JP2006095512A - Biogas refining method and biogas refining equipment - Google Patents

Biogas refining method and biogas refining equipment Download PDF

Info

Publication number
JP2006095512A
JP2006095512A JP2005214361A JP2005214361A JP2006095512A JP 2006095512 A JP2006095512 A JP 2006095512A JP 2005214361 A JP2005214361 A JP 2005214361A JP 2005214361 A JP2005214361 A JP 2005214361A JP 2006095512 A JP2006095512 A JP 2006095512A
Authority
JP
Japan
Prior art keywords
biogas
gas
pressure
water
absorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005214361A
Other languages
Japanese (ja)
Other versions
JP4022555B2 (en
Inventor
Kyozo Takenaka
恭三 竹中
Kazuaki Muratani
和明 村谷
Hiroko Tanaka
裕子 田中
Shuichi Kiyama
秀一 木山
Hiroshi Miyamoto
博司 宮本
Tadashi Koyama
忠志 小山
Katsuo Matsumoto
勝生 松本
Tomohiro Maruyama
智裕 丸山
Shiro Toyohisa
志朗 豊久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Kobe City
Original Assignee
Kobelco Eco Solutions Co Ltd
Kobe City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd, Kobe City filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2005214361A priority Critical patent/JP4022555B2/en
Publication of JP2006095512A publication Critical patent/JP2006095512A/en
Application granted granted Critical
Publication of JP4022555B2 publication Critical patent/JP4022555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Treatment Of Sludge (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biogas refining method which dispenses with the installation of a large-sized low pressure gas holder, can achieve the space saving and cost reduction of biogas refining equipment as a whole and can stably take a biogas out of an anaerobic fermentation tank. <P>SOLUTION: In the biogas refining method, the biogas is generated by anaerobically fermenting organic waste in the anaerobic fermentation tank, the biogas from the anaerobic fermentation tank is raised in pressure by a gas compressor 402 to be sent to an absorbing column, the biogas is brought into contact with water in the absorbing column in a high pressure state, carbon dioxide and sulferous impurities contained in the biogas are dissolved in high pressure water to be separated from the biogas to obtain a refined gas with highly concentrated methane, the gas pressure in the anaerobic fermentation tank is measured at this time and the number of rotations of the gas compressor is controlled from the measuring result to be increased and decreased so that the gas pressure in the anaerobic fermentation tank becomes a predetermined almost constant set value. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、下水処理場で発生する下水汚泥などの有機性廃棄物を嫌気性発酵させることでバイオガスを発生させ、このバイオガスを精製して二酸化炭素,硫黄不純物などを除去し、メタンを高濃度化した精製ガスを得るバイオガスの精製方法及びバイオガス精製設備に関するものである。   The present invention generates biogas by anaerobic fermentation of organic waste such as sewage sludge generated in a sewage treatment plant, purifies the biogas to remove carbon dioxide, sulfur impurities, etc. The present invention relates to a biogas purification method and a biogas purification facility for obtaining highly concentrated purified gas.

地球温暖化防止や循環型社会(持続的社会)の構築のため、バイオマス資源の活用が期待されており、生ゴミなどの食品廃棄物,家畜糞尿,有機性廃水,下水処理場で発生する下水汚泥などの有機性廃棄物を嫌気性発酵させることでバイオガスを発生させて、このバイオガスをエネルギーとして利用する技術の開発が進められている。とりわけ、平成14年12月にわが国において閣議決定されたバイオマス総合戦略によれば、下水処理場において最初沈殿池及び最終沈殿池で発生する下水汚泥を嫌気性発酵させて生成させるバイオガス(消化ガス)の利用が期待されている。この消化ガス(下水汚泥消化ガス)は、メタン(CH)及び二酸化炭素(CO)を主成分とし(メタン:約60容量%前後、二酸化炭素:約40容量%前後)、微量の不純物として硫黄系不純物(HS等)などを含むガスである。なお、都市部の下水汚泥の消化ガスには、シャンプー由来のシロキサン化合物が含まれていることが知られている。 Biomass resources are expected to be used to prevent global warming and build a recycling-oriented society (sustainable society). Food waste such as garbage, livestock manure, organic wastewater, and sewage generated at sewage treatment plants Development of a technology for generating biogas by subjecting organic waste such as sludge to anaerobic fermentation and using this biogas as energy has been underway. In particular, according to the comprehensive biomass strategy decided by the Cabinet in Japan in December 2002, biogas (digestion gas) produced by anaerobic fermentation of sewage sludge generated in the first sedimentation basin and final sedimentation basin at a sewage treatment plant. ) Is expected. This digestion gas (sewage sludge digestion gas) is mainly composed of methane (CH 4 ) and carbon dioxide (CO 2 ) (methane: about 60% by volume, carbon dioxide: about 40% by volume), and as a trace amount of impurities. It is a gas containing sulfur-based impurities (H 2 S and the like). It is known that shampoo-derived siloxane compounds are contained in digestion gas of sewage sludge in urban areas.

図3は、従来技術(特許文献1)を説明するための図であって、消化ガスを精製して精製メタンガスを得る消化ガス精製設備(バイオガス精製設備)の構成を示すフロー図である。   FIG. 3 is a diagram for explaining the prior art (Patent Document 1), and is a flow diagram showing the configuration of a digestion gas purification facility (biogas purification facility) that purifies digestion gas to obtain purified methane gas.

図3に示すように、従来の消化ガス精製設備は、図示しない嫌気性発酵槽としての消化タンクと、脱硫塔51と、ガスホルダー52と、バイオガス精製装置としての消化ガス精製装置とを備えている。消化ガス精製装置は、コンプレッサー53、吸収塔54、放散塔56、ポンプ55及び除湿機57により構成されている。   As shown in FIG. 3, a conventional digestion gas purification facility includes a digestion tank as an anaerobic fermentation tank (not shown), a desulfurization tower 51, a gas holder 52, and a digestion gas purification device as a biogas purification device. ing. The digestion gas purification apparatus includes a compressor 53, an absorption tower 54, a diffusion tower 56, a pump 55, and a dehumidifier 57.

図3において、下水処理場において消化タンクからの消化ガス(下水汚泥消化ガス)は、脱硫塔51に供給され、水吸収によりHS等が除去される。この脱硫処理が施された消化ガスは、一旦、低圧のガスホルダー52に貯留され、ここから一部はボイラーに供給されるが、残りの脱硫処理後の消化ガスは、精製して都市ガス用原料とするために吸収塔54に送られる。吸収塔54の手前にはコンプレッサー53が設置されており、ガス逆流防止板で仕切られた複数の充填層を備えた充填塔を用いた吸収塔54の塔底より吸収塔54内に、加圧・送入される。一方、吸収水は、吸収塔54の塔頂から吸収塔54内に供給される。そして、脱硫処理済の消化ガスは、吸収塔54内において吸収水と複数の充填層で気液接触を繰返し、二酸化炭素等が吸収除去され、吸収塔54の塔頂から除湿機57を経由して、精製メタンガスとなって取り出される。 In FIG. 3, digestion gas (sewage sludge digestion gas) from a digestion tank in a sewage treatment plant is supplied to a desulfurization tower 51, and H 2 S and the like are removed by water absorption. The digested gas subjected to the desulfurization treatment is temporarily stored in the low-pressure gas holder 52, and a part thereof is supplied to the boiler from here. The remaining digestion gas after the desulfurization treatment is purified and used for city gas. It is sent to the absorption tower 54 for use as a raw material. A compressor 53 is installed in front of the absorption tower 54, and is pressurized into the absorption tower 54 from the bottom of the absorption tower 54 using a packed tower having a plurality of packed beds partitioned by gas backflow prevention plates.・ Sent in. On the other hand, the absorption water is supplied into the absorption tower 54 from the top of the absorption tower 54. The desulfurized digestion gas is repeatedly brought into gas-liquid contact with the absorption water and the plurality of packed beds in the absorption tower 54, and carbon dioxide and the like are absorbed and removed, from the top of the absorption tower 54 via the dehumidifier 57. Then, it is taken out as purified methane gas.

一方、吸収塔54の塔底から排出された吸収処理後の吸収水は、放散塔6の塔頂に送られる。この場合、吸収塔54と放散塔56の間に圧力差があるために、吸収処理後の吸収水はポンプを用いずとも移送することが可能である。放散塔56内は大気圧になっているので、吸収処理後の吸収水中に溶解している二酸化炭素等の不要ガス成分は、圧力差によりフラッシュ処理され水中から除去される。フラッシュ処理された吸収水は、放散塔56の下部にある充填部に降下し、放散塔56の塔底から供給された、空気やメタンガス等のキャリアガスと気液接触して、さらに多くの溶解ガスが除去される。溶解ガスを含んだキャリアガスは、ボイラーに送られ、キャリアガスが空気の場合は燃焼用空気として、メタンガスの場合は燃料の一部として利用される。そして、放散塔56の塔底から排出された放散処理後の吸収水は、ポンプ55で昇圧してから吸収塔54に戻し吸収水として再利用される。
特開2004−83542号公報(図1)
On the other hand, the absorption water after the absorption treatment discharged from the bottom of the absorption tower 54 is sent to the top of the stripping tower 6. In this case, since there is a pressure difference between the absorption tower 54 and the diffusion tower 56, the absorption water after the absorption treatment can be transferred without using a pump. Since the inside of the stripping tower 56 is at atmospheric pressure, unnecessary gas components such as carbon dioxide dissolved in the absorbed water after the absorption treatment are flushed by the pressure difference and removed from the water. Absorbed water that has been flashed descends to the packed portion at the bottom of the stripping tower 56 and comes into gas-liquid contact with a carrier gas such as air or methane gas supplied from the bottom of the stripping tower 56 to further dissolve. Gas is removed. The carrier gas containing the dissolved gas is sent to the boiler. When the carrier gas is air, it is used as combustion air, and when it is methane gas, it is used as part of the fuel. And the absorption water after the discharge process discharged | emitted from the tower bottom of the diffusion tower 56 pressurizes with the pump 55, returns to the absorption tower 54, and is reused as absorption water.
Japanese Patent Laying-Open No. 2004-83542 (FIG. 1)

しかし前述した従来の消化ガス精製設備では、消化タンクからの消化ガスを一旦大きな低圧ガスホルダー(ガスホルダーの圧力:例えば0.002MPaG)に貯め、そこからバイオガス精製装置に供給するようにしたものであるから、消化ガス(バイオガス)をエネルギー資源としてより多く利用しようとすると、より大きな低圧ガスホルダーを設置することが必要となる。このため、大型の低圧ガスホルダーの設置は、大きな設置スペースを必要とするとともに、イニシャルコスト及びメンテナンスコストが高く、その投資が大きな負担となり、バイオガスの有効利用の促進に対するマイナス要因となっている。   However, in the conventional digestion gas purification equipment described above, the digestion gas from the digestion tank is temporarily stored in a large low-pressure gas holder (pressure of the gas holder: 0.002 MPaG, for example) and then supplied to the biogas purification device. Therefore, in order to use more digestion gas (biogas) as an energy resource, it is necessary to install a larger low-pressure gas holder. For this reason, the installation of a large-sized low-pressure gas holder requires a large installation space, and the initial cost and the maintenance cost are high, and the investment becomes a heavy burden, which is a negative factor for promoting the effective use of biogas. .

そこで本発明の課題は、食品廃棄物,下水汚泥などの有機性廃棄物を嫌気性発酵させることでバイオガスを発生させ、このバイオガスを精製してメタンを高濃度化した精製ガスを得るに際し、大きな設置スペースを必要とするとともにイニシャルコスト及びメンテナンスコストが高い大型の低圧ガスホルダーを設置しなくてすみ、バイオガス精製設備全体として省スペース化とコストダウンを図ることができるとともに、バイオガス発生量の変動に対して嫌気性発酵槽からのバイオガスの取り出しを安定して行うことができるバイオガスの精製方法及びバイオガス精製設備を提供することにある。   Accordingly, an object of the present invention is to generate biogas by subjecting organic waste such as food waste and sewage sludge to anaerobic fermentation, and purify the biogas to obtain a purified gas having a high concentration of methane. This eliminates the need to install a large-sized low-pressure gas holder that requires a large installation space and high initial costs and maintenance costs, and can save space and reduce costs for the entire biogas purification facility. An object of the present invention is to provide a biogas purification method and a biogas purification facility that can stably extract biogas from an anaerobic fermenter against fluctuations in the amount.

前記の課題を解決するため、本願発明では、次の技術的手段を講じている。   In order to solve the above problems, the present invention takes the following technical means.

請求項1の発明は、有機性廃棄物を嫌気性発酵槽内で嫌気性発酵させることによりバイオガスを発生させ、前記嫌気性発酵槽からのバイオガスをガス圧縮機によって昇圧して吸収塔へ送り込み、前記吸収塔内においてバイオガスと水とを高圧状態で接触させることにより、バイオガスに含まれる二酸化炭素及び硫黄系不純物を高圧水に溶解させて該バイオガスから分離して、メタンを高濃度化した精製ガスを得、その際、前記嫌気性発酵槽のガス圧力を測定し、その測定結果に基づいて前記嫌気性発酵槽のガス圧力が予め定められた略一定の設定値となるように前記ガス圧縮機の回転数を増減制御することを特徴とするバイオガスの精製方法である。   In the invention of claim 1, biogas is generated by anaerobic fermentation of organic waste in an anaerobic fermentation tank, and the biogas from the anaerobic fermentation tank is boosted by a gas compressor to an absorption tower. The biogas and water are brought into contact with each other at a high pressure in the absorption tower, so that carbon dioxide and sulfur-based impurities contained in the biogas are dissolved in the high-pressure water and separated from the biogas. Obtaining a concentrated purified gas, measuring the gas pressure of the anaerobic fermenter at that time, so that the gas pressure of the anaerobic fermenter becomes a substantially constant set value determined in advance based on the measurement result A method for purifying biogas, characterized in that the number of rotations of the gas compressor is increased or decreased.

請求項2の発明は、請求項1記載のバイオガスの精製方法において、前記吸収塔内においてバイオガスと水とを、0.55〜2.0MPaGの範囲を満たす高圧状態で接触させることにより、前記二酸化炭素及び前記硫黄系不純物を分離除去するとともに、バイオガスが含有するシロキサン化合物を凝縮させて該バイオガスから分離して、メタンを高濃度化した精製ガスを得ることを特徴とするものである。   The invention of claim 2 is the biogas purification method according to claim 1, wherein the biogas and water are brought into contact with each other in a high pressure state satisfying a range of 0.55 to 2.0 MPaG in the absorption tower. The carbon dioxide and the sulfur-based impurities are separated and removed, and the siloxane compound contained in the biogas is condensed and separated from the biogas to obtain a purified gas having a high concentration of methane. is there.

請求項3の発明は、請求項2記載のバイオガスの精製方法において、前記吸収塔内においてバイオガスと水とを0.7MPaG以上1.0MPaG未満の範囲を満たす高圧状態で接触させることを特徴とするものである。   The invention according to claim 3 is the biogas purification method according to claim 2, wherein the biogas and water are contacted in the absorption tower in a high pressure state satisfying a range of 0.7 MPaG or more and less than 1.0 MPaG. It is what.

請求項4の発明は、有機性廃棄物を嫌気性発酵させることによりバイオガスを発生させる嫌気性発酵槽と、前記嫌気性発酵槽からのバイオガスをガス圧縮機によって昇圧して吸収塔へ送り込み、前記吸収塔内においてバイオガスと水とを高圧状態で接触させることにより、バイオガスに含まれる二酸化炭素及び硫黄系不純物を高圧水に溶解させて該バイオガスから分離して、メタンを高濃度化した精製ガスを得るバイオガス精製装置と、前記嫌気性発酵槽のガス圧力を測定し、その測定結果に基づいて前記嫌気性発酵槽のガス圧力が予め定められた略一定の設定値となるように前記ガス圧縮機の回転数を増減制御する制御手段と、を備えていることを特徴とするバイオガス精製設備である。   The invention of claim 4 is an anaerobic fermenter that generates biogas by anaerobic fermentation of organic waste, and the biogas from the anaerobic fermenter is boosted by a gas compressor and sent to an absorption tower. The biogas and water are brought into contact with each other at a high pressure in the absorption tower, so that carbon dioxide and sulfur impurities contained in the biogas are dissolved in the high pressure water and separated from the biogas. The gas pressure of the anaerobic fermenter is measured, and the gas pressure of the anaerobic fermenter is set to a substantially constant preset value based on the measurement result. And a control means for controlling the increase / decrease of the rotational speed of the gas compressor.

請求項5の発明は、請求項4記載のバイオガス精製設備において、前記バイオガス精製装置からの精製ガスを一時的に貯留し、精製ガス消費設備に供給するための精製ガスタンクを備えていることを特徴とするものである。   Invention of Claim 5 is equipped with the refined gas tank for storing the refined gas from the said biogas refiner | purifier temporarily, and supplying to refined gas consumption equipment in the biogas refinement | purification equipment of Claim 4 It is characterized by.

請求項6の発明は、請求項5記載のバイオガス精製設備において、前記バイオガス精製装置の起動の際に、前記吸収塔内の圧力が予め定められた設定値に到達して前記ガス圧縮機に前記嫌気性発酵槽からのバイオガスを供給するまでの間、前記ガス圧縮機に前記精製ガスタンクからの精製ガスを供給する精製ガス循環ラインを備えていることを特徴とするものである。   According to a sixth aspect of the present invention, in the biogas purification facility according to the fifth aspect, when the biogas purification apparatus is started, the pressure in the absorption tower reaches a predetermined set value and the gas compressor Until the biogas from the anaerobic fermenter is supplied to the gas compressor, the gas compressor is provided with a purified gas circulation line for supplying purified gas from the purified gas tank.

請求項7の発明は、請求項4〜6のいずれか1項に記載のバイオガス精製設備において、前記バイオガス精製装置は、前記吸収塔内においてバイオガスと水とを、0.55〜2.0MPaGの範囲を満たす高圧状態で接触させることにより、前記二酸化炭素及び前記硫黄系不純物を分離除去するとともに、バイオガスが含有するシロキサン化合物を凝縮させて該バイオガスから分離して、メタンを高濃度化した精製ガスを得るように構成されたものであることを特徴とするものである。   The invention according to claim 7 is the biogas purification facility according to any one of claims 4 to 6, wherein the biogas purification device supplies 0.55 to 2 of biogas and water in the absorption tower. The carbon dioxide and the sulfur-based impurities are separated and removed by contacting in a high pressure state satisfying a range of 0.0 MPaG, and the siloxane compound contained in the biogas is condensed and separated from the biogas, thereby increasing the methane content. It is configured to obtain a concentrated purified gas.

請求項8の発明は、請求項7記載のバイオガス精製設備において、前記バイオガス精製装置は、前記吸収塔内においてバイオガスと水とを0.7MPaG以上1.0MPaG未満の範囲を満たす高圧状態で接触させるように構成されたものであることを特徴とするものである。   The invention according to claim 8 is the biogas purification facility according to claim 7, wherein the biogas purification apparatus satisfies a range of 0.7 MPaG or more and less than 1.0 MPaG of biogas and water in the absorption tower. It is comprised so that it may contact with.

本発明のバイオガスの精製方法又はバイオガス精製設備は、嫌気性発酵槽内でバイオガスを発生させ、この嫌気性発酵槽からのバイオガスを、脱硫塔と大型の低圧ガスホルダーを経由することなく、バイオガス精製装置のガス圧縮機に導いて該ガス圧縮機によって昇圧して吸収塔へ送り込み、吸収塔内においてバイオガスと水とを高圧状態で接触させることにより、二酸化炭素及び硫黄系不純物を高圧水に溶解させてバイオガスから分離して精製ガスを得、その際、嫌気性発酵槽のガス圧力を測定し、その測定結果に基づいて嫌気性発酵槽のガス圧力が予め定められた略一定の設定値となるように前記ガス圧縮機の回転数を増減制御するようにしている。したがって、大きな設置スペースを必要とするとともにイニシャルコスト及びメンテナンスコストが高い大型の低圧ガスホルダーを設置しなくてすみ、バイオガス精製設備全体として省スペース化とコストダウンを図ることができるとともに、バイオガス発生量の変動に対して嫌気性発酵槽からのバイオガスの取り出しを安定して行うことができる。   The biogas purification method or biogas purification facility of the present invention generates biogas in an anaerobic fermentation tank, and passes the biogas from the anaerobic fermentation tank through a desulfurization tower and a large-sized low-pressure gas holder. Carbon dioxide and sulfur impurities by introducing into a gas compressor of a biogas refining device, increasing the pressure by the gas compressor, sending the gas to the absorption tower, and bringing the biogas and water into contact with each other at a high pressure in the absorption tower Is dissolved in high-pressure water and separated from the biogas to obtain a purified gas. At that time, the gas pressure of the anaerobic fermenter is measured, and the gas pressure of the anaerobic fermenter is predetermined based on the measurement result. The number of revolutions of the gas compressor is controlled to increase or decrease so as to obtain a substantially constant set value. Therefore, it is not necessary to install a large-sized low-pressure gas holder that requires a large installation space and high initial costs and maintenance costs, and it is possible to save space and reduce costs as a whole biogas refining equipment. The biogas can be stably taken out from the anaerobic fermenter with respect to the fluctuation of the generated amount.

以下、図面を参照して本発明の実施形態について説明する。図1は本発明の一実施形態による消化ガス精製設備が適用される消化ガス利用システムの全体構成を示すフロー図、図2は図1における消化ガス精製装置の構成を示すフロー図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart showing the overall configuration of a digestion gas utilization system to which a digestion gas purification facility according to an embodiment of the present invention is applied, and FIG. 2 is a flowchart showing the configuration of the digestion gas purification apparatus in FIG.

この実施形態においてはバイオガス精製設備としての消化ガス精製設備は、下水処理場に設けられており、図1に示すように、嫌気性発酵槽としての消化タンク(消化槽)1A〜1Cと、バイオガス精製装置としての消化ガス精製装置4A,4Bと、中圧(例えば0.8MPaG)の精製ガスタンク5A,5Bと、後述する制御手段とを備えている。この消化ガス精製設備と精製ガス消費設備とにより消化ガス利用システムが構成されており、精製ガス消費設備は、本実施形態では、余剰ガス燃焼装置21、温水ボイラー22A,22B、場内用空調設備23、ガスエンジン(コージェネレーションシステム)24及びガス充填設備(天然ガススタンド)25を備えて構成されている。   In this embodiment, a digestion gas purification facility as a biogas purification facility is provided in a sewage treatment plant, and as shown in FIG. 1, digestion tanks (digestion tanks) 1A to 1C as anaerobic fermentation tanks, Digestion gas purification apparatuses 4A and 4B as biogas purification apparatuses, medium pressure (for example, 0.8 MPaG) purification gas tanks 5A and 5B, and control means described later are provided. The digestion gas refining equipment and the refined gas consuming equipment constitute a digestion gas utilization system, and in this embodiment, the refined gas consuming equipment is a surplus gas combustion device 21, hot water boilers 22A and 22B, and an on-site air conditioning equipment 23. A gas engine (cogeneration system) 24 and a gas filling facility (natural gas stand) 25 are provided.

消化タンク1A〜1Cから消化ガス精製装置4Aに、消化タンクA〜Cのガス圧力を測定するためのガス圧力計2を有するラインL1を経て、三方弁3Aを有するラインL2が連絡するとともに、消化タンク1A〜1Cから消化ガス精製装置4Bに、前記ラインL1を経て、三方弁3Bを有するラインL3が連絡している。   A line L2 having a three-way valve 3A communicates with the digestion gas purification apparatus 4A from the digestion tanks 1A to 1C via a line L1 having a gas pressure gauge 2 for measuring the gas pressure in the digestion tanks A to C. A line L3 having a three-way valve 3B communicates from the tanks 1A to 1C to the digestion gas purifier 4B via the line L1.

前記消化ガス精製装置4Aから精製ガスタンク5Aに、ラインL4及びラインL6を経てラインL7が連絡し、消化ガス精製装置4Bから精製ガスタンク5Bに、ラインL5及び前記ラインL6を経てラインL8が連絡している。さらに、精製ガスタンク5Aから精製ガス供給用のラインL11にラインL9が連絡し、精製ガスタンク5Bから精製ガス供給用の前記ラインL11にラインL10が連絡している。また、精製ガス供給用のラインL11から分岐して前記三方弁3A,3Bの各第2入口βにそれぞれ連絡する精製ガス循環ラインL12が設けられている。   Line L7 communicates from the digestion gas purification device 4A to the purification gas tank 5A via lines L4 and L6, and line L8 communicates from the digestion gas purification device 4B to the purification gas tank 5B via lines L5 and L6. Yes. Further, a line L9 communicates from the purified gas tank 5A to the purified gas supply line L11, and a line L10 communicates from the purified gas tank 5B to the purified gas supply line L11. Further, a purified gas circulation line L12 is provided that branches from the purified gas supply line L11 and communicates with the second inlets β of the three-way valves 3A and 3B.

そして、前記精製ガス供給用のラインL11から余剰ガス燃焼装置21に、余剰精製ガスコントロール弁V1及び余剰ガス用減圧弁V2を有するラインL15が連絡し、一方、この余剰ガス燃焼装置21には、前記ラインL1におけるガス圧力計2の下流側から分岐し、余剰消化ガスコントロール弁V7を有するラインL20が連絡している。余剰ガス燃焼装置21は、余剰の下水汚泥消化ガス又は余剰の精製ガスを余剰ガス燃焼炉で完全燃焼して大気に放出しうる燃焼ガスとするものである。   A line L15 having an excess purified gas control valve V1 and an excess gas pressure reducing valve V2 communicates with the excess gas combustion device 21 from the purified gas supply line L11. A line L20 is branched from the downstream side of the gas pressure gauge 2 in the line L1 and has an excess digestion gas control valve V7. The surplus gas combustion device 21 is a combustion gas that can be discharged into the atmosphere by completely combusting surplus sewage sludge digestion gas or surplus refined gas in a surplus gas combustion furnace.

また、前記精製ガス供給用のラインL11から温水ボイラー22A,22Bに温水ボイラー用減圧弁V3を有するラインL16が連絡し、前記精製ガス供給用のラインL11から場内用空調設備23に空調用減圧弁V4を有するラインL17が連絡している。温水ボイラー22A,22Bは、精製ガスを燃料として温水をつくり、消化タンク1A〜1Cの加温のために、温水を加熱媒体として熱交換器1Aa〜1Caに供給するものである。   A line L16 having a hot water boiler pressure reducing valve V3 communicates from the purified gas supply line L11 to the hot water boilers 22A and 22B, and the air conditioning pressure reducing valve 23 is connected from the purified gas supply line L11 to the on-site air conditioning equipment 23. Line L17 with V4 is in communication. The hot water boilers 22A and 22B produce hot water using purified gas as fuel, and supply the hot water to the heat exchangers 1Aa to 1Ca using hot water as a heating medium for heating the digestion tanks 1A to 1C.

また、前記精製ガス供給用のラインL11からガスエンジン(コージェネレーションシステム)24にガスエンジン用減圧弁V5を有するラインL18が連絡し、前記精製ガス供給用のラインL11からガス充填設備(天然ガススタンド)25に、ガス充填用減圧弁V6及び混合装置26を有するラインL19が連絡している。   A line L18 having a gas engine pressure reducing valve V5 communicates from the purified gas supply line L11 to the gas engine (cogeneration system) 24, and a gas filling facility (natural gas station) is connected to the purified gas supply line L11. ) 25 communicates with a line L19 having a gas filling pressure reducing valve V6 and a mixing device 26.

前記ガスエンジン(コージェネレーションシステム)24は、精製ガスを燃料とするエンジンの動力によって発電を行うとともに、エンジン本体(ジャケット)の冷却、インタークーラ、及び排ガスからの温水ボイラーによる熱回収によって温水をつくり、この温水を加熱媒体として前記熱交換器1Aa〜1Caに供給するものである。また、前記のガス充填設備(天然ガススタンド)25は、精製ガスに付臭のために混合装置26によって付臭ガス(例えば都市ガス)を混合し、この臭い付き精製ガスをガス圧縮機で昇圧して蓄ガス器に充填して貯蔵する設備であり、天然ガス自動車に蓄ガス器から臭い付き精製ガス(臭い付き天然ガス)を充填するためのディスペンサーが備えられている。   The gas engine (cogeneration system) 24 generates electric power by the power of the engine using purified gas as fuel, and produces hot water by cooling the engine body (jacket), heat recovery from the hot water boiler from the intercooler, and exhaust gas. The hot water is supplied to the heat exchangers 1Aa to 1Ca as a heating medium. Further, the gas filling facility (natural gas stand) 25 mixes an odorous gas (for example, city gas) with a mixing device 26 to add odor to the purified gas, and pressurizes the odorized purified gas with a gas compressor. The gas storage device is filled and stored, and a natural gas vehicle is provided with a dispenser for filling the odor-purified gas (odorous natural gas) from the gas storage device.

次に、図2を参照して消化ガス精製装置4Aについて説明する。なお、他方の消化ガス精製装置4Bもこれと同一構成であり、その説明は省略する。   Next, the digestion gas purification apparatus 4A will be described with reference to FIG. The other digestion gas purification apparatus 4B has the same configuration as this, and a description thereof will be omitted.

消化ガス精製装置4Aは、図2に示すように、ミストセパレータ401、ガス圧縮機402a,402b、吸収塔(スクラバー)404、除湿器405、給水槽406、水補給用ポンプ407、水循環用ポンプ408、熱交換器409、チラー410、減圧タンク(フラッシングタンク)411、放散塔(ストリッピングタワー)412、及び排気ブロワ413を備えている。ガス圧縮機402a,402bは、可変電圧可変周波数(VVVF)制御によって回転数制御を行う回転数制御器403を有している。   As shown in FIG. 2, the digestion gas purification apparatus 4A includes a mist separator 401, gas compressors 402a and 402b, an absorption tower (scrubber) 404, a dehumidifier 405, a water supply tank 406, a water supply pump 407, and a water circulation pump 408. , A heat exchanger 409, a chiller 410, a decompression tank (flushing tank) 411, a stripping tower (stripping tower) 412, and an exhaust blower 413. The gas compressors 402a and 402b have a rotational speed controller 403 that performs rotational speed control by variable voltage variable frequency (VVVF) control.

この消化ガス精製装置4Aにおいて、消化タンク1A〜1CからラインL1及びラインL2を経て導かれた下水汚泥消化ガスは、ミストセパレータ401によってガス中のミスト(水分)、ダストが除去され、しかる後、直列接続されたガス圧縮機402a,402bによって大気圧より高い所定の圧力まで昇圧される。ガス圧縮機402a,402bによって昇圧された下水汚泥消化ガスは、吸収塔404の下部に導入される。一方、吸収塔404には、その上部から水が水循環用ポンプ408によって昇圧された状態で供給されるようになっている。   In this digestion gas purification apparatus 4A, the sewage sludge digestion gas guided from the digestion tanks 1A to 1C via the lines L1 and L2 is removed from the mist (water) and dust in the gas by the mist separator 401. The pressure is increased to a predetermined pressure higher than the atmospheric pressure by the gas compressors 402a and 402b connected in series. Sewage sludge digestion gas pressurized by the gas compressors 402 a and 402 b is introduced into the lower part of the absorption tower 404. On the other hand, the absorption tower 404 is supplied with water from the top thereof in a state of being pressurized by a water circulation pump 408.

このように、ガス圧縮機402a,402bにより下水汚泥消化ガスを昇圧して吸収塔404内へその下部より送り込むとともに、水循環用ポンプ408により水を昇圧して吸収塔404内へその上部より送り込むことにより、吸収塔404内を0.55〜2.0MPaGの範囲を満たす高圧状態に保持し、吸収塔404内において下水汚泥消化ガスと水とを前記圧力範囲を満たす高圧状態で接触させるようにしている。なお、吸収塔404内には、下水汚泥消化ガスと水とを十分に接触させるためにラシヒリング等の充填物が充填されている。   In this way, the gas compressors 402a and 402b pressurize the sewage sludge digested gas and feed it into the absorption tower 404 from the lower part, and the water circulation pump 408 boosts the water and feeds it into the absorption tower 404 from the upper part. Thus, the inside of the absorption tower 404 is maintained in a high pressure state satisfying the range of 0.55 to 2.0 MPaG, and the sewage sludge digestion gas and water are brought into contact with each other in the high pressure state satisfying the pressure range in the absorption tower 404. Yes. The absorption tower 404 is filled with a packing such as Raschig ring in order to bring the sewage sludge digestion gas and water into sufficient contact.

吸収塔404内において下水汚泥消化ガスと水とを0.55〜2.0MPaの範囲を満たす高圧状態で接触させることにより、下水汚泥消化ガス中に気体状態で含まれていた二酸化炭素及び硫黄系不純物(HS等)は、高圧の水に溶解して吸収される一方、メタンは、高圧の水にほとんど溶解することなく、吸収塔404の頂部から取り出される。また同時に、下水汚泥消化ガス中に含まれていたシロキサン化合物は、高圧状態のため気体状態から凝縮して液滴状態となり、この液滴状態にて、吸収塔内部を流下する高圧の水と衝突し、水とともに吸収塔404の底部に溜まることになる。 The carbon dioxide and sulfur system contained in the gas state in the sewage sludge digestion gas by contacting the sewage sludge digestion gas and water in a high pressure state satisfying the range of 0.55 to 2.0 MPa in the absorption tower 404. Impurities (such as H 2 S) are dissolved and absorbed in high-pressure water, while methane is taken out from the top of the absorption tower 404 with almost no dissolution in high-pressure water. At the same time, the siloxane compound contained in the sewage sludge digestion gas is condensed from the gas state into a droplet state due to the high pressure state, and collides with the high pressure water flowing down inside the absorption tower in this droplet state. Then, it collects at the bottom of the absorption tower 404 together with water.

このように、下水汚泥消化ガスを精製するに際し、下水汚泥消化ガスと水とを0.55〜2.0MPaGの範囲を満たす高圧状態で接触させることがよい。この範囲より低圧力雰囲気では、二酸化炭素,硫黄系不純物(HS等),シロキサン化合物が十分に分離除去されず、また、この範囲より高圧力雰囲気にしても二酸化炭素,硫黄系不純物(HS等),シロキサン化合物の除去率がそれほど向上せず、運転コストや、高圧化仕様による装置コストの増加などの点から好ましくない。なお、シロキサン化合物の除去、運転コスト及び装置コストの点から、下水汚泥消化ガスと水とを0.7MPaG以上1.0MPaG未満の範囲を満たす高圧状態で接触させることがより好ましい。 Thus, when refine | purifying sewage sludge digestion gas, it is good to make sewage sludge digestion gas and water contact in the high pressure state which satisfy | fills the range of 0.55-2.0 MPaG. Carbon dioxide, sulfur-based impurities (H 2 S, etc.) and siloxane compounds are not sufficiently separated and removed in a lower pressure atmosphere than this range, and carbon dioxide, sulfur-based impurities (H 2 S, etc.), the removal rate of the siloxane compound is not improved so much, which is not preferable from the viewpoints of operation cost and increase in apparatus cost due to high pressure specifications. In addition, it is more preferable to contact a sewage sludge digestion gas and water in the high pressure state which satisfy | fills the range of 0.7 MPaG or more and less than 1.0 MPaG from the point of removal of a siloxane compound, an operating cost, and an apparatus cost.

さて、前記分離除去された二酸化炭素,硫黄系不純物(HS等)が溶解するとともに、分離除去されたシロキサン化合物を含む水は、吸収塔404の底部から抜き出されて、弁V10を介して減圧タンク411に導入される。この減圧タンク411内の圧力は、吸収塔404内に比べて減圧されている。例えば、吸収塔404内の圧力が0.9MPaGのとき、減圧タンク5内の圧力は0.3MPaGである。そして、メタン回収率を高める目的で、吸収塔404の底部からの水にわずかに溶解しているメタンは、ガスとして分離されて減圧タンク411の頂部から弁V11を介して、ガス圧縮機402a,402bの中間段に戻されてガス圧縮機402aからの下水汚泥消化ガスに合流されるようになっている。このメタンが分離回収された後の二酸化炭素,硫黄系不純物(HS等)が溶解する水は、減圧タンク411の底部から弁V12を介して放散塔412の上部に導入される。 The separated carbon dioxide and sulfur impurities (H 2 S, etc.) are dissolved, and the water containing the separated siloxane compound is extracted from the bottom of the absorption tower 404 through the valve V10. And introduced into the decompression tank 411. The pressure in the decompression tank 411 is reduced compared to that in the absorption tower 404. For example, when the pressure in the absorption tower 404 is 0.9 MPaG, the pressure in the decompression tank 5 is 0.3 MPaG. For the purpose of increasing the methane recovery rate, the methane slightly dissolved in the water from the bottom of the absorption tower 404 is separated as a gas, and gas compressors 402a, It is returned to the intermediate stage of 402b and joined to the sewage sludge digestion gas from the gas compressor 402a. The water in which carbon dioxide and sulfur-based impurities (such as H 2 S) are dissolved after the methane is separated and recovered is introduced from the bottom of the decompression tank 411 to the upper portion of the stripping tower 412 through the valve V12.

この放散塔412においては、減圧タンク411から抜き出された水が上部から導入される一方、下部からは排気ブロワ413によって放散用ガス(例えば大気)が導入され、大気圧において両者が向流接触する。これにより、減圧タンク411から抜き出された水に溶解していた二酸化炭素,硫黄系不純物は、放散用ガス側に移行し、放散用ガスとともに放散塔412の頂部から排出され、ラインL14経て脱臭設備へ導かれる。そして、溶解していたガスが除去されて再生された水は、放散塔412の底部から抜き出され、水循環用ポンプ408にて昇圧され、熱交換器409にてチラー410からのブラインとの間で熱交換して所定の温度まで冷却された後、吸収塔404の上部に供給される。なお、放散塔412内には、放散用ガスと水とを十分に接触させるためにラシヒリング等の充填物が充填されている。   In the stripping tower 412, water extracted from the decompression tank 411 is introduced from the top, while a stripping gas (for example, air) is introduced from the bottom by the exhaust blower 413, and both are in countercurrent contact at atmospheric pressure. To do. As a result, the carbon dioxide and sulfur impurities dissolved in the water extracted from the decompression tank 411 move to the emission gas side and are discharged from the top of the diffusion tower 412 together with the emission gas, and deodorized via the line L14. Guided to the facility. Then, the water regenerated by removing the dissolved gas is extracted from the bottom of the diffusion tower 412, boosted by the water circulation pump 408, and between the brine from the chiller 410 by the heat exchanger 409. After the heat is exchanged, the temperature is cooled to a predetermined temperature, and then supplied to the upper portion of the absorption tower 404. The diffusion tower 412 is filled with a packing such as a Raschig ring in order to sufficiently bring the diffusion gas into contact with water.

また、吸収塔404に供給される循環水の品質を維持するために、定期的に弁V13を開にすることが望ましい。これによって循環水を一部抜き出し、抜き出された水は、ラインL13を経て排水処理設備へ送られるようになっている。この抜き出しによって循環水量が所定量以下になった場合は、水補給用ポンプ407により、弁V14を開にして不足分の水を給水槽406から補給する。このとき用いられる水としては、水道水、あるいは井水が挙げられ、また、下水等の排水を処理して得られる処理水を利用することも可能であり、この実施形態では、下水処理場の最終沈殿池の下流に設けられている処理水の砂ろ過設備からの砂ろ過水を利用するようにしている。   In order to maintain the quality of the circulating water supplied to the absorption tower 404, it is desirable to periodically open the valve V13. Thereby, a part of the circulating water is extracted, and the extracted water is sent to the waste water treatment facility via the line L13. When the amount of circulating water becomes equal to or less than a predetermined amount due to this extraction, the water replenishing pump 407 opens the valve V14 and replenishes the insufficient amount of water from the water supply tank 406. Examples of water used at this time include tap water or well water, and it is also possible to use treated water obtained by treating wastewater such as sewage. In this embodiment, in the sewage treatment plant, Sand filtered water from the sand filtering facility for treated water provided downstream of the final sedimentation basin is used.

一方、吸収塔404の頂部から取り出された高濃度のメタンを有する精製ガスは、除湿器405に送られる。除湿器405は、この実施形態では圧力スイング吸着法(PSA法)により水分を吸着除去する除湿器であり、合成ゼオライトを吸着剤とするものである。除湿器405による除湿の目的は、精製ガスを燃料として使用(利用)するときの圧力においても結露することがないようにするためである。吸収塔404から取り出された精製ガスの圧力は、例えば0.9MPaGであり(吸収塔404内の圧力が0.9MPaGの場合)、この精製ガスに対して、例えば天然ガス自動車の燃料として使用するときの圧力19.6MPaGにおいても結露することがないように、大気圧における露点に換算して露点が−60℃以下、より好ましくは−70℃以下、特に好ましくは−80℃以下となるように、除湿器405による除湿が施される。このように、燃料として使用するときの圧力においても結露することがないように除湿器405によって除湿された精製ガスが、前記ラインL4及び前記ラインL6を経て精製ガスタンク5A,5Bに送られるようになっている。   On the other hand, the purified gas having a high concentration of methane taken out from the top of the absorption tower 404 is sent to the dehumidifier 405. In this embodiment, the dehumidifier 405 is a dehumidifier that adsorbs and removes moisture by a pressure swing adsorption method (PSA method), and uses synthetic zeolite as an adsorbent. The purpose of dehumidification by the dehumidifier 405 is to prevent condensation even at a pressure when the purified gas is used (utilized) as fuel. The pressure of the purified gas taken out from the absorption tower 404 is, for example, 0.9 MPaG (when the pressure in the absorption tower 404 is 0.9 MPaG), and the purified gas is used, for example, as fuel for a natural gas vehicle. The dew point is -60 ° C or less, more preferably -70 ° C or less, and particularly preferably -80 ° C or less in terms of the dew point at atmospheric pressure so that no dew condensation occurs even at a pressure of 19.6 MPaG. Dehumidification by the dehumidifier 405 is performed. As described above, the purified gas dehumidified by the dehumidifier 405 is sent to the purified gas tanks 5A and 5B through the line L4 and the line L6 so that no dew condensation occurs even at the pressure when used as fuel. It has become.

次に、このように構成される消化ガス精製設備が備えられた消化ガス利用システムにおける運転動作について、図1及び図2を参照して説明する。   Next, the operation | movement operation | movement in the digestion gas utilization system provided with the digestion gas refinement | purification equipment comprised in this way is demonstrated with reference to FIG.1 and FIG.2.

まず、起動時について説明すると、制御装置7は、ラインL2の三方弁3AとラインL3の三方弁3Bとに、第2入口βと出口γとを連通し第1入口αを閉じる流路切替え信号S13を与える。これにより、消化ガス精製装置4A,4Bの吸収塔404内の圧力が設定値に上昇するまでは、精製ガスタンク5A,5Bから精製ガスが精製ガス循環ラインL12を経て消化ガス精製装置4A,4Bへ供給される。こうすることで、消化ガス精製装置4A,4Bの起動直後にガス圧縮機402a,402bの吸い込み側配管内の圧力低下を防止することができる。   First, when starting up, the control device 7 communicates the second inlet β and the outlet γ with the three-way valve 3A of the line L2 and the three-way valve 3B of the line L3 to close the first inlet α. S13 is given. Thereby, until the pressure in the absorption tower 404 of the digestion gas purification apparatuses 4A and 4B rises to the set value, the purified gas passes from the purified gas tanks 5A and 5B to the digestion gas purification apparatuses 4A and 4B via the purified gas circulation line L12. Supplied. By doing so, it is possible to prevent a pressure drop in the suction side piping of the gas compressors 402a and 402b immediately after the digestion gas purification apparatuses 4A and 4B are started.

そして、消化ガス精製装置4A,4Bの吸収塔404内の圧力が前記設定値に達すると、制御装置7は、三方弁3A,3Bに、第1入口αと出口γとを連通し第2入口βを閉じる流路切替え信号S13を与える。これにより、消化ガス精製装置4A,4Bに消化タンク1A〜1Cからの下水汚泥消化ガスが供給される。なお、消化タンク1A〜1Cと消化ガス精製装置4A,4Bとの間に、下水汚泥消化ガス供給開始時の配管内の圧力変動を確実に防止するために、極めて小型の低圧ガスホルダー(例えば容量30m程度)を設けるようにしてもよい。 When the pressure in the absorption tower 404 of the digestion gas purification apparatuses 4A and 4B reaches the set value, the control device 7 communicates the first inlet α and the outlet γ with the three-way valves 3A and 3B, and the second inlet. A flow path switching signal S13 for closing β is given. Thereby, the sewage sludge digestion gas from digestion tank 1A-1C is supplied to digestion gas refinement | purification apparatus 4A, 4B. An extremely small low-pressure gas holder (for example, a capacity) is provided between the digestion tanks 1A to 1C and the digestion gas refining apparatuses 4A and 4B in order to reliably prevent pressure fluctuations in the piping at the start of sewage sludge digestion gas supply. (About 30 m 3 ) may be provided.

次に、通常運転時について説明すると、制御装置7は、ラインL1のガス圧力計2からのガス圧力信号S1を受けて、消化タンク1A〜1Cのガス圧力が予め定められた略一定の設定値となるように、ガス圧縮機402a,402bの回転数制御器403にその回転数を増減制御する回転数制御信号S11を与える。すなわち、消化タンク1A〜1Cのガス圧力が前記設定値より高くなると、ガス圧縮機402a,402bの回転数を増加させて精製ガスタンク5A,5Bへの精製ガスの供給量を増加し、前記設定値より低くなると、ガス圧縮機402a,402bの回転数を減少させて精製ガスタンク5A,5Bへの精製ガスの供給量を減少させるようにしている。また、この場合、制御装置7は、吸収塔404内の圧力測定結果に基づいて吸収塔404内の圧力が予め定められた略一定の設定値となるように除湿器405出口の図示しない圧力調整弁の開度を調整するようにしている。ここで、前記のガス圧力計2、回転数制御器403及び制御装置7は、消化タンク1A〜1Cのガス圧力を測定し、その測定結果に基づいて消化タンク1A〜1Cのガス圧力が予め定められた略一定の設定値となるように消化ガス精製装置4A,4Bのガス圧縮機402a,402bの回転数を増減制御する制御手段を構成している。   Next, the normal operation will be described. The control device 7 receives the gas pressure signal S1 from the gas pressure gauge 2 in the line L1, and the gas pressure in the digestion tanks 1A to 1C is set to a substantially constant set value. The rotation speed control signal S11 for increasing / decreasing the rotation speed is supplied to the rotation speed controller 403 of the gas compressors 402a and 402b. That is, when the gas pressure in the digestion tanks 1A to 1C becomes higher than the set value, the number of revolutions of the gas compressors 402a and 402b is increased to increase the supply amount of the purified gas to the purified gas tanks 5A and 5B. When it is lower, the rotational speed of the gas compressors 402a and 402b is decreased to reduce the amount of purified gas supplied to the purified gas tanks 5A and 5B. Further, in this case, the control device 7 adjusts the pressure at the outlet of the dehumidifier 405 (not shown) so that the pressure in the absorption tower 404 becomes a predetermined substantially constant value based on the pressure measurement result in the absorption tower 404. The opening of the valve is adjusted. Here, the gas pressure gauge 2, the rotation speed controller 403, and the control device 7 measure the gas pressures of the digestion tanks 1A to 1C, and the gas pressures of the digestion tanks 1A to 1C are determined in advance based on the measurement results. Control means for increasing / decreasing the rotational speeds of the gas compressors 402a, 402b of the digestion gas purification apparatuses 4A, 4B so as to obtain the substantially constant set value.

なお、前記通常運転時の圧縮機回転数制御中に万一、ガス圧力計2によって消化タンク1A〜1Cのガス圧が異常上昇したことが検出されたときには、制御装置7は、ガス圧力計2からの前記異常上昇を示すガス圧力信号S1を受けて、ラインL20の余剰消化ガスコントロール弁V7を開く。これにより、余剰ガス燃焼装置21に消化タンク1A〜1Cからの下水汚泥消化ガスを供給して燃焼処理することで、消化タンク1A〜1Cのガス圧の異常上昇を解消するようにしている。   If the gas pressure gauge 2 detects that the gas pressure in the digestion tanks 1A to 1C has risen abnormally during the compressor rotation speed control during the normal operation, the control device 7 causes the gas pressure gauge 2 to In response to the gas pressure signal S1 indicating the abnormal rise from the above, the excess digestion gas control valve V7 of the line L20 is opened. In this way, the sewage sludge digestion gas from the digestion tanks 1A to 1C is supplied to the surplus gas combustion device 21 for combustion treatment, thereby eliminating an abnormal increase in gas pressure in the digestion tanks 1A to 1C.

一方、前記通常運転時の圧縮機回転数制御中に万一、ガス圧力計2によって消化タンク1A〜1Cのガス圧が異常低下したことが検出されたときには、制御装置7は、ガス圧力計2からの前記異常低下を示すガス圧力信号S1を受けて、三方弁3A,3Bに、第2入口βと出口γとを連通し第1入口αを閉じる流路切替え信号S13を与える。これにより、精製ガスタンク5A,5Bからの精製ガスを、精製ガス循環ラインL12を経て消化ガス精製装置4A,4Bに供給するようにし、消化ガス精製装置4A,4Bへの下水汚泥消化ガスの供給を一時停止することで、消化タンク1A〜1Cのガス圧の異常低下を解消するようにしている。この場合、消化ガス精製装置4A,4Bは、アンロード状態に類似した運転状況であり、消化タンク1A〜1Cのガス圧が回復した時に迅速な運転立ち上げが可能となる。   On the other hand, if the gas pressure gauge 2 detects that the gas pressure in the digestion tanks 1A to 1C has abnormally decreased during the compressor rotation speed control during the normal operation, the control device 7 In response to the gas pressure signal S1 indicating the abnormal decrease from the first, the three-way valves 3A and 3B are provided with a flow path switching signal S13 that connects the second inlet β and the outlet γ to close the first inlet α. As a result, the purified gas from the purified gas tanks 5A and 5B is supplied to the digestion gas purification devices 4A and 4B via the purified gas circulation line L12, and the sewage sludge digestion gas is supplied to the digestion gas purification devices 4A and 4B. By temporarily stopping, the abnormal drop in gas pressure in the digestion tanks 1A to 1C is resolved. In this case, the digestion gas purification apparatuses 4A and 4B are in an operation state similar to the unloaded state, and when the gas pressures in the digestion tanks 1A to 1C are recovered, the operation can be quickly started up.

なお、精製ガスタンク5A,5Bからの精製ガスを精製ガス消費設備に供給する精製ガス供給用のラインL11に、ガス圧力計6が設けられている。そして、精製ガスの消費量が低下して精製ガスタンク5A,5Bのガス圧が設定値を上回ることが前記ガス圧力計6によって検出された場合、制御装置7により余剰精製ガスコントロール弁V1を徐々に開くことで、精製ガスを余剰ガス燃焼装置21にて燃焼させるようになっている。   A gas pressure gauge 6 is provided in a purified gas supply line L11 for supplying purified gas from the purified gas tanks 5A and 5B to the purified gas consuming equipment. When the gas pressure gauge 6 detects that the purified gas consumption is reduced and the gas pressure in the purified gas tanks 5A and 5B exceeds the set value, the controller 7 gradually controls the excess purified gas control valve V1. By opening, the purified gas is burned by the surplus gas combustion device 21.

このように、本実施形態によると、消化タンク1A〜1Cからの下水汚泥消化ガスを、脱硫塔と大型の低圧ガスホルダーを経由することなく、消化ガス精製装置4A,4Bのガス圧縮機402a,402bに導いて該ガス圧縮機402a,402bによって昇圧して吸収塔へ送り込み、吸収塔内において下水汚泥消化ガスと水とを高圧状態で接触させることにより、二酸化炭素及び硫黄系不純物を高圧水に溶解させて下水汚泥消化ガスから分離して精製ガスを得、その際、消化タンク1A〜1Cのガス圧力を測定し、その測定結果に基づいて消化タンク1A〜1Cのガス圧力が予め定められた略一定の設定値となるように前記ガス圧縮機402a,402bの回転数を増減制御するようにしている。   As described above, according to the present embodiment, the sewage sludge digestion gas from the digestion tanks 1A to 1C is passed through the gas compressors 402a of the digestion gas purification apparatuses 4A and 4B without passing through the desulfurization tower and the large-sized low-pressure gas holder. The gas compressor 402a, 402b guides the gas to 402b and pumps it into the absorption tower. The sewage sludge digestion gas and water are brought into contact with each other at a high pressure in the absorption tower, so that carbon dioxide and sulfur-based impurities are converted into high-pressure water. It is dissolved and separated from the sewage sludge digestion gas to obtain purified gas. At that time, the gas pressures of the digestion tanks 1A to 1C are measured, and the gas pressures of the digestion tanks 1A to 1C are predetermined based on the measurement results. The number of revolutions of the gas compressors 402a and 402b is controlled to increase or decrease so as to obtain a substantially constant set value.

したがって、従来とは違って、大きな設置スペースを必要とするとともにイニシャルコスト及びメンテナンスコストが高い大型の低圧ガスホルダーを設置しなくてすみ、消化ガス精製設備全体として省スペース化とコストダウンを図ることで下水汚泥消化ガスの利用拡大に寄与することができるとともに、下水汚泥消化ガス発生量の変動に対して消化タンク1A〜1Cからの下水汚泥消化ガスの取り出しを安定して行うことができる。   Therefore, unlike conventional systems, it is not necessary to install a large-sized low-pressure gas holder that requires a large installation space and has high initial costs and maintenance costs. Thus, it is possible to contribute to the expansion of the use of sewage sludge digestion gas, and to stably take out the sewage sludge digestion gas from the digestion tanks 1A to 1C against fluctuations in the amount of sewage sludge digestion gas generated.

本発明の一実施形態による消化ガス精製設備が適用される消化ガス利用システムの全体構成を示すフロー図である。It is a flow figure showing the whole digestion gas utilization system composition to which digestion gas refining equipment by one embodiment of the present invention is applied. 図1における消化ガス精製装置の構成を示すフロー図である。It is a flowchart which shows the structure of the digestion gas refinement | purification apparatus in FIG. 従来技術(特許文献1)を説明するための図であって、消化ガスを精製して精製ガスを得る消化ガス精製設備(バイオガス精製設備)の構成を示すフロー図である。It is a figure for demonstrating a prior art (patent document 1), Comprising: It is a flowchart which shows the structure of the digestion gas refinement | purification equipment (biogas refinement | purification equipment) which refine | purifies digestion gas and obtains refinement | purification gas.

符号の説明Explanation of symbols

1A〜1C…消化タンク
2,6…ガス圧力計
3A,3B…三方弁
4A,4B…消化ガス精製装置
5A,5B…精製ガスタンク
7…制御装置
21…余剰ガス燃焼装置
22A,22B…温水ボイラー
23…空調設備
24…ガスエンジン
25…ガス充填設備
401…ミストセパレータ
402a,402b…ガス圧縮機
403…回転数制御器
404…吸収塔
405…除湿器
406…給水槽
407…水補給用ポンプ
408…水循環用ポンプ
409…熱交換器
410…チラー
411…減圧タンク
412…放散塔
413…排気ブロワ
DESCRIPTION OF SYMBOLS 1A-1C ... Digestion tank 2,6 ... Gas pressure gauge 3A, 3B ... Three-way valve 4A, 4B ... Digestion gas refinement device 5A, 5B ... Refinement gas tank 7 ... Control device 21 ... Excess gas combustion device 22A, 22B ... Hot water boiler 23 Air conditioning equipment 24 Gas engine 25 Gas filling equipment 401 Mist separator 402a, 402b Gas compressor 403 Speed controller 404 Absorption tower 405 Dehumidifier 406 Water tank 407 Water supply pump 408 Water circulation Pump 409 ... heat exchanger 410 ... chiller 411 ... decompression tank 412 ... diffusion tower 413 ... exhaust blower

Claims (8)

有機性廃棄物を嫌気性発酵槽内で嫌気性発酵させることによりバイオガスを発生させ、前記嫌気性発酵槽からのバイオガスをガス圧縮機によって昇圧して吸収塔へ送り込み、前記吸収塔内においてバイオガスと水とを高圧状態で接触させることにより、バイオガスに含まれる二酸化炭素及び硫黄系不純物を高圧水に溶解させて該バイオガスから分離して、メタンを高濃度化した精製ガスを得、その際、前記嫌気性発酵槽のガス圧力を測定し、その測定結果に基づいて前記嫌気性発酵槽のガス圧力が予め定められた略一定の設定値となるように前記ガス圧縮機の回転数を増減制御することを特徴とするバイオガスの精製方法。   Biogas is generated by anaerobic fermentation of organic waste in an anaerobic fermentation tank, and the biogas from the anaerobic fermentation tank is pressurized by a gas compressor and sent to an absorption tower. By contacting biogas and water in a high-pressure state, carbon dioxide and sulfur impurities contained in the biogas are dissolved in the high-pressure water and separated from the biogas to obtain a purified gas having a high concentration of methane. In this case, the gas pressure of the anaerobic fermenter is measured, and the gas compressor is rotated so that the gas pressure of the anaerobic fermenter becomes a predetermined substantially constant set value based on the measurement result. A method for purifying biogas, wherein the number is controlled to increase or decrease. 前記吸収塔内においてバイオガスと水とを、0.55〜2.0MPaGの範囲を満たす高圧状態で接触させることにより、前記二酸化炭素及び前記硫黄系不純物を分離除去するとともに、バイオガスが含有するシロキサン化合物を凝縮させて該バイオガスから分離して、メタンを高濃度化した精製ガスを得ることを特徴とする請求項1記載のバイオガスの精製方法。   In the absorption tower, the biogas and water are brought into contact with each other in a high pressure state satisfying a range of 0.55 to 2.0 MPaG to separate and remove the carbon dioxide and the sulfur-based impurities, and the biogas contains. The method for purifying a biogas according to claim 1, wherein a siloxane compound is condensed and separated from the biogas to obtain a purified gas having a high concentration of methane. 前記吸収塔内においてバイオガスと水とを0.7MPaG以上1.0MPaG未満の範囲を満たす高圧状態で接触させることを特徴とする請求項2記載のバイオガスの精製方法。   The biogas purification method according to claim 2, wherein the biogas and water are brought into contact with each other in a high pressure state satisfying a range of 0.7 MPaG or more and less than 1.0 MPaG in the absorption tower. 有機性廃棄物を嫌気性発酵させることによりバイオガスを発生させる嫌気性発酵槽と、前記嫌気性発酵槽からのバイオガスをガス圧縮機によって昇圧して吸収塔へ送り込み、前記吸収塔内においてバイオガスと水とを高圧状態で接触させることにより、バイオガスに含まれる二酸化炭素及び硫黄系不純物を高圧水に溶解させて該バイオガスから分離して、メタンを高濃度化した精製ガスを得るバイオガス精製装置と、前記嫌気性発酵槽のガス圧力を測定し、その測定結果に基づいて前記嫌気性発酵槽のガス圧力が予め定められた略一定の設定値となるように前記ガス圧縮機の回転数を増減制御する制御手段と、を備えていることを特徴とするバイオガス精製設備。   Anaerobic fermenter that generates biogas by anaerobic fermentation of organic waste, and biogas from the anaerobic fermenter is pressurized by a gas compressor and sent to an absorption tower. By contacting gas and water in a high-pressure state, the carbon dioxide and sulfur-based impurities contained in the biogas are dissolved in the high-pressure water and separated from the biogas to obtain a purified gas having a high concentration of methane The gas pressure of the gas compressor is measured so that the gas pressure of the anaerobic fermenter is measured with a gas refining device, and the gas pressure of the anaerobic fermenter is set to a predetermined constant value based on the measurement result. A biogas refining facility comprising: control means for increasing / decreasing the rotational speed. 前記バイオガス精製装置からの精製ガスを一時的に貯留し、精製ガス消費設備に供給するための精製ガスタンクを備えていることを特徴とする請求項4記載のバイオガス精製設備。   5. The biogas purification facility according to claim 4, further comprising a purified gas tank for temporarily storing purified gas from the biogas purification device and supplying the purified gas to the purified gas consuming facility. 前記バイオガス精製装置の起動の際に、前記吸収塔内の圧力が予め定められた設定値に到達して前記ガス圧縮機に前記嫌気性発酵槽からのバイオガスを供給するまでの間、前記ガス圧縮機に前記精製ガスタンクからの精製ガスを供給する精製ガス循環ラインを備えていることを特徴とする請求項5記載のバイオガス精製設備。   During the startup of the biogas purification device, until the pressure in the absorption tower reaches a predetermined set value and supplies the biogas from the anaerobic fermentation tank to the gas compressor, 6. The biogas purification facility according to claim 5, further comprising a purified gas circulation line for supplying purified gas from the purified gas tank to the gas compressor. 前記バイオガス精製装置は、前記吸収塔内においてバイオガスと水とを、0.55〜2.0MPaGの範囲を満たす高圧状態で接触させることにより、前記二酸化炭素及び前記硫黄系不純物を分離除去するとともに、バイオガスが含有するシロキサン化合物を凝縮させて該バイオガスから分離して、メタンを高濃度化した精製ガスを得るように構成されたものであることを特徴とする請求項4〜6のいずれか1項に記載のバイオガス精製設備。   The biogas purification device separates and removes the carbon dioxide and the sulfur impurities by bringing biogas and water into contact with each other in a high pressure state satisfying a range of 0.55 to 2.0 MPaG in the absorption tower. The siloxane compound contained in the biogas is condensed and separated from the biogas to obtain a purified gas having a high concentration of methane. The biogas purification facility according to any one of the above. 前記バイオガス精製装置は、前記吸収塔内においてバイオガスと水とを0.7MPaG以上1.0MPaG未満の範囲を満たす高圧状態で接触させるように構成されたものであることを特徴とする請求項7記載のバイオガス精製設備。   The said biogas refiner | purifier is comprised so that biogas and water may be contacted in the high-pressure state which satisfy | fills the range of 0.7 MPaG or more and less than 1.0 MPaG in the said absorption tower. 7. The biogas purification facility according to 7.
JP2005214361A 2005-07-25 2005-07-25 Biogas purification method and biogas purification equipment Active JP4022555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005214361A JP4022555B2 (en) 2005-07-25 2005-07-25 Biogas purification method and biogas purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005214361A JP4022555B2 (en) 2005-07-25 2005-07-25 Biogas purification method and biogas purification equipment

Publications (2)

Publication Number Publication Date
JP2006095512A true JP2006095512A (en) 2006-04-13
JP4022555B2 JP4022555B2 (en) 2007-12-19

Family

ID=36235827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005214361A Active JP4022555B2 (en) 2005-07-25 2005-07-25 Biogas purification method and biogas purification equipment

Country Status (1)

Country Link
JP (1) JP4022555B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063393A (en) * 2006-09-05 2008-03-21 Kanbe Ichi Method for purifying digestive gas in system for utilizing digestive gas and apparatus for purifying the same
JP2008062138A (en) * 2006-09-05 2008-03-21 Kanbe Ichi Biogas refining method and system
JP2008063392A (en) * 2006-09-05 2008-03-21 Kanbe Ichi Method for recovering methane and apparatus for purifying digestive gas
WO2009056856A3 (en) * 2007-11-01 2009-08-13 Christopher Maltin Biogas purifying process & cell wall disruption process
KR100951367B1 (en) 2008-12-18 2010-04-08 진명환경산업 주식회사 The purification method and the purification device refining as bio-methane using cooling water and compressing both bio-methane gas and the mixed gas by density of gas and gravity difference
JP2010180197A (en) * 2008-08-27 2010-08-19 Kobelco Eco-Solutions Co Ltd Method for deoxidation of digestive gas and apparatus therefor
KR101086971B1 (en) 2009-04-02 2011-11-29 재단법인 포항산업과학연구원 Method and Apparatus of Refining Bio-Methane Gas
US9956541B2 (en) 2014-12-12 2018-05-01 Exxonmobil Research And Engineering Company Methods of separating aromatic compounds from lube base stocks
US10022700B2 (en) 2014-12-12 2018-07-17 Exxonmobil Research And Engineering Company Organosilica materials and uses thereof
US10022701B2 (en) 2014-12-12 2018-07-17 Exxonmobil Research And Engineering Company Coating methods using organosilica materials and uses thereof
US10047304B2 (en) 2014-12-12 2018-08-14 Exxonmobil Research And Engineering Company Aromatic hydrogenation catalysts and uses thereof
US10155826B2 (en) 2014-12-12 2018-12-18 Exxonmobil Research And Engineering Company Olefin polymerization catalyst system comprising mesoporous organosilica support
US10179839B2 (en) 2016-11-18 2019-01-15 Exxonmobil Research And Engineering Company Sulfur terminated organosilica materials and uses thereof
US10183272B2 (en) 2014-12-12 2019-01-22 Exxonmobil Research And Engineering Company Adsorbent for heteroatom species removal and uses thereof
US10195600B2 (en) 2016-06-10 2019-02-05 Exxonmobil Research And Engineering Company Catalysts and methods of making the same
US10207249B2 (en) 2014-12-12 2019-02-19 Exxonmobil Research And Engineering Company Organosilica materials and uses thereof
US10239967B2 (en) 2014-12-12 2019-03-26 Exxonmobil Research And Engineering Company Olefin polymerization catalyst system comprising mesoporous organosilica support
US10294312B2 (en) 2014-12-12 2019-05-21 Exxonmobil Research And Engineering Company Olefin polymerization catalyst system comprising mesoporous organosilica support
US10351639B2 (en) 2014-12-12 2019-07-16 Exxonmobil Research And Engineering Company Organosilica materials for use as adsorbents for oxygenate removal
US10435514B2 (en) 2016-06-10 2019-10-08 Exxonmobil Research And Engineering Company Organosilica materials, methods of making, and uses thereof
US10576453B2 (en) 2014-12-12 2020-03-03 Exxonmobil Research And Engineering Company Membrane fabrication methods using organosilica materials and uses thereof
US11111352B2 (en) 2017-12-21 2021-09-07 Exxonmobil Research And Engineering Company Methods of producing organosilica materials and uses thereof
CN114151151A (en) * 2021-12-02 2022-03-08 西安交通大学 System for coupling compressed air energy storage with biomass energy and internal combustion engine and operation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106753632A (en) * 2016-11-16 2017-05-31 深圳市燃气集团股份有限公司 A kind of small-sized well head natural gas purification method of purification and device

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063393A (en) * 2006-09-05 2008-03-21 Kanbe Ichi Method for purifying digestive gas in system for utilizing digestive gas and apparatus for purifying the same
JP2008062138A (en) * 2006-09-05 2008-03-21 Kanbe Ichi Biogas refining method and system
JP2008063392A (en) * 2006-09-05 2008-03-21 Kanbe Ichi Method for recovering methane and apparatus for purifying digestive gas
WO2009056856A3 (en) * 2007-11-01 2009-08-13 Christopher Maltin Biogas purifying process & cell wall disruption process
JP2010180197A (en) * 2008-08-27 2010-08-19 Kobelco Eco-Solutions Co Ltd Method for deoxidation of digestive gas and apparatus therefor
JP2012197448A (en) * 2008-08-27 2012-10-18 Kobelco Eco-Solutions Co Ltd Method for deoxidization of digestive gas and apparatus therefor
JP2012214808A (en) * 2008-08-27 2012-11-08 Kobelco Eco-Solutions Co Ltd Method and apparatus for deoxidizing digestive gas
KR100951367B1 (en) 2008-12-18 2010-04-08 진명환경산업 주식회사 The purification method and the purification device refining as bio-methane using cooling water and compressing both bio-methane gas and the mixed gas by density of gas and gravity difference
KR101086971B1 (en) 2009-04-02 2011-11-29 재단법인 포항산업과학연구원 Method and Apparatus of Refining Bio-Methane Gas
US10351639B2 (en) 2014-12-12 2019-07-16 Exxonmobil Research And Engineering Company Organosilica materials for use as adsorbents for oxygenate removal
US10294312B2 (en) 2014-12-12 2019-05-21 Exxonmobil Research And Engineering Company Olefin polymerization catalyst system comprising mesoporous organosilica support
US10022701B2 (en) 2014-12-12 2018-07-17 Exxonmobil Research And Engineering Company Coating methods using organosilica materials and uses thereof
US10047304B2 (en) 2014-12-12 2018-08-14 Exxonmobil Research And Engineering Company Aromatic hydrogenation catalysts and uses thereof
US10155826B2 (en) 2014-12-12 2018-12-18 Exxonmobil Research And Engineering Company Olefin polymerization catalyst system comprising mesoporous organosilica support
US10661262B2 (en) 2014-12-12 2020-05-26 Exxonmobil Research & Engineering Company Aromatic hydrogenation catalysts and uses thereof
US10183272B2 (en) 2014-12-12 2019-01-22 Exxonmobil Research And Engineering Company Adsorbent for heteroatom species removal and uses thereof
US10576453B2 (en) 2014-12-12 2020-03-03 Exxonmobil Research And Engineering Company Membrane fabrication methods using organosilica materials and uses thereof
US10207249B2 (en) 2014-12-12 2019-02-19 Exxonmobil Research And Engineering Company Organosilica materials and uses thereof
US10239967B2 (en) 2014-12-12 2019-03-26 Exxonmobil Research And Engineering Company Olefin polymerization catalyst system comprising mesoporous organosilica support
US10266622B2 (en) 2014-12-12 2019-04-23 Exxonmobil Research And Engineering Company Olefin polymerization catalyst system comprising mesoporous organosilica support
US10022700B2 (en) 2014-12-12 2018-07-17 Exxonmobil Research And Engineering Company Organosilica materials and uses thereof
US9956541B2 (en) 2014-12-12 2018-05-01 Exxonmobil Research And Engineering Company Methods of separating aromatic compounds from lube base stocks
US10544239B2 (en) 2014-12-12 2020-01-28 Exxonmobile Research And Engineering Company Organosilica materials and uses thereof
US10435514B2 (en) 2016-06-10 2019-10-08 Exxonmobil Research And Engineering Company Organosilica materials, methods of making, and uses thereof
US10195600B2 (en) 2016-06-10 2019-02-05 Exxonmobil Research And Engineering Company Catalysts and methods of making the same
US11325111B2 (en) 2016-06-10 2022-05-10 Exxonmobil Research & Engineering Company Catalysts and methods of making the same
US10179839B2 (en) 2016-11-18 2019-01-15 Exxonmobil Research And Engineering Company Sulfur terminated organosilica materials and uses thereof
US11111352B2 (en) 2017-12-21 2021-09-07 Exxonmobil Research And Engineering Company Methods of producing organosilica materials and uses thereof
CN114151151A (en) * 2021-12-02 2022-03-08 西安交通大学 System for coupling compressed air energy storage with biomass energy and internal combustion engine and operation method
CN114151151B (en) * 2021-12-02 2022-08-09 西安交通大学 System for coupling compressed air energy storage with biomass energy and internal combustion engine and operation method

Also Published As

Publication number Publication date
JP4022555B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
JP4022555B2 (en) Biogas purification method and biogas purification equipment
JP5020575B2 (en) Biogas purification method
KR100985911B1 (en) System for preprocessing of bio-gas
RU2508157C2 (en) Method and system of green gas cleaning, in particular, biogas for production of methane
EP3061515B1 (en) Device and method for simultaneous removal of hydrogen sulphide and carbon dioxide from biogas
JP2006036849A (en) System for treating and utilizing biomass and method for treating and utilizing biomass gas
KR101207532B1 (en) Apparatus for performing drying and removing impurities process of bio-methane at high purity bio-methane purification system
JP5033829B2 (en) Digestion gas deoxygenation method and apparatus
JP4344773B1 (en) Digestion gas desulfurization method and apparatus
CA2872873C (en) Plant and process for treating methane-containing gas from natural sources
CN203820739U (en) Biogas treatment system
CA2675833A1 (en) Method and plant for treating crude gas, in particular biogas, containing methane and carbon dioxide, in order to produce methane
US20190241434A1 (en) Method and Device for Upgrading of Biogas and Hydrogen Production From Anaerobic Fermentation of Biological Material
JP5112665B2 (en) Digestion gas purification method and purification apparatus in digestion gas utilization system
KR20110117809A (en) Purification system of high purity biogas for fuel cell and purification method thereof
KR101442730B1 (en) Apparatus for preprocessing of bio-gas
NL2015921B1 (en) Process for the purification of a gas
JP2010229248A (en) Method for deoxygenation of digestion gas and apparatus
JP5112664B2 (en) Methane recovery method and digestion gas purification device
CN109609225A (en) A kind of system of methane purification biological fuel gas
JP2004300206A (en) Method for utilizing biogas as city gas, and its manufacturing facility
KR101900031B1 (en) Pre-treament method for biogas purifying
JP2010024443A (en) Method for desulfurizing digestion gas and desulfurizer therefor
EP4349453A1 (en) Installation and process for producing biomethane
EP3483278B1 (en) Method for reusing components of disused oil facilities for biogas production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4022555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250