locations, so it is not easily affected by the form and size of the mold, can sufficiently remove bubbles in the molten sulfur-containing material, has excellent strength, And more uniform intensity | strength is obtained, Furthermore, the sulfur containing material molded object of various uses which is excellent also in the surface state can be obtained simply.

以下、本発明を更に詳細に説明する。
本発明の製造法は、所定形態の型枠内に流し込んだ溶融硫黄含有資材に、振動装置を用いて振動を加えた後、成形固化するにあたり、前記振動を、棒状の振動部を備える振動装置を用いて、該振動部の外表面温度を120〜160℃に保持した状態で該振動部を型枠に流し込む溶融硫黄含有資材中の少なくとも1箇所に挿入して行うことを特徴とする。
前記型枠の大きさや形態は特に限定されず、製造する硫黄含有資材成形体の用途、例えば、パネル、タイル、床材、魚礁、各種ブロック、土留用壁、擁壁、L型用壁、矢板等の土木、建設用成形体の大きさや形態に合わせて作製することができる。型枠の材質は、溶融硫黄含有資材により侵食等されない材料であれば特に限定されない。
Hereinafter, the present invention will be described in more detail.
In the manufacturing method of the present invention, a vibration device provided with a rod-shaped vibration portion is used to form and solidify a molten sulfur-containing material poured into a mold of a predetermined form after vibration is applied using a vibration device. The vibration part is inserted into at least one place in the molten sulfur-containing material that is poured into the mold in a state where the outer surface temperature of the vibration part is maintained at 120 to 160 ° C.
The size and form of the formwork are not particularly limited, and uses of the sulfur-containing material molded body to be produced, such as panels, tiles, flooring, fish reefs, various blocks, retaining walls, retaining walls, L-shaped walls, sheet piles, etc. It can be manufactured according to the size and form of civil engineering such as construction and molded articles for construction. The material of the mold is not particularly limited as long as the material is not eroded by the molten sulfur-containing material.

本発明の製造法に用いる溶融硫黄含有資材は、好ましくは固化した際に、小ガス炎着火試験によって検定される非危険物であることを充足するように、特定割合の骨材と、改質硫黄からなる硫黄材料とを含むものが好ましい。
前記改質硫黄は、例えば、天然産又は、石油や天然ガスの脱硫によって生成した硫黄等を硫黄変性剤により重合したものであって、硫黄と硫黄変性剤との反応物であることが好ましい。
The molten sulfur-containing material used in the production method of the present invention is preferably a non-hazardous material to be verified by a small gas flame ignition test when solidified, and a specific proportion of aggregate and modified What contains the sulfur material which consists of sulfur is preferable.
The modified sulfur is, for example, a natural product or sulfur or the like produced by desulfurization of petroleum or natural gas, and is preferably a reaction product of sulfur and a sulfur modifier.

硫黄変性剤としては、例えば、ジシクロペンタジエン(DCPD)、テトラハイドロインデン(THI)、若しくはDCPDと、シクロペンタジエンのオリゴマー(2〜5量体混合物)、ジペンテン、ビニルトルエン、ジシクロペンテン等のオレフィン化合物類の1種又は2種以上との混合物が挙げられる。
前記DCPDとしては、DCPDの単体の他に、シクロペンタジエンの2〜5量体を主体に構成される混合物を用いることもできる。該混合物としては、DCPDの含有量が70質量%以上、好ましくは85質量%以上のものが挙げられ、また、いわゆるジシクロペンタジエンと称する市販品の多くを使用することができる。
前記THIとしては、THIの単体の他に、THIと、DCPDの単体、シクロペンタジエンとブタンジエンとの重合物、及びシクロペンタジエンの2〜5量体からなる群より選択される1種又は2種以上を主体に構成されるものとの混合物を用いることもできる。該混合物中のTHIの含有量は、通常50質量%以上、好ましくは65質量%以上である。該混合物としては、いわゆるテトラハイドロインデンと称する市販品やエチルノルボルネンの製造プラントから排出される副生成油の多くが使用できる。
Examples of the sulfur modifier include olefin compounds such as dicyclopentadiene (DCPD), tetrahydroindene (THI), or DCPD and cyclopentadiene oligomer (2 to 5 mer mixture), dipentene, vinyltoluene, and dicyclopentene. The mixture with 1 type, or 2 or more types of a kind is mentioned.
As the DCPD, in addition to the simple substance of DCPD, a mixture mainly composed of 2-5 pentamers of cyclopentadiene can be used. Examples of the mixture include those having a content of DCPD of 70% by mass or more, preferably 85% by mass or more, and many commercially available products called dicyclopentadiene can be used.
As the THI, in addition to THI alone, one or more selected from the group consisting of THI, DCPD alone, a polymer of cyclopentadiene and butanediene, and a cyclopentadiene dimer to pentamer. It is also possible to use a mixture of those composed mainly of The THI content in the mixture is usually 50% by mass or more, preferably 65% by mass or more. As the mixture, many commercially available products called tetrahydroindene and by-product oil discharged from an ethyl norbornene production plant can be used.

