JP2006089162A - Brake of hoisting machine for elevator - Google Patents

Brake of hoisting machine for elevator Download PDF

Info

Publication number
JP2006089162A
JP2006089162A JP2004273413A JP2004273413A JP2006089162A JP 2006089162 A JP2006089162 A JP 2006089162A JP 2004273413 A JP2004273413 A JP 2004273413A JP 2004273413 A JP2004273413 A JP 2004273413A JP 2006089162 A JP2006089162 A JP 2006089162A
Authority
JP
Japan
Prior art keywords
temperature
electromagnetic coil
current
electromagnetic
buffer member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004273413A
Other languages
Japanese (ja)
Other versions
JP4641167B2 (en
Inventor
Hidehiko Urakawa
英彦 浦川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004273413A priority Critical patent/JP4641167B2/en
Publication of JP2006089162A publication Critical patent/JP2006089162A/en
Application granted granted Critical
Publication of JP4641167B2 publication Critical patent/JP4641167B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cage And Drive Apparatuses For Elevators (AREA)
  • Elevator Control (AREA)
  • Vibration Prevention Devices (AREA)
  • Braking Arrangements (AREA)
  • Vibration Dampers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a brake of a hoisting machine for an elevator capable of maintaining the elasticity even when a shock-absorbing member including rubber provided between an electromagnetic magnet and a moving core is low at temperature. <P>SOLUTION: In order to heat a shock-absorbing member including rubber, the current in an electromagnetic coil 5 during the conduction is measured by a heating control device 60, and the estimated temperature of the electromagnetic coil 5 is calculated by calculating the resistance of the electromagnetic coil 5 from the current value. When the estimated temperature is lower than the set reference value, the current capable of heating only the shock-absorbing member 9 is allowed to run in the electromagnetic coil 5. Further, during the braking, the estimated temperature is calculated by allowing the weak current in the electromagnetic coil 5, and the shock-absorbing member 9 is heated by increasing the weak current. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エレベータの巻上機に用いられるブレーキに関し、特に電磁マグネットと可動鉄心との間にゴム製の緩衝部材を設けたエレベータ用巻上機ブレーキに関するものである。   The present invention relates to a brake used in an elevator hoisting machine, and more particularly to an elevator hoisting machine brake provided with a rubber cushioning member between an electromagnetic magnet and a movable iron core.

従来装置では、エレベータの電磁ブレーキの制動解除時において、可動鉄心が電磁マグネットに吸引されて衝突する衝撃音の発生を防ぐために、可動鉄心と電磁マグネットとの間に緩衝部材を設けたものがあった。緩衝部材は、ゴム板と樹脂板とを重ねて弾性と耐久性とを持たせた吸音板であって、電磁ブレーキの電磁マグネットと可動鉄心との間に埋め込んだものである(例えば、特許文献1参照)。   Some conventional devices have a buffer member provided between the movable iron core and the electromagnetic magnet in order to prevent the generation of impact sound that the movable iron core is attracted to and collides with the electromagnetic magnet when the electromagnetic brake of the elevator is released. It was. The buffer member is a sound-absorbing plate in which a rubber plate and a resin plate are overlapped to give elasticity and durability, and is embedded between an electromagnetic magnet of an electromagnetic brake and a movable iron core (for example, Patent Literature 1).

特開平8−73143号公報JP-A-8-73143

上述のような従来のエレベータ用巻上機ブレーキでは、緩衝部材としてゴムを用いているが、ゴムは、ゴム自体の温度が低くなるとゴム状からガラス状へ遷移し、弾性が急激に低下するので、ブレーキの作動時の衝撃吸収や衝撃音の緩和が激減するとともにゴムの寿命も低下する。しかしながら、従来のエレベータ用巻上機ブレーキにおいては、このような低温時におけるゴムの弾性特性を考慮していない。従って、低温においては、可動鉄心が電磁マグネットに吸引されて衝突する衝撃音の発生を防ぐことができずに、この衝撃音が機械室から居室に伝達してエレベータの騒音となっていた。   In the conventional elevator hoist brakes as described above, rubber is used as a buffer member. However, when the temperature of the rubber itself decreases, the rubber transitions from rubber to glass, and the elasticity rapidly decreases. In addition, the impact absorption and the relaxation of the impact sound during brake operation are drastically reduced and the life of the rubber is also reduced. However, the conventional elevator hoist brake does not take into account such elastic characteristics of rubber at low temperatures. Therefore, at a low temperature, it is not possible to prevent the generation of an impact sound that the movable iron core is attracted to and collides with the electromagnetic magnet, but this impact sound is transmitted from the machine room to the living room and becomes an elevator noise.

本発明は、上記のような課題を解決するためになされたものであり、その目的は、低温においても電磁マグネットと可動鉄心との間のゴムの緩衝部材の弾性を維持できるエレベータ用巻上機ブレーキを提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an elevator hoisting machine capable of maintaining the elasticity of a rubber cushioning member between an electromagnetic magnet and a movable iron core even at a low temperature. Is to provide a brake.

本発明に係るエレベータ用巻上機ブレーキは、巻上機と共に回転する回転体の制動面に接するライニングと、ライニングに連結され、ライニングを制動面に接離させる方向へ往復動可能な可動鉄心と、励磁状態時に可動鉄心を吸引してライニングを制動面から開離させる電磁コイルを有する電磁マグネットと、電磁マグネットの非励磁状態時にライニングを制動面に押し付ける弾性部材と、電磁マグネットと可動鉄心との間に設けられ、所定温度以下で緩衝作用を喪失するゴム製の緩衝部材と、電磁マグネットの電磁コイルへの通電電流に基づいて電磁コイルの持つ抵抗値を算出する抵抗値算出手段と、抵抗値に基づいて電磁コイルの推定温度を算出する推定温度算出手段と、推定温度を、予め設定された基準温度と比較判断する温度判断手段と、温度判断手段による比較判断に基づいて、推定温度が基準温度よりも低いときに、緩衝部材の温度が所定温度よりも低いと判断して、緩衝部材を所定温度以上に加熱する加熱電流を前記電磁コイルに印加する電流制御手段とを備えたことを特徴とするものである。   The elevator hoisting machine brake according to the present invention includes a lining that contacts a braking surface of a rotating body that rotates together with the hoisting machine, and a movable iron core that is connected to the lining and can reciprocate in a direction that causes the lining to contact and separate from the braking surface. An electromagnetic magnet having an electromagnetic coil that attracts the movable iron core in the excited state and separates the lining from the braking surface, an elastic member that presses the lining against the braking surface when the electromagnetic magnet is not excited, and the electromagnetic magnet and the movable iron core. A rubber-made cushioning member which is provided between and loses the buffering action at a predetermined temperature or lower, a resistance value calculating means for calculating a resistance value of the electromagnetic coil based on an energization current to the electromagnetic coil of the electromagnetic magnet, and a resistance value Temperature estimation means for calculating an estimated temperature of the electromagnetic coil based on the temperature, and a temperature determination means for comparing the estimated temperature with a preset reference temperature When the estimated temperature is lower than the reference temperature based on the comparison determination by the temperature determination means, it is determined that the temperature of the buffer member is lower than the predetermined temperature, and a heating current for heating the buffer member to a predetermined temperature or higher is determined. And a current control means for applying to the electromagnetic coil.

本発明によるエレベータ用巻上機ブレーキによれば、ゴム製の緩衝部材を加熱することで当該緩衝部材の弾性を維持することができるので、エレベータ周囲の温度が低温であっても、ゴムの弾性を劣化させることなく緩衝部材としてのゴム本来の役目を維持できる。   According to the elevator hoisting brake according to the present invention, the elasticity of the buffer member can be maintained by heating the rubber buffer member, so that the elasticity of the rubber can be maintained even when the temperature around the elevator is low. The original role of rubber as a buffer member can be maintained without deteriorating the thickness.

実施の形態1.
図1乃至図6には、この発明のエレベータ用巻上機ブレーキの一実施の形態を示し、図1は、エレベータ用巻上機ブレーキの概略的構造を制動状態で示した断面図、図2は、エレベータ用巻上機ブレーキの概略的構造を解放状態で示した断面図である。図3は、図1におけるB−B断面図であり、図4は、図1におけるD−D断面図である。図5は、温度と硬度の関係を示した一般的なゴムの特性図であり、図6は、エレベータ用巻上機ブレーキの加熱制御装置の機能ブロック図である。
Embodiment 1 FIG.
1 to 6 show an embodiment of an elevator hoist brake according to the present invention. FIG. 1 is a cross-sectional view showing a schematic structure of an elevator hoist brake in a braking state. These are sectional drawings which showed the schematic structure of the hoisting machine brake for elevators in a released state. 3 is a BB cross-sectional view in FIG. 1, and FIG. 4 is a DD cross-sectional view in FIG. FIG. 5 is a characteristic diagram of a general rubber showing the relationship between temperature and hardness, and FIG. 6 is a functional block diagram of a heating control device for an elevator hoisting machine brake.

これらの図において、エレベータ用巻上機ブレーキは、エレベータの巻上機の回転軸(図示してない)に連結された回転体である内側に制動面1を有する円筒状のブレーキリング2と共に用いられるものであり、巻上機フレーム(図示してない)に取り付けられてブレーキリング2内の空間に設置される。図示の例では、エレベータ用巻上機ブレーキが一対、図で左右に対称的に配置されている。   In these drawings, an elevator hoist brake is used together with a cylindrical brake ring 2 having a braking surface 1 on the inside which is a rotating body connected to a rotating shaft (not shown) of the elevator hoist. It is attached to a hoisting machine frame (not shown) and installed in a space in the brake ring 2. In the illustrated example, a pair of elevator hoist brakes are arranged symmetrically on the left and right in the figure.

エレベータ用巻上機ブレーキは各々、図示してない巻上機と共に回転するブレーキリング2の制動面1に離接して設けられたライニング3と、このライニング3に連結されてこれを支持する可動鉄心4とを有している。可動鉄心4は、ライニング3をブレーキリング2の制動面1に接離される方向に往復動可能に支持されている。エレベータ用巻上機ブレーキはまた、励磁状態時に可動鉄心4を吸引してライニング3を制動面1から離間させる電磁コイル5と磁気鉄心6とを有する電磁マグネット7を有している。電磁マグネット7と可動鉄心4との間には、電磁マグネット7の非励磁状態時にライニング3を制動面1に押し付けるコイルバネである弾性部材8が圧縮状態で設けられている。   Each of the elevator hoisting machine brakes is provided with a lining 3 that is separated from the braking surface 1 of the brake ring 2 that rotates together with a hoisting machine (not shown), and a movable iron core that is connected to and supports the lining 3. 4. The movable iron core 4 is supported so as to be able to reciprocate in the direction in which the lining 3 is brought into contact with and separated from the braking surface 1 of the brake ring 2. The elevator hoist brake also includes an electromagnetic magnet 7 having an electromagnetic coil 5 and a magnetic iron core 6 that attracts the movable iron core 4 in the excited state to separate the lining 3 from the braking surface 1. An elastic member 8, which is a coil spring that presses the lining 3 against the braking surface 1 when the electromagnetic magnet 7 is not excited, is provided between the electromagnetic magnet 7 and the movable iron core 4 in a compressed state.

電磁マグネット7と可動鉄心4との間には、ゴムを含む緩衝部材9が設けられている。図示の例では、緩衝部材9は、電磁マグネット7の磁気鉄心6の可動鉄心4に面する側に固着されている。磁気鉄心6に対する緩衝部材9の平面関係位置は、電磁コイル5および弾性部材8と共に、図3に示されている。緩衝部材9は、可動鉄心4が電磁マグネット7に磁気的に吸引されて、弾性部材8の弾性力に抗して電磁マグネット7に当接するときの衝撃を吸収する緩衝作用を持つ。しかしながら、緩衝部材9は、例えば層状のゴムを含むものであるので、例えば、周囲温度が摂氏マイナス10度以下の場合には、後に詳しく説明する所定温度以下でゴムの性質を失ってガラス状になり、緩衝作用を喪失するものである。   A buffer member 9 containing rubber is provided between the electromagnetic magnet 7 and the movable iron core 4. In the illustrated example, the buffer member 9 is fixed to the side of the magnetic iron core 6 of the electromagnetic magnet 7 facing the movable iron core 4. The plane-related position of the buffer member 9 with respect to the magnetic iron core 6 is shown in FIG. 3 together with the electromagnetic coil 5 and the elastic member 8. The buffer member 9 has a buffer function of absorbing an impact when the movable iron core 4 is magnetically attracted to the electromagnetic magnet 7 and abuts against the electromagnetic magnet 7 against the elastic force of the elastic member 8. However, since the buffer member 9 includes, for example, layered rubber, for example, when the ambient temperature is minus 10 degrees Celsius or less, the rubber property is lost at a predetermined temperature or less, which will be described in detail later, and the glass becomes a glass. The buffer action is lost.

図5は、温度と硬度との関係を示した一般的なゴムの特性図である。ゴムの持つ弾性という性質は、ゴムを構成する糸状の分子が活発な熱運動をしていることにより生じていると考えられている。ゴムは、常温ではゴム状を保っているが、温度が下がっていくと分子の熱運動が徐々に束縛され、分子が自由に動けなくなる温度に達する。この温度のことをガラス転移点と言う。ゴムは、ガラス転移点よりさらに低温になると、分子の運動が抑えられ、ガラスのように硬くなり、ゴム本来の弾性を示さなくなる。   FIG. 5 is a characteristic diagram of a general rubber showing the relationship between temperature and hardness. The property of elasticity of rubber is considered to be caused by the active thermal motion of the thread-like molecules that make up the rubber. Rubber remains rubbery at room temperature, but as the temperature decreases, the thermal motion of the molecules is gradually constrained and reaches a temperature at which the molecules cannot move freely. This temperature is called the glass transition point. When the temperature of the rubber becomes lower than the glass transition point, the movement of molecules is suppressed, the rubber becomes hard like glass, and does not show the inherent elasticity of rubber.

ガラス転移点の例として、ブタジエンゴムのガラス転移点は摂氏マイナス105度、天然ゴムのガラス転移点は摂氏マイナス73度、クロロスルフォン化ポリエチレンゴムのガラス転移点は摂氏マイナス34度などとなっている。また、この実施の形態1で用いられるゴムはニトリルゴムを想定しており、該ニトリルゴムのガラス転移点は摂氏マイナス10度〜マイナス55度となっている。   As examples of glass transition points, the glass transition point of butadiene rubber is minus 105 degrees Celsius, the glass transition point of natural rubber is minus 73 degrees Celsius, and the glass transition point of chlorosulfonated polyethylene rubber is minus 34 degrees Celsius. . The rubber used in the first embodiment is assumed to be nitrile rubber, and the glass transition point of the nitrile rubber is minus 10 degrees to minus 55 degrees Celsius.

また、図5のように、温度が低い環境ではゴムは弾性を失い、エレベータの電磁マグネット7と可動鉄心4との間で緩衝作用を示す緩衝部材9という本来の使用目的に適うものではなくなる。緩衝部材9としてのゴム本来の使用目的を維持するためには、周囲の温度が低くなっても、ゴムを加熱することでゴム本来の弾性を保たせる必要がある。   Further, as shown in FIG. 5, the rubber loses elasticity in an environment where the temperature is low, and is not suitable for the original use purpose of the buffer member 9 that exhibits a buffering action between the electromagnetic magnet 7 of the elevator and the movable iron core 4. In order to maintain the original purpose of use of the rubber as the buffer member 9, it is necessary to maintain the original elasticity of the rubber by heating the rubber even when the ambient temperature is lowered.

そして、このゴム本来の弾性を保たせるためには、図5において、ゴムを常にA点より高い温度にしておく必要がある。ゴム周囲の温度が低くなると、ゴム自体の温度も低くなり、ゴムの弾性が低下してしまうので、外部からゴムを加熱する処置が必要となる。   In order to maintain the inherent elasticity of the rubber, it is necessary to keep the rubber at a temperature higher than the point A in FIG. When the temperature around the rubber is lowered, the temperature of the rubber itself is also lowered, and the elasticity of the rubber is lowered. Therefore, it is necessary to treat the rubber from the outside.

このようにゴムを含む緩衝部材9の温度をガラス転移点である所定温度以上に維持するために、この発明のエレベータ用巻上機ブレーキは加熱制御装置60を備えている。   Thus, the elevator hoist brake of the present invention includes the heating control device 60 in order to maintain the temperature of the cushioning member 9 including rubber at a predetermined temperature or higher, which is a glass transition point.

図6に示す、この実施の形態1のエレベータ用巻上機ブレーキの加熱制御装置60は、電磁コイル5へ通電し、この通電電流を測定する電流測定手段61と、この通電電流に基づく抵抗算出演算部67での演算により電磁コイル5の持つ抵抗を算出する抵抗算出手段62と、この抵抗に基づいて電磁コイル5の推定温度を算出する推定温度算出手段63とを有している。推定温度算出手段63での算出は、後に説明するように温度と抵抗の関係式データ66aと電磁コイル5の温度と抵抗の実測データ66bとに基づいて推定温度算出演算部66で実行される。   The heating control device 60 for an elevator hoist brake according to the first embodiment shown in FIG. 6 energizes the electromagnetic coil 5 and measures a current measurement means 61 for measuring the energization current, and calculates a resistance based on the energization current. It has resistance calculation means 62 for calculating the resistance of the electromagnetic coil 5 by calculation in the calculation section 67, and estimated temperature calculation means 63 for calculating the estimated temperature of the electromagnetic coil 5 based on this resistance. The calculation by the estimated temperature calculation means 63 is executed by the estimated temperature calculation calculation unit 66 based on the temperature-resistance relational expression data 66a and the temperature and resistance actual measurement data 66b of the electromagnetic coil 5, as will be described later.

加熱制御装置60はまた、このようにして算出された電磁コイル5の推定温度と、後に詳しく説明する予め設定された基準温度64aとを比較して、推定温度が基準温度64aよりも低いときに、緩衝部材9の温度がガラス転移点である所定温度よりも低いと判断する温度判断手段64を有している。温度判断手段64による比較判断に基づいて、電磁コイル5の推定温度が基準温度64aよりも低いと判断されたときには、緩衝部材9の温度が所定温度(ガラス転移点)よりも低いとみなされる。この場合に電磁コイル5を加熱して緩衝部材9の温度を所定温度以上にするために、加熱電流を電磁コイル5に印加する電流制御手段65が設けてある。   The heating control device 60 also compares the estimated temperature of the electromagnetic coil 5 calculated in this way with a preset reference temperature 64a which will be described in detail later, and when the estimated temperature is lower than the reference temperature 64a. The temperature determining unit 64 determines that the temperature of the buffer member 9 is lower than a predetermined temperature that is a glass transition point. When it is determined that the estimated temperature of the electromagnetic coil 5 is lower than the reference temperature 64a based on the comparison determination by the temperature determination means 64, the temperature of the buffer member 9 is considered to be lower than the predetermined temperature (glass transition point). In this case, current control means 65 for applying a heating current to the electromagnetic coil 5 is provided in order to heat the electromagnetic coil 5 and set the temperature of the buffer member 9 to a predetermined temperature or higher.

電流制御手段65には、制動時と制動解除時とにおいて、電流制御手段65で印加する電流の値を変更するために電流制御変更手段68が接続されている。   A current control changing means 68 is connected to the current control means 65 in order to change the value of the current applied by the current control means 65 during braking and during braking release.

電磁コイル5の温度の測定は、電磁コイル5の通電電流から抵抗値を測定して温度を推定することにより行われる。この温度推定は、導電体金属の定質量抵抗温度係数を用いて行うものであり、この定質量抵抗温度係数とは、導電体金属の温度による膨張伸縮を考慮に入れないで、一定質量のある銅線の抵抗が温度変化に対していかに変化するかを考えたときの温度係数を言う。   The temperature of the electromagnetic coil 5 is measured by measuring the resistance value from the energization current of the electromagnetic coil 5 and estimating the temperature. This temperature estimation is performed using the constant mass resistance temperature coefficient of the conductor metal, and this constant mass resistance temperature coefficient has a constant mass without taking into account expansion and contraction due to the temperature of the conductor metal. This is the temperature coefficient when considering how the resistance of copper wire changes with temperature.

例えば、摂氏t度における導電体金属の電気抵抗値をR、摂氏t度における導電体金属の電気抵抗値をRt1、および摂氏t度における定質量抵抗温度係数をαt1とすると、以下の関係式が成り立つ。 For example, the electric resistance value R t of the conductor metal in Celsius t degrees, when the electrical resistance of the conductor metal in Celsius t 1 ° R t1, and a constant mass resistance temperature coefficient at C t 1 ° and alpha t1, The following relational expression holds.

=Rt1{1+αt1(t−t)} R t = R t1 {1 + α t1 (t−t 1 )}

ここで、例えば導電体金属である電磁コイル5が銅線の場合、tを摂氏0度とし、摂氏0度における銅線の導電率を100%とみたときのαt1(=α)は以下の値である。 Here, for example, when the electromagnetic coil 5, which is a conductor metal, is a copper wire, t 1 is 0 degrees Celsius, and α t1 (= α 0 ) when the electrical conductivity of the copper wire at 0 degrees Celsius is 100% is It is the following value.

α=0.00427 α 0 = 0.00427

このように、導電体金属における温度と電気抵抗との間には、近似的な一次式が成り立つ。従って、電磁コイル5において、予め基準となる温度における電気抵抗と定質量抵抗温度係数とが求められていれば、任意の温度での電気抵抗は近似的な一次式から近似の電気抵抗値が算出できる。また、この近似の電気抵抗は、製造される同一仕様のブレーキ内の電磁コイルにおいては若干の幅があるが、ほぼ同一である。   As described above, an approximate linear expression is established between the temperature and the electrical resistance of the conductor metal. Accordingly, in the electromagnetic coil 5, if the electrical resistance at the reference temperature and the constant mass resistance temperature coefficient are obtained in advance, the electrical resistance at an arbitrary temperature is calculated from an approximate linear equation. it can. Also, this approximate electrical resistance is substantially the same, although there is some width in the electromagnetic coil in the brake of the same specification manufactured.

これにより、この実施の形態1による電磁コイル5に流れる電流を測定して電気抵抗を算出し、それにより電磁コイル5の推定温度を算出できる。   Thereby, the electric current is calculated by measuring the current flowing through the electromagnetic coil 5 according to the first embodiment, whereby the estimated temperature of the electromagnetic coil 5 can be calculated.

また、別の測定方法として、電流と同時に、そのときの電磁コイル5への印加電圧を計測して、電気抵抗を算出してもよい。   As another measurement method, the electric resistance may be calculated by measuring the voltage applied to the electromagnetic coil 5 at the same time as the current.

なお、ゴムがガラス状となることは一般的に常温時ではありえず、氷点下のかなり低い温度のときであり、寒冷地に設置されていたり、寒冷地に設置されていてエレベータの利用頻度が低かったり、寒冷地に設置されていて夜間にエレベータの運転が「切」となっている場合などが考えられる。   In general, rubber does not become glassy at room temperature, but at a very low temperature below freezing, and it is installed in a cold region or installed in a cold region and the frequency of elevator use is low. Or, it may be installed in a cold area and the elevator is turned off at night.

以上から、電磁コイル5の電気抵抗を測定することで、電磁マグネット7に固着したゴムを含む緩衝部材9の周囲の温度を推定し、緩衝部材9の周囲の温度が低いと判断できる場合には、緩衝部材9を加熱し得るだけの電流を電磁コイル5に流し、電磁マグネット7と共に緩衝部材9も加熱されることで緩衝部材9のゴムの弾性低下を未然に防ぐことができ、エレベータ用巻上機ブレーキにおいては緩衝部材9としての本来の役目を維持できることが判る。   From the above, when the electric resistance of the electromagnetic coil 5 is measured to estimate the temperature around the buffer member 9 including the rubber fixed to the electromagnetic magnet 7, and when it can be determined that the temperature around the buffer member 9 is low A current sufficient to heat the buffer member 9 is passed through the electromagnetic coil 5, and the buffer member 9 is also heated together with the electromagnetic magnet 7, thereby preventing the elastic elasticity of the buffer member 9 from being lowered. It can be seen that the original function as the buffer member 9 can be maintained in the upper brake.

次に、動作について説明する。図6は、この実施の形態1のエレベータ用巻上機ブレーキの加熱制御装置60の機能ブロック図である。以下、機能ブロック図を用いて制動時と制動解除時とにおける動作を説明する。   Next, the operation will be described. FIG. 6 is a functional block diagram of the heating control device 60 for the elevator hoist brake according to the first embodiment. Hereinafter, the operation at the time of braking and at the time of releasing the brake will be described using a functional block diagram.

このエレベータ用巻上機ブレーキの制動解除時においては、図2のように可動鉄心4が電磁マグネット7に吸引されている。また、電磁コイル5には、電磁マグネット7が可動鉄心4の吸引を保持するだけの電流(励磁電流)が流れている。   When releasing the elevator hoist brake, the movable iron core 4 is attracted to the electromagnetic magnet 7 as shown in FIG. In addition, a current (excitation current) sufficient for the electromagnetic magnet 7 to hold the movable core 4 is attracted to the electromagnetic coil 5.

先ず、電流測定手段61により電磁コイル5に流れている電流が測定される。測定された電磁コイル5の電流は、抵抗算出手段62により、抵抗算出演算部67による計算を経て、現状態の電磁コイル5の電気抵抗が算出される。   First, the current flowing through the electromagnetic coil 5 is measured by the current measuring means 61. The measured electric current of the electromagnetic coil 5 is calculated by the resistance calculating unit 62 by the resistance calculating unit 67, and the electric resistance of the electromagnetic coil 5 in the current state is calculated.

次に、算出された電磁コイル5の電気抵抗は、推定温度算出手段63により、推定温度算出演算部66を経て、推定温度が算出される。ここで、推定温度算出演算部66には、予め電磁コイル5の温度と電気抵抗との実測データ66bおよび温度と電気抵抗との関係式のデータ66aとが登録されており、関係式は前述の導電体金属の近似的一次式が用いられる。   Next, the estimated electrical resistance of the electromagnetic coil 5 is calculated by the estimated temperature calculation means 63 via the estimated temperature calculation calculation unit 66. Here, in the estimated temperature calculation calculation unit 66, the actual measurement data 66b of the temperature and the electric resistance of the electromagnetic coil 5 and the data 66a of the relational expression of the temperature and the electric resistance are registered in advance. An approximate linear equation of the conductor metal is used.

算出された電磁コイル5の推定温度は、温度判断手段64により予め設定された基準温度64aと比較され、推定温度値が基準温度64aより大きければ動作は終了し、推定温度が基準温度64aより小さければ次のステップへ進む。ここで設定される基準温度64aは、図5におけるA点付近の温度値を設定する。   The calculated estimated temperature of the electromagnetic coil 5 is compared with a reference temperature 64a set in advance by the temperature judging means 64. If the estimated temperature value is larger than the reference temperature 64a, the operation is terminated, and the estimated temperature is smaller than the reference temperature 64a. Proceed to the next step. The reference temperature 64a set here sets a temperature value in the vicinity of point A in FIG.

なお、この実施の形態1では、緩衝部材9として使用するニトリルゴムのガラス転移点が摂氏マイナス55度〜摂氏マイナス10度であることから、基準温度64aの値を摂氏マイナス10度と設定する。すなわち、図5におけるA点は、この実施の形態1においては摂氏マイナス10度となる。   In the first embodiment, since the glass transition point of the nitrile rubber used as the buffer member 9 is minus 55 degrees Celsius to minus 10 degrees Celsius, the value of the reference temperature 64a is set to minus 10 degrees Celsius. That is, the point A in FIG. 5 is minus 10 degrees Celsius in the first embodiment.

推定温度が基準温度64aより小さい場合、電流制御手段65によって電磁コイル5に流れている励磁電流は、流しうる最大量まで増加される。増加された電流分だけ電磁コイル5は加熱されるので、電磁コイル5近傍に設けられたゴムを含む緩衝部材9も同時に加熱され、ゴムは緩衝部材9として適正な弾性を取り戻すことができる。   When the estimated temperature is lower than the reference temperature 64a, the exciting current flowing in the electromagnetic coil 5 by the current control means 65 is increased to the maximum amount that can be passed. Since the electromagnetic coil 5 is heated by the increased current, the buffer member 9 including rubber provided in the vicinity of the electromagnetic coil 5 is also heated at the same time, and the rubber can regain proper elasticity as the buffer member 9.

また、算出された推定温度は電磁コイル5自体の推定温度であるので、これを緩衝部材9の推定温度に適用するには補正処置が必要である。例えば緩衝部材9を摂氏1度上昇させるための電磁コイル5に流す増加分の電流と時間との関係を、緩衝部材9の位置関係や熱伝導率等を考慮して予め実験等によって求めておく。この実験等により、緩衝部材9の温度を上昇させるのに必要な、電磁コイル5に印加する電流値と時間とが計算される。電磁コイル5に緩衝部材9を加熱させるための電流が流される際には、補正処置として、この計算に基づいて一定の電流が一定の時間だけ印加されるように制御される。   Further, since the calculated estimated temperature is the estimated temperature of the electromagnetic coil 5 itself, a corrective action is required to apply this to the estimated temperature of the buffer member 9. For example, the relationship between the increased current flowing through the electromagnetic coil 5 for raising the buffer member 9 by 1 degree Celsius and the time is obtained in advance by experiments and the like in consideration of the positional relationship of the buffer member 9 and the thermal conductivity. . Through this experiment and the like, the current value and time applied to the electromagnetic coil 5 necessary for raising the temperature of the buffer member 9 are calculated. When a current for heating the buffer member 9 is supplied to the electromagnetic coil 5, as a corrective action, control is performed so that a constant current is applied for a certain time based on this calculation.

さらに、この動作は常に繰り返されているので、緩衝部材9の推定温度は常に監視され、緩衝部材9としての適正な弾性を保つことができる。   Further, since this operation is always repeated, the estimated temperature of the buffer member 9 is always monitored, and appropriate elasticity as the buffer member 9 can be maintained.

このエレベータ用巻上機ブレーキの制動時においては、一般的には電磁コイル5へは電流が流れておらず、図1のように、弾性部材8により可動鉄心4が制動面1の方向へ押し付けられ、ライニング3が制動面1に当接することで摩擦力が発生している。   At the time of braking of the elevator hoist brake, generally no current flows through the electromagnetic coil 5, and the movable iron core 4 is pressed toward the braking surface 1 by the elastic member 8 as shown in FIG. In addition, friction force is generated by the lining 3 abutting against the braking surface 1.

しかし、制動時においては、電流制御手段65で印加される電流を変更し得る電流制御変更手段68により、電磁コイル5には電気抵抗測定のための微弱電流が流れていることを前提とする。   However, during braking, it is assumed that a weak current for measuring electrical resistance flows through the electromagnetic coil 5 by the current control changing means 68 that can change the current applied by the current control means 65.

先ず、電流測定手段61により電磁コイル5に流れている微弱電流の電流が測定される。ここで微弱電流とは、エレベータ用巻上機が制動している状態において、電磁コイル5に電流を流しても絶対に電磁マグネット7が可動鉄心4を吸引することのない値の電流である。測定した電磁コイル5の微弱電流は、抵抗算出手段62により、抵抗算出演算部67による計算を経て電気抵抗が算出される。   First, a weak current flowing through the electromagnetic coil 5 is measured by the current measuring means 61. Here, the weak current is a current having a value such that the electromagnetic magnet 7 never attracts the movable iron core 4 even when a current is passed through the electromagnetic coil 5 in a state where the elevator hoisting machine is braking. The measured electric current of the electromagnetic coil 5 is calculated by the resistance calculation unit 62 through the calculation by the resistance calculation calculation unit 67.

次に、算出された電磁コイル5の電気抵抗は、推定温度算出手段63により、推定温度算出演算部66を経て、推定温度が算出される。算出された電磁コイル5の推定温度は、予め設定された基準温度64aと比較され、推定温度が基準温度64aより大きければ動作を終了し、推定温度が基準温度64aより小さければ次のステップへ進む。   Next, the estimated electrical resistance of the electromagnetic coil 5 is calculated by the estimated temperature calculation means 63 via the estimated temperature calculation calculation unit 66. The calculated estimated temperature of the electromagnetic coil 5 is compared with a preset reference temperature 64a. If the estimated temperature is higher than the reference temperature 64a, the operation is terminated, and if the estimated temperature is lower than the reference temperature 64a, the process proceeds to the next step. .

電磁コイル5の推定温度が基準温度64aより小さい場合、電流制御手段65によって電磁コイル5に流れている微弱電流は一定量だけ増加される。ここで、電磁コイル5の電気抵抗測定のための微弱電流に加え、ゴムを含む緩衝部材9を加熱するための微弱電流が印加されるが、この微弱電流の増加は一定量を超えないように電流制御手段65によって制御される。また、この機能動作は常に繰り返されているので、緩衝部材9の推定温度は常に監視され、緩衝部材9として適正な弾性を保つことができる。   When the estimated temperature of the electromagnetic coil 5 is lower than the reference temperature 64a, the weak current flowing through the electromagnetic coil 5 is increased by a certain amount by the current control means 65. Here, in addition to the weak current for measuring the electric resistance of the electromagnetic coil 5, a weak current for heating the buffer member 9 containing rubber is applied, but the increase in the weak current does not exceed a certain amount. It is controlled by the current control means 65. In addition, since this functional operation is always repeated, the estimated temperature of the buffer member 9 is always monitored, and proper elasticity as the buffer member 9 can be maintained.

なお、前述のように電磁コイル5と緩衝部材9との推定温度の補正処置として、予め実験等により、緩衝部材9の温度を上昇させるのに必要な、電磁コイル5に印加する微弱電流値と時間とが計算されている。電磁コイル5に緩衝部材9を加熱させるための微弱電流が流される際には、補正処置として、この計算に基づいて一定の微弱電流が一定の時間だけ印加されるように制御される。   As described above, as a correction process for the estimated temperature of the electromagnetic coil 5 and the buffer member 9, a weak current value to be applied to the electromagnetic coil 5 necessary for increasing the temperature of the buffer member 9 by an experiment or the like in advance. Time is calculated. When a weak current for heating the buffer member 9 is passed through the electromagnetic coil 5, as a correction treatment, control is performed so that a constant weak current is applied only for a predetermined time based on this calculation.

このように、この実施の形態1によるエレベータ用巻上機ブレーキによれば、電磁マグネット7と可動鉄心4との間に設けられたゴムを含む緩衝部材9について、巻上機の周囲の温度がゴムのガラス転移点を下回る温度になったとしても、エレベータの作動時と制動時とで個別に緩衝部材9を加熱し得るだけの電流を電磁コイル5に印加し、電磁マグネット7を加熱し得るので、緩衝部材9のゴムは弾性を損なわずに本来の緩衝部材としての性質を保つことができる。   Thus, according to the elevator hoisting machine brake according to the first embodiment, the temperature around the hoisting machine is about the buffer member 9 including the rubber provided between the electromagnetic magnet 7 and the movable iron core 4. Even when the temperature falls below the glass transition point of rubber, a current sufficient to individually heat the buffer member 9 can be applied to the electromagnetic coil 5 during operation of the elevator and during braking, and the electromagnetic magnet 7 can be heated. Therefore, the rubber of the buffer member 9 can maintain its original properties as a buffer member without losing elasticity.

なお、図1に示す実施の形態1においては、エレベータ用巻上機ブレーキが2台設けられているが、一台でもよいし、巻上機回転軸(図示してない)を中心に周方向に分散して3台以上複数台存在してもよい。エレベータ用巻上機ブレーキが複数台設けられている場合には、制動時に複数の電磁マグネット7のいずれか一つのみに電気抵抗測定のための微弱電流を流すようにし、加熱電流は全てのエレベータ用巻上機ブレーキの電磁マグネット7に通電するように制御してもよい。   In the first embodiment shown in FIG. 1, two elevator hoist brakes are provided. However, one elevator may be provided, and the hoisting machine rotating shaft (not shown) is used as a center for the circumferential direction. There may be a plurality of three or more. In the case where a plurality of elevator hoist brakes are provided, a weak current for electric resistance measurement is allowed to flow through only one of the plurality of electromagnetic magnets 7 during braking, and the heating current is applied to all elevators. It may be controlled to energize the electromagnetic magnet 7 of the hoisting machine brake.

これは、制動時において、電気抵抗値測定のための微弱電流を電磁マグネット7に流したり、電磁マグネット7の本体温度が図5のA点以下の場合には加熱用の微弱電流を付加させる場合において、何らかの事態(例えば、大電流が流れた場合など)により全てのエレベータ用巻上機ブレーキの可動鉄心4が吸引されてしまう事態が発生することのないようにするためである。   This is because a weak current for measuring an electric resistance value is caused to flow through the electromagnetic magnet 7 during braking, or a weak current for heating is added when the body temperature of the electromagnetic magnet 7 is below the point A in FIG. In order to prevent a situation in which the movable iron cores 4 of all the elevator hoist brakes are sucked due to some situation (for example, when a large current flows).

また、図1および図2で電磁マグネット7に設けられていた緩衝部材9を、可動鉄心4に設けてもよい。この場合でも、緩衝部材9を電磁マグネット7に設けた場合と同様の効果が得られる。可動鉄心は電磁マグネットに対し質量が小さいため、熱時係数が小さくなり、このため緩衝部材のゴムを電磁マグネット側に設けるよりも可動鉄心側に設けたほうが緩衝部材9の温度を早く上昇させることができる。   Moreover, you may provide the buffer member 9 provided in the electromagnetic magnet 7 in FIG. 1 and FIG. Even in this case, the same effect as the case where the buffer member 9 is provided in the electromagnetic magnet 7 can be obtained. Since the movable iron core has a smaller mass than the electromagnetic magnet, the thermal time coefficient is small, so that the temperature of the buffer member 9 is increased more quickly when the rubber of the buffer member is provided on the electromagnetic magnet side than on the electromagnetic magnet side. Can do.

さらに、薄型巻上機を使用したエレベータシステムの場合には、従来のエレベータシステムに比較して巻上機やブレーキ本体は質量が小さく、このため熱時係数が小さくなり、外部の温度やエレベータかごの運転頻度による影響を受けやすい。寒冷地などにおいては、薄型巻上機を使用したシステムのエレベータかごの昇降頻度が減少すると、巻上機やブレーキ本体の温度が急速に低下することが考えられる。このため、最近普及している薄型巻上機を使用したエレベータシステムにおいては、この実施の形態1による効果が期待できる。   In addition, in the case of an elevator system using a thin hoisting machine, the hoisting machine and the brake body are smaller in mass than the conventional elevator system, so that the thermal time coefficient is reduced, and the external temperature and elevator car are reduced. It is easily affected by the driving frequency. In cold districts and the like, if the frequency of raising and lowering the elevator car of a system using a thin hoisting machine decreases, the temperature of the hoisting machine and the brake body may be rapidly lowered. For this reason, the effect by this Embodiment 1 can be anticipated in the elevator system using the thin winding machine which has spread recently.

実施の形態2.
図7は、この実施の形態2によるエレベータ用巻上機ブレーキの制動時の状態を示す要部断面図、図8は、図7のエレベータ用巻上機ブレーキの制動解除時の状態を示す要部断面図である。図において、可動鉄心4には加熱コイル10が設けられる。加熱コイル10は、電磁コイル5と共に緩衝部材9を加熱する。また、加熱コイル10は、緩衝部材9を加熱する目的のほか、加熱コイル10に発生する磁束を電磁コイル5に発生する磁束に加えて、電磁コイル5による磁束を増減させることで、電磁マグネット7と可動鉄心4との間の磁場を制御する目的として使用することも可能である。
Embodiment 2. FIG.
FIG. 7 is a cross-sectional view of the main part showing the state of braking of the elevator hoist brake according to the second embodiment, and FIG. 8 is the main part showing the state of brake release of the elevator hoist brake of FIG. FIG. In the figure, the movable iron core 4 is provided with a heating coil 10. The heating coil 10 heats the buffer member 9 together with the electromagnetic coil 5. In addition to the purpose of heating the buffer member 9, the heating coil 10 adds the magnetic flux generated in the heating coil 10 to the magnetic flux generated in the electromagnetic coil 5 and increases or decreases the magnetic flux generated by the electromagnetic coil 5. It is also possible to use it for the purpose of controlling the magnetic field between the movable core 4 and the movable iron core 4.

図9は、図7における可動鉄心4の弾性部材8当接面を示すC−C断面図である。図において、可動鉄心4の表面には2つの加熱コイル10が設けられている。その他の構成は、実施の形態1と同じ構成である。   FIG. 9 is a CC cross-sectional view showing the contact surface of the elastic member 8 of the movable iron core 4 in FIG. In the figure, two heating coils 10 are provided on the surface of the movable iron core 4. Other configurations are the same as those of the first embodiment.

次に、動作について説明する。電磁コイル5の推定温度の算出方法は、実施の形態1と同じである。加熱コイル10に、電磁コイル5と共に緩衝部材9を加熱するための電流を流し、その電流により可動鉄心4を加熱させて、電磁マグネット7に設けられた緩衝部材9の温度を基準温度以上に上昇させるものである。   Next, the operation will be described. The method for calculating the estimated temperature of the electromagnetic coil 5 is the same as in the first embodiment. A current for heating the buffer member 9 together with the electromagnetic coil 5 is supplied to the heating coil 10, and the movable iron core 4 is heated by the current, so that the temperature of the buffer member 9 provided in the electromagnetic magnet 7 rises to a reference temperature or higher. It is something to be made.

また、加熱コイル10に流す電流の方向と大きさによっては、加熱コイル10に発生する磁束は、電磁コイル5に発生する磁束を打ち消したり、束ねたりすることができる。磁束を打ち消す方向に大きな電流が流されれば、可動鉄心4が電磁マグネット7に吸引されることはなく、エレベータ用巻上機ブレーキは制動状態となる。逆に、磁束を束ねる方向に電流が流されれば、可動鉄心4が電磁マグネット7に吸引され、エレベータ用巻上機ブレーキは制動解除状態となる。このため、制動時と制動解除時とにおいて、加熱コイル10に流す電流の方向および大きさを変化させ、電磁コイル5と加熱コイル10との間の磁場の制御を行ってもよい。   Further, depending on the direction and magnitude of the current flowing through the heating coil 10, the magnetic flux generated in the heating coil 10 can cancel or bundle the magnetic flux generated in the electromagnetic coil 5. If a large current flows in the direction of canceling the magnetic flux, the movable iron core 4 is not attracted to the electromagnetic magnet 7 and the elevator hoist brake is in a braking state. On the other hand, when an electric current flows in the direction in which the magnetic flux is bundled, the movable iron core 4 is attracted to the electromagnetic magnet 7 and the elevator hoisting machine brake is released. For this reason, at the time of braking and at the time of braking release, the direction and magnitude of the current flowing through the heating coil 10 may be changed to control the magnetic field between the electromagnetic coil 5 and the heating coil 10.

また、実施の形態1のように巻上機に複数のブレーキを有する場合、電磁コイル5と加熱コイル10との間の磁場の制御と、制動時と制動解除時との間で実行される電流制御変更手段の制御とを柔軟に行うことで、より早く緩衝部材9を加熱できる。   Further, when the hoist has a plurality of brakes as in the first embodiment, the current is executed between the control of the magnetic field between the electromagnetic coil 5 and the heating coil 10 and the time of braking and the time of braking release. The buffer member 9 can be heated more quickly by flexibly controlling the control change means.

例えば、制動時において、電磁コイル5に発生する磁束と加熱コイル10に発生する磁束とが互いに打ち消し合うように各コイルの電流を制御すれば、実施の形態1のように電磁コイル5の一方のみに抵抗値算出用や加熱用の電流を流したり、電流を微弱にするといった制御は必要ない。   For example, at the time of braking, if the current of each coil is controlled so that the magnetic flux generated in the electromagnetic coil 5 and the magnetic flux generated in the heating coil 10 cancel each other, only one of the electromagnetic coils 5 as in the first embodiment. There is no need for control such as passing a resistance value calculation or heating current or weakening the current.

このため、電磁コイル5の推定温度が基準温度よりも低い場合には、2つの加熱コイル10の両方に同時に電流を流すように制御すれば、緩衝部材9をより早く加熱できる。   For this reason, when the estimated temperature of the electromagnetic coil 5 is lower than the reference temperature, the buffer member 9 can be heated more quickly by controlling the current to flow through both of the two heating coils 10 simultaneously.

また、電磁マグネット7の推定温度が基準温度よりも大きい場合には、2つの加熱コイル10には電流を流さず、2つの電磁コイル5のいずれか一方ずつ順番に電気抵抗値算出のための微弱電流を流すように制御してもよい。   In addition, when the estimated temperature of the electromagnetic magnet 7 is higher than the reference temperature, no current flows through the two heating coils 10, and one of the two electromagnetic coils 5 is sequentially weak for calculating the electric resistance value. You may control so that an electric current may be sent.

このように、この実施の形態2によるエレベータ用巻上機ブレーキによれば、電磁マグネット7と可動鉄心4との間に設けられた緩衝部材9のゴムについて、巻上機の周囲の温度がゴムのガラス転移点を下回る温度になったとしても、制動時と制動解除時とで個別に緩衝部材9を加熱し得るだけの電流を電磁コイル5と加熱コイル10とに印加し、電磁マグネット7を加熱できるので、緩衝部材9のゴムは弾性を損なわずに本来の緩衝部材9としての性質を保つことができる。さらに、電磁コイル5と加熱コイル10とを同時に通電制御するので、2つのコイルで緩衝部材9の加熱が可能であり、かつ、コイル相互の磁束制御が可能なので、実施の形態1に比べて、より早く、より柔軟に緩衝部材9の加熱を行うことができる。   Thus, according to the elevator hoisting machine brake according to the second embodiment, the temperature around the hoisting machine is the rubber of the buffer member 9 provided between the electromagnetic magnet 7 and the movable iron core 4. Even when the temperature is lower than the glass transition point, a current sufficient to individually heat the buffer member 9 at the time of braking and at the time of releasing the brake is applied to the electromagnetic coil 5 and the heating coil 10, and the electromagnetic magnet 7 is Since it can heat, the rubber | gum of the buffer member 9 can maintain the property as the original buffer member 9 without impairing elasticity. Furthermore, since the electromagnetic coil 5 and the heating coil 10 are energized at the same time, the buffer member 9 can be heated with two coils, and the magnetic flux between the coils can be controlled. Therefore, compared to the first embodiment, The buffer member 9 can be heated more quickly and more flexibly.

本発明の実施の形態1によるエレベータ用巻上機ブレーキの制動時の状態を示す構成図である。It is a block diagram which shows the state at the time of braking of the hoisting machine brake for elevators by Embodiment 1 of this invention. 本発明の実施の形態1によるエレベータ用巻上機ブレーキの解除時の状態を示す構成図である。It is a block diagram which shows the state at the time of cancellation | release of the elevator hoisting machine brake by Embodiment 1 of this invention. 図1における電磁マグネットの弾性部材当接面を示すB−B断面図である。It is BB sectional drawing which shows the elastic member contact surface of the electromagnetic magnet in FIG. 図1における可動鉄心の弾性部材当接面を示すD−D断面図である。It is DD sectional drawing which shows the elastic member contact surface of the movable iron core in FIG. 温度と硬度の関係を示した一般的なゴムの特性図である。It is a characteristic view of general rubber showing the relationship between temperature and hardness. 本発明の実施の形態1によるエレベータ用巻上機ブレーキの加熱制御装置の機能ブロック図である。It is a functional block diagram of the heating control apparatus of the hoisting machine brake for elevators by Embodiment 1 of this invention. 本発明の実施の形態2によるエレベータ用巻上機ブレーキの制動時の状態を示す構成図である。It is a block diagram which shows the state at the time of braking of the hoisting machine brake for elevators by Embodiment 2 of this invention. 本発明の実施の形態2によるエレベータ用巻上機ブレーキの解除時の状態を示す構成図である。It is a block diagram which shows the state at the time of cancellation | release of the elevator hoisting machine brake by Embodiment 2 of this invention. 図7における可動鉄心の弾性部材当接面を示すC−C断面図である。It is CC sectional drawing which shows the elastic member contact surface of the movable iron core in FIG.

符号の説明Explanation of symbols

1 制動面、2 ブレーキリング、3 ライニング、4 可動鉄心、5 電磁コイル、6 磁気鉄心、7 電磁マグネット、8 弾性部材、9 緩衝部材、60 加熱制御装置、61 電流測定手段、62 抵抗算出手段、63 推定温度算出手段、64 温度判断手段、64a 基準温度、65 電流制御手段、66 推定温度算出演算部、66a 温度と抵抗の関係式データ、66b 温度と抵抗の実測データ、67 抵抗算出演算部、68 電流制御変更手段。   DESCRIPTION OF SYMBOLS 1 Braking surface, 2 Brake ring, 3 Lining, 4 Moving iron core, 5 Electromagnetic coil, 6 Magnetic iron core, 7 Electromagnetic magnet, 8 Elastic member, 9 Buffer member, 60 Heating control apparatus, 61 Current measuring means, 62 Resistance calculation means, 63 Estimated temperature calculation means, 64 Temperature determination means, 64a Reference temperature, 65 Current control means, 66 Estimated temperature calculation calculation section, 66a Relational expression data of temperature and resistance, 66b Actual measurement data of temperature and resistance, 67 Resistance calculation calculation section, 68 Current control changing means.

Claims (4)

巻上機と共に回転する回転体の制動面に接するライニングと、
前記ライニングに連結され、前記ライニングを前記制動面に接離させる方向へ往復動可能な可動鉄心と、
励磁状態時に前記可動鉄心を吸引して前記ライニングを前記制動面から開離させる電磁コイルを有する電磁マグネットと、
前記電磁マグネットの非励磁状態時に前記ライニングを前記制動面に押し付ける弾性部材と、
前記電磁マグネットと前記可動鉄心との間に設けられ、所定温度以下で緩衝作用を喪失するゴム製の緩衝部材と、
前記電磁マグネットの前記電磁コイルへの通電電流に基づいて前記電磁コイルの持つ抵抗値を算出する抵抗値算出手段と、
前記抵抗値に基づいて前記電磁コイルの推定温度を算出する推定温度算出手段と、
前記推定温度を、予め設定された基準温度と比較判断する温度判断手段と、
前記温度判断手段による比較判断に基づいて、前記推定温度が前記基準温度よりも低いときに、前記緩衝部材の温度が前記所定温度よりも低いと判断して、前記緩衝部材を前記所定温度以上に加熱する加熱電流を前記電磁コイルに印加する電流制御手段と
を備えたことを特徴とするエレベータ用巻上機ブレーキ。
A lining in contact with the braking surface of the rotating body that rotates with the hoisting machine;
A movable iron core coupled to the lining and capable of reciprocating in a direction in which the lining contacts and separates from the braking surface;
An electromagnetic magnet having an electromagnetic coil that attracts the movable iron core in an excited state and separates the lining from the braking surface;
An elastic member that presses the lining against the braking surface when the electromagnetic magnet is in a non-excited state;
A rubber cushioning member that is provided between the electromagnetic magnet and the movable iron core and loses a cushioning action at a predetermined temperature or lower;
A resistance value calculating means for calculating a resistance value of the electromagnetic coil based on an energization current to the electromagnetic coil of the electromagnetic magnet;
Estimated temperature calculating means for calculating an estimated temperature of the electromagnetic coil based on the resistance value;
A temperature determination means for comparing and determining the estimated temperature with a preset reference temperature;
Based on the comparison determination by the temperature determination means, when the estimated temperature is lower than the reference temperature, it is determined that the temperature of the buffer member is lower than the predetermined temperature, and the buffer member is set to be equal to or higher than the predetermined temperature. A hoisting machine brake for an elevator, comprising: current control means for applying a heating current for heating to the electromagnetic coil.
制動時と制動解除時において、前記電流制御手段で印加する電流の値を変更し得る電流制御変更手段を備えたことを特徴とする請求項1に記載のエレベータ用巻上機ブレーキ。   The elevator hoisting brake according to claim 1, further comprising a current control changing means capable of changing a value of a current applied by the current control means at the time of braking and at the time of releasing the brake. 各々前記ライニング、前記可動鉄心、前記電磁マグネット、前記弾性部材および前記緩衝部材を有した複数のブレーキ組立体が、前記回転体の回転軸を中心に周方向に分散して設けられ、前記電流制御手段が、制動時に前記加熱電流を各々の前記ブレーキ組立体に順番に通電することを特徴とする請求項1乃至請求項2のいずれかに記載のエレベータ用巻上機ブレーキ。   A plurality of brake assemblies each including the lining, the movable iron core, the electromagnetic magnet, the elastic member, and the buffer member are distributed in the circumferential direction around the rotation axis of the rotating body, and the current control The elevator hoist brake according to any one of claims 1 to 2, wherein the means applies the heating current to each of the brake assemblies in turn during braking. 前記可動鉄心に設けられて、前記緩衝部材を加熱する加熱コイルを備えたことを特徴とする請求項1乃至請求項3のいずれか一項に記載のエレベータ用巻上機ブレーキ。   The elevator hoisting brake according to any one of claims 1 to 3, further comprising a heating coil that is provided on the movable iron core and heats the buffer member.
JP2004273413A 2004-09-21 2004-09-21 Elevator hoist brake Expired - Fee Related JP4641167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004273413A JP4641167B2 (en) 2004-09-21 2004-09-21 Elevator hoist brake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004273413A JP4641167B2 (en) 2004-09-21 2004-09-21 Elevator hoist brake

Publications (2)

Publication Number Publication Date
JP2006089162A true JP2006089162A (en) 2006-04-06
JP4641167B2 JP4641167B2 (en) 2011-03-02

Family

ID=36230503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004273413A Expired - Fee Related JP4641167B2 (en) 2004-09-21 2004-09-21 Elevator hoist brake

Country Status (1)

Country Link
JP (1) JP4641167B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148586A (en) * 2010-01-21 2011-08-04 Mitsubishi Electric Corp Hoisting machine brake of elevator
JP2013043757A (en) * 2011-08-25 2013-03-04 Hitachi Ltd Control device and control method of hoisting machine for elevator device, and repairing method of the control device
JP5177228B2 (en) * 2008-09-11 2013-04-03 三菱電機株式会社 Elevator hoisting machine
WO2015136663A1 (en) * 2014-03-13 2015-09-17 三菱電機株式会社 Elevator and hoisting device brake for elevators
US20160039637A1 (en) * 2013-04-24 2016-02-11 Mitsubishi Electric Corporation Braking apparatus, elevator hoisting machine that uses same, and buffering reaction force adjusting method for a braking apparatus
CN106351986A (en) * 2016-11-22 2017-01-25 重庆凸普科技有限公司 Power-off type double T electromagnet drum brake
CN106369076A (en) * 2016-11-22 2017-02-01 重庆凸普科技有限公司 Power-on electromagnet drum brake
CN106369077A (en) * 2016-11-22 2017-02-01 重庆凸普科技有限公司 Power-down double-T-shaped electromagnetic ventilating drum brake
CN109989878A (en) * 2019-04-28 2019-07-09 福州大学 Electromagnetic type wind power generator impeller imbalance compensation device and method
JP2020147442A (en) * 2019-03-15 2020-09-17 株式会社日立ビルシステム Elevator and brake diagnosis method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013006987T5 (en) * 2013-04-24 2015-12-31 Mitsubishi Electric Corp. Braking device and Aufzugshubmaschine which uses these

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4616749Y1 (en) * 1967-11-20 1971-06-11
JPH02256931A (en) * 1989-03-29 1990-10-17 Suzuki Motor Co Ltd Engine mounting device
JPH06286963A (en) * 1993-02-08 1994-10-11 Mitsubishi Electric Corp Damping device for elevator
JPH0873143A (en) * 1994-09-06 1996-03-19 Toshiba Corp Disc shaped electromagnetic brake for elevator winding machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4616749Y1 (en) * 1967-11-20 1971-06-11
JPH02256931A (en) * 1989-03-29 1990-10-17 Suzuki Motor Co Ltd Engine mounting device
JPH06286963A (en) * 1993-02-08 1994-10-11 Mitsubishi Electric Corp Damping device for elevator
JPH0873143A (en) * 1994-09-06 1996-03-19 Toshiba Corp Disc shaped electromagnetic brake for elevator winding machine

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5177228B2 (en) * 2008-09-11 2013-04-03 三菱電機株式会社 Elevator hoisting machine
JP2011148586A (en) * 2010-01-21 2011-08-04 Mitsubishi Electric Corp Hoisting machine brake of elevator
JP2013043757A (en) * 2011-08-25 2013-03-04 Hitachi Ltd Control device and control method of hoisting machine for elevator device, and repairing method of the control device
CN102951571A (en) * 2011-08-25 2013-03-06 株式会社日立制作所 Control device method of winch for elevator equipment and modified method of control device
US20160039637A1 (en) * 2013-04-24 2016-02-11 Mitsubishi Electric Corporation Braking apparatus, elevator hoisting machine that uses same, and buffering reaction force adjusting method for a braking apparatus
US9868613B2 (en) * 2013-04-24 2018-01-16 Mitsubishi Electric Corporation Braking apparatus, elevator hoisting machine that uses same, and buffering reaction force adjusting method for a braking apparatus
WO2015136663A1 (en) * 2014-03-13 2015-09-17 三菱電機株式会社 Elevator and hoisting device brake for elevators
JP6067177B2 (en) * 2014-03-13 2017-01-25 三菱電機株式会社 Elevators and elevator hoist brakes
CN106369076A (en) * 2016-11-22 2017-02-01 重庆凸普科技有限公司 Power-on electromagnet drum brake
CN106369077A (en) * 2016-11-22 2017-02-01 重庆凸普科技有限公司 Power-down double-T-shaped electromagnetic ventilating drum brake
CN106351986A (en) * 2016-11-22 2017-01-25 重庆凸普科技有限公司 Power-off type double T electromagnet drum brake
CN106351986B (en) * 2016-11-22 2018-04-20 重庆凸普科技有限公司 A kind of double T electromagnet drum brakes of electricity cut-off type
CN106369077B (en) * 2016-11-22 2018-04-20 重庆凸普科技有限公司 A kind of double T electromagnetism ventilation drum brakes of electricity cut-off type
JP2020147442A (en) * 2019-03-15 2020-09-17 株式会社日立ビルシステム Elevator and brake diagnosis method
JP7030073B2 (en) 2019-03-15 2022-03-04 株式会社日立ビルシステム Elevator and brake diagnostic method
CN109989878A (en) * 2019-04-28 2019-07-09 福州大学 Electromagnetic type wind power generator impeller imbalance compensation device and method
CN109989878B (en) * 2019-04-28 2023-08-25 福州大学 Impeller unbalance compensation device and method for electromagnetic wind driven generator

Also Published As

Publication number Publication date
JP4641167B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
JP4641167B2 (en) Elevator hoist brake
EP2344781B1 (en) Apparatus and method for supervising the condition of a brake
JP4725980B2 (en) Motor braking device
WO2008104682A3 (en) Electric control braking device
JP2017030940A (en) Brake device, hoisting machine and elevator device
JP2001122555A5 (en)
JP5611696B2 (en) Brake with mute function
JP2007227766A (en) Electromagnetic actuator
JP5495811B2 (en) Elevator hoist brake
JP2009041654A (en) Brake control device
JP2019119530A (en) Elevator, brake device, and brake abnormality detection method
JP2007143311A (en) Motor controller and motor with electromagnetic brake
CA2656424A1 (en) Brake device for a rail vehicle
JP6407445B2 (en) Elevator vibration reduction device abnormality detection device, elevator and elevator vibration reduction device abnormality detection method
KR101134966B1 (en) Motor with motor brake
JP7033385B2 (en) A magnetic device containing an acceleration unit that acts on a translational mechanism
JP4711574B2 (en) Braking method and braking device
JP2016509461A5 (en)
JP6293069B2 (en) Electromagnetic brake device and elevator device using the same
JP2018043589A5 (en)
JP4741227B2 (en) Thermal protection of electromagnetic actuator
JP6382155B2 (en) Electromagnetic brake device for elevator and elevator device
JP2006281859A (en) Wheel tread increase sticking method and its device
JP3760777B2 (en) Eddy current reducer
JP4558573B2 (en) Stopping and holding device for linear actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

R150 Certificate of patent or registration of utility model

Ref document number: 4641167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees