JP2006093171A - Heat screening method of electronic component - Google Patents

Heat screening method of electronic component Download PDF

Info

Publication number
JP2006093171A
JP2006093171A JP2004272683A JP2004272683A JP2006093171A JP 2006093171 A JP2006093171 A JP 2006093171A JP 2004272683 A JP2004272683 A JP 2004272683A JP 2004272683 A JP2004272683 A JP 2004272683A JP 2006093171 A JP2006093171 A JP 2006093171A
Authority
JP
Japan
Prior art keywords
electronic component
heat treatment
screening method
nitrogen
lead frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004272683A
Other languages
Japanese (ja)
Inventor
Toshiaki Endo
敏昭 遠藤
Hiroyuki Kihara
裕幸 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2004272683A priority Critical patent/JP2006093171A/en
Publication of JP2006093171A publication Critical patent/JP2006093171A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat screening method which prevents a decline in solder wettability after heat screening in an electronic component which uses a lead frame as a terminal electrode. <P>SOLUTION: Heat screening is conducted on the electronic component in an nitrogen reflow furnace under the conditions that, after a heat treatment is conducted in a nitrogen atmosphere at an oxygen density of 500 ppm or below until the surface temperature of the electronic component becomes 210-280°C, a cooling process is conducted in a nitrogen atmosphere at an oxygen density of 500 ppm or below. By this method, the solder wettability is kept at the same level as before the heat treatment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子部品の検査方法に関するものであり、詳しくはリードフレームを端子電極とする電子部品のはんだ濡れ性を改善した熱スクリーニング方法に関するものである。   The present invention relates to an electronic component inspection method, and more particularly to a thermal screening method that improves solder wettability of an electronic component using a lead frame as a terminal electrode.

従来、リードフレームを有する電子部品では、はんだ付け時の熱ストレスで電気特性が劣化する不良品を除去する目的で熱スクリーニングによる検査方法が用いられている。熱スクリーニング方法は、外装樹脂形成後の加熱処理をフッ素系不活性液中またはその蒸気相中で行い、加熱後の冷却を空気中で行っていた(例えば、特許文献1参照)。
特開平06−036976号公報(第4貢−第3図)
Conventionally, in an electronic component having a lead frame, an inspection method by thermal screening is used for the purpose of removing defective products whose electrical characteristics deteriorate due to thermal stress during soldering. In the thermal screening method, the heat treatment after the formation of the exterior resin is performed in a fluorine-based inert liquid or its vapor phase, and the cooling after the heating is performed in the air (for example, see Patent Document 1).
Japanese Patent Laid-Open No. 06-036976 (No. 4-Fig. 3)

しかし、冷却中にリードフレームの表面が熱により酸化して変色(変質)し、はんだ濡れ性が低下するという問題があったため、はんだ濡れ性を熱スクリーニング前と同等に保つことが要求されていた。   However, there was a problem that the surface of the lead frame was oxidized and discolored (deformed) during cooling, and the solder wettability was lowered, so that it was required to keep the solder wettability equivalent to that before the thermal screening. .

さらに、電子部品の加熱装置内への投入、加熱装置外への取出し時にフッ素系不活性液が装置外に揮散するため、液を補充する必要があるが、フッ素系不活性液は高価で電子部品の製造コストが上昇するという問題があり、ランニングコストの安価な熱スクリーニング方法が要求されていた。   Furthermore, since the fluorine-based inert liquid is volatilized out of the apparatus when the electronic component is put into the heater or taken out of the heater, the liquid needs to be replenished. There is a problem that the manufacturing cost of parts increases, and a thermal screening method with a low running cost is required.

本発明は、上記問題を解決するもので、リードフレーム付電子部品の加熱処理後のはんだ濡れ性を加熱処理前と同等に保つことができる熱スクリーニング方法の提供を目的とするものである。   The present invention solves the above-described problems, and an object of the present invention is to provide a thermal screening method capable of maintaining the solder wettability after heat treatment of an electronic component with a lead frame equivalent to that before heat treatment.

すなわち、本発明は、リードフレームを端子電極とする電子部品を窒素雰囲気中で加熱する加熱処理工程と、窒素雰囲気中で冷却する冷却処理工程とを含むことを特徴とする電子部品の熱スクリーニング方法である。   That is, the present invention includes a heat treatment step of heating an electronic component having a lead frame as a terminal electrode in a nitrogen atmosphere, and a cooling treatment step of cooling the electronic component in a nitrogen atmosphere. It is.

また、上記の加熱処理工程および冷却処理工程中の酸素濃度が、500ppm以下であることを特徴とする電子部品の熱スクリーニング方法である。   Further, the present invention is the electronic part thermal screening method characterized in that the oxygen concentration in the heat treatment step and the cooling treatment step is 500 ppm or less.

さらに、上記の加熱処理時の電子部品の表面温度が、210〜280℃であることを特徴とする電子部品の熱スクリーニング方法である。   Furthermore, the electronic component thermal screening method is characterized in that the surface temperature of the electronic component during the heat treatment is 210 to 280 ° C.

本発明は、リードフレームを端子電極とする電子部品の熱スクリーニングの加熱処理およびその後の冷却を窒素雰囲気中で行うことにより、はんだ付け時の熱ストレスで電気特性が劣化する製品を混入させることなく、リードフレーム表面の酸化を防ぐことで、はんだ濡れ性を熱スクリーニング前と同等に保つことができる。   In the present invention, heat treatment for electronic screening using a lead frame as a terminal electrode and subsequent cooling are performed in a nitrogen atmosphere without introducing a product whose electrical characteristics deteriorate due to thermal stress during soldering. By preventing oxidation of the lead frame surface, the solder wettability can be kept equal to that before the thermal screening.

また、高価なフッ素系不活性液を使用しないため、電子部品の熱スクリーニングに要する製造コストを下げることができる。   In addition, since an expensive fluorine-based inert liquid is not used, the manufacturing cost required for thermal screening of electronic components can be reduced.

以下、本発明の実施例について図面を参照しながら説明する。
図1は、本発明で使用する窒素リフロー炉の側面図であり、入口にローダ11、出口にアンローダ12を設け、リードフレームの送り出し/巻取りを自動で行っている。
図2は、図1の点線で示した部分の窒素リフロー炉の断面図である。加熱部を2a、2b、2c、2dの4か所、冷却部3を1か所設け、窒素を配管1より供給する。さらに、窒素の流量を調整することで、窒素リフロー炉内の酸素濃度を調節する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a side view of a nitrogen reflow furnace used in the present invention, in which a loader 11 is provided at the inlet and an unloader 12 is provided at the outlet to automatically feed / wind up the lead frame.
FIG. 2 is a cross-sectional view of the portion of the nitrogen reflow furnace indicated by the dotted line in FIG. Four heating units 2a, 2b, 2c, and 2d and one cooling unit 3 are provided, and nitrogen is supplied from the pipe 1. Furthermore, the oxygen concentration in the nitrogen reflow furnace is adjusted by adjusting the flow rate of nitrogen.

また、窒素リフロー炉の炉内の温度ばらつきを低減するため、炉内に対流用のファン5を設けている。   Further, a convection fan 5 is provided in the furnace in order to reduce temperature variation in the furnace of the nitrogen reflow furnace.

[実施例1]
図1の窒素リフロー炉を使用し、電子部品表面の温度が260℃となるように温度を設定した。さらに、窒素リフロー炉内の酸素濃度を100ppmとした。
[Example 1]
The temperature was set so that the temperature of the electronic component surface was 260 ° C. using the nitrogen reflow furnace of FIG. Furthermore, the oxygen concentration in the nitrogen reflow furnace was set to 100 ppm.

[実施例2〜5]
上記窒素リフロー炉内の酸素濃度を各々、500ppm、0.1%、1%、10%とした以外は、実施例1と同じ条件とした。
[Examples 2 to 5]
The conditions were the same as in Example 1 except that the oxygen concentrations in the nitrogen reflow furnace were 500 ppm, 0.1%, 1%, and 10%, respectively.

(従来例)
加熱処理を、電子部品表面の温度が240℃となるようにベーパーフェイズ法(フッ素系不活性液の蒸気相中での加熱)により行った。
(Conventional example)
The heat treatment was performed by a vapor phase method (heating in the vapor phase of a fluorine-based inert liquid) so that the temperature of the electronic component surface was 240 ° C.

実施例1〜5、従来例による電子部品を窒素リフロー炉によりスクリーニング処理し、処理後のリードフレームの表面を観察した。その結果を表1に示す。   The electronic parts according to Examples 1 to 5 and the conventional example were screened by a nitrogen reflow furnace, and the surface of the lead frame after the processing was observed. The results are shown in Table 1.

実施例1による電子部品表面の温度260℃に加えて、200、210、230、280、290℃の6条件で電子部品1000個をスクリーニング処理した後の漏れ電流値を測定し、規格値を超えた製品数を確認した。スクリーニング処理と漏れ電流測定は3回まで行った。その結果を表2に示す。   In addition to the temperature of the electronic component surface according to Example 1, the leakage current value after screening 1,000 electronic components under six conditions of 200, 210, 230, 280, and 290 ° C. was exceeded and exceeded the standard value. Confirmed the number of products. The screening process and leakage current measurement were performed up to three times. The results are shown in Table 2.

Figure 2006093171
Figure 2006093171

Figure 2006093171
Figure 2006093171

表1より、実施例1、2は、熱スクリーニング処理後の酸化によるフレームの変色はなかった。しかし、酸素濃度が0.1%以上の実施例3〜5とベーパーフェーズ処理の従来例は、フレームの変色(変質)が発生した。   From Table 1, in Examples 1 and 2, there was no discoloration of the frame due to oxidation after the thermal screening treatment. However, in Examples 3 to 5 in which the oxygen concentration was 0.1% or more and the conventional example of the vapor phase treatment, discoloration (degeneration) of the frame occurred.

表2より、タンタル固体電解コンデンサ表面の最高温度が200℃では、1回の加熱処理で熱スクリーニングしきれず、2回目に規格外れが発生した。この温度条件では、1回でスクリーニング処理できないため、2回以上行う必要があるが、その場合、工数がかかるため好ましくない。
また、210〜280℃では、1回後に規格外れが発生したが、2回目、3回目では規格外れが皆無であるため、1回の加熱処理で熱スクリーニングの効果が得られている。
さらに、290℃では、リフロー1回後に規格外れが発生し、2回目、3回目では、さらに規格外れの製品数が増加した。これは温度が高温であるため、加熱処理により同製品が劣化していることを示している。
以上より、熱スクリーニングは、電子部品表面の温度が210〜280℃の範囲で、1回行うことが望ましい。
From Table 2, when the maximum temperature of the surface of the tantalum solid electrolytic capacitor was 200 ° C., the thermal screening could not be completed by one heat treatment, and the second time was out of specification. Under this temperature condition, since the screening process cannot be performed once, it is necessary to carry out it twice or more.
In addition, at 210 to 280 ° C., non-standard occurred after one time, but there was no non-standard value at the second and third times, so the effect of thermal screening was obtained by one heat treatment.
Furthermore, at 290 ° C., a non-standard occurred after one reflow, and the number of products out of the standard increased at the second and third times. This indicates that since the temperature is high, the product is deteriorated by the heat treatment.
From the above, it is desirable that the thermal screening is performed once when the temperature of the surface of the electronic component is in the range of 210 to 280 ° C.

さらに、熱スクリーニング処理後のはんだ濡れ性の確認をした。はんだ濡れ性測定前の前処理として、121℃100%不飽和PCTを8時間行った。はんだ濡れ性の測定は、急加熱昇温法、はんだは錫96.5%、銀3.0%、銅0.5%を使用し、はんだ槽の温度は245℃で行った。測定は各例3個ずつ行った。図3、4に各々、実施例1〜5と従来例のゼロクロスタイム(はんだが濡れ始める時間で、短いほど濡れ性がよい。)および濡れ上がり時間を示す。図3、4より実施例1、2は、従来例より短い2秒以下に収まっており、改善効果が得られた。
ただし、酸素濃度が0.1%の実施例3は、ゼロクロスタイムおよび濡れ上がり時間は従来例と同等であるが、リードフレームに変色が見られており、酸素濃度が1%以上の実施例4、5では、ゼロクロスタイムおよび濡れ上がり時間が増加するため、窒素リフロー炉内の酸素濃度は500ppm以下が望ましい。
Furthermore, the solder wettability after the thermal screening process was confirmed. As a pretreatment before measurement of solder wettability, 121 ° C. and 100% unsaturated PCT were performed for 8 hours. The solder wettability was measured by a rapid heating temperature raising method, using 96.5% tin, 3.0% silver and 0.5% copper as the solder, and the temperature of the solder bath at 245 ° C. The measurement was performed three by each. FIGS. 3 and 4 show the zero cross time (the time when the solder begins to get wet, the better the wettability, the better) and the wet-up time of Examples 1 to 5 and the conventional example, respectively. 3 and 4, Examples 1 and 2 were within 2 seconds shorter than the conventional example, and an improvement effect was obtained.
However, in Example 3 in which the oxygen concentration is 0.1%, the zero cross time and the wetting time are the same as in the conventional example, but discoloration is observed in the lead frame, and Example 4 in which the oxygen concentration is 1% or more. In No. 5, since the zero crossing time and the wetting time increase, the oxygen concentration in the nitrogen reflow furnace is desirably 500 ppm or less.

本発明の実施例による窒素リフロー炉の側面図である。It is a side view of the nitrogen reflow furnace by the Example of this invention. 本発明の実施例による窒素リフロー炉の断面図である。It is sectional drawing of the nitrogen reflow furnace by the Example of this invention. 本発明の実施例1〜5と従来例のはんだ濡れ性のゼロクロスタイムを示した図である。It is the figure which showed the zero crossing time of the solder wettability of Examples 1-5 of this invention and a prior art example. 本発明の実施例1〜5と従来例のはんだ濡れ性の塗れ上がり時間を示した図である。It is the figure which showed the finishing time of the solder wettability of Examples 1-5 of this invention and a prior art example.

符号の説明Explanation of symbols

1 窒素配管
2a 加熱部1
2b 加熱部2
2c 加熱部3
2d 加熱部4
3 冷却部
4 ヒータ
5 ファン
6 酸素濃度計
7 コンベア
8 窒素流量計
9 窒素リフロー炉
10 リードフレーム
11 ローダ
12 アンローダ
1 Nitrogen piping 2a Heating part 1
2b Heating part 2
2c Heating part 3
2d heating unit 4
3 Cooling unit 4 Heater 5 Fan 6 Oxygen meter 7 Conveyor 8 Nitrogen flow meter 9 Nitrogen reflow furnace 10 Lead frame 11 Loader 12 Unloader

Claims (3)

リードフレームを端子電極とする電子部品を窒素雰囲気中で加熱する加熱処理工程と、窒素雰囲気中で冷却する冷却処理工程とを含むことを特徴とする電子部品の熱スクリーニング方法。   An electronic component thermal screening method comprising: a heat treatment step of heating an electronic component having a lead frame as a terminal electrode in a nitrogen atmosphere; and a cooling treatment step of cooling the electronic component in a nitrogen atmosphere. 請求項1記載の加熱処理工程および冷却処理工程中の酸素濃度が、500ppm以下であることを特徴とする電子部品の熱スクリーニング方法。   The thermal screening method for electronic parts, wherein the oxygen concentration during the heat treatment step and the cooling treatment step according to claim 1 is 500 ppm or less. 請求項1記載の加熱処理時の電子部品の表面温度が、210〜280℃であることを特徴とする電子部品の熱スクリーニング方法。   2. The electronic component thermal screening method according to claim 1, wherein the surface temperature of the electronic component during the heat treatment is 210 to 280 [deg.] C.
JP2004272683A 2004-09-21 2004-09-21 Heat screening method of electronic component Pending JP2006093171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004272683A JP2006093171A (en) 2004-09-21 2004-09-21 Heat screening method of electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004272683A JP2006093171A (en) 2004-09-21 2004-09-21 Heat screening method of electronic component

Publications (1)

Publication Number Publication Date
JP2006093171A true JP2006093171A (en) 2006-04-06

Family

ID=36233884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004272683A Pending JP2006093171A (en) 2004-09-21 2004-09-21 Heat screening method of electronic component

Country Status (1)

Country Link
JP (1) JP2006093171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019145658A (en) * 2018-02-20 2019-08-29 Fdk株式会社 Electronic component manufacturing method and electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019145658A (en) * 2018-02-20 2019-08-29 Fdk株式会社 Electronic component manufacturing method and electronic component

Similar Documents

Publication Publication Date Title
US11452204B2 (en) Ceramic circuit board, method for manufacturing ceramic circuit board, and module using ceramic circuit board
CN107124835B (en) Reflow Soldering paster technique
CN107222982B (en) A kind of SMT paster technique
JP4620184B2 (en) SOLID ELECTROLYTIC CAPACITOR ELEMENT, ITS MANUFACTURING METHOD, AND ITS MANUFACTURING JIG
WO2014170994A1 (en) Lead-free solder alloy
JP2009074125A (en) Copper alloy for electrical-electronic parts having excellent plating property, and method for producing the same
JP2005205418A (en) Joined structure manufacturing method
JP2010070838A (en) Aqueous solution for surface treatment of metal and method for reducing whisker on metal surface
JP2006093171A (en) Heat screening method of electronic component
JP6114770B2 (en) Tin plating method for copper alloy material
JP4654895B2 (en) Formation method of lead-free plating film
JP2009280898A (en) Interconnector material for solar cell, method for producing the same, and interconnector for solar cell
EP3189929B1 (en) Lead-free solder alloy for use in terminal preplating, and electronic component
JP7069843B2 (en) Manufacturing method of aluminum parts
JP2009046761A (en) Surface treatment agent
CN109982518A (en) A kind of organic guarantor welds the process control method of film
Aisha et al. Effect of reflow profile on intermetallic compound formation
JP4807845B2 (en) Solid electrolytic capacitor manufacturing equipment
JP6474672B2 (en) Solder-plated copper wire manufacturing method and solder-plated copper wire manufacturing apparatus
WO2016072297A1 (en) Copper alloy target
JP4190506B2 (en) Whisker evaluation method
KR101175909B1 (en) Surface treatment method of printed circuit board, and printed circuit board
JP6506046B2 (en) Solder bump reflow method
JP2005029826A (en) Method for manufacturing copper alloy foil for electronic component
JP6506035B2 (en) Method of forming solder bumps

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100201