前記改質硫黄は、硫黄と硫黄変性剤とを溶融混合することにより得ることができる。この際、硫黄変性剤の使用割合は、硫黄と硫黄変性剤との合計量に対して、通常0.1〜30質量%、特に、1.0〜20質量%の割合が好ましい。
前記溶融混合は、例えば、インターナルミキサー、ロールミル、ドラムミキサー、ポニーミキサー、リボンミキサー、ホモミキサー、スタティックミキサー等を用いて行うことができる。
The modified sulfur can be obtained by melt-mixing sulfur and a sulfur modifier. Under the present circumstances, the usage-amount of a sulfur modifier is 0.1-30 mass% normally with respect to the total amount of sulfur and a sulfur modifier, and the ratio of 1.0-20 mass% is especially preferable.
The melt mixing can be performed using, for example, an internal mixer, a roll mill, a drum mixer, a pony mixer, a ribbon mixer, a homomixer, a static mixer, or the like.

前記改質硫黄の製造をミキサーを用いて行う場合は、ミキサー中で硫黄と硫黄変性剤とを120〜160℃の範囲で溶融混合し、140℃における粘度が0.05〜3.0Pa・sになるまで滞留させる方法等が好ましい。ミキサー内の溶融混合温度は、硫黄が効率よく変性するように通常130〜155℃、特に130〜150℃が好ましい。
ミキサー内で生じる硫黄と硫黄変性剤との初期反応は、硫黄と硫黄変性剤とが反応することで変性硫黄前駆体が生成する発熱反応である。このためミキサー内では急激な発熱が生じないことを確認しながら連続撹拌しミキサー内で130〜160℃まで次第に温度上昇させることが好ましい。
ミキサー内で硫黄と硫黄変性剤とを反応させる際は、ゲルパーミエイションクロマトグラフィー(GPC)で測定した分子量が150〜500の改質硫黄前駆体を生成させ、反応系中において前記改質硫黄前駆体を0.1〜45質量%、特に1〜40質量%生成させることが好ましい。
前記分子量の測定は、硫黄変性剤を加えた硫黄を二硫化炭素やトルエン等に溶かし、GPCにより行うことができる。その測定は、例えば、クロロホルム溶媒を使用し室温において、1ml/分の流速で、二硫化炭素1質量/vol%濃度試料溶液を、UV254Nm検出器を用い、ポリスチレンで測定した検量線により行うことができる。
When the modified sulfur is produced using a mixer, sulfur and the sulfur modifier are melt-mixed in the range of 120 to 160 ° C in the mixer, and the viscosity at 140 ° C is 0.05 to 3.0 Pa · s. A method of staying until it becomes is preferable. The melt mixing temperature in the mixer is usually 130 to 155 ° C, particularly preferably 130 to 150 ° C, so that sulfur can be efficiently modified.
The initial reaction between sulfur and the sulfur modifier generated in the mixer is an exothermic reaction in which a modified sulfur precursor is generated by the reaction between sulfur and the sulfur modifier. For this reason, it is preferable to continuously stir while confirming that no sudden heat generation occurs in the mixer and to gradually raise the temperature to 130 to 160 ° C. in the mixer.
When reacting sulfur with a sulfur modifier in a mixer, a modified sulfur precursor having a molecular weight of 150 to 500 as measured by gel permeation chromatography (GPC) is generated, and the modified sulfur is produced in the reaction system. It is preferable to produce the precursor in an amount of 0.1 to 45% by mass, particularly 1 to 40% by mass.
The molecular weight can be measured by GPC by dissolving sulfur added with a sulfur modifier in carbon disulfide or toluene. The measurement can be performed, for example, by using a calibration curve measured with polystyrene using a UV254Nm detector at a room temperature using a chloroform solvent at a flow rate of 1 ml / min and a carbon disulfide 1 mass / vol% concentration sample solution. it can.

ミキサーでの滞留時間は、硫黄変性剤の使用量と溶融温度により異なるが、1分間〜24時間程度である。
硫黄改質のための反応終了時期は、溶融物の粘度により決定できる。例えば、140℃における粘度が0.05〜3.0Pa・sの範囲が好ましいが、得られる硫黄固化体基材の強度や製造工程の作業性の観点から、140℃における粘度が0.05〜2.0Pa・sの範囲が総合的に最適である。
The residence time in the mixer varies depending on the amount of sulfur modifier used and the melting temperature, but is about 1 minute to 24 hours.
The reaction end time for sulfur reforming can be determined by the viscosity of the melt. For example, the viscosity at 140 ° C. is preferably in the range of 0.05 to 3.0 Pa · s. From the viewpoint of the strength of the obtained sulfur solidified base material and the workability of the manufacturing process, the viscosity at 140 ° C. is 0.05 to The range of 2.0 Pa · s is optimal overall.

