JP2006093571A - Wiring board with lead pin - Google Patents

Wiring board with lead pin Download PDF

Info

Publication number
JP2006093571A
JP2006093571A JP2004279522A JP2004279522A JP2006093571A JP 2006093571 A JP2006093571 A JP 2006093571A JP 2004279522 A JP2004279522 A JP 2004279522A JP 2004279522 A JP2004279522 A JP 2004279522A JP 2006093571 A JP2006093571 A JP 2006093571A
Authority
JP
Japan
Prior art keywords
lead pin
wiring board
connection pad
lead
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004279522A
Other languages
Japanese (ja)
Inventor
Akira Wakasaki
昭 若崎
Shigetoshi Inuyama
重俊 犬山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004279522A priority Critical patent/JP2006093571A/en
Publication of JP2006093571A publication Critical patent/JP2006093571A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that lead pin connection through brazing materials to a wiring board constituted of glass ceramics with low thermal expansion coefficients enlarges the thermal expansion coefficient difference of glass ceramics and brazing materials to make the glass ceramics yield to a breaking stress when an external force is added to the lead pin in an oblique direction, with the tendency of such a breakdown as crack to occur. <P>SOLUTION: An insulating substrate 5 constituted of glass ceramics whose thermal expansion coefficients in 40 to 400°C are ranging from 2.3×10<SP>-6</SP>/°C to 4.5×10<SP>-6</SP>/°C is formed with a wiring conductor 6, and a head part 1a of a lead pin 1 is connected through a connection pad constituted of Ag-Cu alloy grazing materials containing at least one type of Ti, Zr, and Hf to the wiring conductor 6 of the insulating substrate 5 so that a wiring board 3 with a lead pin can be configured. The outline dimension of the connection pad is made larger than the outline dimension of the head part 1a, and a distance between the outer peripheral end of the connection pad and the side face of the head part 1a is set so as to be not less than 0.125 mm across the overall periphery. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体素子を収容するための半導体素子収納用パッケージや回路基板、電子回路モジュール等に使用される、入出力端子用のリードピンが立設された、所謂ピングリッドアレイ(PGA)用のリードピン付き配線基板に関する。   The present invention relates to a so-called pin grid array (PGA) in which lead pins for input / output terminals are erected, which are used for a semiconductor element housing package, a circuit board, an electronic circuit module, etc. for housing semiconductor elements. The present invention relates to a wiring board with lead pins.

従来から、IC,LSI等の半導体集積回路素子等の半導体素子を収容するための半導体素子収納用パッケージや、高周波回路や電力回路等を構成する回路基板あるいは電子回路モジュール等には、セラミックスから成る絶縁基体の表面および内部の少なくとも一方に配線導体を有する配線基板が使用されている。この配線基板には、一般的に、リードピン、ボール端子等の端子部材や放熱板、放熱フィン等の放熱部材、あるいは配線基板と蓋体とから成る容器の内部に半導体素子を気密に収容するために、金属製の蓋体を取着するためのシールリング等のシール部材といった金属部材が、配線基板の表面のメタライズ層から成る配線導体にろう材を介して接合されている。   Conventionally, a semiconductor element housing package for housing a semiconductor element such as a semiconductor integrated circuit element such as an IC or LSI, a circuit board or an electronic circuit module constituting a high-frequency circuit or a power circuit, etc. are made of ceramics. A wiring board having a wiring conductor on at least one of the surface and the inside of an insulating base is used. In general, the wiring board is used to airtightly accommodate a semiconductor element in a terminal member such as a lead pin or a ball terminal, a heat radiating plate, a heat radiating member such as a heat radiating fin, or a container including a wiring board and a lid. In addition, a metal member such as a seal member such as a seal ring for attaching a metal lid is joined to a wiring conductor made of a metallized layer on the surface of the wiring board via a brazing material.

上記の配線基板においては、高周波信号を高速で伝送する上で、配線導体を形成する導体の抵抗が低いことが要求され、絶縁基体にもより低い誘電率が要求されている。   In the above wiring board, in order to transmit a high-frequency signal at a high speed, the resistance of the conductor forming the wiring conductor is required to be low, and the insulating base is also required to have a lower dielectric constant.

例えば、誘電率が低く高周波用の絶縁基体として好適であるガラスセラミックスを絶縁基体に用い、Cu,Ag,Au等の低抵抗金属のメタライズ層を配線導体として形成した配線基板が多用されている。   For example, a wiring board in which glass ceramics having a low dielectric constant and suitable as an insulating base for high frequency is used for the insulating base and a metallized layer of a low resistance metal such as Cu, Ag, Au or the like is formed as a wiring conductor is widely used.

しかしながら、このような高周波用の配線基板においては、低誘電率のガラスセラミックスはガラス成分を多量に含有することから、その磁器強度は従来のアルミナセラミックス等に比べて低く、また、低抵抗金属は融点が低いことから低温で焼成する必要があるため、メタライズ層から成る配線導体のガラスセラミックスへの接合強度も低いものとなっている。   However, in such a high-frequency wiring board, glass ceramics with a low dielectric constant contain a large amount of glass components. Therefore, their ceramic strength is lower than that of conventional alumina ceramics, etc. Since the melting point is low, it is necessary to fire at a low temperature, so that the bonding strength of the wiring conductor made of the metallized layer to the glass ceramic is also low.

このため、このような配線基板のメタライズパッドにろう材を介してリードピンを接合しピングリッドアレイ型のリードピン付き配線基板とした場合、外部電気回路に配線基板を装着するためにリードピンを外部電気回路のソケットに差し込んだり、外部電気回路に配線基板を装着後に故障や交換等のメンテナンス等が必要となりリードピンを引き抜いたりした際に、リードピンに垂直方向や斜め方向からの外力が働くと、絶縁基体であるガラスセラミックスとメタライズパッドとの界面に破壊応力が発生して、メタライズパッドに剥がれが生じたり、ガラスセラミックスそのものがその破壊応力に屈して破壊されたりして、接合信頼性が低下するという問題点があった。   Therefore, when lead pins are joined to the metallized pads of such a wiring board via a brazing material to form a wiring board with a pin grid array type lead pin, the lead pins are connected to the external electric circuit in order to attach the wiring board to the external electric circuit. If an external force is applied to the lead pin in the vertical or oblique direction when it is pulled out due to failure or replacement, etc., and maintenance is required after mounting the wiring board on the external electrical circuit, the insulation base will Destruction stress occurs at the interface between a certain glass ceramic and metallized pad, causing the metallized pad to peel off, or the glass ceramic itself to bend and break due to the destructive stress, resulting in reduced joint reliability. was there.

そこで、磁器強度の弱いガラスセラミックス等の絶縁基体とメタライズパッドとの界面における破壊を回避する手法として、活性金属としてTi,ZrおよびHfの少なくとも1種を含有するAg−Cu合金ろう材を用いて、リードピン接合用のメタライズパッドを配線基板に形成せずに、配線基板の内部から下面に導出された配線導体としての貫通導体(ビア導体)が絶縁基体の表面に露出した部位を含む領域にリードピンを直接接合する手法が提案されている。   Therefore, as a technique for avoiding breakage at the interface between the insulating base such as glass ceramics having weak porcelain strength and the metallized pad, an Ag—Cu alloy brazing material containing at least one of Ti, Zr and Hf as an active metal is used. Without forming a metallized pad for lead pin bonding on the wiring board, the lead pin is formed in a region including a portion where a through conductor (via conductor) as a wiring conductor led out from the inside of the wiring board is exposed on the surface of the insulating substrate. There has been proposed a method of directly joining the two.

この手法では、メタライズパッドを介さずに、配線基板の配線導体の一部である貫通導体の絶縁基体の表面に露出した部位とリードピンとを、Ti,ZrおよびHfの少なくとも1種を含有するAg−Cu合金ろう材から成る接続パッド(以下、ろう材パッドという)を介して直接接続することによって電気的な接続を行なうことができる。また、貫通導体の露出部は通常は直径が約100μm以下と小さいことから、リードピンは実質的には絶縁基体とろう材パッドを介して接合されるため、メタライズパッドと絶縁基体との接合強度に依存することなくリードピンを接合することができ、絶縁基体とメタライズパッドとの間の界面における破壊を回避することができる。   In this method, the portion exposed to the surface of the insulating base of the through conductor, which is a part of the wiring conductor of the wiring board, and the lead pin without using the metallized pad, and Ag containing at least one of Ti, Zr, and Hf Electrical connection can be made by direct connection via a connection pad made of a Cu alloy brazing material (hereinafter referred to as a brazing material pad). In addition, since the exposed portion of the through conductor is usually as small as about 100 μm or less in diameter, the lead pin is substantially bonded via the insulating base and the brazing material pad, so that the bonding strength between the metallized pad and the insulating base is increased. Lead pins can be joined without depending on each other, and destruction at the interface between the insulating base and the metallized pad can be avoided.

一方、上記の高周波用の配線基板に搭載される半導体素子においては、近年の更なる高集積化や高速化に伴い、半導体素子の配線容量を低減させ信号伝達速度を高くするために、半導体素子に使用する絶縁膜を低誘電率化することが検討されている。   On the other hand, in the semiconductor element mounted on the above-described high-frequency wiring board, in order to reduce the wiring capacity of the semiconductor element and increase the signal transmission speed with the recent further higher integration and higher speed, It has been studied to lower the dielectric constant of the insulating film used for the above.

例えば、10GHz程度の高周波信号を伝達し、かつ、半導体素子の設計基準(MPUゲート長)が130nm程度に微細配線化された半導体素子の絶縁膜として要求されている比誘電率は2.5以下であり、これを実現するために、スピンコート法によりシルセスキオキサン系の無機オリゴマー(低分子量のポリマー)やポリ芳香族エーテル系等の有機オリゴマーの熱重合による絶縁膜に、比誘電率1の空気を内包させた多孔質絶縁膜が開発された。
特開平8−162563号公報 特開平8−298381号公報 特開平9−18144号公報
For example, the relative dielectric constant required for an insulating film of a semiconductor element that transmits a high-frequency signal of about 10 GHz and has a fine design wiring (MPU gate length) of the semiconductor element of about 130 nm is 2.5 or less. In order to achieve this, an insulating film formed by thermal polymerization of silsesquioxane-based inorganic oligomer (low molecular weight polymer) or polyaromatic ether-based organic oligomer is formed by spin coating. A porous insulating film containing air was developed.
JP-A-8-162563 JP-A-8-298381 JP-A-9-18144

しかしながら、このような半導体素子に形成された多孔質絶縁膜は、その空孔率の増加に伴い強度が低くなるため、上述の配線基板に実装する際や半導体素子動作時などの熱負荷が加わる際に、半導体素子と配線基板の熱膨張係数の差に起因して発生する熱応力によって多孔質絶縁膜自身が破壊されるという不具合が、一般的な絶縁膜に比べて顕著に発生するという問題点があった。   However, since the strength of the porous insulating film formed in such a semiconductor element decreases as the porosity increases, a thermal load is applied when the semiconductor element is mounted on the above-described wiring board or when the semiconductor element is operated. At this time, the problem that the porous insulating film itself is destroyed due to the thermal stress generated due to the difference in the thermal expansion coefficient between the semiconductor element and the wiring board is significantly generated compared to a general insulating film. There was a point.

そこで、発生する熱応力を低減するために、40乃至400℃での熱膨張係数が2.3×10−6/℃〜4.5×10−6/℃のガラスセラミックスを絶縁基体に用いて、配線基板の熱膨張係数をSi(シリコン)などからなる半導体素子の40乃至400℃での熱膨張係数である2×10−6/℃〜4×10−6/℃に可能な限り近づけるという手法が考えられる。 Therefore, in order to reduce the thermal stress generated, the thermal expansion coefficient at 40 to 400 ° C. by using a 2.3 × 10 -6 /℃~4.5×10 -6 / ℃ glass ceramics insulating substrate The thermal expansion coefficient of the wiring board is as close as possible to 2 × 10 −6 / ° C. to 4 × 10 −6 / ° C., which is the thermal expansion coefficient at 40 to 400 ° C. of a semiconductor element made of Si (silicon) or the like. A method can be considered.

しかしながら、40乃至400℃での熱膨張係数が2.3×10−6/℃〜4.5×10−6/℃と低熱膨張のガラスセラミックスを絶縁基体として用いた場合、配線基板の配線導体の一部である貫通導体の絶縁基体の表面に露出した部位とリードピンとを、Ti,ZrおよびHfの少なくとも1種を含有するAg−Cu合金ろう材パッドを介して直接接続する方法では、低熱膨張のガラスセラミックスとろう材パッドとの熱膨張係数の差が大きく、この熱膨張係数の差に起因する熱応力がろう付け後に大きな残留応力としてろう材パッドと絶縁基体の界面に内在される。 However, if the thermal expansion coefficient at 40 to 400 ° C. was used 2.3 × 10 -6 /℃~4.5×10 -6 / ℃ and glass ceramics with low thermal expansion as the insulating substrate, the wiring board wiring conductor In the method of directly connecting the portion exposed to the surface of the insulating base of the through conductor, which is a part of the lead wire, and the lead pin through the Ag—Cu alloy brazing material pad containing at least one of Ti, Zr and Hf, low heat The difference in thermal expansion coefficient between the expanded glass ceramic and the brazing material pad is large, and the thermal stress resulting from this difference in thermal expansion coefficient is inherent in the interface between the brazing material pad and the insulating substrate as a large residual stress after brazing.

その結果、リードピンへの斜め方向の外力としてセラミックスの磁器強度以上の応力がセラミックスから成る絶縁基体とろう材との接合面の外周端に集中して作用した場合、この応力と残留応力とが相俟って大きな破壊応力が発生し、この部分を起点として絶縁基体の内部にクラック等が進行して接合信頼性の低下を引き起こしたり、配線基板からリードピンが脱離してしまうという問題点があった。   As a result, when stress exceeding the ceramic strength of ceramics acts as an external force on the lead pins in a concentrated manner at the outer peripheral edge of the joint surface between the ceramic insulating base and the brazing material, this stress and residual stress are in phase. As a result, there was a problem that a large breaking stress was generated, and cracks and the like progressed inside the insulating base from this point, leading to a decrease in bonding reliability and lead pins being detached from the wiring board. .

本発明は、上記の問題点を解決するために完成されたものであり、その目的は、多孔質絶縁膜を形成した半導体素子を搭載し、低熱膨張のガラスセラミックスからなる配線基板に取着したリードピンに斜め方向の外力が生じても、実用上耐えうるレベルのリードピンとガラスセラミックスから成る絶縁基体との接合強度を確保できる高信頼性のリードピン付き配線基板を提供することにある。   The present invention has been completed in order to solve the above-mentioned problems, and its purpose is to mount a semiconductor element on which a porous insulating film is formed and attach it to a wiring board made of low-thermal-expansion glass ceramics. An object of the present invention is to provide a highly reliable wiring board with lead pins that can secure a bonding strength between a lead pin and an insulating base made of glass ceramics that can withstand practical use even when an external force is generated on the lead pin in an oblique direction.

本発明のリードピン付き配線基板は、40乃至400℃での熱膨張係数が2.3×10−6/℃〜4.5×10−6/℃であるガラスセラミックスから成る絶縁基体の少なくとも表面に配線導体が形成されるとともに、前記絶縁基体表面の前記配線導体に、リードピンのヘッド部が、Ti、ZrおよびHfのうちの少なくとも一種を含むAg−Cu合金ろう材から成る接続パッドを介して接続されて成るリードピン付き配線基板において、前記接続パッドは、その外形寸法が前記ヘッド部の外形寸法よりも大きく、前記接続パッドの外周端と前記ヘッド部の側面との間の距離が全周にわたって0.125mm以上であるあることを特徴とする。 Wiring substrate with lead pins of the present invention, at least on the surface of the insulating substrate made of glass ceramics is a thermal expansion coefficient at 40 to 400 ° C. is 2.3 × 10 -6 /℃~4.5×10 -6 / ℃ A wiring conductor is formed, and the head portion of the lead pin is connected to the wiring conductor on the surface of the insulating base via a connection pad made of an Ag—Cu alloy brazing material containing at least one of Ti, Zr, and Hf. In the wiring board with lead pins thus formed, the external dimensions of the connection pad are larger than the external dimensions of the head portion, and the distance between the outer peripheral edge of the connection pad and the side surface of the head portion is 0 over the entire circumference. It is characterized by being 125 mm or more.

また、本発明のリードピン付き配線基板は好ましくは、前記絶縁基体と前記接続パッドとの間に形成される、前記ガラスセラミックス成分とTi,ZrおよびHfのうち少なくとも一種とを含む反応層の厚みが0.2μm乃至1μmであることを特徴とする。   The wiring board with lead pins of the present invention preferably has a thickness of a reaction layer formed between the insulating base and the connection pad and containing the glass ceramic component and at least one of Ti, Zr and Hf. It is 0.2 μm to 1 μm.

また、本発明のリードピン付き配線基板は好ましくは、前記リードピンのヘッド部の直径は、直径が0.4mm以上で厚みが0.05mm乃至0.2mmであることを特徴とする。   In the wiring board with lead pins of the present invention, preferably, the diameter of the head portion of the lead pin is 0.4 mm or more and the thickness is 0.05 mm to 0.2 mm.

本発明のリードピン付き配線基板によれば、接続パッドは、その外形寸法がヘッド部の外形寸法よりも大きく、接続パッドの外周端とヘッド部の側面との間の距離が全周にわたって0.125mm以上であることから、40乃至400℃での熱膨張係数が2.3×10−6/℃〜4.5×10−6/℃であるガラスセラミックスから成る絶縁基体に、リードピンをTi、ZrおよびHfのうちの少なくとも一種を含むAg−Cu合金ろう材から成る接続パッドを介して接続しても、リードピンのネイルヘッドに形成される接続パッドに十分なメニスカスを形成できる。その結果、リードピンが接合された際に絶縁基体とリードピンとの接合部に生じる初期的な残留応力を小さく抑えることが可能となり、リードピンに斜め方向の外力が加わって応力が絶縁基体とろう材との接合面の外周端に集中して作用した場合にも、応力全体(初期的な残留応力と外力による応力の和)は絶縁基体の磁器強度以上に成ることがない。従って、絶縁基体にクラック等の破壊が発生するのを大きく抑制することができ、配線基板からリードピンが脱離することがなく、より高い接合強度を有するものとすることが可能となる。 According to the wiring board with lead pins of the present invention, the connection pad has an outer dimension larger than the outer dimension of the head part, and the distance between the outer peripheral end of the connection pad and the side surface of the head part is 0.125 mm over the entire circumference. since at least the insulating substrate thermal expansion coefficient at 40 to 400 ° C. is made of glass ceramics is 2.3 × 10 -6 /℃~4.5×10 -6 / ℃ , the lead pins Ti, Zr A sufficient meniscus can be formed on the connection pad formed on the nail head of the lead pin even if the connection is made via the connection pad made of an Ag—Cu alloy brazing material containing at least one of Hf and Hf. As a result, the initial residual stress generated at the joint between the insulating base and the lead pin when the lead pin is joined can be suppressed to a small level, and an external force is applied to the lead pin in an oblique direction to cause the stress to Even when acting on the outer peripheral edge of the joint surface, the total stress (the sum of the initial residual stress and the stress due to the external force) does not exceed the ceramic strength of the insulating base. Therefore, the occurrence of breakage such as cracks in the insulating substrate can be greatly suppressed, and the lead pins can be prevented from being detached from the wiring board, and higher bonding strength can be obtained.

また本発明において好ましくは、絶縁基体と接続パッドとの間に形成される、ガラスセラミックスの成分とTi,ZrおよびHfのうち少なくとも一種とを含む反応層の厚みが0.2μm乃至1μmであることから、ガラスセラミックスの成分と活性金属成分であるTi,ZrおよびHfのうち少なくとも一種を含む反応層をむらなく形成することができる。そのため、ガラスセラミックスと活性金属との反応層の形成が不十分なことによる接続不良の発生を防止することができる。また、ガラスセラミックスと活性金属との反応層は脆弱であるが、その厚みを1μm以下とすることにより、反応層がガラスセラミックスとろう材との熱膨張差による初期的な残留応力により破壊されることなく強固に接合できる。   In the present invention, preferably, the thickness of the reaction layer formed between the insulating substrate and the connection pad and containing the glass ceramic component and at least one of Ti, Zr and Hf is 0.2 μm to 1 μm. Thus, a reaction layer containing at least one of the components of glass ceramics and Ti, Zr, and Hf that are active metal components can be formed evenly. Therefore, it is possible to prevent the occurrence of poor connection due to insufficient formation of the reaction layer between the glass ceramic and the active metal. In addition, although the reaction layer of glass ceramics and active metal is fragile, by setting the thickness to 1 μm or less, the reaction layer is destroyed by the initial residual stress due to the difference in thermal expansion between the glass ceramics and the brazing material. It can be firmly joined without any problems.

また本発明において好ましくは、リードピンのヘッド部の直径が0.4mm以上であることから、リードピンと接続パッドとの接合面積が十分に確保され接合強度も高くなるため、リードピンに斜め方向の外力が加わっても、リードピンとろう材との界面で剥離が生じることを抑制できる。また好ましくは、リードピンのヘッド部の厚みが0.05mm乃至0.2mmであることから、リードピンに斜め方向の外力が加わっても、ガラスセラミックスと接続パッドとの破壊の起点となる、接続パッドと絶縁基体との接合面の外周端への応力の集中を低減できる。   Preferably, in the present invention, since the diameter of the head portion of the lead pin is 0.4 mm or more, the bonding area between the lead pin and the connection pad is sufficiently secured and the bonding strength is increased. Even if it adds, it can suppress that peeling arises in the interface of a lead pin and a brazing material. Preferably, since the thickness of the head portion of the lead pin is 0.05 mm to 0.2 mm, even if an external force in an oblique direction is applied to the lead pin, the connection pad is a starting point for breaking the glass ceramic and the connection pad. The concentration of stress on the outer peripheral edge of the joint surface with the insulating substrate can be reduced.

本発明のリードピン付き配線基板について以下に詳細に説明する。図1は半導体素子を収容する半導体素子収納用パッケージに本発明のリードピン付き配線基板を適用した場合の実施の形態の一例を示す断面図である。図1において、1はリードピン、2は活性金属としてTi,ZrおよびHfの少なくとも1種を含有する、接続パッドとしてのAg−Cu合金ろう材(以下、ろう材ともいう)、3はリードピン付き配線基板(以下、配線基板ともいう)、4は半導体素子である。配線基板3のガラスセラミックスから成る絶縁基体5は、上面の中央部に半導体素子4を搭載するための搭載部7を有している。   The wiring board with lead pins of the present invention will be described in detail below. FIG. 1 is a cross-sectional view showing an example of an embodiment in which the wiring board with lead pins of the present invention is applied to a semiconductor element housing package for housing semiconductor elements. In FIG. 1, 1 is a lead pin, 2 is an Ag—Cu alloy brazing material (hereinafter also referred to as a brazing material) as a connection pad containing at least one of Ti, Zr and Hf as an active metal, and 3 is a wiring with a lead pin A substrate (hereinafter also referred to as a wiring substrate) and 4 are semiconductor elements. The insulating base 5 made of glass ceramics of the wiring board 3 has a mounting portion 7 for mounting the semiconductor element 4 at the center of the upper surface.

絶縁基体5は、ガラスセラミックス焼結体から成る、例えば四角形状の板状体であり、その表面および内部の少なくとも表面に配線導体6を有している。このような配線基板3は、例えば以下のようにして製作される。   The insulating base 5 is, for example, a rectangular plate-shaped body made of a glass ceramic sintered body, and has a wiring conductor 6 on the surface and at least the surface of the inside. Such a wiring board 3 is manufactured as follows, for example.

まず、セラミック粉末,樹脂バインダ,溶融成分に溶剤(有機溶剤,水等)、必要に応じて硬度や強度を調整するための所定量の可塑剤,分散剤を加えてスラリーを得、これをPETフィルムや紙等の支持体上にドクターブレード法,リップコーター法,ダイコーター法等のシート成型方法によりガラスセラミックグリーンシート(以下、グリーンシートともいう)を作製する。   First, a slurry is obtained by adding a solvent (organic solvent, water, etc.) to a ceramic powder, a resin binder, and a molten component, and a predetermined amount of a plasticizer and a dispersant for adjusting the hardness and strength as necessary, to obtain a slurry. A glass ceramic green sheet (hereinafter also referred to as a green sheet) is produced on a support such as a film or paper by a sheet molding method such as a doctor blade method, a lip coater method, or a die coater method.

40乃至400℃での熱膨張係数が2.3×10−6/℃〜4.5×10−6/℃であるガラスセラミックスから成る絶縁基体5を得るためのセラミック粉末としては、例えばSiO−Al−MgO−ZnO−B,SiO−B−Al−NaO,SiO−B−KO−Al−NaO等の硼珪酸ガラスのような低熱膨張係数のガラス粉末とアルミナ,コーディエライト,石英ガラス,ムライトのようなフィラー粉末とを混合したものを用いればよく、要求される特性に合わせてその種類や組合せ、含有量は適宜選択される。 As the ceramic powder for thermal expansion coefficient at 40 to 400 ° C. to obtain an insulating substrate 5 made of glass ceramic is 2.3 × 10 -6 /℃~4.5×10 -6 / ℃ , for example SiO 2 -Al 2 O 3 -MgO-ZnO- B 2 O 3, SiO 2 -B 2 O 3 -Al 2 O 3 -NaO 2, SiO 2 -B 2 O 3 -K 2 O-Al 2 O 3 -NaO etc. It is sufficient to use a mixture of low thermal expansion coefficient glass powder such as borosilicate glass and filler powder such as alumina, cordierite, quartz glass, and mullite. The content is appropriately selected.

より具体的には、30〜55質量%のSiO、15〜40質量%のAl、3〜25質量%のMgO、2〜15質量%のZnO、2〜15質量%のBを含有するガラス粉末64.5〜98.5質量%と、コーディエライト粉末0.5〜20質量%と、ムライト,アノーサイト,スラウソナイト,セルジアン,石英ガラスの群から選ばれる少なくとも1種のフィラー粉末1〜35質量%とを含有するものがある。このガラス粉末に1050℃以下の熱処理を施すことにより、少なくともコーディエライトを結晶相として析出させ、さらにコーディエライトとともに、ガーナイト,スピネル,ムライトの群から選ばれる少なくとも1種を結晶相として析出させることによって、絶縁基体5の低熱膨張化、低誘電率化、低ヤング率化を達成することができる。低熱膨張化と低ヤング率化により1次実装と2次実装の信頼性の向上が達成されるのでより好ましいものとなる。 More to be specific, SiO 2 of 30 to 55 wt%, 15 to 40 wt% of Al 2 O 3, 3 to 25 wt% of MgO, 2 to 15 wt% of ZnO, 2 to 15 wt% B 2 O 3 glass powder 64.5 to 98.5 mass% containing, and 0.5 to 20 wt% cordierite powder, mullite, anorthite, Surausonaito, celsian, at least one selected from the group consisting of quartz glass Containing 1 to 35 mass% of filler powder. By subjecting this glass powder to a heat treatment at 1050 ° C. or lower, at least cordierite is precipitated as a crystalline phase, and at least one selected from the group of garnite, spinel and mullite is precipitated as a crystalline phase together with cordierite. As a result, it is possible to achieve low thermal expansion, low dielectric constant, and low Young's modulus of the insulating substrate 5. Lowering the thermal expansion and lowering the Young's modulus achieves an improvement in the reliability of primary mounting and secondary mounting, which is more preferable.

次に、このセラミックグリーンシートに、導体材料の粉末をペースト化した導体ペーストをスクリーン印刷法やグラビア印刷法等により印刷するか、または所定パターン形状の金属箔を転写する等の方法を用いて、配線導体6を形成する。導体ペーストの導体材料としては、ガラスセラミックス焼結体に対しては、Cu,Ag,Ag−Pt,Ag−Pd,Au等が好適に用いられる。   Next, on this ceramic green sheet, a conductor paste obtained by pasting a powder of a conductor material is printed by a screen printing method or a gravure printing method, or a method such as transferring a metal foil having a predetermined pattern shape, A wiring conductor 6 is formed. As the conductive material of the conductive paste, Cu, Ag, Ag—Pt, Ag—Pd, Au, or the like is suitably used for the glass ceramic sintered body.

なお、この配線導体6には、絶縁基体5の上面と下面とにそれぞれ配置された導体パターン同士を絶縁基体5の内部で接続するためのビア導体やスルーホール導体等といった貫通導体の部分も含まれる。この貫通導体は、例えば、パンチング加工等によりセラミックグリーンシートに形成した貫通孔に導体ペーストを充填することによって形成される。   The wiring conductor 6 also includes through conductor portions such as via conductors and through-hole conductors for connecting the conductor patterns respectively disposed on the upper surface and the lower surface of the insulating substrate 5 inside the insulating substrate 5. It is. This through conductor is formed by, for example, filling a through hole formed in the ceramic green sheet by punching or the like with a conductor paste.

次に、配線導体6を形成したセラミックグリーンシートを複数枚積層し、所定の温度(ガラスセラミックスの場合であれば約900℃)で焼成することによって、配線基板3が製作される。   Next, a plurality of ceramic green sheets on which the wiring conductors 6 are formed are stacked and fired at a predetermined temperature (about 900 ° C. in the case of glass ceramics), whereby the wiring substrate 3 is manufactured.

そして、配線基板3の下面の、配線導体6としての貫通導体が絶縁基体5の表面に露出した部位を含む領域に、活性金属としてTi,ZrおよびHfのうち少なくとも1種を含有するAg−Cu合金ろう材2をペースト化したものを、スクリーン印刷法やグラビア印刷法等により印刷し、ネイルヘッド型のリードピン1と配線基板3の配線導体6および絶縁基体5とを、Ag−Cu合金ろう材2を介してろう付けする。   Then, an Ag-Cu containing at least one of Ti, Zr and Hf as an active metal in a region including a portion where the through conductor as the wiring conductor 6 is exposed on the surface of the insulating base 5 on the lower surface of the wiring substrate 3. A paste of the alloy brazing material 2 is printed by a screen printing method, a gravure printing method, or the like, and the nail head type lead pin 1, the wiring conductor 6 and the insulating base 5 of the wiring substrate 3 are replaced with an Ag-Cu alloy brazing material. Braze through 2

このAg−Cu合金ろう材2は、BAg−8(JIS Z−3261:72質量%Ag−28質量%Cu)ろう材を始めとして、Agが60〜80質量%でCuが20〜40質量%の組成から成るAg−Cu合金ろう材2に、活性金属であるTi,ZrおよびHfのうち少なくとも1種を、金属または水素化物の状態で外添加で2〜10質量%添加したものが用いられる。   This Ag—Cu alloy brazing material 2 is composed of a brazing material such as BAg-8 (JIS Z-3261: 72 mass% Ag-28 mass% Cu), Ag is 60 to 80 mass%, and Cu is 20 to 40 mass%. A material obtained by adding 2 to 10% by mass of at least one of Ti, Zr, and Hf, which are active metals, in the state of metal or hydride is used in the Ag—Cu alloy brazing material 2 having the composition: .

このろう材2を介してリードピン1を絶縁基体5に接合するには、例えば、ろう材2の粉末に有機溶剤、樹脂バインダおよび溶剤(有機溶剤,水等)を合わせて5〜15質量%を外添加で混合して得たろう材ペーストを、配線導体6が露出した部位、例えば貫通導体の露出した端面を含む絶縁基体5の表面に、スクリーン印刷法等によりリードピン1を立設する部位に対応した所定パターンで印刷し、これにリードピン1のヘッド部1aを載置して、これを真空中、中性雰囲気中または還元雰囲気中でろう材2の溶融温度に合わせた所定温度(例えば約800℃)で加熱処理し、ろう材2を溶融させて、配線導体6および絶縁基体5とリードピン1をろう付け接合する。   In order to join the lead pin 1 to the insulating base 5 through the brazing material 2, for example, the powder of the brazing material 2 is combined with an organic solvent, a resin binder, and a solvent (organic solvent, water, etc.) to 5 to 15 mass%. Corresponding to the part where the lead pin 1 is erected on the surface of the insulating base 5 including the exposed end surface of the through conductor, for example, the surface of the insulating base 5 including the exposed end surface of the through conductor, by mixing the brazing paste obtained by external addition The head portion 1a of the lead pin 1 is placed on the predetermined pattern, and the head portion 1a is placed on the predetermined pattern. The head portion 1a is placed in a vacuum, in a neutral atmosphere, or in a reducing atmosphere to a predetermined temperature (for example, about 800). The brazing material 2 is melted, and the wiring conductor 6 and the insulating base 5 are joined to the lead pin 1 by brazing.

このとき、ろう材2の融点およびろう付け後の接合部の外観や反応層および合金層の厚み等を考慮して、ろう材2における活性金属の含有量、ボリューム(体積)、ブレージング最高到達温度、ろう材2の融点以上の温度の保持時間等を決める必要がある。   At this time, considering the melting point of the brazing material 2 and the appearance of the joint after brazing, the thickness of the reaction layer and the alloy layer, the content of active metal in the brazing material 2, volume (volume), maximum brazing temperature It is necessary to determine a holding time at a temperature equal to or higher than the melting point of the brazing material 2.

その一例として、72質量%Ag−28質量%Cuの所謂BAg−8と呼ばれるろう材に活性金属としてTiHを3質量%添加したろう材2を用いて、絶縁基体5の表面にろう付け後に直径0.90mmの接続パッドを形成する場合、ピン径が0.20mm、ヘッド部1aの厚みが0.15mm、ヘッド部1aの直径が0.45mmのリードピン1を絶縁基体5の所定部位に当接した状態で、真空炉中で最高温度795℃乃至850℃で5分乃至1時間保持すれば、高い強度を有する良好な接合状態が得られる。 As an example, after brazing the surface of the insulating substrate 5 using a brazing material 2 in which 3 mass% of TiH 2 is added as an active metal to a so-called BAg-8 brazing material of 72 mass% Ag-28 mass% Cu. When a connection pad having a diameter of 0.90 mm is formed, a lead pin 1 having a pin diameter of 0.20 mm, a head portion 1a thickness of 0.15 mm, and a head portion 1a diameter of 0.45 mm is applied to a predetermined portion of the insulating substrate 5. In the state of contact, if a maximum temperature of 795 ° C. to 850 ° C. is maintained for 5 minutes to 1 hour in a vacuum furnace, a good bonded state having high strength can be obtained.

ここで、絶縁基体5が40乃至400℃での熱膨張係数が2.3×10−6/℃〜4.5×10−6/℃であるガラスセラミックスである場合、ヘッド部1aの側面と接続パッドの外周端との間の距離が全周にわたって0.125mm以上であることが必要である。 Here, when the insulating substrate 5 is glass ceramics is a thermal expansion coefficient at 40 to 400 ° C. is 2.3 × 10 -6 /℃~4.5×10 -6 / ℃ , and the side of the head portion 1a It is necessary that the distance from the outer peripheral edge of the connection pad is 0.125 mm or more over the entire circumference.

接続パッドの外周端とヘッド部1aの側面との間の距離が0.125mm未満であると、40乃至400℃での熱膨張係数が2.3×10−6/℃〜4.5×10−6/℃であるガラスセラミックスから成る絶縁基体5に、リードピン1をTi、ZrおよびHfのうちの少なくとも一種を含むAg−Cu合金ろう材の接続パッドを介して接続したとき、リードピン1のヘッド部1aに形成される接続パッドに十分なメニスカスを形成できない。その結果、リードピン1が接合された際に絶縁基体5とリードピン1との接合部に生じる初期的な残留応力が大きくなり、リードピン1に斜め方向の外力が加わって応力が絶縁基体5と接続パッドとの接合面の外周端に集中して作用した場合、応力全体(初期的な残留応力と外力による応力の和)が絶縁基体5の磁器強度以上になり、絶縁基体5にクラック等の破壊が発生し、配線基板3からリードピン1が脱離を起こす場合がある。 When the distance between the outer peripheral edge of the connection pad and the side surface of the head portion 1a is less than 0.125 mm, the thermal expansion coefficient at 40 to 400 ° C. is 2.3 × 10 −6 / ° C. to 4.5 × 10. When the lead pin 1 is connected to the insulating base 5 made of glass ceramics at −6 / ° C. via a connection pad of an Ag—Cu alloy brazing material containing at least one of Ti, Zr and Hf, the head of the lead pin 1 A sufficient meniscus cannot be formed on the connection pad formed in the portion 1a. As a result, when the lead pin 1 is joined, the initial residual stress generated in the joint portion between the insulating base 5 and the lead pin 1 is increased, and an external force is applied to the lead pin 1 in an oblique direction so that the stress is applied to the insulating base 5 and the connection pad. When concentrated on the outer peripheral edge of the joint surface, the total stress (the sum of the initial residual stress and the stress due to the external force) exceeds the ceramic strength of the insulating base 5, and the insulating base 5 is broken such as cracks. May occur and the lead pin 1 may be detached from the wiring board 3 in some cases.

また、絶縁基体5と接続パッドとの間に形成される、ガラスセラミックスの成分とTi,ZrおよびHfのうち少なくとも一種とを含む反応層の厚みが0.2μm乃至1μmである。ガラスセラミックスと活性金属成分であるTi,ZrおよびHfのうち少なくとも一種とを含む反応層の厚みが0.2μm未満であると、反応層を絶縁基体5上に一様に形成することが困難である。その結果、まだら模様状に反応層が形成され、接合強度が弱くなる。また、反応層の厚みが1μmを超えると、脆弱な反応層がガラスセラミックスと接続パッドとの熱膨張差による初期的な残留応力により破壊されやすくなる。   Further, the thickness of the reaction layer formed between the insulating substrate 5 and the connection pad and containing the glass ceramic component and at least one of Ti, Zr and Hf is 0.2 μm to 1 μm. If the thickness of the reaction layer containing glass ceramics and at least one of Ti, Zr and Hf which are active metal components is less than 0.2 μm, it is difficult to form the reaction layer uniformly on the insulating substrate 5. is there. As a result, the reaction layer is formed in a mottled pattern, and the bonding strength is weakened. On the other hand, when the thickness of the reaction layer exceeds 1 μm, the fragile reaction layer is likely to be broken by the initial residual stress due to the difference in thermal expansion between the glass ceramic and the connection pad.

なお、反応層の厚みは、Ti,ZrおよびHfのうちの少なくとも一種を含むAg−Cu合金ろう材中の活性金属成分である、Ti,ZrおよびHfの含有量を調節することで変化させることできる。また、反応層の厚みは、その断面を波長分散型X線マイクロアナライザ(EPMA)や走査電子顕微鏡(SEM)で観察することで測定できる。   The thickness of the reaction layer is changed by adjusting the content of Ti, Zr and Hf, which are active metal components in the Ag—Cu alloy brazing material containing at least one of Ti, Zr and Hf. it can. The thickness of the reaction layer can be measured by observing the cross section with a wavelength dispersive X-ray microanalyzer (EPMA) or a scanning electron microscope (SEM).

また、リードピン1は、ヘッド部1aの直径が0.4mm以上で厚みが0.05mm乃至0.2mmである。ヘッド部1aの直径が0.4mm未満であると、ろう材2とリードピン1との絶対的な接合面積が不足する。その結果、リードピン1に斜め方向の外力が加わった際に、リードピン1と接続パッドとの界面で剥離やクラックが生じやすくなる。なお、ヘッド部1aの直径の上限は、絶縁基体5の外形寸法や、リードピン1の設置間隔、リードピン1の配列方法等に応じて設定できる。例えば、本発明の配線基板3を半導体素子4搭載用の半導体素子収納用パッケージに適用する場合、ヘッド部1aの直径は0.4〜1mm程度のものがよく、ヘッド部1aの側面とろう材2の外周端との間の距離を全周にわたって0.125mm以上確保しやすく好ましい。   The lead pin 1 has a head portion 1a with a diameter of 0.4 mm or more and a thickness of 0.05 mm to 0.2 mm. If the diameter of the head portion 1a is less than 0.4 mm, the absolute bonding area between the brazing material 2 and the lead pin 1 is insufficient. As a result, when an external force in an oblique direction is applied to the lead pin 1, peeling or cracking is likely to occur at the interface between the lead pin 1 and the connection pad. The upper limit of the diameter of the head portion 1a can be set according to the outer dimensions of the insulating base 5, the installation interval of the lead pins 1, the arrangement method of the lead pins 1, and the like. For example, when the wiring board 3 of the present invention is applied to a semiconductor element storage package for mounting the semiconductor element 4, the head portion 1a preferably has a diameter of about 0.4 to 1 mm, and the side surface of the head portion 1a and the brazing material It is easy to secure a distance between the outer peripheral ends of 2 and 0.125 mm or more over the entire circumference.

また、ヘッド部1aの厚みが0.05mm未満であると、ろう材2がヘッド部1aの上部、即ちリードピン1の付け根付近まで這い上がりやすくなる。その結果、接続パッドのメニスカスの形状が不安定になり、リードピン1に斜め方向の外力が加わって、接続パッドと絶縁基体5との接合面の外周端に応力の集中が起こった際に、絶縁基体5にクラック等の破壊が発生しやすくなる。また、ヘッド部1aの厚みが0.2mmを超えると、ろう材2がヘッド部1aの厚さの分だけ這い上がった際に、メニスカスの角度が大きくなりやすい。その結果、リードピン1が接合された際に、絶縁基体5とリードピン1との接合部に生じる初期的な残留応力が大きくなり、リードピン1に斜め方向の外力が加わって応力が絶縁基体5とろう材2との接合面の外周端に集中して作用した場合、応力全体(初期的な残留応力と外力による応力の和)が絶縁基体5の磁器強度以上になり、絶縁基体5にクラック等の破壊が発生し、配線基板3からリードピン1が脱離を起こす場合がある。   Further, when the thickness of the head portion 1a is less than 0.05 mm, the brazing material 2 tends to creep up to the upper portion of the head portion 1a, that is, near the root of the lead pin 1. As a result, the meniscus shape of the connection pad becomes unstable, an external force is applied to the lead pin 1 in an oblique direction, and when the stress concentrates on the outer peripheral edge of the joint surface between the connection pad and the insulating base 5, the insulation is generated. Breaking such as cracks is likely to occur in the substrate 5. If the thickness of the head portion 1a exceeds 0.2 mm, the angle of the meniscus tends to increase when the brazing material 2 crawls up by the thickness of the head portion 1a. As a result, when the lead pin 1 is joined, the initial residual stress generated at the joint portion between the insulating base 5 and the lead pin 1 is increased, and an external force is applied to the lead pin 1 in an oblique direction, so that the stress becomes the insulating base 5. When concentrated on the outer peripheral edge of the joint surface with the material 2, the total stress (the sum of the initial residual stress and the stress due to external force) exceeds the ceramic strength of the insulating base 5, and the insulating base 5 is cracked. In some cases, breakage occurs and the lead pins 1 are detached from the wiring board 3.

なお、本発明の配線基板3に用いられるリードピン1の材質、ピン部の長さ、ヘッド部1aの厚み等は、外部電気回路のソケットの形状や接続方法等に応じて選択が可能である。例えば、半導体素子収納用パッケージに適用するリードピン1であれば、Fe−Ni−Co合金やCu合金製のものが使用され、ピン部の長さとしては1〜6mm程度の範囲のものが使用される。   The material of the lead pin 1 used in the wiring board 3 of the present invention, the length of the pin portion, the thickness of the head portion 1a, and the like can be selected according to the shape of the socket of the external electric circuit, the connection method, and the like. For example, in the case of a lead pin 1 applied to a package for housing a semiconductor element, one made of an Fe-Ni-Co alloy or Cu alloy is used, and a pin having a length of about 1 to 6 mm is used. The

以上のようにして、リードピン1と絶縁基体5とを接合することにより、斜め方向からリードピン1に外力が加わっても、絶縁基体5とリードピン1とのろう材2を介した接合部において高い接合強度を確保することができ、良好なろう付け状態でリードピン1が接合された配線基板3を得ることが可能となる。   By joining the lead pin 1 and the insulating base 5 as described above, even if an external force is applied to the lead pin 1 from an oblique direction, a high joint is obtained at the joint portion between the insulating base 5 and the lead pin 1 via the brazing material 2. Strength can be ensured, and it is possible to obtain the wiring substrate 3 to which the lead pins 1 are bonded in a good brazed state.

なお、本発明の配線基板3においては、絶縁基体5の表面に形成される配線導体6のリードピン1が接合されない部位の表面、および貫通導体の露出する表面のリードピン1が接合されない部位には、絶縁基体5とリードピン1との接合前あるいは接合後に、耐蝕性に優れ、かつAg−Cu合金ろう材2との濡れ性が良好なNiやAu等の金属層が1〜20μmの厚みでめっき法等により被着されていてもよい。   In the wiring board 3 of the present invention, the surface of the portion of the wiring conductor 6 formed on the surface of the insulating base 5 where the lead pin 1 is not joined and the portion where the lead pin 1 on the exposed surface of the through conductor is not joined are Before or after joining the insulating substrate 5 and the lead pin 1, a metal layer of Ni, Au or the like having excellent corrosion resistance and good wettability with the Ag—Cu alloy brazing material 2 is plated with a thickness of 1 to 20 μm. It may be applied by, for example.

Niめっき層は、例えばPを4〜12質量%程度含有する無電解Ni−Pめっき層から成る。このようなNiめっき層は、まず、配線導体6が形成された絶縁基体5を界面活性剤と塩酸水溶液とから成る温度が25〜50℃の酸性の洗浄液に1〜5分間浸漬して、配線導体6の露出した表面を清浄とし、次にこれを純水で洗浄した後、塩化パラジウム,水酸化カリウム,エチレンジアミンテトラアセティクアシッドから成る温度が25〜40℃のパラジウム活性液中に1〜5分間程度浸漬して、配線導体6の表面にパラジウム触媒を付着させ、次にこれを純水で洗浄した後、硫酸ニッケル,クエン酸ナトリウム,酢酸ナトリウム,次亜リン酸ナトリウム,塩化アンモニウムから成る温度が50〜90℃の無電解Niめっき液中に、2〜60分間浸漬することによって、配線導体6の露出した表面に被着される。   The Ni plating layer is composed of, for example, an electroless Ni—P plating layer containing about 4 to 12% by mass of P. In such a Ni plating layer, first, the insulating base 5 on which the wiring conductor 6 is formed is immersed in an acidic cleaning solution having a temperature of 25 to 50 ° C. composed of a surfactant and an aqueous hydrochloric acid solution for 1 to 5 minutes. After the exposed surface of the conductor 6 is cleaned and then washed with pure water, it is 1 to 5 in a palladium active solution having a temperature of 25 to 40 ° C. composed of palladium chloride, potassium hydroxide and ethylenediaminetetraacetic acid. Immerse for about a minute to deposit a palladium catalyst on the surface of the wiring conductor 6 and then wash it with pure water, followed by a temperature comprising nickel sulfate, sodium citrate, sodium acetate, sodium hypophosphite, ammonium chloride. Is deposited on the exposed surface of the wiring conductor 6 by dipping in an electroless Ni plating solution at 50 to 90 ° C. for 2 to 60 minutes.

なお、Niめっき層は、その厚みが1μm未満では、絶縁基体5の表面に形成された配線導体6の表面、図2に示す例では半導体素子4の電極が接続される電極パッド8となる部位の表面を良好に被覆することができず、配線導体6の露出した表面に酸化や変色をきたす傾向にある。他方、20μmを超えると、Niめっき層の内部応力によりNiめっき層にクラックや剥がれが発生しやすい。従って、Niめっき層の厚みは1〜20μmの範囲が好ましい。   When the Ni plating layer has a thickness of less than 1 μm, the surface of the wiring conductor 6 formed on the surface of the insulating substrate 5, in the example shown in FIG. 2, the portion that becomes the electrode pad 8 to which the electrode of the semiconductor element 4 is connected. However, the exposed surface of the wiring conductor 6 tends to be oxidized or discolored. On the other hand, when the thickness exceeds 20 μm, cracks and peeling are likely to occur in the Ni plating layer due to internal stress of the Ni plating layer. Therefore, the thickness of the Ni plating layer is preferably in the range of 1 to 20 μm.

また、Niめっき層を上述のように無電解Ni−Pめっきにより形成する場合、Niめっき層中のPの含有量が4質量%未満であると、配線導体6の露出した表面にNiめっき層を被着させる際にNiめっきの析出速度が遅くなり、所定の厚みのNiめっき層を得るために長時間を要することとなるので生産性が極めて悪くなる。他方、12質量%を超えると、Niめっき層上に被着させるAuめっき層との反応性が悪くなり、Niめっき層をAuめっき層で良好に被覆することが困難となる傾向にある。従って、Niめっき層中のPの含有量は4〜12質量%の範囲が好ましい。   Further, when the Ni plating layer is formed by electroless Ni-P plating as described above, the Ni plating layer is formed on the exposed surface of the wiring conductor 6 when the content of P in the Ni plating layer is less than 4% by mass. The deposition rate of Ni plating becomes slow when depositing, and it takes a long time to obtain a Ni plating layer with a predetermined thickness, so the productivity becomes extremely poor. On the other hand, if it exceeds 12% by mass, the reactivity with the Au plating layer deposited on the Ni plating layer becomes poor, and it tends to be difficult to satisfactorily coat the Ni plating layer with the Au plating layer. Therefore, the content of P in the Ni plating layer is preferably in the range of 4 to 12% by mass.

特に、絶縁基体5とリードピン1との接合後に無電解めっき法によりNi−Pめっきを施すときには、ろう材2の周りの絶縁基体5上にNiめっきが析出し、隣接する配線導体6同士が短絡する場合がある。これを防止するには、ろう材2ペースト中の樹脂バインダ量を少なくして、絶縁基体5の表面における炭素の残留を減らして絶縁基体5の表面にNiめっき層が被着する要因を減らすか、めっきの前処理の段階で絶縁基体5の表面をエッチングすることにより、接続パッドの周りの絶縁基体5表面に付着したAgやCuといったろう材成分を、ろう付け時に溶融、気化させて除去するといった対策を施せばよい。   In particular, when Ni-P plating is performed by electroless plating after joining the insulating base 5 and the lead pin 1, Ni plating is deposited on the insulating base 5 around the brazing material 2 and the adjacent wiring conductors 6 are short-circuited. There is a case. In order to prevent this, the amount of the resin binder in the brazing filler metal 2 paste is reduced, the carbon residue on the surface of the insulating base 5 is reduced, and the factor that the Ni plating layer is deposited on the surface of the insulating base 5 is reduced. By etching the surface of the insulating base 5 in the pretreatment stage of plating, the brazing filler metal components such as Ag and Cu attached to the surface of the insulating base 5 around the connection pads are removed by melting and vaporizing at the time of brazing. Such measures should be taken.

ここで、ろう材2のペースト中の樹脂バインダの量としては、以上のような理由および印刷性の観点から、8〜12質量%の割合で外添加するのがよい。さらに、無電解めっきによるめっき層の耐熱性および変色性の低下を改善するためには、めっき後に400℃以上で加熱処理することにより、めっき層を緻密化させることが効果的である。   Here, the amount of the resin binder in the paste of the brazing material 2 is preferably externally added at a rate of 8 to 12% by mass from the above reasons and from the viewpoint of printability. Furthermore, in order to improve the decrease in heat resistance and discoloration of the plating layer due to electroless plating, it is effective to densify the plating layer by heat treatment at 400 ° C. or higher after plating.

そして、本発明の配線基板3は、搭載部7上にエポキシ樹脂やAgエポキシ樹脂等を用いて半導体素子4を搭載し、半導体素子4上の電極と、絶縁基体5の搭載部7の近傍に配線導体6の一部として形成された電極パッド8とを、Au,Cu,Al等の金属細線(ボンディングワイヤ)で電気的に接続した後、CuやAl等から成る金属製または酸化アルミニウム質焼結体等のセラミック製の蓋体9を、エポキシ樹脂等の樹脂やAu−Sn合金,Au−Ge合金といったろう材等による接着、または溶接によって取着し封止することによって、半導体装置となる。   In the wiring board 3 of the present invention, the semiconductor element 4 is mounted on the mounting portion 7 using epoxy resin, Ag epoxy resin, or the like, and the electrode on the semiconductor element 4 and the mounting portion 7 of the insulating base 5 are in the vicinity. The electrode pad 8 formed as a part of the wiring conductor 6 is electrically connected with a fine metal wire (bonding wire) such as Au, Cu, Al, etc. A ceramic lid body 9 such as a bonded body is attached and sealed by adhesion or welding with a resin such as an epoxy resin, a brazing material such as an Au—Sn alloy or an Au—Ge alloy, or the like, thereby obtaining a semiconductor device. .

本発明のリードピン付き配線基板の実施例について以下に説明する。   Examples of the wiring board with lead pins of the present invention will be described below.

まず、44質量%のSiO、28質量%のAl、11質量%のMgO、5質量%のZnO、5質量%のB、6質量%のCaO、1質量%のBaOを含有するガラス粉末を85質量%、フィラー粉末としてコーディエライト粉末を5質量%、ムライト粉末を10質量%として混合し、これに樹脂バインダ,有機溶剤,可塑剤および分散剤を加えてスラリーを得、これをPETフィルムの支持体上においてドクターブレード法によりセラミックグリーンシートを作製した。 First, SiO 2 of 44 wt%, 28 wt% of Al 2 O 3, 11 wt% of MgO, 5 wt% of ZnO, 5 wt% of B 2 O 3, 6% by weight of CaO, 1 wt% of BaO A glass powder containing 85% by weight, 5% by weight of cordierite powder as filler powder, and 10% by weight of mullite powder are mixed, and a resin binder, an organic solvent, a plasticizer, and a dispersant are added to the slurry. This was obtained, and a ceramic green sheet was produced by a doctor blade method on a PET film support.

次に、このセラミックグリーンシートにパンチング加工により貫通孔を形成し、導体ペーストを充填することによってビア導体を形成した。   Next, a through-hole was formed in this ceramic green sheet by punching, and a via conductor was formed by filling a conductor paste.

次に、Cu粉末をペースト化した導体ペーストをスクリーン印刷法より印刷して配線導体(配線導体となる導体ペースト層)を形成した。   Next, a conductor paste obtained by pasting Cu powder was printed by a screen printing method to form a wiring conductor (a conductive paste layer serving as a wiring conductor).

次に、これらのビア導体と配線導体を形成したセラミックグリーンシートを複数枚積層し、950℃の温度で焼成することによって40乃至400℃での熱膨張係数が3.2×10−6/℃であるガラスセラミックスから成る絶縁基体を製作した。 Next, a plurality of ceramic green sheets on which these via conductors and wiring conductors are formed are stacked and fired at a temperature of 950 ° C. so that the thermal expansion coefficient at 40 to 400 ° C. is 3.2 × 10 −6 / ° C. An insulating substrate made of glass ceramics was manufactured.

また、フィラー粉末のムライト粉末に代えてアノーサイト粉末を用いて、40乃至400℃での熱膨張係数が4.5×10−6/℃であるガラスセラミックスから成る絶縁基体を作製した。 An insulating base made of glass ceramics having a thermal expansion coefficient of 4.5 × 10 −6 / ° C. at 40 to 400 ° C. was produced using anorthite powder instead of the mullite powder of the filler powder.

また同様に、44質量%のSiO、29質量%のAl、11質量%のMgO、7質量%のZnO、9質量%のBを含有するガラス粉末を72.5質量%、フィラー粉末としてコーディエライト粉末を2.5質量%、石英ガラス粉末を25質量%として混合したものを用い、950℃の温度で焼成することによって、40乃至400℃での熱膨張係数が2.3×10−6/℃であるガラスセラミックスから成る絶縁基体を作製した。 Similarly, 72.5 wt glass powder containing 44 wt% of SiO 2, 29 wt% of Al 2 O 3, 11 wt% of MgO, 7% by weight of ZnO, 9 wt% of B 2 O 3 %, Using a mixture of cordierite powder as filler powder at 2.5 mass% and quartz glass powder at 25 mass%, and firing at a temperature of 950 ° C., the coefficient of thermal expansion at 40 to 400 ° C. An insulating substrate made of glass ceramics having a temperature of 2.3 × 10 −6 / ° C. was produced.

次に、これら絶縁基体の表面にAg72質量%とCu28質量%とから成るAg−Cu合金ろう材(BAg−8)に活性金属としてのTiHを3質量%および樹脂バインダを10質量%の割合で外添加した活性金属ろう材ペーストを、リードピンと絶縁基体との接合用の接続パッドとしてスクリーン印刷し、ろう付け後の直径が0.90mmとなる接続パッドを形成した。 Next, a ratio of 3% by mass of TiH 2 as an active metal and 10% by mass of a resin binder on an Ag—Cu alloy brazing material (BAg-8) composed of 72% by mass of Ag and 28% by mass of Cu on the surfaces of these insulating substrates. The active metal brazing material paste externally added in (1) was screen-printed as a connection pad for joining the lead pin and the insulating substrate to form a connection pad having a diameter of 0.90 mm after brazing.

次に、この接続パッドを介して、ピン部の直径が0.20mm、ヘッド部の厚みが0.15mm、ヘッド部の直径が0.45mmであるFe−Ni−Co合金製のリードピンを、真空炉中で最高温度800℃を15分保持することにより接合した。   Next, through this connection pad, a lead pin made of Fe—Ni—Co alloy having a pin portion diameter of 0.20 mm, a head portion thickness of 0.15 mm, and a head portion diameter of 0.45 mm is evacuated. Bonding was performed by maintaining the maximum temperature of 800 ° C. for 15 minutes in a furnace.

その後、ヘッド部の側面と接続パッドの外周端との間の全周にわたる最小距離を三次元測定機を用いて測定した。   Thereafter, the minimum distance over the entire circumference between the side surface of the head portion and the outer peripheral edge of the connection pad was measured using a three-dimensional measuring machine.

その後、このリードピンの接合強度(45°引っ張り強度)を、45°上方に10mm/分の速度で引っ張る引っ張り試験により評価した。   Thereafter, the bonding strength (45 ° tensile strength) of this lead pin was evaluated by a tensile test in which the lead pin was pulled upward at 45 ° at a speed of 10 mm / min.

なお、リードピンについて、45°引っ張り強度(破壊強度)が15N以上であればリードピンは折り曲げに耐えうるが、45°引っ張り強度が15N未満しかない場合、リードピンに外力が加わった際にリードピンが折れ曲がる前にガラスセラミックスから成る絶縁基体が破壊されてしまうため、ソケット挿入時にリードピンが取れてしまうといった不具合が発生することとなる。これより、接合強度の判断基準として、45°引っ張り強度が15N以上あれば実用上問題ないとした。その結果を表1に示す。

Figure 2006093571
Note that the lead pin can withstand bending if the 45 ° tensile strength (breaking strength) is 15 N or more for the lead pin, but if the 45 ° tensile strength is less than 15 N, the lead pin is not bent when an external force is applied to the lead pin. In addition, since the insulating base made of glass ceramics is destroyed, there is a problem that the lead pin can be removed when the socket is inserted. As a result, as a criterion for determining the bonding strength, if the 45 ° tensile strength is 15 N or more, there is no practical problem. The results are shown in Table 1.
Figure 2006093571

表1より、絶縁基体を成すガラスセラミックスの40乃至400℃での熱膨張係数が2.3×10−6/℃〜4.5×10−6/℃であり、ヘッド部の側面と接続パッドの外周端との間の距離が全周にわたって0.125mm以上である本発明のリードピン付き配線基板(試料No.4,5,9,10,14,15)は、リードピンの45°引っ張り強度が最小値でも15N以上であり、十分な接合強度であった。また、破壊の状態は、ガラスセラミックスの破壊の起点となる接続パッドと絶縁基体との接合面の外周端ではなく、ピン部で切断されたものであった。 From Table 1, a 40 to thermal expansion coefficient of 2.3 × 10 -6 /℃~4.5×10 -6 / ℃ at 400 ° C. of glass ceramic forming the insulating substrate, the connection pads and the side surface of the head portion The wiring board with lead pins of the present invention (sample Nos. 4, 5, 9, 10, 14, and 15) of the present invention in which the distance between the outer peripheral ends of the lead pins is 0.125 mm or more over the entire circumference is 45 ° tensile strength of the lead pins. The minimum value was 15 N or more, which was a sufficient bonding strength. Moreover, the state of destruction was not the outer peripheral edge of the joint surface between the connection pad and the insulating base, which is the starting point of the destruction of the glass ceramics, but was cut at the pin portion.

一方、ヘッド部の側面からろう材パッドの外周端までの距離が全周にわたって0.125mm未満の試料No.1,2,3,6,7,8,11,12,13は、リードピンの45°引っ張り強度の平均値が15N未満であり、いずれも接続パッドとガラスセラミックスとの接合面の外周端を起点とした磁器破壊が生じた。   On the other hand, Sample No. whose distance from the side surface of the head portion to the outer peripheral edge of the brazing pad is less than 0.125 mm over the entire circumference. 1, 2, 3, 6, 7, 8, 11, 12, 13 have an average value of 45 ° tensile strength of the lead pins of less than 15 N, and all start from the outer peripheral edge of the joint surface between the connection pad and the glass ceramic. As a result, the destruction of porcelain occurred.

実施例1と同様にして、組成の異なるセラミックグリーンシートを用い、40乃至400℃での熱膨張係数が2.3×10−6/℃、3.2×10−6/℃、4.5×10−6/℃であるガラスセラミックスから成る絶縁基体を製作した。 In the same manner as in Example 1, using different ceramic green sheet compositions, 40 to the thermal expansion coefficient at 400 ° C. is 2.3 × 10 -6 /℃,3.2×10 -6 /℃,4.5 An insulating substrate made of glass ceramics of × 10 −6 / ° C. was manufactured.

次に、これら絶縁基体の表面にAg72質量%とCu28質量%とから成るAg−Cu合金ろう材(BAg−8)に、活性金属としてのTiHを1質量%、1.5質量%、3質量%およびバインダを10質量%の割合で外添加した活性金属ろう材ペーストを、リードピンと絶縁基体との接合用の接続パッドとしてスクリーン印刷し、ろう付け後の直径が0.90mmとなる接続パッドを形成した。 Next, TiH 2 as an active metal is added in an amount of 1% by mass, 1.5% by mass, 3% by mass to Ag—Cu alloy brazing material (BAg-8) comprising 72% by mass of Ag and 28% by mass of Cu on the surfaces of these insulating substrates. An active metal brazing paste with externally added 10% by mass and a binder of 10% by mass is screen-printed as a connection pad for joining the lead pin and the insulating substrate, and the diameter after brazing becomes 0.90 mm Formed.

次に、このろう材を介して、ピン部の直径が0.20mmで、ヘッド部の厚みが0.20mm、ヘッド部の直径が0.45mmであるFe−Ni−Co合金製のリードピンを、真空炉中で最高温度800℃を15分保持することにより接合した。   Next, through this brazing material, a lead pin made of Fe-Ni-Co alloy having a pin portion diameter of 0.20 mm, a head portion thickness of 0.20 mm, and a head portion diameter of 0.45 mm, Bonding was performed by maintaining the maximum temperature of 800 ° C. for 15 minutes in a vacuum furnace.

次に、ヘッド部の側面と接続パッドの外周端との間の全周にわたる最小距離を三次元測定機を用いて測定し、ヘッド部の側面と接続パッドの外周端との間の距離が全周にわたって0.125mm以上であることを確認した。   Next, the minimum distance over the entire circumference between the side surface of the head part and the outer peripheral edge of the connection pad is measured using a coordinate measuring machine, and the distance between the side surface of the head part and the outer peripheral edge of the connection pad is It was confirmed that it was 0.125 mm or more over the circumference.

その後、作製したリードピン付配線基板のサンプルを2群に半分けし、一方の群は、反応層の厚みを観察するためのサンプルとし、EPMAにてTi元素を調べることで反応層の厚みを測定した。また、他方の群では、リードピンの接合強度(45°引っ張り強度)を、45°上方に10mm/分の速度でリードピンを引っ張る引っ張り試験をリードピン50ピンについて行なうことによって測定し、破壊強度と破壊モードを評価した。   Thereafter, the sample of the produced wiring board with lead pins was divided into two groups, and one group was used as a sample for observing the thickness of the reaction layer, and the thickness of the reaction layer was measured by examining the Ti element with EPMA. . In the other group, the lead pin joint strength (45 ° tensile strength) was measured by conducting a pull test on the lead pin 50 pins at a rate of 10 mm / min 45 ° upward to determine the breaking strength and the breaking mode. Was evaluated.

なお、リードピンについて、45°引っ張り強度(破壊強度)が15N以上であればリードピンは折り曲げに耐え得るが、45°引っ張り強度が15N未満の場合、リードピンに外力が加わった際にリードピンが折れ曲がる前に絶縁基体が破壊される場合があるため、ソケット挿入時にリードピンが取れるといった不具合が発生し易い。また、10N未満であると、完全に絶縁基体が破壊される。   Note that the lead pin can withstand bending if the 45 ° tensile strength (breaking strength) is 15 N or more for the lead pin, but if the 45 ° tensile strength is less than 15 N, before the lead pin bends when an external force is applied to the lead pin. Since the insulating substrate may be destroyed, a problem that the lead pin can be removed when the socket is inserted is likely to occur. If it is less than 10N, the insulating substrate is completely destroyed.

これより、接合強度の判断基準として、45°引っ張り強度が15N以上であり、破壊モードは、絶縁基体の破壊の起点となる接続パッドと絶縁基体との接合面の外周端部ではなく、ピン部での破壊の割合(ピン切れ率)が100%であれば問題ないとした(表2中に○印で示す)。   Accordingly, as a criterion for determining the bonding strength, the 45 ° tensile strength is 15 N or more, and the failure mode is not the outer peripheral end portion of the bonding surface between the connection pad and the insulating substrate, which is the starting point of the breakdown of the insulating substrate, but the pin portion. It was determined that there was no problem if the fracture rate (pin breakage rate) was 100% (indicated by a circle in Table 2).

また、引っ張り強度が10N乃至15Nであり、破壊モードのピン切れ率が50%以上であれば実用上問題ないとした(表1中に△印で示す)。   Further, if the tensile strength is 10 N to 15 N and the pin breakage rate in the fracture mode is 50% or more, there is no practical problem (indicated by Δ in Table 1).

また、引っ張り強度が15N未満で、破壊モードのピン切れ率が50%未満であれば実使用に耐え得ないとした(表2中に×印で示す)。その結果を表2に示す。なお、表2中の引っ張り強度は最小強度を示す。

Figure 2006093571
Further, if the tensile strength is less than 15 N and the pin breakage rate in the fracture mode is less than 50%, it cannot be actually used (indicated by x in Table 2). The results are shown in Table 2. In addition, the tensile strength in Table 2 shows the minimum strength.
Figure 2006093571

表2より、絶縁基体を成すガラスセラミックスの40乃至400℃での熱膨張係数が2.3×10−6/℃〜4.5×10−6/℃であり、絶縁基体と接続パッドとの間に形成される、ガラスセラミックスの成分とTiを含む反応層の厚みが0.2μm乃至1μmである本発明のリードピン付き配線基板は、リードピンの45°引っ張り強度が最小値でも15N以上であり、破壊モードもピン切れ率が100%であり、十分な接合状態であった(表2中に○印で示す)。 From Table 2, the thermal expansion coefficient at 40 to 400 ° C. of glass ceramic forming the insulating substrate is the 2.3 × 10 -6 /℃~4.5×10 -6 / ℃ , the connection pads and the insulating substrate The wiring board with lead pins of the present invention in which the thickness of the reaction layer containing glass ceramic component and Ti formed between them is 0.2 μm to 1 μm, the 45 ° tensile strength of the lead pins is 15 N or more even at the minimum value, The failure mode also had a pin breakage rate of 100% and was in a sufficiently joined state (indicated by a circle in Table 2).

一方、絶縁基体と接続パッドとの間に形成される、ガラスセラミックスの成分とTiを含む反応層の厚みが0.1μm未満または1μmを超えた試料は、リードピンの45°引っ張り強度の平均値が15N未満であり、破壊モードはピン切れ率が50%以上であった(表中に△印で示す)。   On the other hand, a sample in which the thickness of the reaction layer containing glass ceramic component and Ti formed between the insulating substrate and the connection pad is less than 0.1 μm or more than 1 μm has an average value of 45 ° tensile strength of the lead pin. The failure mode was a pin breakage rate of 50% or more (indicated by Δ in the table).

実施例1と同様にして、組成の異なるセラミックグリーンシートを用い、40乃至400℃での熱膨張係数が2.3×10−6/℃、3.2×10−6/℃、4.5×10−6/℃であるガラスセラミックスから成る絶縁基体を製作した。 In the same manner as in Example 1, using different ceramic green sheet compositions, 40 to the thermal expansion coefficient at 400 ° C. is 2.3 × 10 -6 /℃,3.2×10 -6 /℃,4.5 An insulating substrate made of glass ceramics of × 10 −6 / ° C. was manufactured.

次に、これら絶縁基体の表面に、Ag72質量%とCu28質量%とから成るAg−Cu合金ろう材(BAg−8)に活性金属としてのTiHを3質量%割合で外添加した活性金属ろう材ペーストを、リードピンと絶縁基体との接合用の接続パッドとしてスクリーン印刷し、ろう付け後の直径が0.90mmとなる接続パッドを形成した。 Next, an active metal brazing material in which TiH 2 as an active metal is externally added at a ratio of 3% by mass to an Ag—Cu alloy brazing material (BAg-8) composed of 72% by mass of Ag and 28% by mass of Cu is formed on the surfaces of these insulating substrates. The material paste was screen-printed as a connection pad for joining the lead pin and the insulating substrate to form a connection pad having a diameter of 0.90 mm after brazing.

次に、このろう材を介して、ピン部の直径が0.20mmで、ヘッド部の直径が0.3mm、0.4mm、0.5mmで、ヘッド部の厚みが0.05mm、0.1mm、0.15mm、0.20mm、0.25mmであるFe−Ni−Co合金製のリードピンを、真空炉中で最高温度800℃を15分保持することにより接合した。   Next, through this brazing material, the diameter of the pin part is 0.20 mm, the diameter of the head part is 0.3 mm, 0.4 mm, and 0.5 mm, and the thickness of the head part is 0.05 mm and 0.1 mm. , 0.15 mm, 0.20 mm, and 0.25 mm lead pins made of an Fe—Ni—Co alloy were joined by holding at a maximum temperature of 800 ° C. for 15 minutes in a vacuum furnace.

次に、ヘッド部の側面と接続パッドの外周端との間の全周にわたる最小距離を三次元測定機を用いて測定し、ヘッド部の側面と接続パッドの外周端との間の距離が全周にわたって0.125mm以上であることを確認した。   Next, the minimum distance over the entire circumference between the side surface of the head part and the outer peripheral edge of the connection pad is measured using a coordinate measuring machine, and the distance between the side surface of the head part and the outer peripheral edge of the connection pad is It was confirmed that it was 0.125 mm or more over the circumference.

その後、このリードピンの接合強度(45°引っ張り強度)を、45°上方に10mm/分の速度で引っ張る引っ張り試験によりリードピン50ピンを引張り、破壊強度と破壊モードを評価した。   Thereafter, the lead pin 50 pin was pulled by a tensile test in which the lead pin was bonded at a rate of 10 mm / min (45 ° tensile strength), and the breaking strength and the breaking mode were evaluated.

なお、リードピンについて、45°引っ張り強度(破壊強度)が15N以上であればリードピンは折り曲げに耐え得るが、45°引っ張り強度が15N未満の場合、リードピンに外力が加わった際にリードピンが折れ曲がる前に絶縁基体が破壊される場合があるため、ソケット挿入時にリードピンが取れるといった不具合が発生し易い。また、10N未満であると完全に絶縁基体が破壊される。   Note that the lead pin can withstand bending if the 45 ° tensile strength (breaking strength) is 15 N or more with respect to the lead pin, but if the 45 ° tensile strength is less than 15 N, before the lead pin bends when an external force is applied to the lead pin. Since the insulating substrate may be destroyed, a problem that the lead pin can be removed when the socket is inserted is likely to occur. If it is less than 10N, the insulating substrate is completely destroyed.

これより、接合強度の判断基準として、45°引っ張り強度が15N以上であり、破壊モードは、絶縁基体の破壊の起点となる接続パッドと絶縁基体との接合面の外周端部ではなく、ピン部での破壊の割合(ピン切れ率)が100%であれば問題ないとした(表3中に○印で示す)。   Accordingly, as a criterion for determining the bonding strength, the 45 ° tensile strength is 15 N or more, and the failure mode is not the outer peripheral end portion of the bonding surface between the connection pad and the insulating substrate, which is the starting point of the breakdown of the insulating substrate, but the pin portion. It was determined that there was no problem if the fracture rate (pin breakage rate) was 100% (indicated by a circle in Table 3).

また、引っ張り強度が10N乃至15Nであり、破壊モードのピン切れ率が50%以上であれば実用上問題ないとした(表3中に△印で示す)。   Further, if the tensile strength is 10 N to 15 N and the pin breakage rate in the fracture mode is 50% or more, there is no practical problem (indicated by Δ in Table 3).

また、引っ張り強度が15N未満で、破壊モードのピン切れ率が50%未満であれば実使用に耐え得ないとした(表3中に×印で示す)。その結果を表3に示す。なお、表3中の引っ張り強度は最小強度を示す。

Figure 2006093571
Further, if the tensile strength is less than 15 N and the pin breakage rate in the fracture mode is less than 50%, it cannot be actually used (indicated by x in Table 3). The results are shown in Table 3. In addition, the tensile strength in Table 3 shows the minimum strength.
Figure 2006093571

表3より、絶縁基体を成すガラスセラミックスの40乃至400℃での熱膨張係数が2.3×10−6/℃〜4.5×10−6/℃であり、リードピンのヘッド部の直径が0.4mm以上で厚みが0.05mm乃至0.2mmである本発明のリードピン付き配線基板は、リードピンの45°引っ張り強度が最小値でも15N以上であり、破壊モードもピン切れ率が100%であり、十分な接合状態であった(表3中に○印で示す)。 From Table 3, the thermal expansion coefficient at 40 to 400 ° C. of glass ceramic forming the insulating substrate is the 2.3 × 10 -6 /℃~4.5×10 -6 / ℃ , the diameter of the head portion of the lead pin The lead pin-equipped wiring board of the present invention having a thickness of 0.4 mm or more and a thickness of 0.05 mm to 0.2 mm has a 45 ° tensile strength of the lead pin of 15 N or more even at the minimum value, and the break mode is 100%. Yes, it was in a sufficiently joined state (indicated by a circle in Table 3).

一方、リードピンのヘッド部の直径が0.4mm未満または厚みが0.2mmを超えた試料は、リードピンの45°引っ張り強度の平均値が15N未満であり、破壊モードはピン切れ率が50%以上であった(表3中に△印で示す)。   On the other hand, samples with a lead pin head portion diameter of less than 0.4 mm or a thickness of more than 0.2 mm have an average 45 ° tensile strength of the lead pin of less than 15 N, and the break mode has a pin breakage of 50% or more. (Indicated by Δ in Table 3).

以上より、本発明の構成のリードピン付き配線基板を用いることで、実用上問題ない接合強度を得ることができ、リードピンに斜め方向に外力が加わった際にも高い接合信頼性を有する配線基板を得ることができた。   As described above, by using the wiring board with lead pins of the configuration of the present invention, it is possible to obtain a bonding strength having no practical problem, and a wiring board having high bonding reliability even when an external force is applied to the lead pins in an oblique direction. I was able to get it.

なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更を施すことは何ら差し支えない。例えば、上記の実施の形態の例では、本発明の配線基板を半導体素子収納用パッケージに適用した例を示したが、混成集積回路基板等の他の用途に適用してもよい。   In addition, this invention is not limited to the example of the above embodiment, A various change may be performed in the range which does not deviate from the summary of this invention. For example, in the example of the above-described embodiment, an example in which the wiring board of the present invention is applied to a package for housing a semiconductor element has been shown.

本発明のリードピン付き配線基板の実施の形態の例を示す断面図である。It is sectional drawing which shows the example of embodiment of the wiring board with a lead pin of this invention.

符号の説明Explanation of symbols

1・・・リードピン
1a・・・ヘッド部
2・・・ろう材
3・・・リードピン付き配線基板
4・・・半導体素子
5・・・絶縁基体
6・・・配線導体
7・・・搭載部
8・・・電極パッド
DESCRIPTION OF SYMBOLS 1 ... Lead pin 1a ... Head part 2 ... Brazing material 3 ... Wiring board 4 with a lead pin ... Semiconductor element 5 ... Insulation base 6 ... Wiring conductor 7 ... Mounting part 8 ... Electrode pads

Claims (3)

40乃至400℃での熱膨張係数が2.3×10−6/℃〜4.5×10−6/℃であるガラスセラミックスから成る絶縁基体の少なくとも表面に配線導体が形成されるとともに、前記絶縁基体表面の前記配線導体に、リードピンのヘッド部が、Ti,ZrおよびHfのうちの少なくとも一種を含むAg−Cu合金ろう材から成る接続パッドを介して接続されて成るリードピン付き配線基板において、前記接続パッドは、その外形寸法が前記ヘッド部の外形寸法よりも大きく、前記接続パッドの外周端と前記ヘッド部の側面との間の距離が全周にわたって0.125mm以上であることを特徴とするリードピン付き配線基板。 With at least the surface on the wiring conductor of the insulating substrate made of glass ceramics is formed having a coefficient of thermal expansion 2.3 × 10 -6 /℃~4.5×10 -6 / ℃ at 40 to 400 ° C., the In the wiring board with lead pins, wherein the head portion of the lead pin is connected to the wiring conductor on the surface of the insulating base via a connection pad made of an Ag-Cu alloy brazing material containing at least one of Ti, Zr and Hf. The connection pad has an outer dimension larger than an outer dimension of the head portion, and a distance between an outer peripheral end of the connection pad and a side surface of the head portion is 0.125 mm or more over the entire circumference. Wiring board with lead pins. 前記絶縁基体と前記接続パッドとの間に形成される、前記ガラスセラミックスの成分とTi,ZrおよびHfのうち少なくとも一種とを含む反応層の厚みが0.2μm乃至1μmであることを特徴とする請求項1記載のリードピン付き配線基板。 The thickness of the reaction layer formed between the insulating base and the connection pad and containing the glass ceramic component and at least one of Ti, Zr and Hf is 0.2 μm to 1 μm. The wiring board with lead pins according to claim 1. 前記リードピンのヘッド部は、直径が0.4mm以上で厚みが0.05mm乃至0.2mmであることを特徴とする請求項1または請求項2記載のリードピン付き配線基板。 3. The wiring board with lead pins according to claim 1, wherein the head portion of the lead pins has a diameter of 0.4 mm or more and a thickness of 0.05 mm to 0.2 mm.
JP2004279522A 2004-08-23 2004-09-27 Wiring board with lead pin Pending JP2006093571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004279522A JP2006093571A (en) 2004-08-23 2004-09-27 Wiring board with lead pin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004242220 2004-08-23
JP2004279522A JP2006093571A (en) 2004-08-23 2004-09-27 Wiring board with lead pin

Publications (1)

Publication Number Publication Date
JP2006093571A true JP2006093571A (en) 2006-04-06

Family

ID=36234226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004279522A Pending JP2006093571A (en) 2004-08-23 2004-09-27 Wiring board with lead pin

Country Status (1)

Country Link
JP (1) JP2006093571A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294601A (en) * 2006-04-24 2007-11-08 Kyocera Corp Wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294601A (en) * 2006-04-24 2007-11-08 Kyocera Corp Wiring board

Similar Documents

Publication Publication Date Title
JP2006121034A (en) Wiring board with lead pin
JP2003342060A (en) Glass ceramic sintered compact and wiring board
JP2009224651A (en) Wiring board and manufacturing process therefor
JP2006093571A (en) Wiring board with lead pin
JPH09102560A (en) External lead pin joining structure for low-temperature baked ceramic substrate
JP2004059375A (en) Ceramic-metal member junction body
JP4105928B2 (en) Wiring board with lead pins
JP2002134885A (en) Circuit board, manufacturing method thereof, electronic device mounting body, and green sheet
JP4364033B2 (en) Wiring board with lead pins
JP2006121018A (en) Wiring board with lead pin
JP2006173222A (en) Wiring board
JP4688314B2 (en) Wiring board manufacturing method
JP2006121022A (en) Wiring board with lead pin and manufacturing method thereof
JP2006066653A (en) Wiring substrate with lead pin
JP2006148000A (en) Glass ceramic wiring board
JP2005285967A (en) Wiring board with lead pin
JP3792642B2 (en) Wiring board and manufacturing method thereof
JP2006100447A (en) Wiring board with lead pin
JP3652184B2 (en) Conductive paste, glass-ceramic wiring board and manufacturing method thereof
JP2006203230A (en) Wiring board and electronic device using it
JP3830296B2 (en) Manufacturing method of high thermal expansion glass ceramic sintered body
JP3645744B2 (en) Ceramic wiring board
JP2005276893A (en) Method for manufacturing ceramics multilayer wiring board
JP3905991B2 (en) Glass ceramic wiring board
JP2005236213A (en) Wiring board with lead pin