JP2006095722A - Optical element and its manufacturing method - Google Patents

Optical element and its manufacturing method Download PDF

Info

Publication number
JP2006095722A
JP2006095722A JP2004281421A JP2004281421A JP2006095722A JP 2006095722 A JP2006095722 A JP 2006095722A JP 2004281421 A JP2004281421 A JP 2004281421A JP 2004281421 A JP2004281421 A JP 2004281421A JP 2006095722 A JP2006095722 A JP 2006095722A
Authority
JP
Japan
Prior art keywords
molding
molding support
resin
flattening
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004281421A
Other languages
Japanese (ja)
Inventor
Hiroaki Maekawa
浩章 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004281421A priority Critical patent/JP2006095722A/en
Publication of JP2006095722A publication Critical patent/JP2006095722A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the occurrence of burr caused by the outflow of a resin to an outer periphery by uniformizing the thickness of a molded layer in the flattening molding on an optical surface for forming a braized type diffraction lattice. <P>SOLUTION: A stamper mold, a resin material and a photoirradiator are used to perform the replica molding of a first molding support part, which has a gap enabling the outflow of the resin material between the relief pattern surface becoming the diffraction lattice and an outer peripheral part, and a second molding support part, which can suppress the outflow of the resin in the outer peripheral part, on an optical base material using the photoirradiator so that the second molding support part is slightly higher than the first molding support part by several μm. A ring-shaped member is arranged so as to cover the first molding support part on a substrate and, especially a strong member is formed on the first molding support part by two-body constitution to impart flattening pressure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、回折光学面の平坦化成形により得られる光学素子及び光学素子の成形方法に関するものである。   The present invention relates to an optical element obtained by flattening a diffractive optical surface and a method for molding the optical element.

一般的に光学基板の成形面に対向する面には傷、クラックなどの破損を防止する観点から大きな圧力を加えることは小数である。2P法を用いたレプリカ成形工程や、液晶基板技術、半導体製造技術においても同様に基板に10kgf以上もの圧力を加えることは珍しい。   In general, a large pressure is applied to the surface of the optical substrate facing the molding surface from the viewpoint of preventing damage such as scratches and cracks. Similarly, in the replica molding process using the 2P method, the liquid crystal substrate technology, and the semiconductor manufacturing technology, it is rare to apply a pressure of 10 kgf or more to the substrate.

ところで近年ではCDやDVDなどの光情報記録媒体が普及している。光記録媒体において、支持基体31と光透過性シート33を紫外線硬化型樹脂層32で接合し、その際、一定の加圧力で圧力を付与し、接着層の厚さを30μm以下程度に均一化する技術が知られている(特許文献1参照)。この技術の狙いは光透過層の厚さを均一化することで光記録媒体の反りの発生を抑え、光透過層の光学的不均質さ、特に複屈折の増大を抑制することを目的としている。また、同時に読み出し面への接着層のはみ出しは許容されない。   In recent years, optical information recording media such as CDs and DVDs have become widespread. In the optical recording medium, the support base 31 and the light transmissive sheet 33 are joined by the ultraviolet curable resin layer 32. At that time, pressure is applied with a constant pressure, and the thickness of the adhesive layer is made uniform to about 30 μm or less. The technique to do is known (refer patent document 1). The aim of this technique is to suppress the occurrence of warping of the optical recording medium by making the thickness of the light transmission layer uniform, and to suppress the optical heterogeneity of the light transmission layer, particularly the increase of birefringence. . At the same time, the protrusion of the adhesive layer to the reading surface is not allowed.

一方でブレーズド型回折光学素子の回折光学面に平坦化層を成形するレプリカ転写技術では、図5に示すように従来、加圧を受ける基板ガラス21の外周にリング状平坦化ガラス24を介して300kgfもの圧力を付与し、回折光学面22aと型23の間に紫外線硬化型樹脂を押し拡げ、充填した後、光照射する。この後、基板への加圧力を除荷し、離型する工程を行なう。   On the other hand, in the replica transfer technique in which a planarization layer is formed on the diffractive optical surface of a blazed diffractive optical element, conventionally, as shown in FIG. A pressure of as much as 300 kgf is applied, and an ultraviolet curable resin is spread and filled between the diffractive optical surface 22a and the mold 23, and then irradiated with light. Thereafter, a process of releasing the pressure applied to the substrate and releasing the mold is performed.

また、特許文献2では曲面上の回折光学面に平坦化層を形成し、更にその上に曲面上の回折光学面を積層構造の回折光学素子として形成した例が記載されている。
特開2001−209973号公報 特開2002−107520号公報
Patent Document 2 describes an example in which a flattened layer is formed on a diffractive optical surface on a curved surface, and a diffractive optical surface on the curved surface is further formed thereon as a diffractive optical element having a laminated structure.
JP 2001-209973 A JP 2002-107520 A

しかしながら、特許文献1の光記録媒体の例では基体が樹脂である上に接着層の均一化に必要な付与圧力は1〜2気圧程度で済み、同時に読み出し面への接着層のはみ出しをコントロールすることも容易である。   However, in the example of the optical recording medium of Patent Document 1, the substrate is a resin, and the application pressure required to make the adhesive layer uniform is about 1 to 2 atm. At the same time, the protrusion of the adhesive layer to the reading surface is controlled. It is also easy.

ブレーズド型回折光学素子の回折光学面に平坦化層を成形するレプリカ転写技術では、加圧力を付与する工程において、図4に示すように剛体である基板ガラス21の中央が撓み、数μm台の平坦化層の厚み規格外の状態(t1>t2>t3>t4)で平坦化層が成形されるという問題があった。この問題により光学的には中央と周辺の膜厚ムラで波面収差(球面収差)が発生し、光学性能が低下する。   In the replica transfer technique in which a planarizing layer is formed on the diffractive optical surface of a blazed diffractive optical element, in the step of applying pressure, the center of the substrate glass 21 that is a rigid body is bent as shown in FIG. There was a problem that the planarization layer was molded in a state outside the thickness standard of the planarization layer (t1> t2> t3> t4). Due to this problem, wavefront aberration (spherical aberration) occurs optically due to film thickness unevenness between the center and the periphery, and optical performance deteriorates.

また、樹脂を押し拡げるための圧力を300kgfも必要とするため、樹脂流れをコントロール出来ず、樹脂が型からはみ出し、バリを発生する問題があった。   Further, since 300 kgf of pressure for expanding the resin is required, the resin flow cannot be controlled, and there is a problem that the resin protrudes from the mold and generates burrs.

或いは、特許文献2の積層構造の回折光学素子によると、積層構造の空気間隔が1.5±−1.3 +1.5μm設定の極めて微細な構成が要求されるため、平坦化層の中央の膜厚が大きくなると積層した回折光学面との接触が発生してしまう。 Alternatively, according to the diffractive optical element having the laminated structure of Patent Document 2, an extremely fine structure in which the air interval of the laminated structure is set to 1.5 ± −1.3 + 1.5 μm is required. When the film thickness of the film increases, contact with the laminated diffractive optical surface occurs.

そこで、本発明はこれら問題点に鑑み、基板ガラスへの平坦化圧力を有効に分散させ、平坦化層を均一化すると共に、加圧充填時の樹脂液の流出を防止し、品質性と生産性に優れた光学素子及びその成形方法を提供する事にある。   Therefore, in view of these problems, the present invention effectively disperses the flattening pressure on the substrate glass, homogenizes the flattening layer, prevents the outflow of the resin liquid during pressure filling, and improves quality and production. It is to provide an optical element having excellent properties and a molding method thereof.

請求項1に係る発明の光学素子は、回折光学面上に樹脂を滴下、充填して硬化させ、平坦化面を形成する平坦化成形において、平坦化圧力を型上で支持する第2の成形支持部と、基板の撓みを該第2の成形支持部より内側の型上で支持する第1の成形支持部を基板にレプリカ成形した事を特徴とする。   The optical element of the invention according to claim 1 is a second molding that supports a planarizing pressure on a mold in a planarization molding in which a resin is dropped onto a diffractive optical surface, filled and cured to form a planarized surface. The support part and the first molding support part that supports the bending of the substrate on the mold inside the second molding support part are replica-molded on the substrate.

請求項2に係る発明の光学素子は、請求項1に係る発明の光学素子において、加圧進行に伴って、前記第2の成形支持部が最初に型面に当接し、次に、第1の成形支持部が型面に当接する事を特徴とする。   The optical element of the invention according to claim 2 is the optical element of the invention according to claim 1, wherein the second molding support portion first comes into contact with the mold surface as the pressurization proceeds, and then the first element The molding support portion is in contact with the mold surface.

請求項3に係る発明の光学素子は、請求項1または請求項2に係る発明の光学素子において、前記第1の成形支持部は、充填樹脂の一部を外周に流出可能な隙間を有し、前記第2の成形支持部は樹脂流出用の隙間を有しない事を特徴とする。   The optical element of the invention according to claim 3 is the optical element of the invention according to claim 1 or 2, wherein the first molding support portion has a gap through which a part of the filling resin can flow out to the outer periphery. The second molding support part does not have a gap for resin outflow.

請求項4に係る発明の平坦化成形方法は、回折光学面上に樹脂を滴下、充填して硬化させ、平坦化面を形成する平坦化成形において、平坦化圧力を型上で支持する第2の成形支持部と、基板の撓みを該第2の成形支持部より内側の型上で支持する第1の成形支持部により基板の撓みを規制することを特徴とする。   According to a fourth aspect of the present invention, there is provided a flattening molding method for supporting a flattening pressure on a mold in a flattening molding in which a resin is dropped, filled and cured on a diffractive optical surface to form a flattened surface. The bending of the substrate is regulated by the forming support portion of the substrate and the first forming support portion that supports the bending of the substrate on the mold inside the second forming support portion.

請求項5に係る発明の平坦化成形方法は、回折光学面上に樹脂を滴下、充填して硬化させ、平坦化面を形成する平坦化成形において、基板上に平坦化圧力を付与するリング状部材は、外周端を前記第1の成形支持部上と前記第2の成形支持部上の間に配置し、該リング状部材の内周端から前記第1の成形支持部にかけての基板非接触部を他の領域より強固な部材で2体構成とした事を特徴とする。   According to a fifth aspect of the present invention, there is provided a flattening molding method in which a resin is dropped on a diffractive optical surface, filled and cured to form a flattened surface, and a ring shape for applying a flattening pressure on a substrate The member has an outer peripheral end disposed on the first molding support portion and the second molding support portion, and the substrate does not contact the inner peripheral end of the ring-shaped member to the first molding support portion. The structure is characterized in that the two parts are made of a member stronger than other regions.

本発明によれば加圧力による基板変形が僅かに数μm発生してもレプリカ面の加圧支持部材の2段差構成により平坦化層の厚みを均一化し、厚みムラによる球面収差の発生で光学性能の低下を招かない、或いは積層構造の回折光学素子にあっては平坦化層と積層した回折光学面との本来の空気間隔を減少させてしまい光学面どうしの接触を招くことのない光学素子及びその成形方法を提供することが出来る。   According to the present invention, even if the substrate deformation due to the applied pressure occurs only a few μm, the thickness of the flattening layer is made uniform by the two-step configuration of the pressure support member on the replica surface, and the optical performance is achieved by the generation of spherical aberration due to uneven thickness. In the case of a diffractive optical element having a laminated structure, an optical element that reduces the original air gap between the planarizing layer and the laminated diffractive optical surface and does not cause contact between the optical surfaces, and The molding method can be provided.

また、レプリカ面の加圧支持部材の外周部が充填中の樹脂の流出を抑え、バリの発生を未然に防止するので歩止まりを小さくし、生産効率が向上する光学素子及びその成形方法を提供出来る。   In addition, the outer peripheral portion of the pressure support member on the replica surface suppresses the outflow of resin during filling, prevents the occurrence of burrs, and thus provides an optical element that reduces yield and improves production efficiency, and a molding method therefor I can do it.

本発明の実施の形態は、上記構成を適用し、ブレーズド型回折格子の回折光学面への平坦化成形において、加圧力による基板変形が僅かに数μm発生してもレプリカ面の加圧支持部材の2段差構成により平坦化層の厚みを均一化し、厚みムラによる球面収差の発生で光学性能の低下を招かない、或いは積層構造の回折光学素子にあっては平坦化層と積層した回折光学面との本来の空気間隔を減少させてしまい光学面どうしの接触を招くことのない光学素子及びその成形方法が実現可能である。   In the embodiment of the present invention, the above configuration is applied, and in the flattening molding of the blazed diffraction grating to the diffractive optical surface, the pressure supporting member on the replica surface is generated even if the substrate deformation due to the applied pressure occurs only a few μm. The diffractive optical surface laminated with the flattening layer in the case of a diffractive optical element having a laminated structure, in which the thickness of the flattening layer is made uniform by the two-step structure of It is possible to realize an optical element and a molding method thereof that reduce the original air gap between the optical surfaces and cause no contact between optical surfaces.

また、レプリカ面の加圧支持部材の外周部が充填中の樹脂の流出を抑え、バリの発生を未然に防止するので歩止まりを小さくし、生産効率が向上する光学素子及びその成形方法が実現可能である。   Moreover, the outer peripheral part of the pressure support member on the replica surface suppresses the outflow of resin during filling and prevents the generation of burrs, thus reducing the yield and improving the production efficiency, and an optical element and its molding method are realized. Is possible.

以下、本発明を実施例に沿って説明する。   Hereinafter, the present invention will be described with reference to examples.

<第1の実施例>
図1は、本発明の第1の実施例における構成断面図、図2(a)は、第1の実施例における平坦化前の状態を表す断面図、図2(b)は、加圧力の推移を表す構成断面図である。また、図3は、本発明の第1の実施例における基板ガラス上のレプリカ転写面の正面図である。同図において、1は光学素子のベースとなる基板ガラス、2はブレーズド型回折格子を形成する樹脂部材、3は平坦化面を転写成形するための平坦化型、4は平坦化圧力を基板ガラス2に付与する剛性部材、7は回折光学面2a上に樹脂材料を一体成形する平坦化層である。
<First embodiment>
FIG. 1 is a cross-sectional view of the configuration of the first embodiment of the present invention, FIG. 2A is a cross-sectional view showing a state before flattening in the first embodiment, and FIG. It is a composition sectional view showing change. FIG. 3 is a front view of the replica transfer surface on the substrate glass in the first embodiment of the present invention. In the figure, reference numeral 1 denotes a substrate glass that serves as a base of an optical element, 2 denotes a resin member that forms a blazed diffraction grating, 3 denotes a flattening die for transfer-molding a flattened surface, and 4 denotes a flattening pressure. A rigid member 7 is provided on the diffractive optical surface 2a, and a flattening layer for integrally molding a resin material.

基板ガラス1光学ガラス基材としては一般的な硝材S−BSL7を用いる。樹脂部材2は光硬化反応型のモノマー樹脂を使用し、基板ガラス1上に不図示スタンパ型と光照射装置を用いて図3に示すようなレリーフパターン転写面2aと平坦化型3への当接面が円ボスで柱状をなす第1の成形支持部5と第1の成形支持部より数μm高く構成(図2(a)のh部)された円環状リブをなす第2の成形支持部6を予めレプリカ成形しておく。ここで樹脂部材2は熱硬化型樹脂であっても光硬化・熱硬化併用型樹脂であっても良い。   Substrate glass 1 A general glass material S-BSL7 is used as an optical glass substrate. The resin member 2 uses a photo-curing reaction type monomer resin, and is applied to the relief pattern transfer surface 2a and the flattening die 3 as shown in FIG. The first molding support portion 5 whose contact surface forms a columnar shape with a circular boss and the second molding support that forms an annular rib that is configured to be several μm higher than the first molding support portion (the h portion in FIG. 2A). The part 6 is replica-molded in advance. Here, the resin member 2 may be a thermosetting resin or a photocuring / thermosetting resin.

平坦化層7に用いる樹脂材料は、室温以上の一定温度で流動化する光硬化型のモノマー樹脂を用いる。樹脂材料の特性は、光学特性(屈折率、透過率)、物性(粘度、硬化性、線膨張)など異なる点が多い。この樹脂材料によって回折光学面2aと平坦化型3の間で平坦化層7が均一な厚みを持ってレプリカ成形される。平坦化型3はニュートン、アス、クセ本数が0.5本以下の凹面曲率形状の高精度な超硬性研磨型を用いる。剛性部材4は中空状の両面研磨ガラスを用いても良いが、基板ガラス1への撓み量を微妙に制御するため、内周上部を超硬合金研磨材4aと外周下部をステンレス鋼研磨材4bの2体構成とした。   The resin material used for the planarizing layer 7 is a photocurable monomer resin that is fluidized at a constant temperature of room temperature or higher. The resin material has many different characteristics such as optical properties (refractive index, transmittance) and physical properties (viscosity, curability, linear expansion). By this resin material, the flattening layer 7 is replica-molded with a uniform thickness between the diffractive optical surface 2a and the flattening die 3. As the flattening die 3, a high-precision carbide polishing die having a concave curvature shape with Newton, asphalt, and habits of 0.5 or less is used. The rigid member 4 may be a hollow double-side polished glass, but in order to finely control the amount of deflection to the substrate glass 1, the inner peripheral upper part is a cemented carbide abrasive 4a and the outer peripheral lower part is a stainless steel abrasive 4b. The two-body configuration was used.

次に平坦化成形方法について、図1、図2を用いて順を追って説明する。   Next, the planarization molding method will be described in order with reference to FIGS.

平坦化層7を形成する樹脂を一定温度で過熱した状態でディスペンサーのシリンジ内に保持し、所定吐出時間を設定して回折光学面2aの中心部に約30mgの樹脂を滴下する。続いて平坦化型3を回折格子を形成する樹脂部材2に軽接触させる。剛性部材4の超硬合金研磨材4a上に不図示加圧センサーが3等分配置されている。装置を起動すると、コンプライアンス構成(傾き自動補正)を持つ不図示加圧装置の油圧シリンダーが徐々に加圧し、最終的に100kgf/(1加圧センサー)の加圧力を付与する(F)。剛性部材4のステンレス鋼研磨材4bには3つの加圧センサー分の300kgfの加圧力が伝達され(f1)、基板ガラス1がその加圧力を受ける(f3)と、平坦化層樹脂7の充填に伴って、第2の成形支持部6先端が平坦化型3の型面に当接する(f4)。基板ガラス1は僅か数μm中凸状に撓み始めるが、加圧力は一定に維持されるため、基板ガラス1は中凸状を矯正する方向に撓み始め、やがて基板ガラス1が僅か数μm中凹状に撓み始めると同時に第1の成形支持部5の頂部が平坦化型3の型面に当接する(f5)。ここで剛性部材4のステンレス鋼研磨材4bは超硬合金研磨材4aからの加圧力を基板ガラス1に直に伝達せず、緩和する(f2)ため基板ガラス1を破損することなく、また、基板ガラス1が中凸状態からの矯正を緩和して進展させる働きがあり、基板ガラス1の矯正速度と平坦化層7の樹脂充填速度を同期させることが出来る。余剰樹脂は第1の成形支持部5の隙間から流出し、第2の成形支持部6で抑止され、第2の成形支持部と第1の成形支持部の間の2b部に滞留する。   The resin forming the flattening layer 7 is held in the syringe of the dispenser while being heated at a constant temperature, and a predetermined discharge time is set, and about 30 mg of resin is dropped onto the center of the diffractive optical surface 2a. Subsequently, the flattening mold 3 is brought into light contact with the resin member 2 forming the diffraction grating. On the cemented carbide abrasive 4a of the rigid member 4, pressure sensors (not shown) are arranged in three equal parts. When the apparatus is activated, a hydraulic cylinder of a not-shown pressurizing apparatus having a compliance configuration (automatic tilt correction) gradually pressurizes, and finally applies a pressurizing force of 100 kgf / (1 pressurizing sensor) (F). When 300 kgf of pressurizing force corresponding to three pressure sensors is transmitted to the stainless steel abrasive 4b of the rigid member 4 (f1) and the substrate glass 1 receives the pressurizing force (f3), the flattening layer resin 7 is filled. As a result, the tip of the second molding support portion 6 comes into contact with the mold surface of the flattening mold 3 (f4). The substrate glass 1 begins to bend in a convex shape of only a few μm, but since the applied pressure is maintained constant, the substrate glass 1 starts to bend in a direction to correct the middle convex shape, and the substrate glass 1 eventually has a concave shape of only a few μm. At the same time, the top of the first molding support 5 comes into contact with the mold surface of the flattening mold 3 (f5). Here, the stainless steel abrasive 4b of the rigid member 4 does not directly transmit the applied pressure from the cemented carbide abrasive 4a to the substrate glass 1 and relaxes (f2), so that the substrate glass 1 is not damaged. The substrate glass 1 works to relax and advance the correction from the middle convex state, and the correction speed of the substrate glass 1 and the resin filling speed of the flattening layer 7 can be synchronized. The surplus resin flows out from the gap between the first molding support portions 5, is restrained by the second molding support portion 6, and stays in the portion 2b between the second molding support portion and the first molding support portion.

この間、2分程度の間に平坦化層7の樹脂は充填され、層厚t1、t2、t3、t4は等しく均一化される。この後、加圧状態を維持したまま所定のプロフィルを設定した紫外線エネルギー(1mW/cm×10sec+10mW/cm×10sec+100mW/cm×100sec)を基板ガラス1側から照射して樹脂を硬化し、直後に加圧装置を操作して加圧状態を開放する。次に型のイジェクターにより離型し、平坦化面周辺を先工程のプロファイルの1/10秒時の照射エネルギーで補助硬化する。 During this time, the resin of the planarizing layer 7 is filled in about 2 minutes, and the layer thicknesses t1, t2, t3, and t4 are equalized uniformly. Thereafter, the resin is cured by irradiating the substrate glass 1 side with ultraviolet energy (1 mW / cm 2 × 10 sec + 10 mW / cm 2 × 10 sec + 100 mW / cm 2 × 100 sec) set with a predetermined profile while maintaining the pressurized state, Immediately after that, the pressure device is operated to release the pressure state. Next, the mold is released by a mold ejector, and the periphery of the flattened surface is auxiliary-cured with the irradiation energy at 1/10 second of the profile of the previous process.

こうして成形された平坦化層は加圧力による基板変形が僅かに数μm発生してもレプリカ面の加圧支持部材の2段差構成により平坦化層の厚みを均一化し、厚みムラによる球面収差の発生で光学性能の低下を招くことがない。   The flattened layer formed in this way makes the thickness of the flattened layer uniform by the two-step structure of the pressure support member on the replica surface even if the substrate deformation due to the applied pressure occurs only a few μm, and the generation of spherical aberration due to uneven thickness Therefore, the optical performance is not deteriorated.

また、レプリカ面の加圧支持部材の外周部が充填中の樹脂の流出を抑え、バリの発生を未然に防止するので歩止まりを小さくし、生産効率が向上する。   Further, since the outer peripheral portion of the pressure support member on the replica surface suppresses the outflow of the resin during filling and prevents the generation of burrs, the yield is reduced and the production efficiency is improved.

<第2の実施例>
本発明の第2の実施例は図4において、第1の成形支持部15を一定円弧状に配列するようにレプリカ成形した第1の実施形態の変形例である。断面構成及び、その他部材の構成については第1の実施例と同様であるため説明を省略する。
<Second embodiment>
The second embodiment of the present invention is a modification of the first embodiment shown in FIG. 4 in which the first molding support portions 15 are replica-molded so as to be arranged in a constant arc shape. Since the cross-sectional configuration and the configuration of other members are the same as those in the first embodiment, description thereof will be omitted.

この実施例の効果は、第1の実施例の平坦化成形方法で述べた加圧工程で、基板ガラスが中凹状に撓む量を更に小さく制御出来る。また、第1の実施例に比べ、複数の第1の成形支持部間の隙間数が少ないことから樹脂流出を多く必要としない樹脂材料の設定(物性、滴下量など)に適合している。   The effect of this embodiment is that the amount by which the substrate glass is bent into a concave shape can be further controlled in the pressing step described in the flattening molding method of the first embodiment. Further, compared to the first embodiment, since the number of gaps between the plurality of first molding support portions is small, it is suitable for setting of resin material (physical properties, dripping amount, etc.) that does not require much resin outflow.

本発明の第1の実施例の構成を示す断面図である。It is sectional drawing which shows the structure of the 1st Example of this invention. (a)は本発明の第1の実施例の平坦化前の状態を表す構成断面図、(b)は本発明の第1の実施例の加圧力の推移を表す構成断面図である。(A) is a structure sectional view showing the state before flattening of the 1st example of the present invention, and (b) is a structure sectional view showing change of the applied pressure of the 1st example of the present invention. 本発明の第1の実施例の回折光学面及び第1、第2の成形支持部を基板ガラス上にレプリカ成形した一部平面拡大図である。It is the partial plane enlarged view which replica-molded the diffraction optical surface and the 1st, 2nd shaping | molding support part of the 1st Example of this invention on the substrate glass. 本発明の第2の実施例の回折光学面及び第1、第2の成形支持部を基板ガラス上にレプリカ成形した一部平面拡大図である。It is the partial plane enlarged view which replica-molded the diffraction optical surface and the 1st, 2nd shaping | molding support part of the 2nd Example of this invention on the substrate glass. 従来例の構成を示す断面図である。It is sectional drawing which shows the structure of a prior art example. 光学情報記録媒体の構成を示す断面図である。It is sectional drawing which shows the structure of an optical information recording medium.

符号の説明Explanation of symbols

1、11、21 基板ガラス
2、12、22 樹脂材料
2a、12a、22a 光学面(レリーフパターン)
2b、12b 第1の成形支持部と第2の成形支持部の隙間
3、23 平坦化型
4 剛性部材
4a 超硬合金研磨材
4b ステンレス鋼研磨材
5、15、25 第1の成形支持部
6、16 第2の成形支持部
7、27 平坦化層
31 基体
32 紫外線硬化型樹脂層
33 光透過性シート
1, 11, 21 Substrate glass 2, 12, 22 Resin material 2a, 12a, 22a Optical surface (relief pattern)
2b, 12b Gap 3, 23 between first molding support part and second molding support part Flattening die 4 Rigid member 4a Cemented carbide abrasive 4b Stainless steel abrasive 5, 15, 25 First molding support 6 , 16 2nd shaping | molding support parts 7 and 27 Planarization layer 31 Base | substrate 32 Ultraviolet curable resin layer 33 Light transmissive sheet

Claims (5)

回折光学面上に樹脂を滴下、充填して硬化させ、平坦化面を形成する平坦化成形において、平坦化圧力を型上で支持する第2の成形支持部と、基板の撓みを該第2の成形支持部より内側の型上で支持する第1の成形支持部を基板にレプリカ成形してなることを特徴とする光学素子。   In flattening molding for forming a flattened surface by dripping, filling, and curing a resin on the diffractive optical surface, the second molding support portion for supporting the flattening pressure on the mold, and the bending of the substrate is the second. An optical element obtained by replica-molding a first molding support portion, which is supported on a mold inside the molding support portion, on a substrate. 加圧進行に伴って、前記第2の成形支持部が最初に型面に当接し、次に、第1の成形支持部が型面に当接する事を特徴とする請求項1に記載の光学素子。   2. The optical device according to claim 1, wherein as the pressurization proceeds, the second molding support portion first contacts the mold surface, and then the first molding support portion contacts the mold surface. element. 前記第1の成形支持部は、充填樹脂の一部を外周に流出可能な隙間を有し、前記第2の成形支持部は樹脂流出用の隙間を有しない事を特徴とする請求項1または請求項2に記載の光学素子。   The first molding support part has a gap through which a part of the filled resin can flow out to the outer periphery, and the second molding support part does not have a gap for resin outflow. The optical element according to claim 2. 回折光学面上に樹脂を滴下、充填して硬化させ、平坦化面を形成する平坦化成形において、平坦化圧力を型上で支持する第2の成形支持部と、基板の撓みを該第2の成形支持部より内側の型上で支持する第1の成形支持部により基板の撓みを規制することを特徴とする光学素子の成形方法。   In flattening molding for forming a flattened surface by dripping, filling, and curing a resin on the diffractive optical surface, the second molding support portion for supporting the flattening pressure on the mold, and the bending of the substrate is the second. A method for molding an optical element, comprising: controlling bending of a substrate by a first molding support portion supported on a mold inside the molding support portion. 回折光学面上に樹脂を滴下、充填して硬化させ、平坦化面を形成する平坦化成形において、基板上に平坦化圧力を付与するリング状部材は、外周端を前記第1の成形支持部上と前記第2の成形支持部上の間に配置し、該リング状部材の内周端から前記第1の成形支持部にかけての基板非接触部を他の領域より強固な部材で2体構成とした事を特徴とする光学素子の成形方法。   In flattening molding in which a resin is dropped, filled and cured on the diffractive optical surface to form a flattened surface, the ring-shaped member for applying a flattening pressure on the substrate has an outer peripheral end at the first molding support portion. Arranged between the upper part and the second molding support part, the substrate non-contact part from the inner peripheral end of the ring-shaped member to the first molding support part is composed of two members that are stronger than other regions. An optical element molding method characterized by the above.
JP2004281421A 2004-09-28 2004-09-28 Optical element and its manufacturing method Withdrawn JP2006095722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004281421A JP2006095722A (en) 2004-09-28 2004-09-28 Optical element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004281421A JP2006095722A (en) 2004-09-28 2004-09-28 Optical element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006095722A true JP2006095722A (en) 2006-04-13

Family

ID=36236013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004281421A Withdrawn JP2006095722A (en) 2004-09-28 2004-09-28 Optical element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006095722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022023220A (en) * 2015-06-15 2022-02-07 マジック リープ, インコーポレイテッド Virtual and augmented reality systems and methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022023220A (en) * 2015-06-15 2022-02-07 マジック リープ, インコーポレイテッド Virtual and augmented reality systems and methods
JP7203927B2 (en) 2015-06-15 2023-01-13 マジック リープ, インコーポレイテッド Virtual and augmented reality systems and methods
US11733443B2 (en) 2015-06-15 2023-08-22 Magic Leap, Inc. Virtual and augmented reality systems and methods
US11789189B2 (en) 2015-06-15 2023-10-17 Magic Leap, Inc. Display system with optical elements for in-coupling multiplexed light streams

Similar Documents

Publication Publication Date Title
JP5411557B2 (en) Microstructure transfer device
JP4210257B2 (en) Manufacturing method of diffractive lens array mold
JP2005250469A (en) Lens, transmission type screen, and method for manufacturing lems
JP2008023868A (en) Transfer method and transfer apparatus for energy ray-hardening resin, and disk or semiconductor device
JP2006212859A (en) Molding method and molding machine
KR101121276B1 (en) Polarizing resin lens and process for producing same
JP2006095722A (en) Optical element and its manufacturing method
JP5349777B2 (en) Optical element manufacturing method
JP4148278B2 (en) Optical disc manufacturing method and manufacturing apparatus thereof
JP2007331205A (en) Method for producing thermoplastic resin sheet
JP2003011140A (en) Method and apparatus for demolding diffraction optical element
JP2013033222A (en) Diffractive optical element and imaging apparatus using the same
JP2007268876A (en) Pattern transfer method, pattern transfer apparatus and manufacturing method of optical disk
JPH0866972A (en) Manufacture of composite type optic
CN111971590B (en) Resin laminated optical body and method for producing same
JP2005305875A (en) Mold, method for manufacturing composite optical element, and composite optical element
JP4727596B2 (en) Optical element molding method
JP4529895B2 (en) Manufacturing method of optical disk
JP4209343B2 (en) Manufacturing method of multilayer structure type optical recording medium
JP2006089313A (en) Method of molding plastic material
JP4320708B2 (en) Optical element manufacturing method
JPH08124223A (en) Production of optical disc
JP4501439B2 (en) Method for continuous replication of radiation curable resin and resin molding by the method
JP4232380B2 (en) Method for manufacturing composite optical element
JP2006113340A (en) Manufacturing method of composite optical element and composite optical element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204