前記溶融硫黄含有資材において、前記改質硫黄の含有割合は、後述する骨材100質量部に対して、通常15〜400質量部、好ましくは20〜300質量部である。15質量部未満では、骨材との均一混練が十分でなく、400質量部を超えると、改質硫黄と骨材とが分離して均一な材料が得られ難いので好ましくない。   In the molten sulfur-containing material, the content of the modified sulfur is usually 15 to 400 parts by mass, preferably 20 to 300 parts by mass with respect to 100 parts by mass of the aggregate described later. If it is less than 15 parts by mass, uniform kneading with the aggregate is not sufficient, and if it exceeds 400 parts by mass, the modified sulfur and the aggregate are separated and it is difficult to obtain a uniform material.

前記溶融硫黄含有資材に含ませることができる骨材は、骨材として使用可能であれば特に限定されないが、一般にコンクリートで用いられる骨材、例えば、天然石、砂、れき、硅砂、鉄鋼スラグ、フェロニッケルスラグ、銅スラグ、金属製造時に生成する副生物、石炭灰、燃料焼却灰、電気集塵灰、溶融スラグ類、貝殻及びこれらの混合物等からなる群より選択される1種又は2種以上が挙げられる。また、シリカヒューム、アルミナ、石英粉、石英質岩石、粘土鉱物、活性炭、ガラス粉末やこれらと同等の有害物質を含有しない無機系、有機系等の微粉末も使用可能である。これらの微粉末の中でも、粒経分布の調整が容易で均一なものを大量に入手しやすい点で、石炭灰、珪砂、シリカヒューム、石英粉、砂、ガラス粉末及び電気集塵灰からなる群より選択される1種又は2種以上が好ましい。
また、微粉末として産業廃棄物を使用した場合でも、前述の硫黄材料により無害化することが可能である。
The aggregate that can be included in the molten sulfur-containing material is not particularly limited as long as it can be used as an aggregate, but is generally an aggregate used in concrete, such as natural stone, sand, rubble, dredged sand, steel slag, ferro One or more selected from the group consisting of nickel slag, copper slag, by-products generated during metal production, coal ash, fuel incineration ash, electrostatic dust ash, molten slag, shells and mixtures thereof Can be mentioned. Silica fume, alumina, quartz powder, quartz rock, clay mineral, activated carbon, glass powder, and inorganic and organic fine powders that do not contain the same harmful substances can also be used. Among these fine powders, the group consisting of coal ash, silica sand, silica fume, quartz powder, sand, glass powder, and electrostatic precipitating ash is easy in obtaining a large amount of uniform and uniform particle size distribution. One or more selected from the above are preferred.
Further, even when industrial waste is used as the fine powder, it can be rendered harmless by the sulfur material described above.

前記骨材としては、通常、粒径5mm以下、好ましくは1mm以下の細骨材を含むことが好ましいが、その用途に応じて適宜選択することができる。
前記溶融硫黄含有資材には、前記改質硫黄や細骨材の他に、例えば、軽石、ビニロン繊維、パーライト等の軽量骨材、各種粗骨材、繊維質充填材、繊維状粒子、薄片状粒子等を含有させることができる。
繊維質充填材としては、例えば、カーボンファイバー、グラスファイバー、鋼繊維、アモルファス繊維、ビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、アラミド繊維又はこれらの混合物等が挙げられる。
繊維質充填材の繊維径は、材質により異なるが通常5μm〜1mmが好ましい。繊維形態は、短繊維、連続繊維のいずれでも良いが、短繊維の場合の繊維長は2〜30mmの均一分散が容易な長さが好ましい。連続繊維としては、骨材が通過できるような隙間を空けた格子状であれば良く、織構造又は不織布構造のいずれでも良い。
繊維状粒子としては、平均長さ1mm以下のウォラスナイト、ボーキサイト、ムライト等が挙げられる。
薄片状粒子としては、平均粒度1mm以下のマイカフレーク、タルクフレーク、バーミキュライトフレーク、アルミナフレーク等が挙げられる。
前記溶融硫黄含有資材には、本発明の所望の効果を損なわない範囲で、上記以外にも必要に応じて他の成分が配合されていても良い。
As the aggregate, it is usually preferable to include a fine aggregate having a particle size of 5 mm or less, preferably 1 mm or less, but can be appropriately selected depending on the application.
In addition to the modified sulfur and fine aggregate, the molten sulfur-containing material includes, for example, light aggregates such as pumice, vinylon fibers, perlite, various coarse aggregates, fibrous fillers, fibrous particles, flakes Particles and the like can be contained.
Examples of the fibrous filler include carbon fiber, glass fiber, steel fiber, amorphous fiber, vinylon fiber, polypropylene fiber, polyethylene fiber, aramid fiber, or a mixture thereof.
The fiber diameter of the fibrous filler varies depending on the material, but is usually preferably 5 μm to 1 mm. The fiber form may be either a short fiber or a continuous fiber, but in the case of a short fiber, the fiber length is preferably 2 to 30 mm and easy to uniformly disperse. The continuous fiber may be in a lattice shape with a gap through which aggregates can pass, and may have either a woven structure or a non-woven structure.
Examples of the fibrous particles include wollastonite, bauxite, mullite and the like having an average length of 1 mm or less.
Examples of the flaky particles include mica flakes, talc flakes, vermiculite flakes and alumina flakes having an average particle size of 1 mm or less.
In addition to the above, other components may be blended with the molten sulfur-containing material as necessary, as long as the desired effects of the present invention are not impaired.

前記溶融硫黄含有資材の調製は、例えば、120〜160℃に予熱した骨材等を含む固体資材に、好ましくは120〜160℃に保持した前記改質硫黄の溶融物を投入して混合する方法又は、120〜160℃に保持した前記改質硫黄の溶融物に、120〜160℃に予熱した骨材等を含む固体資材を投入して混合する方法等により行なうことができる。
前記混合は、含有される溶融状態の改質硫黄の140℃における粘度を0.05〜3.0Pa・sの範囲内に維持しながら行うことが好ましい。前記改質硫黄の粘度は、硫黄の重合進行により時間と共に上昇するので、取り扱いが容易な最適粘度範囲とすることが好ましい。該粘度が0.05Pa・s未満では、得られる硫黄固化体基材の強度が低下し、改質硫黄による改質効果が不十分となるので好ましくない。一方、粘度が高くなるに従い、強度改善効果も高くなるが、3.0Pa・sを超えると溶融混合における撹拌が困難となり、作業性が著しく悪化するので好ましくない。
前記混合に用いる混合機は、混合が十分に行えるものであれば特に限定されず、好ましくは固液撹拌用が挙げられる。例えば、パドルミキサー、インターナルミキサー、ロールミル、ボールミル、ドラムミキサー、スクリュー押出し機、パグミル、ポニーミキサー、リボンミキサー、ニーダー等が使用できる。
Preparation of the molten sulfur-containing material is, for example, a method in which a molten material of the modified sulfur kept at 120 to 160 ° C. is charged into and mixed with a solid material including aggregate preheated to 120 to 160 ° C. Or it can carry out by the method etc. which throw and mix the solid material containing the aggregate etc. which were preheated at 120-160 degreeC to the said melt | dissolution of the modified sulfur hold | maintained at 120-160 degreeC.
The mixing is preferably performed while maintaining the viscosity of the modified sulfur in the molten state at 140 ° C. within the range of 0.05 to 3.0 Pa · s. Since the viscosity of the modified sulfur increases with time due to the progress of the polymerization of sulfur, it is preferable that the modified sulfur has an optimum viscosity range that is easy to handle. If the viscosity is less than 0.05 Pa · s, the strength of the obtained sulfur-solidified base material is lowered, and the modification effect by the modified sulfur becomes insufficient. On the other hand, as the viscosity increases, the effect of improving the strength also increases. However, if it exceeds 3.0 Pa · s, stirring in the melt mixing becomes difficult and workability is remarkably deteriorated.
The mixer used for the mixing is not particularly limited as long as the mixing can be sufficiently performed, and preferably for solid-liquid stirring. For example, a paddle mixer, internal mixer, roll mill, ball mill, drum mixer, screw extruder, pug mill, pony mixer, ribbon mixer, kneader and the like can be used.

本発明の製造法に用いる振動装置は、型枠に流し込まれた溶融硫黄含有資材中における気泡を充分に除去しうる棒状の振動部を備える投込みタイプの振動装置であって、例えば、該振動部の表面温度を120℃以上に保持・制御しうるヒーター等の加熱手段を備えた装置、又は振動部の外表面が120℃以上の熱保持能に優れた材質で形成された装置等が好ましく挙げられる。   The vibration device used in the manufacturing method of the present invention is a throwing-type vibration device including a rod-shaped vibration portion that can sufficiently remove bubbles in the molten sulfur-containing material poured into a mold, for example, the vibration A device equipped with a heating means such as a heater that can hold and control the surface temperature of the part at 120 ° C. or higher, or a device formed with a material having an excellent heat holding ability at the outer surface of the vibration part of 120 ° C. or higher, etc. Can be mentioned.

本発明の製造法において、前記振動装置を用いて型枠に流し込む溶融硫黄含有資材に振動を加えるには、例えば、振動装置における振動部の外表面温度を120〜160℃、好ましくは溶融改質硫黄がより振動部に付着しないように、型枠に流し込む際の溶融改質硫黄の温度付近に保持し、型枠に流し込んだ溶融硫黄含有資材に該振動部を挿入して、振動を加えることにより行なうことができる。この際、振動部の表面温度の保持は、例えば、上述の加熱手段により制御する方法、若しくは溶融硫黄含有資材に振動部を挿入する前に予め該外表面を120〜160℃に予熱しておく方法等により行うことができる。
前記振動を加える時間は、溶融硫黄含有資材の量等に応じて、気泡を十分除去しうる程度に適宜決定することができる。また、本発明に用いる振動装置が投込み式であるので、例えば、型枠の大きさや形態に応じて、振動を加える箇所は必ずしも1箇所に限定されず、適宜複数箇所で実施することもできる。
In the production method of the present invention, in order to apply vibration to the molten sulfur-containing material poured into the mold using the vibration device, for example, the outer surface temperature of the vibration part in the vibration device is 120 to 160 ° C., preferably melt reforming. To keep sulfur from adhering to the vibrating part, keep it near the temperature of the melt-modified sulfur when it is poured into the mold, and insert the vibrating part into the molten sulfur-containing material that has flowed into the mold to apply vibration. Can be performed. At this time, the surface temperature of the vibration part is maintained by, for example, the method of controlling by the above-described heating means, or preheating the outer surface to 120 to 160 ° C. before inserting the vibration part into the molten sulfur-containing material. It can be performed by a method or the like.
The time during which the vibration is applied can be appropriately determined according to the amount of the molten sulfur-containing material and the like so that bubbles can be sufficiently removed. In addition, since the vibration device used in the present invention is a throw-in type, for example, depending on the size and form of the formwork, the place where vibration is applied is not necessarily limited to one place, and can be implemented at a plurality of places as appropriate. .

本発明の製造法では、前記振動終了後、公知の方法に従って溶融硫黄含有資材を固化し、型枠を取外すことにより所望の成形体を得ることができる。   In the production method of the present invention, after completion of the vibration, a desired molded product can be obtained by solidifying the molten sulfur-containing material according to a known method and removing the mold.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれに限定されない。
実施例1
乾燥後140℃に加熱した製鋼スラグ73.6質量部、乾燥後140℃に加熱した石炭灰8.8質量部及び硫黄変性剤により改質した140℃の溶融改質硫黄17.6質量部を混練し、1000mm×1000mm×450mmの方形型枠に以下の方法で該混練物を流し込み、固化を行った。
型枠の中に前記混練物を流し込みながら、表面にヒーターを具備した棒状振動部を有する投げ込み式振動棒を該混練物中に挿入し、振動を加えながら5分間かけて流し込みを終了し、その後、室温に放置して徐冷・固化した。前記振動棒の外表面温度は、混練物中に挿入している間、140℃程度に制御した。
上記方法で3検体の成形体を調製した。その結果、いずれの場合も型枠への打設中、振動棒への混練物の付着は見られず、終始作業性良く打設が可能であった。また、打設物表面に荒れも少なかった。得られた成形体から100mmΦ×200mmHのコアを抜いて観察したところ、3検体ともに気泡混入による空隙がほとんど見られなかった。また、得られた検体の圧縮強度を測定した。結果を表1に示す。
表1より、本実施例で調製した各検体は、圧縮強度のばらつきが少なく、平均圧縮強度も80.5MN/m2と高かった。
Hereinafter, although an example and a comparative example explain the present invention still in detail, the present invention is not limited to this.
Example 1
73.6 parts by mass of steelmaking slag heated to 140 ° C. after drying, 8.8 parts by mass of coal ash heated to 140 ° C. after drying and 17.6 parts by mass of molten modified sulfur at 140 ° C. modified with a sulfur modifier The mixture was kneaded and poured into a 1000 mm × 1000 mm × 450 mm square form by the following method to solidify.
While pouring the kneaded material into the mold, a throwing-type vibrating rod having a rod-shaped vibrating portion provided with a heater on the surface is inserted into the kneaded material, and pouring is completed over 5 minutes while applying vibration. Then, it was allowed to stand at room temperature and gradually cooled and solidified. The outer surface temperature of the vibrating rod was controlled to about 140 ° C. while being inserted into the kneaded product.
Three specimens were prepared by the above method. As a result, in any case, the kneaded material did not adhere to the vibrating rod during the placement on the mold, and the placement was possible with good workability from beginning to end. Moreover, there was little roughness on the surface of the casting. When the core of 100 mmΦ × 200 mmH was removed from the obtained molded body and observed, almost no voids due to air bubbles were found in all three specimens. Further, the compressive strength of the obtained specimen was measured. The results are shown in Table 1.
From Table 1, each specimen prepared in this example had little variation in compressive strength, and the average compressive strength was as high as 80.5 MN / m 2 .

比較例1
実施例1と同様に混練物を調製し、振動台上にセットした実施例1と同様の型枠に流し込みながら、該振動台により振幅0.30mmの上下振動(30Hz)を型枠に5分間加えて混練物から内部の気泡を除去した。続いて、室温に放置して徐冷・固化した。
上記方法で3検体の成形体を調製し、実施例1と同様にコアを抜き取って観察した。その結果、混練物からの気泡除去は良好に行われたように見えたが、前記各コアには、ところどころに気泡による空隙が存在していた。また、得られた3検体の圧縮強度を測定した。結果を表1に示す。
表1より、各検体の圧縮強度には多少のばらつきが見られた。更に、平均圧縮強度も78.2MN/m2と実施例1より低い値であった。
Comparative Example 1
A kneaded material was prepared in the same manner as in Example 1 and poured into a mold similar to that in Example 1 set on a vibration table, and the vertical vibration (30 Hz) with an amplitude of 0.30 mm was applied to the mold for 5 minutes. In addition, internal bubbles were removed from the kneaded product. Subsequently, it was allowed to stand at room temperature and gradually cooled and solidified.
Three specimens were prepared by the above method, and the core was extracted and observed in the same manner as in Example 1. As a result, it seemed that the removal of bubbles from the kneaded material was performed well, but in each of the cores, there were some voids due to bubbles. In addition, the compression strength of the obtained three specimens was measured. The results are shown in Table 1.
From Table 1, there was some variation in the compressive strength of each specimen. Further, the average compressive strength was 78.2 MN / m 2 , which was lower than that of Example 1.

比較例2
振動棒を混練物中に挿入している間、該振動棒表面を加熱しなかった以外は実施例1と同様に各検体を調製した。
その結果、型枠への打設中、振動棒により溶融改質硫黄が冷えてくると、混練物が棒に付着し、作業性が低下した。また、得られた打設物の表面に荒れが発生していた。更に、実施例1と同様に成形体からコアを抜き取ったところいずれの検体にも気泡による空隙が多く見られた。更にまた3検体の圧縮強度にはばらつきが見られ、平均圧縮強度も74.7MN/m2と比較例1のものより低かった。
Comparative Example 2
Each specimen was prepared in the same manner as in Example 1 except that the surface of the vibrating bar was not heated while the vibrating bar was inserted into the kneaded product.
As a result, when the melt-modified sulfur was cooled by the vibrating rod during placement on the mold, the kneaded material adhered to the rod and the workability decreased. In addition, the surface of the obtained casting was rough. Furthermore, when the core was removed from the molded body in the same manner as in Example 1, many voids due to bubbles were observed in any specimen. Furthermore, the compressive strengths of the three specimens were varied, and the average compressive strength was 74.7 MN / m 2 , which was lower than that of Comparative Example 1.

Figure 2006095847
Figure 2006095847

実施例2
乾燥後140℃に加熱した3号珪砂35.8質量部、乾燥後140℃に加熱した7号珪砂35.7質量部、乾燥後140℃に加熱した石炭灰9.5質量部及び硫黄変性剤により改質した140℃の溶融改質硫黄19.0質量部を混練し、1000mm×1000mm×450mmの方形型枠に以下の方法で該混練物を流し込み、固化を行った。
型枠の中に前記混練物を流し込みながら、棒状の振動部を予め140℃以上に加熱した投げ込み式振動棒を該混練物中に挿入し、振動を加えながら5分間かけて流し込みを終了し、その後、室温に放置して徐冷・固化した。前記振動棒の外表面温度は、混練物中に挿入している間、140℃程度を保持していた。
上記方法で3検体の成形体を調製した。その結果、いずれの場合も型枠への打設中、振動棒への混練物の付着は見られず、終始作業性良く打設が可能であった。また、打設物表面に荒れも少なかった。得られた成形体から100mmΦ×200mmHのコアを抜いて観察したところ、3検体ともに気泡混入による空隙がほとんど見られなかった。また、得られた検体の圧縮強度を測定した。結果を表2に示す。
表2より、本実施例で調製した各検体は、圧縮強度のばらつきが少なく、平均圧縮強度も58.0MN/m2と高かった。
Example 2
35.8 parts by mass of No. 3 silica sand heated to 140 ° C. after drying, 35.7 parts by mass of No. 7 silica sand heated to 140 ° C. after drying, 9.5 parts by mass of coal ash heated to 140 ° C. after drying, and a sulfur modifier 19.0 parts by mass of 140 ° C. melt-modified sulfur modified by the above was kneaded, and the kneaded product was poured into a 1000 mm × 1000 mm × 450 mm square form by the following method to solidify.
While pouring the kneaded material into the mold, a throw-type vibrating rod whose rod-shaped vibrating portion was heated to 140 ° C. or higher in advance was inserted into the kneaded material, and pouring was completed over 5 minutes while applying vibration. Then, it was allowed to stand at room temperature and gradually cooled and solidified. The outer surface temperature of the vibrating rod was maintained at about 140 ° C. while being inserted into the kneaded product.
Three specimens were prepared by the above method. As a result, in any case, the kneaded material did not adhere to the vibrating rod during the placement on the mold, and the placement was possible with good workability from beginning to end. Moreover, there was little roughness on the surface of the casting. When the core of 100 mmΦ × 200 mmH was removed from the obtained molded body and observed, almost no voids due to air bubbles were found in all three specimens. Further, the compressive strength of the obtained specimen was measured. The results are shown in Table 2.
From Table 2, each specimen prepared in this example had little variation in compressive strength, and the average compressive strength was as high as 58.0 MN / m 2 .

比較例3
実施例2と同様に混練物を調製し、振動台上にセットした実施例2と同様の型枠に流し込みながら、該振動台により振幅0.30mmの上下振動(30Hz)を型枠に5分間加えて混練物から内部の気泡を除去した。続いて、室温に放置して徐冷・固化した。
上記方法で3検体の成形体を調製し、実施例2と同様にコアを抜き取って観察した。その結果、混練物からの気泡除去は良好に行われたように見えたが、前記各コアには、ところどころに気泡による空隙が存在していた。また、得られた3検体の圧縮強度を測定した。結果を表2に示す。
表2より、各検体の圧縮強度には多少のばらつきが見られた。更に、平均圧縮強度も54.9MN/m2と実施例2より低い値であった。
Comparative Example 3
A kneaded material was prepared in the same manner as in Example 2 and poured into a mold similar to that in Example 2 set on a vibration table, while vertical vibration (30 Hz) with an amplitude of 0.30 mm was applied to the mold for 5 minutes. In addition, internal bubbles were removed from the kneaded product. Subsequently, it was allowed to stand at room temperature and gradually cooled and solidified.
Three specimens were prepared by the above method, and the core was extracted and observed in the same manner as in Example 2. As a result, it seemed that the removal of bubbles from the kneaded material was performed well, but in each of the cores, there were some voids due to bubbles. In addition, the compression strength of the obtained three specimens was measured. The results are shown in Table 2.
From Table 2, there was some variation in the compressive strength of each specimen. Further, the average compressive strength was 54.9 MN / m 2 , which was lower than that of Example 2.

比較例4
振動棒の外表面を予め加熱しなかった以外は実施例2と同様に各検体を調製した。
その結果、型枠への打設中、振動棒により溶融改質硫黄が冷えてくると、混練物が棒に付着し、作業性が低下した。また、得られた打設物の表面に荒れが発生していた。更に、実施例2と同様に成形体からコアを抜き取ったところいずれの検体にも気泡による空隙が多く見られた。更にまた3検体の圧縮強度にはばらつきが見られ、平均圧縮強度も51.2MN/m2と比較例3のものより低かった。
Comparative Example 4
Each specimen was prepared in the same manner as in Example 2 except that the outer surface of the vibrating rod was not heated in advance.
As a result, when the melt-modified sulfur was cooled by the vibrating rod during placement on the mold, the kneaded material adhered to the rod and the workability decreased. In addition, the surface of the obtained casting was rough. Further, when the core was removed from the molded body in the same manner as in Example 2, many voids due to bubbles were observed in any specimen. In addition, the compressive strength of the three specimens was varied, and the average compressive strength was 51.2 MN / m 2 , which was lower than that of Comparative Example 3.

Figure 2006095847
Figure 2006095847

Claims (3)

所定形態の型枠内に流し込んだ溶融硫黄含有資材に、振動装置を用いて振動を加えた後、成形固化する硫黄含有資材成形体の製造法であって、
前記振動を、棒状の振動部を備える振動装置を用いて、該振動部の外表面温度を120〜160℃に保持した状態で該振動部を型枠に流し込む溶融硫黄含有資材中の少なくとも1箇所に挿入して行うことを特徴とする硫黄含有資材成形体の製造法。
A method for producing a sulfur-containing material molded body that is molded and solidified after applying vibration to a molten sulfur-containing material poured into a mold of a predetermined form using a vibration device,
At least one location in the molten sulfur-containing material in which the vibration is poured into a mold in a state where the outer surface temperature of the vibration portion is maintained at 120 to 160 ° C. using a vibration device including a rod-shaped vibration portion. A method for producing a sulfur-containing material molded body, which is performed by inserting the material into a sulfur-containing material.
前記棒状の振動部が、表面温度を120℃以上に保持・制御しうる加熱手段を備えることを特徴とする請求項1記載の製造法。   The manufacturing method according to claim 1, wherein the rod-shaped vibrating portion includes a heating unit capable of maintaining and controlling the surface temperature at 120 ° C. or more. 前記棒状の振動部を溶融硫黄含有資材中の少なくとも1箇所に挿入して振動を加えるにあたり、該振動部の外表面温度を、予め120℃以上に加熱しておくことを特徴とする請求項1記載の製造法。   2. The rod-shaped vibrating portion is inserted into at least one location in the molten sulfur-containing material to apply vibration, and the outer surface temperature of the vibrating portion is heated to 120 ° C. or higher in advance. The manufacturing method described.
JP2004284299A 2004-09-29 2004-09-29 Method for producing sulfur-containing material moldings Expired - Fee Related JP4553244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004284299A JP4553244B2 (en) 2004-09-29 2004-09-29 Method for producing sulfur-containing material moldings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004284299A JP4553244B2 (en) 2004-09-29 2004-09-29 Method for producing sulfur-containing material moldings

Publications (2)

Publication Number Publication Date
JP2006095847A true JP2006095847A (en) 2006-04-13
JP4553244B2 JP4553244B2 (en) 2010-09-29

Family

ID=36236122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004284299A Expired - Fee Related JP4553244B2 (en) 2004-09-29 2004-09-29 Method for producing sulfur-containing material moldings

Country Status (1)

Country Link
JP (1) JP4553244B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029787A1 (en) * 2008-09-12 2010-03-18 新日本石油株式会社 Formwork apparatus for solidified sulfur product
EP2258669A1 (en) * 2008-03-25 2010-12-08 Nippon Oil Corporation Production method and production system of solidified sulfur
ITMI20110668A1 (en) * 2011-04-19 2012-10-20 Claudio Paolo Cecchini PROCEDURE FOR THE PREPARATION OF SULFUR BASES

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102912A (en) * 1998-09-30 2000-04-11 Yamax Corp Method for decreasing air bubble on surface of high flow concrete molding
JP2000281425A (en) * 1999-03-30 2000-10-10 Taiheiyo Cement Corp Production of sulfur composition molded form

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102912A (en) * 1998-09-30 2000-04-11 Yamax Corp Method for decreasing air bubble on surface of high flow concrete molding
JP2000281425A (en) * 1999-03-30 2000-10-10 Taiheiyo Cement Corp Production of sulfur composition molded form

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2258669A1 (en) * 2008-03-25 2010-12-08 Nippon Oil Corporation Production method and production system of solidified sulfur
EP2258669A4 (en) * 2008-03-25 2012-11-14 Nippon Oil Corp Production method and production system of solidified sulfur
WO2010029787A1 (en) * 2008-09-12 2010-03-18 新日本石油株式会社 Formwork apparatus for solidified sulfur product
JP2010064409A (en) * 2008-09-12 2010-03-25 Nippon Oil Corp Mold device for sulfur solidified product
ITMI20110668A1 (en) * 2011-04-19 2012-10-20 Claudio Paolo Cecchini PROCEDURE FOR THE PREPARATION OF SULFUR BASES
WO2012143388A3 (en) * 2011-04-19 2012-12-27 Ausy S.R.L. Procedure for the preparation of sulphur-based articles of manufacture
US8894720B2 (en) 2011-04-19 2014-11-25 Ausy S.R.L. Procedure for the preparation of sulphur-based articles of manufacture

Also Published As

Publication number Publication date
JP4553244B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP4040000B2 (en) Sulfur intermediate material, sulfur material and manufacturing method thereof
JP2006315314A (en) System for producing modified sulfur solidified article
JP4033894B2 (en) Modified sulfur-containing binder and method for producing modified sulfur-containing material
KR20050026021A (en) Acid-resistant sulfur material and method for application of acid-resistant sulfur material
JP4553244B2 (en) Method for producing sulfur-containing material moldings
JP4421803B2 (en) Method for producing modified sulfur-containing binder and method for producing modified sulfur-containing material
JP3683826B2 (en) Method for producing hardened cement
JP2004002112A (en) Method for producing modified-sulfur-containing material and modified-sulfur-containing material
JP2004189538A (en) Porous sulfur material, its production method, and block and structure using the material
JP2003012361A (en) Instant stripping porous concrete compact
JP2002097060A (en) Method for manufacturing sulfur material
JP2006306634A (en) Porous modified sulfur solidified body composed mainly of shell pulverized product and civil engineering/building structure
CN109153611B (en) Hydrated cured body and method for producing same
JP2002097059A (en) Sulfur binder and sulfur civil engineering and construction material
JP3777295B2 (en) Manufacturing methods for civil engineering and construction materials
JP2007262797A (en) Paved guiding footpath and its manufacturing process
JP2007302557A (en) Sulfur intermediate material and its producing method
JP2005200257A (en) Method for producing sulfur formed body
JP4166702B2 (en) Method for producing modified sulfur-containing binder and method for producing modified sulfur-containing material
JP2005179114A (en) Method for producing sulfur concrete
JP2011195355A (en) Method for manufacturing modified sulfur material
JP4231727B2 (en) Manufacturing methods for civil engineering and building materials using shells
JP3852675B2 (en) Manufacturing methods for civil engineering and construction materials
JPH1072245A (en) Sulfur mortar structure
JP2011190142A (en) Modified sulfur material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees