JP2006090155A - Micro pump - Google Patents

Micro pump Download PDF

Info

Publication number
JP2006090155A
JP2006090155A JP2004273962A JP2004273962A JP2006090155A JP 2006090155 A JP2006090155 A JP 2006090155A JP 2004273962 A JP2004273962 A JP 2004273962A JP 2004273962 A JP2004273962 A JP 2004273962A JP 2006090155 A JP2006090155 A JP 2006090155A
Authority
JP
Japan
Prior art keywords
electrode
surface acoustic
piezoelectric substrate
channel
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004273962A
Other languages
Japanese (ja)
Other versions
JP4774706B2 (en
Inventor
Kazuhiko Hirokawa
一彦 廣川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2004273962A priority Critical patent/JP4774706B2/en
Publication of JP2006090155A publication Critical patent/JP2006090155A/en
Application granted granted Critical
Publication of JP4774706B2 publication Critical patent/JP4774706B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)
  • Micromachines (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a micro pump which achieves further miniaturization by forming a channel on an electrode for exciting a surface acoustic wave. <P>SOLUTION: A micro pump is equipped with a piezoelectric substrate 10 made of a piezoelectric material, an interdigital electrode 12 provided on a piezoelectric substrate 10 and exciting a surface acoustic wave on the surface of the piezoelectric substrate 10, a housing 20 arranged on the piezo-electric substrate 10 and forming a pipelike channel 18 together with a propagation surface for propagating the surface acoustic wave, and a drive circuit 22 for driving the interdigital electrode 12. In the channel 18, a width of the channel is increased on the discharge port 16 side of a center line b so as to make the channel area S<SB>B</SB>of a region B larger than the channel area S<SB>A</SB>of a region A. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、マイクロポンプに関し、詳しくは、微少量の液体の流れを推進するマイクロポンプに関する。   The present invention relates to a micropump, and more particularly to a micropump that drives a flow of a minute amount of liquid.

従来、弾性表面波による放射圧を利用したマイクロポンプが種々検討されている。従来のマイクロポンプでは、櫛型電極を用いて弾性表面波を励振しているが、弾性表面波は櫛型電極の中央部で発生し、櫛型電極の各電極指に直交する方向の両側に伝搬する(特許文献1)。このため、従来のマイクロポンプでは、液体が一方向に流動する流路を形成するためには、弾性表面波の一方の伝搬方向において、櫛型電極に対し伝搬方向の下流側に流路を形成しなければならず、装置の小型化を図るのが難しいという問題があった。   Conventionally, various micropumps using radiation pressure due to surface acoustic waves have been studied. In conventional micropumps, surface acoustic waves are excited using comb-shaped electrodes. However, surface acoustic waves are generated at the center of the comb-shaped electrode and are formed on both sides of the comb-shaped electrode in a direction perpendicular to each electrode finger. Propagate (Patent Document 1). For this reason, in the conventional micropump, in order to form a flow path in which the liquid flows in one direction, a flow path is formed downstream of the comb electrode in the propagation direction in one propagation direction of the surface acoustic wave. There is a problem that it is difficult to reduce the size of the apparatus.

また、励振信号の改善により一方向に弾性表面波を伝搬する一方向性トランスデューサが知られている(特許文献2、非特許文献1)。しかしながら、一方向性トランスデューサでは、位相器、複雑な設計のトランスデューサ、及び外部付加回路や切換回路等の余分で複雑な回路が必要であり、マイクロポンプに適用することはできなかった。
特表2003−535349号公報 特開昭56−14881号公報 「弾性表面波工学」柴山乾夫監修、電子情報通信学会編、P.68
Further, a unidirectional transducer that propagates a surface acoustic wave in one direction by improving an excitation signal is known (Patent Document 2, Non-Patent Document 1). However, in the unidirectional transducer, a phase shifter, a complicatedly designed transducer, and an extra complicated circuit such as an external additional circuit and a switching circuit are necessary, and cannot be applied to a micropump.
Special table 2003-535349 gazette JP-A-56-14881 "Surface Acoustic Wave Engineering" by Inoue Shibayama, edited by IEICE, p. 68

本発明は、上記問題を解決すべく成されたものであり、本発明の目的は、弾性表面波を励振する電極上に流路を形成して、より小型のマイクロポンプを提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a smaller micropump by forming a flow path on an electrode for exciting a surface acoustic wave. .

上記目的を達成するために本発明のマイクロポンプは、弾性表面波を発生する圧電基板と、前記圧電基板の表面に弾性表面波を励振する対電極と、前記圧電基板上の、前記対電極により発生した弾性表面波が伝搬する伝搬面と接するように設けられ、液体を吸入する吸入口と液体を吐出させる吐出口とを連結する流路と、を備え、前記対電極の中心線に対して対称な所定領域を想定した場合に、一方の領域の前記伝搬面の前記流路に面する流路面積が、他方の領域の流路面積より大きくなるように、前記流路が形成されたことを特徴とする。ここで「流路面積」とは、流路に面した伝搬面の面積である。   In order to achieve the above object, a micropump of the present invention includes a piezoelectric substrate that generates surface acoustic waves, a counter electrode that excites surface acoustic waves on the surface of the piezoelectric substrate, and the counter electrode on the piezoelectric substrate. A flow path that is provided so as to be in contact with a propagation surface through which the generated surface acoustic wave propagates, and that connects a suction port for sucking liquid and a discharge port for discharging liquid; When assuming a symmetric predetermined region, the channel is formed so that the channel area of the propagation surface of one region facing the channel is larger than the channel area of the other region. It is characterized by. Here, the “flow channel area” is the area of the propagation surface facing the flow channel.

本発明のマイクロポンプでは、交流によって交互に励振する対電極により圧電基板の表面に弾性表面波が励振され、対電極により発生した弾性表面波は圧電基板の表面を伝搬する。この弾性表面波の放射圧により、弾性表面波の伝搬面と接するように対電極上に設けられた流路の吸入口から吸入された液体が移動され、該流路の吐出口から吐出される。   In the micropump of the present invention, surface acoustic waves are excited on the surface of the piezoelectric substrate by counter electrodes that are alternately excited by alternating current, and the surface acoustic waves generated by the counter electrodes propagate on the surface of the piezoelectric substrate. Due to the radiation pressure of the surface acoustic wave, the liquid sucked from the suction port of the channel provided on the counter electrode is moved so as to be in contact with the surface of propagation of the surface acoustic wave, and is discharged from the discharge port of the channel. .

ここで、液体が移動する流路が対電極上に形成されるので、従来のマイクロポンプに比べて装置の小型化を図ることができる。また、対電極の中心線に対して対称な所定領域を想定した場合に、一方の領域の伝搬面の流路に面する流路面積が、他方の領域の流路面積より大きくなるように、流路形状が設計されているので、吐出口に向う流動駆動力が吸入口に向う流動駆動力より大きくなり、流路内の液体を吐出口に向かって流動させることができる。   Here, since the channel through which the liquid moves is formed on the counter electrode, the apparatus can be downsized as compared with the conventional micropump. In addition, when assuming a predetermined region symmetric with respect to the center line of the counter electrode, the channel area facing the channel of the propagation surface of one region is larger than the channel area of the other region, Since the flow channel shape is designed, the flow driving force toward the discharge port is larger than the flow drive force toward the suction port, and the liquid in the flow channel can flow toward the discharge port.

上記のマイクロポンプにおいては、所定領域は、例えば、対電極の中心線から電極長以内に想定することができるが、装置の小型化を図るためには、対電極の中心線から電極長の半分の距離以内に想定することがより好ましい。また、流路は、例えば、対電極の中心線の吐出口側でその流路幅が拡大するように形成することができる。   In the above micropump, the predetermined region can be assumed, for example, within the electrode length from the center line of the counter electrode, but in order to reduce the size of the apparatus, the predetermined area is half of the electrode length from the center line of the counter electrode. It is more preferable to assume within the distance of. Further, the channel can be formed so that the channel width is enlarged on the discharge port side of the center line of the counter electrode, for example.

以上説明したように、本発明のマイクロポンプによれば、弾性表面波を励振する電極上に該電極を横断する形で流路を形成することができ、装置の小型化を図ることができる、という効果がある。   As described above, according to the micropump of the present invention, the flow path can be formed across the electrode on the electrode for exciting the surface acoustic wave, and the apparatus can be downsized. There is an effect.

以下、図面を参照して本発明の実施の形態を詳細に説明する。
(マイクロポンプの構成)
図1は、本発明の実施の形態に係るマイクロポンプの概略構成を示す斜視図である。図2は、このマイクロポンプを上方から見た平面図である。図3は、図2のA−A線断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Configuration of micro pump)
FIG. 1 is a perspective view showing a schematic configuration of a micropump according to an embodiment of the present invention. FIG. 2 is a plan view of the micropump as seen from above. FIG. 3 is a cross-sectional view taken along line AA in FIG.

このマイクロポンプは、図1に示すように、圧電性材料からなる圧電基板10と、圧電基板10上に設けられ、圧電基板10の表面に弾性表面波を励振させる櫛型電極12と、圧電基板10上に配設され、弾性表面波が伝搬する伝搬面と共に管状の流路18を形成するハウジング20と、櫛型電極12を駆動する駆動回路22と、を備えている。流路18は、液体を吸入する吸入口14と液体を吐出させる吐出口16とを連結すると共に、圧電基板10の櫛型電極12上から弾性表面波の伝搬方向下流側に延びるように設けられている。   As shown in FIG. 1, the micropump includes a piezoelectric substrate 10 made of a piezoelectric material, a comb electrode 12 provided on the piezoelectric substrate 10 to excite a surface acoustic wave on the surface of the piezoelectric substrate 10, and a piezoelectric substrate. 10 is provided with a housing 20 that forms a tubular flow path 18 together with a propagation surface through which surface acoustic waves propagate, and a drive circuit 22 that drives the comb-shaped electrode 12. The flow path 18 connects the suction port 14 for sucking liquid and the discharge port 16 for discharging liquid, and is provided so as to extend from the comb-shaped electrode 12 of the piezoelectric substrate 10 to the downstream side in the propagation direction of the surface acoustic wave. ing.

圧電基板10としては、ニオブ酸リチウム、タンタル酸リチウム、水晶、ランガサイト、Li2BO7、Bi12GeO20などのレイリーモードの弾性表面波もしくは擬似弾性波を発生する圧電体結晶を用いることができる。例えば、128度Yカット、厚さ500μmのLiNbO3基板を用いることができる。 As the piezoelectric substrate 10, a piezoelectric crystal that generates Rayleigh mode surface acoustic waves or pseudo-elastic waves, such as lithium niobate, lithium tantalate, quartz, langasite, Li 2 BO 7 , Bi 12 GeO 20, is used. it can. For example, a LiNbO 3 substrate having a 128-degree Y cut and a thickness of 500 μm can be used.

また、圧電基板10は、縦波を含む表面波を発生することができればよく、PZTなどの圧電セラミクスや酸化亜鉛などの圧電性薄膜をガラス上に全面もしくは部分的に積層した構造としてもよい。また、圧電性の高分子基板を用いることもできる。高分子基板は加工がし易く好適である。   The piezoelectric substrate 10 only needs to be able to generate surface waves including longitudinal waves, and may have a structure in which piezoelectric ceramics such as PZT and piezoelectric thin films such as zinc oxide are laminated on the entire surface or partially on glass. A piezoelectric polymer substrate can also be used. The polymer substrate is suitable for easy processing.

櫛型電極12は、すだれ状電極とも呼ばれ、直線状の基端部と、その基端部の一方の側部から直交する方向に延びる複数の互いに平行な電極指とを備えている。櫛型電極12は、本発明の「対電極」に相当する。   The comb-shaped electrode 12 is also called an interdigital electrode, and includes a linear base end portion and a plurality of parallel electrode fingers extending in a direction orthogonal from one side portion of the base end portion. The comb electrode 12 corresponds to the “counter electrode” of the present invention.

櫛型電極12は、Al、Au、Cu、Cr、Ti、Ptなどの金属もしくはこれらの金属の合金から構成され、圧電基板10上にフォトリソグラフィーを用いて形成される。   The comb electrode 12 is made of a metal such as Al, Au, Cu, Cr, Ti, or Pt or an alloy of these metals, and is formed on the piezoelectric substrate 10 using photolithography.

なお、櫛型電極による励振が効率や小型化の観点からは好ましいが、櫛型電極12に代えて、楔形トランスデューサやバルク波振動子、ガンダイオードなどによる励振手段を用いることもできる。   Although excitation with a comb-shaped electrode is preferable from the viewpoint of efficiency and miniaturization, an excitation means such as a wedge-shaped transducer, a bulk wave vibrator, or a Gunn diode can be used instead of the comb-shaped electrode 12.

ハウジング20は、圧電基板10と対向する面に溝が形成されており、圧電基板10上に配設された状態で、圧電基板10の伝搬面と共に管状の流路18を形成する。ハウジング20は、例えば、ポリジメチルシロキサン(PDMS)等の樹脂で構成することができる。   The housing 20 has a groove formed on the surface facing the piezoelectric substrate 10, and forms a tubular flow path 18 together with the propagation surface of the piezoelectric substrate 10 while being disposed on the piezoelectric substrate 10. The housing 20 can be made of a resin such as polydimethylsiloxane (PDMS).

流路18は、吸入口14から吸入された液体が、流路18内を弾性表面波の伝搬方向に沿って移動し、吐出口16から吐出されるように、電極指と直交する方向に沿って形成されている。また、流路18は、圧電基板10の幅方向においては、櫛型電極12の電極指の内側に形成されるのが好ましい。   The flow path 18 is along a direction orthogonal to the electrode finger so that the liquid sucked from the suction port 14 moves in the flow path 18 along the propagation direction of the surface acoustic wave and is discharged from the discharge port 16. Is formed. The flow path 18 is preferably formed inside the electrode fingers of the comb-shaped electrode 12 in the width direction of the piezoelectric substrate 10.

本実施の形態では、図2に示すように、櫛型電極12の中心線bに対して対称な所定領域を想定し、流路18の吸入口14側を領域A、吐出口16側を領域Bとする。圧電基板10の長さ方向(電極指と直行する方向)における、櫛型電極12の両端電極指からみたときの中間点を通り且つ電極指に平行な線が、櫛型電極12の中心線である。圧電基板10の長さ方向における櫛型電極12の電極長をLとした場合、領域Aの境界を示す線a、領域Bの境界を示す線cは、各々中心線bから電極長の半分の距離L/2以上離間されている。   In the present embodiment, as shown in FIG. 2, a predetermined region symmetric with respect to the center line b of the comb electrode 12 is assumed, and the suction port 14 side of the flow path 18 is a region A and the discharge port 16 side is a region. B. In the length direction of the piezoelectric substrate 10 (direction perpendicular to the electrode fingers), a line passing through an intermediate point when viewed from both end electrode fingers of the comb electrode 12 and parallel to the electrode fingers is a center line of the comb electrode 12 is there. When the electrode length of the comb-shaped electrode 12 in the length direction of the piezoelectric substrate 10 is L, the line a indicating the boundary of the region A and the line c indicating the boundary of the region B are each half of the electrode length from the center line b. They are separated by a distance L / 2 or more.

流路18は、中心線bの吐出口16側で流路幅が拡大し、領域Bの流路面積SBが領域Aの流路面積SAより大きくなるように形成されている。ここで、流路面積とは、弾性表面波が伝搬する圧電基板10の表面(伝搬面)の流路18に面した部分の面積である。 The flow path 18 is formed such that the flow path width is enlarged on the discharge port 16 side of the center line b, and the flow area S B of the region B is larger than the flow area S A of the region A. Here, the channel area is the area of the surface (propagation surface) of the piezoelectric substrate 10 on which the surface acoustic wave propagates facing the channel 18.

なお、この例では、液体の流路18による流動抵抗を低減するために、流路断面積が大きい部分での流路形状を流線形としたが、三角形、四角形、他の多角形、楕円形等、種々の形状とすることができる。   In this example, in order to reduce the flow resistance due to the liquid flow path 18, the flow path shape in the portion where the flow path cross-sectional area is large is streamlined, but a triangle, a quadrangle, another polygon, an ellipse Etc., and various shapes can be employed.

駆動回路22は、交流電気信号を発生する交流信号発生器24と、発生した交流電気信号をパルス信号に変換するパルス信号発生器26と、を含んで構成されている。駆動回路22としては、例えば、ウェーブテック社製の「ファンクションジェネレータModel80」などを用いることができる。   The drive circuit 22 includes an AC signal generator 24 that generates an AC electrical signal and a pulse signal generator 26 that converts the generated AC electrical signal into a pulse signal. As the drive circuit 22, for example, “Function Generator Model 80” manufactured by Wavetec Inc. can be used.

(マイクロポンプの動作)
次に、上記マイクロポンプの動作について説明する。
(Micro pump operation)
Next, the operation of the micropump will be described.

駆動回路20から交流パルス信号を櫛型電極12に入力すると、圧電基板10の表面に弾性表面波が励振される。弾性表面波は、図4に示すように、櫛型電極12の中心部で発生し、圧電基板10の表面を電極指と直交する方向(矢印方向)に伝搬する。そして、圧電基板10上に形成された流路18の底面(伝搬面)にも伝達される。これによって、吸入口14から吸入された液体は、流路18内で伝搬面から放射圧を受けて弾性表面波の所定の伝搬方向に沿って移動し、吐出口16から吐出される。   When an AC pulse signal is input from the drive circuit 20 to the comb electrode 12, a surface acoustic wave is excited on the surface of the piezoelectric substrate 10. As shown in FIG. 4, the surface acoustic wave is generated at the center of the comb-shaped electrode 12 and propagates on the surface of the piezoelectric substrate 10 in a direction (arrow direction) orthogonal to the electrode finger. And it is transmitted also to the bottom face (propagation surface) of the flow path 18 formed on the piezoelectric substrate 10. As a result, the liquid sucked from the suction port 14 receives the radiation pressure from the propagation surface in the flow path 18, moves along a predetermined propagation direction of the surface acoustic wave, and is discharged from the discharge port 16.

弾性表面波の放射圧は、塩川祥子、“SAWストリーミング現象の解明”、電子情報学会論文誌,US89−51(1989),41によれば、下記式に従い計算することができる。   The radiation pressure of the surface acoustic wave can be calculated according to the following formula according to Shoko Shiokawa, “Elucidation of SAW Streaming Phenomenon”, Transactions of the Institute of Electronics and Information Society, US89-51 (1989), 41.

Figure 2006090155
Figure 2006090155

式中、ρ0は液体の密度、αは液体中への漏れ弾性波の吸収係数、ωは駆動角周波数、Aは弾性波による振動変位を表す。 In the equation, ρ 0 is the density of the liquid, α is the absorption coefficient of the leaking elastic wave into the liquid, ω is the driving angular frequency, and A is the vibration displacement due to the elastic wave.

また、図5に、流路内の液体に生ずる弾性表面波による流動駆動力を示す。弾性表面波から受ける単位面積当りの流動駆動力をF(pN/mm2)とすると、領域Aでの流動駆動力FAは、領域Aの流路面積SAを用いて下記式で表され、 FIG. 5 shows the flow driving force by the surface acoustic wave generated in the liquid in the flow path. Assuming that the flow driving force per unit area received from the surface acoustic wave is F (pN / mm 2 ), the flow driving force F A in the region A is expressed by the following equation using the flow path area S A in the region A. ,

Figure 2006090155
Figure 2006090155

領域Bでの流動駆動力FBは、領域Bの流路面積SBを用いて下記式で表される。 The flow driving force F B in the region B is expressed by the following formula using the flow path area S B of the region B.

Figure 2006090155
Figure 2006090155

ここで、流路面積SBが流路面積SAより大きいと、吐出口16に向う流動駆動力FBは吸入口14に向う流動駆動力FAより大きくなる。また、微少量の液体では、相互の分子間力が支配的となる。従って、流路18内の液体は、分離することなく一体となって吐出口16に向かって流動する。 Here, when the flow path area S B is larger than the flow path area S A , the flow driving force F B toward the discharge port 16 becomes larger than the flow drive force F A toward the suction port 14. In addition, in a very small amount of liquid, the mutual intermolecular force becomes dominant. Accordingly, the liquid in the flow path 18 flows toward the discharge port 16 together without being separated.

例えば、128度Yカット、厚さ500μmのLiNbO3基板上に、106μmライン/スペース(中心間距離212μm)で交差幅5mm、30対のTi/Au(厚さ30nm/300nm)2層構造の櫛型電極を、長瀬産業社製「ポジレジストNPR9710」を用いたリフトオフプロセスにより作製した。 For example, on a LiNbO 3 substrate having a 128 ° Y-cut and a thickness of 500 μm, a comb of 106 μm line / space (inter-center distance 212 μm), crossing width 5 mm, 30 pairs of Ti / Au (thickness 30 nm / 300 nm) two-layer structure The mold electrode was produced by a lift-off process using “Positive resist NPR9710” manufactured by Nagase Sangyo Co., Ltd.

櫛型電極を形成した圧電基板上に、図2に示す形状の流路を形成した。流路の通常の直線部分での幅を1mm、最大幅を5mmとした場合に、8.97MHz、16Vp−pの交流パルス電気信号を櫛型電極に印加すると、約250μm/secの流速を得ることができた。   A channel having the shape shown in FIG. 2 was formed on the piezoelectric substrate on which the comb electrode was formed. When an AC pulse electric signal of 8.97 MHz and 16 Vp-p is applied to the comb-shaped electrode when the width of the normal linear portion of the flow path is 1 mm and the maximum width is 5 mm, a flow velocity of about 250 μm / sec is obtained. I was able to.

なお、流路18内を移動する液体の流速・流量は、櫛型電極12から圧電基板10に与える交流電気信号の電圧、交流パルス信号の電圧やデューティ比を変えることによって制御することができる。また、櫛型電極の中心間距離(ピッチ)、共振周波数、電極対数をそれぞれ又は複数変えることによっても制御することができる。   The flow velocity / flow rate of the liquid moving in the flow path 18 can be controlled by changing the voltage of the AC electrical signal, the voltage of the AC pulse signal, and the duty ratio applied from the comb electrode 12 to the piezoelectric substrate 10. It can also be controlled by changing the distance (pitch) between the centers of the comb electrodes, the resonance frequency, and the number of electrode pairs.

以上説明した通り、本実施の形態では、流路が櫛型電極上にそれを横断する形で形成されるので、従来のマイクロポンプに比べて装置の小型化を図ることができる。また、流路を櫛型電極上に形成した場合でも、櫛型電極の中心線に対して対称な所定領域を想定し、中心線に対して吐出口側の領域での流路面積が吸入口側の領域での流路面積よりも大きくなるように流路形状が設計されているので、吐出口に向う流動駆動力が吸入口に向う流動駆動力より大きくなり、流路内の液体を吐出口に向かって流動させることができる。   As described above, in this embodiment, since the flow path is formed on the comb-shaped electrode so as to cross it, the apparatus can be downsized as compared with the conventional micropump. Even when the flow path is formed on the comb-shaped electrode, a predetermined area symmetric with respect to the center line of the comb-shaped electrode is assumed, and the flow area in the area on the discharge port side with respect to the center line is the suction area. Since the flow channel shape is designed to be larger than the flow channel area in the side region, the flow driving force toward the discharge port is greater than the flow driving force toward the suction port, and the liquid in the flow channel is discharged. It can be made to flow toward the outlet.

(流路の配設方法)
なお、上記の実施の形態では、ハウジングの圧電基板と対向する面に溝を形成し、圧電基板の伝搬面と共に管状の流路を形成する例について説明したが、圧電基板内に埋め込み流路を形成してもよい。
(Flow path arrangement method)
In the above embodiment, an example in which a groove is formed on the surface of the housing facing the piezoelectric substrate and a tubular channel is formed with the propagation surface of the piezoelectric substrate has been described. However, an embedded channel is formed in the piezoelectric substrate. It may be formed.

(所定領域の想定)
また、上記の実施の形態では、櫛型電極の中心線から電極長の半分の距離までの領域を所定領域としたが、弾性表面波の伝搬する有効場内において所定領域を設定することができる。ここで有効場とは、弾性表面波が所定の減衰率以内(例えば、90%程度)で伝達される範囲であり、具体例を挙げると、櫛型電極の各電極対によって物理的に発生させられた各弾性表面波の合成波の見かけ上の発生中心(仮想点)からの距離が、この中心から末端の電極対までの距離の2倍以内の距離となる範囲である。通常、櫛型電極の中心部が発生中心であり、この中心部から電極長以内の範囲が有効場となる。なお、減衰の求め方としては、「弾性表面波工学」柴山乾夫監修、電子情報通信学会編、P.160に記載された方法を用いることができる。
(Assumed predetermined area)
In the above-described embodiment, the region from the center line of the comb electrode to the distance half the electrode length is set as the predetermined region. However, the predetermined region can be set in the effective field in which the surface acoustic wave propagates. Here, the effective field is a range in which the surface acoustic wave is transmitted within a predetermined attenuation rate (for example, about 90%). For example, the effective field is physically generated by each electrode pair of comb electrodes. The distance from the apparent generation center (virtual point) of the synthesized wave of each surface acoustic wave is within a range that is within twice the distance from this center to the terminal electrode pair. Usually, the center part of the comb-shaped electrode is the generation center, and the range within the electrode length from this center part is an effective field. The method for obtaining the attenuation is described in “Surface Acoustic Wave Engineering” by Inoue Shibayama, edited by the Institute of Electronics, Information and Communication Engineers, p. The method described in 160 can be used.

本発明の実施の形態に係るマイクロポンプの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the micropump which concerns on embodiment of this invention. 本発明の実施の形態に係るマイクロポンプを上方から見た平面図である。It is the top view which looked at the micropump which concerns on embodiment of this invention from upper direction. 図2のA−A線断面図である。It is the sectional view on the AA line of FIG. 櫛型電極の中心部から発生する弾性表面波の伝搬方向を示す模式図である。It is a schematic diagram which shows the propagation direction of the surface acoustic wave which generate | occur | produces from the center part of a comb-shaped electrode. 流路内の液体に生ずる弾性表面波による流動駆動力を示す模式図である。It is a schematic diagram which shows the flow drive force by the surface acoustic wave which arises in the liquid in a flow path.

符号の説明Explanation of symbols

10 圧電基板
12 櫛型電極
14 吸入口
16 吐出口
18 流路
20 ハウジング
22 駆動回路
DESCRIPTION OF SYMBOLS 10 Piezoelectric substrate 12 Comb-shaped electrode 14 Suction port 16 Ejection port 18 Flow path 20 Housing 22 Drive circuit

Claims (4)

弾性表面波を発生する圧電基板と、
前記圧電基板の表面に弾性表面波を励振する対電極と、
前記圧電基板上の、前記対電極により発生した弾性表面波が伝搬する伝搬面と接するように設けられ、液体を吸入する吸入口と液体を吐出させる吐出口とを連結する流路と、
を備え、
前記対電極の中心線に対して対称な所定領域を想定した場合に、一方の領域の前記伝搬面の前記流路に面する流路面積が、他方の領域の流路面積より大きくなるように、前記流路が形成されたことを特徴とするマイクロポンプ。
A piezoelectric substrate that generates surface acoustic waves;
A counter electrode for exciting a surface acoustic wave on the surface of the piezoelectric substrate;
A flow path provided on the piezoelectric substrate so as to be in contact with a propagation surface through which the surface acoustic wave generated by the counter electrode propagates, and connecting a suction port for sucking liquid and a discharge port for discharging liquid;
With
Assuming a predetermined region symmetric with respect to the center line of the counter electrode, the channel area of the propagation surface of one region facing the channel is larger than the channel area of the other region. A micropump in which the flow path is formed.
前記対電極の中心線から電極長以内に前記所定領域を想定する請求項1に記載のマイクロポンプ。   The micropump according to claim 1, wherein the predetermined region is assumed within an electrode length from a center line of the counter electrode. 前記対電極の中心線から電極長の半分の距離以内に前記所定領域を想定する請求項1に記載のマイクロポンプ。   The micropump according to claim 1, wherein the predetermined region is assumed within a distance of half the electrode length from the center line of the counter electrode. 前記流路は、前記対電極の中心線の吐出口側で流路幅が拡大するように形成されたことを特徴とする請求項1乃至3のいずれか1項に記載のマイクロポンプ。   The micropump according to any one of claims 1 to 3, wherein the flow path is formed so that a flow path width is enlarged on a discharge port side of a center line of the counter electrode.
JP2004273962A 2004-09-21 2004-09-21 Micro pump Expired - Fee Related JP4774706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004273962A JP4774706B2 (en) 2004-09-21 2004-09-21 Micro pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004273962A JP4774706B2 (en) 2004-09-21 2004-09-21 Micro pump

Publications (2)

Publication Number Publication Date
JP2006090155A true JP2006090155A (en) 2006-04-06
JP4774706B2 JP4774706B2 (en) 2011-09-14

Family

ID=36231386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004273962A Expired - Fee Related JP4774706B2 (en) 2004-09-21 2004-09-21 Micro pump

Country Status (1)

Country Link
JP (1) JP4774706B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066777A1 (en) * 2005-12-09 2007-06-14 Kyocera Corporation Fluid actuator, heat generating device using the same, and analysis device
WO2009069449A1 (en) * 2007-11-29 2009-06-04 Konica Minolta Medical & Graphic, Inc. Test device and test device control method
RU195172U1 (en) * 2019-10-16 2020-01-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) Acoustic micropump
CN115263714A (en) * 2022-08-04 2022-11-01 浙江大学 Micropump device for driving micro gear by surface acoustic wave

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018106095A1 (en) * 2016-12-06 2018-06-14 Частное Учреждение "Nazarbayev University Research And Innovation System" Nanopump for transporting and purifying liquid through nanomembranes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5448492A (en) * 1977-09-08 1979-04-17 Clarion Co Ltd Elastic surface wave transducer
JPS6270677A (en) * 1985-09-24 1987-04-01 Ckd Controls Ltd Piezoelectric pump
JPH03116782A (en) * 1989-09-28 1991-05-17 Nec Kyushu Ltd Solid state image sensing element
JPH06289240A (en) * 1993-04-05 1994-10-18 Alps Electric Co Ltd Optical circuit element
JP2005257407A (en) * 2004-03-10 2005-09-22 Olympus Corp Minute amount liquid control unit
JP2006063906A (en) * 2004-08-27 2006-03-09 Fuji Xerox Co Ltd Micro pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5448492A (en) * 1977-09-08 1979-04-17 Clarion Co Ltd Elastic surface wave transducer
JPS6270677A (en) * 1985-09-24 1987-04-01 Ckd Controls Ltd Piezoelectric pump
JPH03116782A (en) * 1989-09-28 1991-05-17 Nec Kyushu Ltd Solid state image sensing element
JPH06289240A (en) * 1993-04-05 1994-10-18 Alps Electric Co Ltd Optical circuit element
JP2005257407A (en) * 2004-03-10 2005-09-22 Olympus Corp Minute amount liquid control unit
JP2006063906A (en) * 2004-08-27 2006-03-09 Fuji Xerox Co Ltd Micro pump

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066777A1 (en) * 2005-12-09 2007-06-14 Kyocera Corporation Fluid actuator, heat generating device using the same, and analysis device
US8159110B2 (en) 2005-12-09 2012-04-17 Kyocera Corporation Fluid actuator, and heat generating device and analysis device using the same
WO2009069449A1 (en) * 2007-11-29 2009-06-04 Konica Minolta Medical & Graphic, Inc. Test device and test device control method
RU195172U1 (en) * 2019-10-16 2020-01-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) Acoustic micropump
CN115263714A (en) * 2022-08-04 2022-11-01 浙江大学 Micropump device for driving micro gear by surface acoustic wave
CN115263714B (en) * 2022-08-04 2024-02-09 浙江大学 Micropump device for driving micro gear by acoustic surface wave

Also Published As

Publication number Publication date
JP4774706B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
CN101044677B (en) Surface acoustic wave excitation device
US9948274B2 (en) Surface acoustic wave device
CN103166596B (en) Resonator and wave filter
JP5229988B2 (en) Fluid actuator and heat generating device and analyzer using the same
CN110289827A (en) Acoustic wave device
KR102441867B1 (en) seismic device
JP2015073207A (en) Acoustic wave resonator
CN110880922A (en) Two-dimensional ultrahigh frequency resonator
JP2002100959A (en) Surface acoustic wave device
JP4774706B2 (en) Micro pump
WO2019172374A1 (en) Acoustic wave device
JP4450173B2 (en) Piezoelectric vibrator
JP2008178022A (en) Tuning fork type piezoelectric vibrating piece
JP4626224B2 (en) Micro pump
JP2008092610A (en) Surface acoustic wave substrate and surface acoustic wave functional element
JP7163965B2 (en) Acoustic wave device
JP2016213903A (en) Inter-digital transducer
CN116057835A (en) Elastic wave device
JP4886332B2 (en) Surface acoustic wave actuator
JPH11220378A (en) Ultrasonic switching element
JP2006022663A (en) Liquid transfer device
JPWO2013151048A1 (en) Crystal vibrator
JPH09266431A (en) Volume ultrasonic wave transducer and surface acoustic wave device
RU2006145130A (en) SURFACE ACOUSTIC WAVE FILTER
JP2012165032A (en) Elastic wave device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees