JP2006093527A - Reactant gas supply part - Google Patents

Reactant gas supply part Download PDF

Info

Publication number
JP2006093527A
JP2006093527A JP2004279062A JP2004279062A JP2006093527A JP 2006093527 A JP2006093527 A JP 2006093527A JP 2004279062 A JP2004279062 A JP 2004279062A JP 2004279062 A JP2004279062 A JP 2004279062A JP 2006093527 A JP2006093527 A JP 2006093527A
Authority
JP
Japan
Prior art keywords
gas discharge
reactive gas
vacuum
processing chamber
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004279062A
Other languages
Japanese (ja)
Inventor
Tetsuo Imaoka
哲夫 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004279062A priority Critical patent/JP2006093527A/en
Publication of JP2006093527A publication Critical patent/JP2006093527A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device exchanging a reactant gas discharge part without opening a vacuum treatment chamber to the atmosphere in a semiconductor device. <P>SOLUTION: The vacuum treatment chamber 1 and a reactant gas supply part 6 are provided, and the reactant gas supply part 6 is constituted of a mixing part 2 and the reactant gas discharge part 3. Two or more sets of the reactant gas discharge parts 3 are stored in a vacuum chamber 16 connected to the vacuum treatment chamber 1. A carrying, fixing, holding and rotating mechanism for separating a used reactant gas discharge part 3 from the mixing part 2, then for recovering it and connecting a clean reactant gas discharge part 3 with the mixing part 2 inside the vacuum treatment chamber 1, is provided, and the reactant gas discharge part 3 is exchanged in a state of a vacuum degree of the vacuum treatment chamber 1 being maintained. Thus, a maintenance cycle is prolonged and the operation loss of the device is reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、真空処理装置の反応ガス供給部に関するものである。   The present invention relates to a reactive gas supply unit of a vacuum processing apparatus.

半導体基板処理を行う真空処理装置において、真空処理室内で反応ガスによるプロセス処理を実施する際、真空処理室内に、反応ガス供給部が設置されている。エッチング処理及び、成膜処理を行なう装置の場合、反応ガス供給部の、基板表面側に、反応ガス放出部を有し、基板表面に、反応ガスを供給している。   In a vacuum processing apparatus that performs semiconductor substrate processing, when a process process using a reactive gas is performed in a vacuum processing chamber, a reactive gas supply unit is installed in the vacuum processing chamber. In the case of an apparatus that performs an etching process and a film forming process, a reactive gas discharge unit is provided on the substrate surface side of the reactive gas supply unit, and the reactive gas is supplied to the substrate surface.

プロセス処理を連続的に実施した際、反応ガスの反応生成物が、反応ガス放出部に付着し、目詰まりが発生する。成膜装置においては、有機金属を用いたMOCVD装置、特にTMAl、TMGa、DEZnの有機金属と、AsHのガスを用いるプロセスでは、反応ガス放出部の中心部から反応生成部による目詰まりが発生し、経時的に同心円状に目詰まりが拡大していく。反応ガス放出部の目詰まりにより、反応ガスのガス流が変化し、成膜処理後の基板面内のAl組成分布は、基板ステージ中心部に近い程組成が悪化する。 When the process is carried out continuously, the reaction product of the reaction gas adheres to the reaction gas discharge part and clogging occurs. In a film forming apparatus, in a process using an organic metal MOCVD apparatus, particularly an organic metal such as TMAl, TMGa, and DEZn, and an AsH 3 gas, clogging is generated by the reaction generation section from the center of the reaction gas discharge section. However, the clogging increases concentrically with time. Due to the clogging of the reaction gas discharge portion, the gas flow of the reaction gas changes, and the Al composition distribution in the substrate surface after the film formation process becomes worse as the composition is closer to the center of the substrate stage.

これまでの真空処理処理装置を用いた成膜処理においては、反応ガス放出部に反応ガスの反応生成物による目詰まりが生じていた。これにより、基板面内の組成分布が悪化していた。この対策として、反応ガス供給部の目詰まりが発生した後、反応ガス供給部の反応ガス放出部を着脱可能とし、反応ガス放出部のメンテナンスを容易にする特許文献1に記載の方法があった。
特開平6−188202号公報
In the conventional film forming process using the vacuum processing apparatus, the reaction gas discharge portion is clogged with the reaction product of the reaction gas. Thereby, the composition distribution in the substrate surface was deteriorated. As a countermeasure against this, there has been a method described in Patent Document 1 that enables the reaction gas discharge unit of the reaction gas supply unit to be detachable after the reaction gas supply unit is clogged, thereby facilitating maintenance of the reaction gas discharge unit. .
JP-A-6-188202

しかしながら、従来の基板面内の組成分布の悪化に対する対策には以下の課題がある。   However, the conventional countermeasures against the deterioration of the composition distribution in the substrate surface have the following problems.

反応ガス放出部を交換する際、真空処理室を大気開放するが、真空処理室の大気開放後は、反応ガス放出部以外の、真空処理室内に設置されている、反応生成物が付着している他のパーツ交換を実施する必要があり、結果的に、メンテナンス時間が長くなるばかりか、MOCVD装置のように、真空処理室を大気開放し、再度製品基板を処理するまでには、品質を保証するための、確認処理項目が多く、装置の稼動ロスを発生させる。   When exchanging the reaction gas discharge part, the vacuum processing chamber is opened to the atmosphere. After opening the vacuum process chamber to the atmosphere, reaction products installed in the vacuum processing chamber other than the reaction gas discharge part are attached. As a result, not only will the maintenance time be longer, but the quality of the product will not be improved until the vacuum processing chamber is opened to the atmosphere and the product substrate is processed again, as in MOCVD equipment. There are many confirmation processing items to guarantee, causing an operation loss of the apparatus.

本発明は、上記課題を解決するために、反応ガス放出部を交換する際、真空処理室を大気に開放することなく、真空処理室と連結した真空室に、反応ガス放出部を複数組収納し、定期的に、真空処理室の真空度を維持した状態で、交換することにより、常に清浄な反応ガス放出部を反応ガス供給部に配置させる。   In order to solve the above-mentioned problems, the present invention accommodates a plurality of sets of reactive gas discharge units in a vacuum chamber connected to the vacuum processing chamber without opening the vacuum processing chamber to the atmosphere when replacing the reactive gas discharge unit. Then, by regularly replacing the vacuum processing chamber while maintaining the degree of vacuum in the vacuum processing chamber, a clean reaction gas discharge unit is always arranged in the reaction gas supply unit.

これにより、真空処理室を大気開放することなく、反応ガス放出部の交換を行なうことで、真空処理室内のメンテナンスサイクルの延長が可能となり、装置の稼動ロスを防止し、反応ガス放出部の目詰まりによる基板面内の組成分布悪化を防止する。これにより、半導体製品の安定した品質を提供する。   This enables the maintenance cycle in the vacuum processing chamber to be extended by exchanging the reaction gas discharge section without opening the vacuum processing chamber to the atmosphere. Prevents deterioration of composition distribution in the substrate surface due to clogging. This provides stable quality of semiconductor products.

前記従来の課題を解決するため、本発明の反応ガス供給部は、真空処理室と、反応ガス供給部とを備え、反応ガス供給部は、ミキシング部と反応ガス放出部から構成される。反応ガス放出部は真空処理室と連結した真空室に複数組収納され、使用済みの反応ガス放出部をミキシング部と分離させた後、回収し、清浄な反応ガス放出部を真空処理室内のミキシング部と結合させるための、搬送及び、固定及び、保持及び、回転機構を備え、真空処理室の真空度を維持した状態で、反応ガス放出部を交換することができるものである。   In order to solve the conventional problems, the reactive gas supply unit of the present invention includes a vacuum processing chamber and a reactive gas supply unit, and the reactive gas supply unit includes a mixing unit and a reactive gas discharge unit. Multiple sets of reactive gas discharge units are housed in a vacuum chamber connected to the vacuum processing chamber, and the used reactive gas discharge unit is separated from the mixing unit and then recovered, and a clean reactive gas discharge unit is mixed in the vacuum processing chamber. The reaction gas discharge unit can be exchanged in a state where the vacuum processing chamber is maintained in a vacuum state, and includes a transporting, fixing, holding, and rotating mechanism for coupling with the unit.

また、反応ガス放出部が収納される、真空室は、反応ガス放出部を全て使用した際、真空処理室の真空度を維持した状態で、真空室を大気状態で開放し、清浄な反応ガス放出部との交換を行なうことを特徴とするものである。   In addition, the vacuum chamber in which the reaction gas discharge unit is housed, when all of the reaction gas discharge unit is used, the vacuum chamber is opened in the atmospheric state with the vacuum degree of the vacuum processing chamber maintained, and a clean reaction gas is obtained. It is characterized by exchanging with the discharge part.

以上のように、本発明の半導体基板処理を行なう真空処理装置の反応ガス供給部によれば、反応ガス供給部を、ミキシング部と、反応ガス放出部とに分離することができ、真空処理室と連結した位置に、反応ガス放出部を収納棚に複数組収納された真空室を有し、反応ガス放出部を真空処理室と真空室との間を搬送する機構を有することで、真空処理室の真空度を維持した状態で反応ガス放出部の交換ができ、清浄な反応ガス放出部を、真空処理室内に設置させる。   As described above, according to the reactive gas supply unit of the vacuum processing apparatus for performing semiconductor substrate processing of the present invention, the reactive gas supply unit can be separated into the mixing unit and the reactive gas discharge unit, and the vacuum processing chamber And a vacuum chamber in which a plurality of sets of reaction gas discharge portions are stored in a storage shelf, and a mechanism for transporting the reaction gas discharge portions between the vacuum processing chamber and the vacuum chamber. The reaction gas discharge unit can be replaced while maintaining the degree of vacuum in the chamber, and a clean reaction gas discharge unit is installed in the vacuum processing chamber.

これにより、反応ガスの反応生成物による、反応ガス放出部の目詰まりが要因で発生する、基板面内の組成分布悪化を防止し、安定した品質の半導体製品を提供することが可能となる。   As a result, it is possible to prevent deterioration of the composition distribution in the substrate surface caused by the clogging of the reaction gas discharge portion due to the reaction product of the reaction gas, and to provide a semiconductor product with stable quality.

また、反応ガス放出部の収納数を増加させることで、真空処理室内のメンテナンスサイクルを延長することが可能となり、半導体製造装置の稼動ロスを低減することが可能となる。   In addition, by increasing the number of stored reactive gas discharge units, it is possible to extend the maintenance cycle in the vacuum processing chamber, and to reduce the operation loss of the semiconductor manufacturing apparatus.

以下、本発明の実施の形態について、図を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態における反応ガス供給部の概略を示す図である。図2〜図4は、本発明の実施形態における反応ガス放出部の交換フローを示す図である。   FIG. 1 is a diagram showing an outline of a reactive gas supply unit in an embodiment of the present invention. 2-4 is a figure which shows the exchange flow of the reactive gas discharge | release part in embodiment of this invention.

図1に示すように、真空処理室1内の上部に、反応ガス供給部6が設けられ、反応ガス供給部6は、ミキシング部2と、反応ガス放出部3から構成され、ミキシング部2は、真空処理室1内に固定されている。ミキシング部2の内周部と、反応ガス放出部3の外周部には、ガイド溝が設けられており、反応ガス放出部3を回転させながら上下方向に移動させることで、ミキシング部2と、反応ガス放出部3は分離及び、結合する。また、反応ガス放出部3は、基板ステージ4上に複数枚設置された基板5の表面と向かい合った位置に設置される。   As shown in FIG. 1, a reaction gas supply unit 6 is provided in the upper part of the vacuum processing chamber 1, and the reaction gas supply unit 6 includes a mixing unit 2 and a reaction gas discharge unit 3. The vacuum processing chamber 1 is fixed. Guide grooves are provided in the inner peripheral portion of the mixing portion 2 and the outer peripheral portion of the reaction gas discharge portion 3, and the mixing portion 2 is moved by moving the reaction gas discharge portion 3 in the vertical direction while rotating. The reaction gas discharge part 3 is separated and combined. In addition, the reactive gas discharge unit 3 is installed at a position facing the surface of the substrate 5 installed on the substrate stage 4.

また、真空処理室1と連結した位置に真空室16が設置され、真空処理室1と、真空室16間は、ゲートドア9により遮蔽されている。ゲートドア9が作動し、ゲートドア収納部10内に収納されることで、真空処理室1と、真空室16は開口状態となる。   A vacuum chamber 16 is installed at a position connected to the vacuum processing chamber 1, and the space between the vacuum processing chamber 1 and the vacuum chamber 16 is shielded by the gate door 9. When the gate door 9 operates and is accommodated in the gate door accommodating portion 10, the vacuum processing chamber 1 and the vacuum chamber 16 are opened.

また、反応ガス放出部3は、真空室16内の、収納棚17に複数枚収納されており、搬送アーム駆動部15、搬送アーム14、搬送アーム回転伸縮部13、搬送アームチャック部12、反応ガス放出部チャック部11によって、反応ガス放出部3を交換する。   In addition, a plurality of reactive gas discharge units 3 are stored in a storage shelf 17 in the vacuum chamber 16, and include a transfer arm driving unit 15, a transfer arm 14, a transfer arm rotating and expanding unit 13, a transfer arm chuck unit 12, a reaction. The reaction gas discharge unit 3 is replaced by the gas discharge unit chuck unit 11.

真空処理室1内で、成膜処理された基板5の、基板面内の組成分布測定の結果、組成分布が悪化しているのを確認した際、真空処理室1と真空室16間を、遮蔽しているゲートドア9が駆動し、ゲートドア収納部10内に収納され、前記真空処理室1と、真空室16間の遮蔽を解除する(図2(a))。   In the vacuum processing chamber 1, when it was confirmed that the composition distribution was deteriorated as a result of measurement of the composition distribution in the substrate surface of the substrate 5 subjected to film formation, between the vacuum processing chamber 1 and the vacuum chamber 16, The shielding gate door 9 is driven and accommodated in the gate door accommodating portion 10, and the shielding between the vacuum processing chamber 1 and the vacuum chamber 16 is released (FIG. 2A).

次に、真空室16内に収納されている搬送アーム駆動部15が駆動し、搬送アーム14と、搬送アームチャック部12と反応ガス放出部チャック部11を、真空処理室1内の反応ガス供給部6の着脱位置に作動させる。   Next, the transfer arm driving unit 15 housed in the vacuum chamber 16 is driven, and the transfer arm 14, the transfer arm chuck unit 12, and the reactive gas discharge unit chuck unit 11 are supplied with the reactive gas in the vacuum processing chamber 1. The unit 6 is operated to the attachment / detachment position.

次に、反応ガス放出部チャック部11が、反応ガス放出部3の外周部に備えてあるチャック溝に対して水平の位置まで移動させた後、搬送アームチャック部12が内側に作動し、反応ガス放出部3を保持する。   Next, after the reaction gas discharge part chuck part 11 is moved to a horizontal position with respect to the chuck groove provided on the outer peripheral part of the reaction gas discharge part 3, the transfer arm chuck part 12 is operated inwardly to react. The gas discharge part 3 is held.

次に、搬送アームチャック部12が反応ガス放出部3を保持した後、搬送アーム回転伸縮部13が、搬送アームチャック部12を回転させながら下方向に作動し、ミキシング部2と、反応ガス放出部3を分離させる(図2(b))。   Next, after the transfer arm chuck unit 12 holds the reaction gas release unit 3, the transfer arm rotation expansion / contraction unit 13 operates downward while rotating the transfer arm chuck unit 12 to release the mixing unit 2 and the reaction gas. The part 3 is separated (FIG. 2B).

次に、反応ガス放出部3を保持した、搬送アームチャック部12を、搬送アーム14と搬送アーム駆動部15を作動させ、真空室16内に回収する。   Next, the transfer arm chuck unit 12 holding the reaction gas release unit 3 is recovered in the vacuum chamber 16 by operating the transfer arm 14 and the transfer arm driving unit 15.

次に、使用済みの反応ガス放出部3を、収納棚17に収納する。その際、使用済みの反応ガス放出部3を保持した反応ガス放出部チャック部11を外側に作動させ、反応ガス放出部3と分離させ、反応ガス放出部チャック部11及び、搬送アームチャック部12は、搬送アーム14と、搬送アーム駆動部15を作動させ、原点位置に戻る。収納棚17底面部には、反応ガス放出部3の脱落を防止するため、反応ガス放出部支持台18が配置されている(図3(c))。   Next, the used reactive gas discharge part 3 is stored in the storage shelf 17. At that time, the reaction gas discharge part chuck part 11 holding the used reaction gas discharge part 3 is operated outward to be separated from the reaction gas discharge part 3, and the reaction gas discharge part chuck part 11 and the transfer arm chuck part 12 are separated. Operates the transfer arm 14 and the transfer arm drive unit 15 to return to the origin position. A reaction gas discharge unit support base 18 is disposed on the bottom of the storage shelf 17 in order to prevent the reaction gas discharge unit 3 from falling off (FIG. 3C).

次に、収納棚伸縮部20が作動し、収納棚保持部19で、保持された収納棚17が、下方に移動し、未使用の反応ガス放出部3の収納された棚の位置を、搬送位置で停止する。
次に、未使用の反応ガス放出部3を、収納棚17から、取り出すため、搬送アーム14と、搬送アーム駆動部15を作動させ、反応ガス放出部チャック部11を、反応ガス放出部3外周部に備えてある、チャック溝と水平の位置まで移動させる。その後、搬送アームチャック部12を内側に作動させ、反応ガス放出部チャック部11が、未使用の反応ガス放出部3を保持し、未使用の反応ガス放出部3を保持した、反応ガス放出部チャック部11及び、搬送アームチャック部12を、搬送アーム14と、搬送アーム駆動部15を作動させて原点位置に戻す。その後、収納棚伸縮部20が上昇し、収納棚17は、待機位置まで移動する(図3(d))。
Next, the storage shelf expansion / contraction part 20 is operated, and the storage shelf 17 held by the storage shelf holding part 19 is moved downward to convey the position of the shelf in which the unused reaction gas discharge part 3 is stored. Stop at position.
Next, in order to take out the unused reaction gas discharge part 3 from the storage shelf 17, the transfer arm 14 and the transfer arm drive part 15 are operated, and the reaction gas discharge part chuck part 11 is moved to the outer periphery of the reaction gas discharge part 3. It is moved to a position horizontal to the chuck groove provided in the part. Thereafter, the transfer arm chuck unit 12 is operated inward, and the reaction gas discharge unit chuck unit 11 holds the unused reaction gas discharge unit 3 and holds the unused reaction gas discharge unit 3. The chuck unit 11 and the transfer arm chuck unit 12 are returned to the original position by operating the transfer arm 14 and the transfer arm driving unit 15. Thereafter, the storage shelf telescopic unit 20 moves up, and the storage shelf 17 moves to the standby position (FIG. 3D).

次に、真空室16内に収納されている搬送アーム駆動部15が駆動し、搬送アーム14と、搬送アームチャック部12と、未使用の反応ガス放出部3を保持した反応ガス放出部チャック部11を、真空処理室1内の反応ガス供給部6着脱位置に作動させる。   Next, the transfer arm driving unit 15 housed in the vacuum chamber 16 is driven, and the transfer arm 14, the transfer arm chuck unit 12, and the reactive gas discharge unit chuck unit that holds the unused reaction gas discharge unit 3. 11 is operated to the attachment / detachment position of the reactive gas supply unit 6 in the vacuum processing chamber 1.

次に、未使用の反応ガス放出部3を保持した、搬送アームチャック部12は、搬送アーム回転伸縮部13により、搬送アームチャック部12を回転させながら上方向に作動し、ミキシング部2と、未使用の反応ガス放出部3を結合させる。   Next, the transfer arm chuck unit 12 holding the unused reactive gas discharge unit 3 is operated upward while rotating the transfer arm chuck unit 12 by the transfer arm rotation expansion / contraction unit 13, and the mixing unit 2, The unused reaction gas discharge part 3 is combined.

次に、搬送アームチャック部12が外側に作動し、反応ガス放出部チャック部11と、未使用の反応ガス放出部3を分離させる(図4(e))。   Next, the transfer arm chuck part 12 is operated to the outside, and the reaction gas discharge part chuck part 11 and the unused reaction gas discharge part 3 are separated (FIG. 4E).

次に、搬送アーム14と搬送アーム駆動部15を作動させ、搬送アームチャック部12及び、反応ガス放出部チャック部11を真空室16内の待機位置まで回収する。   Next, the transfer arm 14 and the transfer arm drive unit 15 are operated to recover the transfer arm chuck unit 12 and the reactive gas discharge unit chuck unit 11 to the standby position in the vacuum chamber 16.

次に、真空処理室1と真空室16間を、遮蔽しているゲートドア9が作動し、ゲートドア収納部10内から上昇し、前記真空処理室1と、真空室16間を遮蔽する。前記全ての動作が終了した後、プロセス処理が開始可能となる(図4(f))。同様の動作を、真空処理室1内のメンテナンス実施まで繰り返す。収納棚17内に収納されている反応ガス放出部3が、全て使用済みの反応ガス放出部3となった場合、真空室16を排気している真空室排気配管22と排気装置8間のバルブ21を遮蔽し、真空室16を大気開放する。   Next, the gate door 9 that shields between the vacuum processing chamber 1 and the vacuum chamber 16 is actuated, and is lifted from the gate door housing 10 to shield between the vacuum processing chamber 1 and the vacuum chamber 16. After all the operations are completed, the process process can be started (FIG. 4 (f)). The same operation is repeated until the maintenance in the vacuum processing chamber 1 is performed. A valve between the vacuum chamber exhaust pipe 22 that exhausts the vacuum chamber 16 and the exhaust device 8 when all of the reactive gas discharge portions 3 stored in the storage shelf 17 become the used reactive gas discharge portions 3. 21 is shielded and the vacuum chamber 16 is opened to the atmosphere.

次に、収納棚17内の使用済みの反応ガス放出部3を未使用の反応ガス放出部3に交換して、真空室16内の収納棚17に設置する。その後、バルブ21を開放し真空室16を真空状態とする。   Next, the used reaction gas discharge unit 3 in the storage shelf 17 is replaced with an unused reaction gas discharge unit 3 and installed in the storage shelf 17 in the vacuum chamber 16. Thereafter, the valve 21 is opened and the vacuum chamber 16 is brought into a vacuum state.

なお、本実施の形態で、真空処理室1と真空室16を同じ排気装置8を用いて説明したが、個々に排気装置を用いても同様の効果が得られることはいうまでもない。   In the present embodiment, the vacuum processing chamber 1 and the vacuum chamber 16 have been described using the same exhaust device 8, but it goes without saying that the same effect can be obtained even if individual exhaust devices are used.

なお、実施の形態で、収納棚17の棚数を2段で、説明したが、ミキシング部2段以上の棚数を用いても同様の効果が得られることはいうまでもない。   In the embodiment, the number of storage shelves 17 is two, but it goes without saying that the same effect can be obtained by using two or more mixing units.

なお、実施の形態で、ミキシング部2と反応ガス放出部3を結合及び、分離させる方式を、ガイド溝に沿って上下方向に回転させる方法を用いて説明したが、回転動作をしない上下方向の動作によるシリンダチャック方式やロック方式を用いても同様の効果が得られることはいうまでもない。   In the embodiment, the method of coupling and separating the mixing unit 2 and the reactive gas discharge unit 3 has been described by using the method of rotating in the vertical direction along the guide groove. It goes without saying that the same effect can be obtained even if a cylinder chuck system or a lock system is used.

なお、実施の形態で、反応ガス供給部6が真空処理室1上部に設置され、収納棚17が、真空室16上部に設置された、基板5のフェイスアップ方式を用いて説明したが、反応ガス供給部6が真空処理室1下部に設置され、収納棚17が真空室16下部に設置された、基板5のフェイスダウン方式を用いても同様の効果が得られることはいうまでもない。   In the embodiment, the reaction gas supply unit 6 is installed in the upper part of the vacuum processing chamber 1 and the storage shelf 17 is installed in the upper part of the vacuum chamber 16. It goes without saying that the same effect can be obtained by using the face-down method of the substrate 5 in which the gas supply unit 6 is installed in the lower part of the vacuum processing chamber 1 and the storage shelf 17 is installed in the lower part of the vacuum chamber 16.

なお、実施の形態で、基板ステージ4上に、基板5を複数枚設置する装置を用いて説明したが、基板5が一枚の装置においても同様の効果が得られることはいうまでもない。   In the embodiment, a description has been given using an apparatus in which a plurality of substrates 5 are installed on the substrate stage 4. However, it goes without saying that the same effect can be obtained even in an apparatus having a single substrate 5.

なお、実施の形態で、真空処理室1が一箇所の構成の装置を用いて説明したが、複数の真空処理室1を有する装置においても同様の効果が得られることはいうまでもない。   In the embodiment, the vacuum processing chamber 1 is described using an apparatus having a single configuration, but it goes without saying that the same effect can be obtained even in an apparatus having a plurality of vacuum processing chambers 1.

なお、実施の形態で、成膜処理装置を用いて説明したが、真空処理室内に、ガス供給部を有する、全ての処理装置において、同様の効果が得られることはいうまでもない。   Note that although the film formation processing apparatus is described in the embodiment, it goes without saying that the same effect can be obtained in all the processing apparatuses having a gas supply unit in the vacuum processing chamber.

本発明の半導体基板処理を行なう真空処理装置の反応ガス供給部は、反応ガス供給部を、ミキシング部と、反応ガス放出部とに分離することができ、真空処理室と連結した位置に、反応ガス放出部を収納棚に複数組収納された真空室を有し、反応ガス放出部を真空処理室と真空室との間を搬送する機構を有することで、真空処理室の真空度を維持した状態で反応ガス放出部の交換ができ、清浄な反応ガス放出部を、真空処理室内に設置させる。これにより、反応ガスの反応生成物による、反応ガス放出部の目詰まりによる基板面内の組成分布悪化を防止する方法として有用である。   The reaction gas supply unit of the vacuum processing apparatus for performing the semiconductor substrate processing of the present invention can separate the reaction gas supply unit into the mixing unit and the reaction gas discharge unit, and the reaction gas supply unit is connected to the vacuum processing chamber at a position connected thereto. By having a vacuum chamber in which multiple sets of gas discharge units are stored in a storage shelf and having a mechanism for transporting the reaction gas discharge unit between the vacuum processing chamber and the vacuum chamber, the degree of vacuum of the vacuum processing chamber is maintained. In this state, the reaction gas discharge part can be replaced, and a clean reaction gas discharge part is installed in the vacuum processing chamber. This is useful as a method for preventing deterioration of the composition distribution in the substrate surface due to clogging of the reaction gas discharge portion due to the reaction product of the reaction gas.

また、反応ガス放出部の収納数を増加させることで、真空処理室内のメンテナンスサイクルを延長することが可能となり、半導体製造装置の稼動ロスを低減させる方法としても有用である。   Further, by increasing the number of stored reactive gas discharge units, it is possible to extend the maintenance cycle in the vacuum processing chamber, which is also useful as a method for reducing the operating loss of the semiconductor manufacturing apparatus.

本発明の実施形態における反応ガス供給部の概略を示す図The figure which shows the outline of the reactive gas supply part in embodiment of this invention 本発明の実施形態における反応ガス放出部の交換フローを示す図The figure which shows the exchange flow of the reactive gas discharge | release part in embodiment of this invention 本発明の実施形態における反応ガス放出部の交換フローを示す図The figure which shows the exchange flow of the reactive gas discharge | release part in embodiment of this invention 本発明の実施形態における反応ガス放出部の交換フローを示す図The figure which shows the exchange flow of the reactive gas discharge | release part in embodiment of this invention

符号の説明Explanation of symbols

1 真空処理室
2 ミキシング部
3 反応ガス放出部
4 基板ステージ
5 基板
6 反応ガス供給部
8 排気装置
9 ゲートドア
10 ゲートドア収納部
11 反応ガス放出部チャック部
12 搬送アームチャック部
13 搬送アーム回転伸縮部
14 搬送アーム
15 搬送アーム駆動部
16 真空室
17 収納棚
18 反応ガス放出部支持台
19 収納棚保持部
20 収納棚伸縮部
21 バルブ
22 真空室排気配管
DESCRIPTION OF SYMBOLS 1 Vacuum processing chamber 2 Mixing part 3 Reaction gas discharge | emission part 4 Substrate stage 5 Substrate 6 Reaction gas supply part 8 Exhaust device 9 Gate door 10 Gate door storage part 11 Reaction gas discharge part chuck | zipper part 12 Transfer arm chuck | zipper part 13 Transfer arm rotation expansion / contraction part 14 Transfer arm 15 Transfer arm drive unit 16 Vacuum chamber 17 Storage shelf 18 Reactive gas discharge unit support base 19 Storage shelf holding unit 20 Storage shelf expansion / contraction unit 21 Valve 22 Vacuum chamber exhaust piping

Claims (5)

真空処理室と、
前記真空処理室内に設けられた反応ガスを、前記反応室内の基板ステージ上に設置された基板表面に供給するための反応ガス供給部を備え、
前記反応ガス供給部は、ミキシング部と反応ガス放出部から構成され、
前記ミキシング部は、前記真空処理室内に固定され、
前記反応ガス放出部は、前記ミキシング部と、前記基板表面上側にガス放出面が向かい合う位置で結合され、
前記反応ガス放出部を複数組収納される収納棚を有し、
前記収納棚は、前記真空処理室と連結された真空室に設置され、
前記真空室は、前記真空処理室と遮断される手段を有し、
前記反応ガス放出部を前記ミキシング部から分離させる手段と、
前記反応ガス放出部を前記複数収納された収納棚の中から1組を取り出す手段と、
前記取り出した1組の反応ガス放出部を前記ミキシング部と結合させる手段と、
前記反応ガス放出部を前記真空処理室と前記真空室との間を搬送させる手段とを有し、
前記反応ガス放出部は、前記真空処理室の真空度を維持した状態で交換できることを特徴とする反応ガス供給部。
A vacuum processing chamber;
A reaction gas supply unit configured to supply a reaction gas provided in the vacuum processing chamber to a substrate surface installed on a substrate stage in the reaction chamber;
The reactive gas supply unit includes a mixing unit and a reactive gas discharge unit,
The mixing unit is fixed in the vacuum processing chamber,
The reactive gas discharge portion is coupled to the mixing portion at a position where the gas discharge surface faces the upper surface of the substrate.
A storage shelf for storing a plurality of sets of the reaction gas discharge portions;
The storage shelf is installed in a vacuum chamber connected to the vacuum processing chamber,
The vacuum chamber has a means to be cut off from the vacuum processing chamber,
Means for separating the reactive gas discharge portion from the mixing portion;
Means for taking out one set of the reaction gas discharge portions from the plurality of storage shelves;
Means for coupling the extracted set of reactive gas discharge portions with the mixing portion;
Means for transporting the reactive gas discharge portion between the vacuum processing chamber and the vacuum chamber;
The reactive gas supply unit, wherein the reactive gas discharge unit can be replaced while maintaining a vacuum degree in the vacuum processing chamber.
前記ミキシング部と反応ガス放出部は、前記ミキシング部の内周部と反応ガス放出部の外周部にガイド溝を有し、ガイド溝に沿って上下方向に回転、分離および結合することを特徴とする請求項1記載の反応ガス供給部。 The mixing part and the reactive gas discharge part have guide grooves on an inner peripheral part of the mixing part and an outer peripheral part of the reactive gas discharge part, and are rotated, separated and coupled in the vertical direction along the guide groove. The reaction gas supply unit according to claim 1. 前記反応ガス放出部を搬送する搬送アームは、前記反応ガス放出部を左右に動作して保持する機構と、回転させながら上下に動作する機構とを備えたことを特徴とする請求項1又は2に記載の反応ガス供給部。 The transport arm for transporting the reactive gas discharge unit includes a mechanism for operating and holding the reactive gas discharge unit to the left and right, and a mechanism for moving up and down while rotating. The reactive gas supply unit according to 1. 前記収納棚は、棚の位置が上下に伸縮することを特徴とする請求項1、2又は3に記載の反応ガス供給部。 The reactive gas supply unit according to claim 1, wherein the storage shelf extends and contracts vertically. 前記真空室内の前記反応ガス放出部を複数組収納される収納棚は、前記収納棚内の使用した前記反応ガス放出部交換時に、前記真空処理室の真空度を維持できることを特徴とする請求項1、2、3又は4に記載の反応ガス供給部。 The storage shelf in which a plurality of sets of the reaction gas discharge units in the vacuum chamber are stored can maintain the degree of vacuum of the vacuum processing chamber when replacing the used reaction gas discharge unit in the storage shelf. The reactive gas supply unit according to 1, 2, 3, or 4.
JP2004279062A 2004-09-27 2004-09-27 Reactant gas supply part Pending JP2006093527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004279062A JP2006093527A (en) 2004-09-27 2004-09-27 Reactant gas supply part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004279062A JP2006093527A (en) 2004-09-27 2004-09-27 Reactant gas supply part

Publications (1)

Publication Number Publication Date
JP2006093527A true JP2006093527A (en) 2006-04-06

Family

ID=36234186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004279062A Pending JP2006093527A (en) 2004-09-27 2004-09-27 Reactant gas supply part

Country Status (1)

Country Link
JP (1) JP2006093527A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188202A (en) * 1992-12-18 1994-07-08 Canon Inc Cvd device
JPH08330387A (en) * 1995-03-30 1996-12-13 Nec Corp Semiconductor manufacturing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188202A (en) * 1992-12-18 1994-07-08 Canon Inc Cvd device
JPH08330387A (en) * 1995-03-30 1996-12-13 Nec Corp Semiconductor manufacturing device

Similar Documents

Publication Publication Date Title
US5784799A (en) Vacuum processing apparatus for substate wafers
JP2006093527A (en) Reactant gas supply part
JPH0574739A (en) Vacuum processor and operating method therefor
JP4403882B2 (en) Deposition system
JP4728757B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
USRE39823E1 (en) Vacuum processing operating method with wafers, substrates and/or semiconductors
US7089680B1 (en) Vacuum processing apparatus and operating method therefor
JP2005260274A (en) Vacuum processing apparatus and transfer processing method of substrate
JP2000216211A (en) Substrate transfer system for vacuum treatment device
JP3145376B2 (en) Substrate transfer method for vacuum processing equipment
JP3443421B2 (en) Vacuum processing device and vacuum processing method
JP3147230B2 (en) Vacuum processing apparatus and substrate vacuum processing method using the same
JP2004207752A (en) Vacuum processing device and substrate transfer processing method
JP3404391B2 (en) Vacuum processing method and vacuum processing apparatus for substrate
JP2002237509A (en) Apparatus and method for vacuum processing
JP2004247741A (en) Substrate processing apparatus and method to process substrate
JPH11274268A (en) Vacuum treating device and vacuum treatment method of substrate
JPH09181058A (en) Operating method of vacuum treatment equipment
JP2000216219A (en) Substrate carrying method for vacuum processing device
JP2005101625A (en) Vacuum processing device and transportation method of substrate
JP2008109157A (en) Vacuum processing device
KR20050087631A (en) Covering apparatus for removing powder of process chamber
JP2003297893A (en) Vacuum treatment apparatus
JP2001189370A (en) Vacuum processing apparatus, and vacuum treatment method of substrate
JP2000216220A (en) Substrate transportation method for vacuum process device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071113