JP2006088190A - Joined body and joining method of minute ball having conductivity - Google Patents

Joined body and joining method of minute ball having conductivity Download PDF

Info

Publication number
JP2006088190A
JP2006088190A JP2004276371A JP2004276371A JP2006088190A JP 2006088190 A JP2006088190 A JP 2006088190A JP 2004276371 A JP2004276371 A JP 2004276371A JP 2004276371 A JP2004276371 A JP 2004276371A JP 2006088190 A JP2006088190 A JP 2006088190A
Authority
JP
Japan
Prior art keywords
joined
members
joining
microspheres
joined body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004276371A
Other languages
Japanese (ja)
Other versions
JP4997485B2 (en
Inventor
Koyo Ozaki
公洋 尾崎
Keizo Kobayashi
慶三 小林
Toshiyuki Nishio
敏幸 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004276371A priority Critical patent/JP4997485B2/en
Publication of JP2006088190A publication Critical patent/JP2006088190A/en
Application granted granted Critical
Publication of JP4997485B2 publication Critical patent/JP4997485B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micromachines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joined body and the joining method that enable a minute member to be freely shaped without using an adhesive and an outer mold in contact with the member. <P>SOLUTION: This is a fusion welding (discharge welding) method by applying an electric voltage to members to be joined and using a discharge generated between the members, wherein at least one of the members has a minute spherical surface with a diameter of ≤5 mm. The invention also refers to a joined body joined by this method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微小球面を有する微小球体の接合方法及びその接合体に関するものであり、更に詳しくは、接合しようとする部材の少なくとも一方が直径5mm以下の微小球面を有している部材に電圧を印加して、部材間に発生する放電を利用してこれらの微小球体と接合する方法及び該方法により接合した接合体に関するものである。本発明に係る微小球面を有する部材としては、例えば、球体や先端を加工したロットなどが例示され、本発明は、これらの部材の精密加工を可能にすると共に、多孔質材料の作製や微細加工技術への展開が期待できる新しい微小球体の接合技術を提供するものである。   The present invention relates to a method for joining microspheres having microspherical surfaces and the joined body, and more particularly, at least one of the members to be joined has a voltage applied to a member having a microspherical surface having a diameter of 5 mm or less. The present invention relates to a method of applying and joining these microspheres using a discharge generated between members, and a joined body joined by the method. Examples of the member having a microspherical surface according to the present invention include, for example, a sphere or a lot obtained by processing the tip, and the present invention enables precision processing of these members, as well as the production and microfabrication of a porous material. It provides new microsphere joining technology that can be expected to develop into technology.

従来、球面を有する部材の接合方法としては、例えば、アーク溶接、レーザー溶接、電子ビーム溶接などの融接法や、抵抗溶接(スポット溶接)、スタッド溶接などの圧接法、拡散接合、TLPなどの固相接合法、又はハンダなどの低融点材料を用いた接着法などが利用されている。また、光硬化性樹脂などの樹脂を糊として用いた接着法も利用されている。   Conventionally, as a method for joining members having spherical surfaces, for example, fusion welding methods such as arc welding, laser welding, and electron beam welding, pressure welding methods such as resistance welding (spot welding) and stud welding, diffusion joining, and TLP are used. A solid-phase bonding method or an adhesion method using a low melting point material such as solder is used. An adhesion method using a resin such as a photo-curable resin as a paste is also used.

しかし、アーク溶接法などの融接法では、球面の接触のような狭いエリアでの位置あわせが困難であるなどの問題があり、抵抗溶接などの圧接法では、大きな加圧力による部材の変形が問題となる場合が少なくない。また、拡散接合などの固相接合法では、十分な接合強度を得るためには長時間の処理が必要であり、ハンダなどの接着法では、ハンダの球面へのぬれ性が材料によって異なるために、材料ごとにハンダの材質を選定する必要があり、接合強度が低くなるという問題もある。更に、樹脂を用いた接着法では、接合部材より耐熱性が劣る場合が多く、熱が発生する部材への適用が困難であった。   However, fusion welding methods such as arc welding have problems such as difficulty in positioning in narrow areas such as spherical contact, and pressure welding methods such as resistance welding cause deformation of members due to large pressure. Often it becomes a problem. In addition, solid-phase bonding methods such as diffusion bonding require a long time to obtain sufficient bonding strength, and soldering methods such as solder have different wettability to the spherical surface depending on the material. Further, it is necessary to select a solder material for each material, and there is a problem that the bonding strength is lowered. Furthermore, in the bonding method using resin, the heat resistance is often inferior to the bonding member, and it has been difficult to apply to a member that generates heat.

また、従来の接合技術は、微小な球体のような部材に対しては、部材の固定方法、接合部分への熱や力の制御方法、接着材料の塗布量を制御する方法などの問題があり、このような部材の接合には必ずしも適したものではなかった(特許文献1、非特許文献1)。   In addition, the conventional bonding technique has problems such as a method for fixing a member, a method for controlling heat and force on a bonded portion, and a method for controlling the amount of adhesive material applied to a member such as a minute sphere. These members are not necessarily suitable for joining (Patent Document 1, Non-Patent Document 1).

特開平5−179374号公報JP-A-5-179374 川崎亮 他「単分散熱電マイクロ粒子の規則配列焼結とその熱電特性」マテリアルインテグレーション, Vol. 14, No. 8 (2001) p51Ryo Kawasaki et al. “Regular Sintering of Monodispersed Thermoelectric Microparticles and Their Thermoelectric Properties” Material Integration, Vol. 14, No. 8 (2001) p51

本発明者らは、上記の問題点を解決するために鋭意研究した結果、微小な球面を有する部材に電圧を印加して、部材表面あるいは部材内部に生じる電荷を利用して部材間に放電を起こさせることで、部材の一部を溶融させることにより部材どうしを接合できることを見出し、本発明を完成するに至った。本発明は、接着材料及び部材に接触する外型を用いることなく、微小な球面を有する部材を自由な形状に作製するためになされたものであり、上記微小な球面を有する部材の接合体及びその接合方法を提供することを目的とするものである。   As a result of diligent research to solve the above problems, the present inventors applied a voltage to a member having a minute spherical surface, and used the charge generated on the surface of the member or inside the member to discharge between the members. As a result, it was found that the members can be joined by melting a part of the members, and the present invention has been completed. The present invention was made to produce a member having a minute spherical surface in a free shape without using an adhesive material and an outer mold that contacts the member, and a joined body of the member having the minute spherical surface, An object of the present invention is to provide a joining method.

上記課題を解決するための本発明は、導電性を有する微小球と該微小球又は他の部材がその接触部で溶融接合していることを特徴とする接合体、である。本接合体は、接合している微小球の少なくとも一方が、直径5mm以下の微小球面を有していること、接合部分の面積が微小球面の中心を通る断面積より小さいこと、上記微小球が、中空又は中実であること、上記微小球の材料が、金属、炭化系セラミックス、硼化物系セラミックス、酸化物系セラミックス、又は黒鉛であること、導電性を有する微小球が、非導電性の材料に導電性物質を混入して導電性を持たせたものであること、導電性を有する微小球が、表面に導電性物質を形成したものであること、を特徴としている。また、本発明は、微小球と微小球又は他の部材を接合する方法において、接合しようとする導電性部材の少なくとも一方が直径5mm以下の微小球面を有している部材を、部材内部あるいは表面に発生する電荷を用いて放電させることにより接合させることを特徴とする微小球体の接合方法、である。本方法は、部材内部あるいは表面に発生する電荷を用いて放電させることにより溶融接合させること、部材内部あるいは表面に発生する電荷を用いて導電性物質表面の酸化層や接合部材間の空気層を絶縁破壊する際に生じる放電によって部材間を溶融あるいは軟化させて接合させること、部材内部あるいは表面に発生する電荷を用いて放電させることにより溶融接合させる際に部材に接触する外型を使用しないこと、得られた接合体を更に加熱処理すること、を特徴としている。   The present invention for solving the above-described problems is a joined body characterized in that conductive microspheres and the microspheres or other members are melt-bonded at their contact portions. In this joined body, at least one of the joined microspheres has a microsphere having a diameter of 5 mm or less, the area of the joined portion is smaller than the cross-sectional area passing through the center of the microsphere, Is hollow or solid, the material of the microspheres is a metal, carbonized ceramics, boride ceramics, oxide ceramics, or graphite, and the conductive microspheres are non-conductive. It is characterized in that a conductive substance is mixed into the material to make it conductive, and that the conductive microspheres are formed by forming a conductive substance on the surface. Further, the present invention relates to a method for joining microspheres and microspheres or other members, wherein at least one of the conductive members to be joined has a microsphere having a diameter of 5 mm or less, the inside of the member or the surface. The method for joining microspheres is characterized in that the joining is performed by discharging using the electric charges generated in the microspheres. In this method, melt bonding is performed by discharging using the charge generated in or on the member, and the oxide layer on the surface of the conductive material or the air layer between the bonding members is generated using the charge generated in or on the member. Do not use an outer mold that contacts the member when melting and softening between the members by discharge generated during dielectric breakdown, or when melting and joining by discharging using the charge generated in or inside the member The obtained joined body is further heat-treated.

次に、本発明について更に詳細に説明する。
本発明に用いる部材は、好適には、例えば、少なくとも一方の部材が直径5mm以下の球面を有する必要がある。これは、本発明においては放電を利用して接合を行うため、電荷を集中して放出することから必要なものである。また、直径が5mmを越える大きな球面に対しては、従来の技術による接合が可能であり、微小な球面に対しては接合時に発生する熱、時間、位置などの制御が困難であるため、本発明のような接合方法が必要となる。
Next, the present invention will be described in more detail.
The member used in the present invention preferably has, for example, at least one member having a spherical surface with a diameter of 5 mm or less. In the present invention, this is necessary because the electric charges are concentrated and discharged because the bonding is performed using the discharge. In addition, it is possible to bond a large spherical surface with a diameter exceeding 5 mm by the conventional technique, and it is difficult to control the heat, time, position, etc. generated at the time of bonding to a small spherical surface. A joining method as in the invention is required.

本発明に用いる部材の材質は特に指定しないが、本発明では、接合を行う部材の表面あるいは内部に生じる電荷を利用する必要があるため、導電性を有する材料、例えば、金属や炭化物系セラミックス、硼化物系セラミックス、酸化物系セラミックス、又は黒鉛などが好ましい。それらの例として、例えば、アルミニウム、チタニウム、マグネシウム、鉄、金、白金、それらの合金など、金属全般、炭化チタン、炭化ジルコニウム、硼化チタン、硼化ジルコニウム、ITO(インジウムスズ酸化物)が例示される。また、非導電性の材料である樹脂や酸化物系セラミックスにおいても導電性物質を混合することによって導電性を持たせた部材も本発明の対象となる。それらの例として、例えば、導電性ポリマー、チタン粉末混合ジルコニアが例示される。また、表面に導電性物質をコーティングした非導電性材料も本発明の対象となる。それらの例として、例えば、酸化ジルコニウム表面にビスマス・テルル合金をコーティングしたものが例示される。しかし、本発明は、これらの材料に制限されるものではない。   The material of the member used in the present invention is not particularly specified. However, in the present invention, since it is necessary to use the electric charge generated on the surface or inside of the member to be joined, a conductive material such as metal or carbide-based ceramics, Boride-based ceramics, oxide-based ceramics, graphite, and the like are preferable. Examples thereof include, for example, all metals such as aluminum, titanium, magnesium, iron, gold, platinum, and alloys thereof, titanium carbide, zirconium carbide, titanium boride, zirconium boride, and ITO (indium tin oxide). Is done. In addition, in a resin or an oxide ceramic that is a non-conductive material, a member that is made conductive by mixing a conductive substance is also an object of the present invention. Examples thereof include, for example, conductive polymer and titanium powder mixed zirconia. Further, a non-conductive material whose surface is coated with a conductive substance is also an object of the present invention. Examples of these include, for example, a zirconium oxide surface coated with a bismuth-tellurium alloy. However, the present invention is not limited to these materials.

本発明における放電は、接合しようとする部材の表面あるいは内部に生じる電荷が接合部材間の絶縁を破壊する結果、発生するものである。そのため、放電の経路としては、接合しようとする部材間隙の空気層などの絶縁破壊と接合部材表面に形成された酸化物層などの破壊の両方が考えられるが、本発明では両方の絶縁破壊を含んでいる。これらの絶縁破壊の結果として生じる放電により、部材の微小部分において大きな発熱が発生し、部材の一部が瞬間的に溶解することによって溶融接合(放電接合)が生じる。本発明の放電接合の特徴として、部材全体の大きさに比べて発生する熱量がわずかであるため、部材が溶解して形状が変化するということは生じない。   The discharge in the present invention is generated as a result of the electric charge generated on the surface or inside of the members to be joined breaking the insulation between the joining members. For this reason, both the breakdown of the air gap in the gap between the members to be joined and the breakdown of the oxide layer formed on the surface of the joining member can be considered as the discharge path. Contains. Due to the electric discharge generated as a result of these dielectric breakdowns, a large amount of heat is generated in a minute part of the member, and a part of the member is instantaneously melted to cause fusion bonding (discharge bonding). As a feature of the discharge bonding of the present invention, since the amount of heat generated is small compared to the size of the entire member, it does not occur that the member melts and changes its shape.

放電に利用される電荷は外部から供給してもよいし、接合前に部材に帯電させたものを利用してもよい。ただし、接合を行うためには接触部を部分的に溶解する必要があり、電流が持続して流れる方が溶解し易いため、帯電より外部から供給する方が好ましい場合が多い。通常、電極間に電圧を印加することで達成できる。電圧を印加する時期として、接触させる前に電圧を印加しながら部材同士を近づける場合と、部材同士を接触させた後、電圧を印加する場合があり、いずれも本発明の対象である。   The electric charge used for the discharge may be supplied from the outside, or the member charged before joining may be used. However, in order to perform bonding, it is necessary to partially dissolve the contact portion, and since it is easier to dissolve when the current flows continuously, it is often preferable to supply from the outside rather than charging. Usually, this can be achieved by applying a voltage between the electrodes. As the timing of applying the voltage, there are a case where the members are brought close to each other while applying the voltage before the contact, and a case where the voltage is applied after bringing the members into contact with each other, both of which are objects of the present invention.

電圧を印加する前に部材どうしを接触させておく場合は、その接触圧力は低くする必要がある。圧力を高くすると材料の変形を伴い、接触面積が大きくなり接合に十分な温度の上昇が見られなくなる、あるいは接合しても部材の変形を伴う等の現象があり、好ましくない。この圧力は材料によって異なるが、例えば、使用する部材が0.5mmのチタン球とチタンの板の場合であれば、2kgf以下の加重が望ましい。   When the members are brought into contact with each other before the voltage is applied, the contact pressure needs to be lowered. When the pressure is increased, the material is deformed, the contact area is increased, and a temperature rise sufficient for joining is not observed, or even when joined, there is a phenomenon that the member is deformed. Although this pressure varies depending on the material, for example, if the member to be used is a 0.5 mm titanium sphere and a titanium plate, a load of 2 kgf or less is desirable.

接合を行う部材の表面の粗さは、放電を目的の位置で行うためには滑らかな方が好ましい。しかし、強固な接合を行う場合には表面に生じた微細な突起部分を優先的に溶解して接合することが好ましく、必要に応じた表面の粗さを利用する方がよい。   The surface roughness of the members to be joined is preferably smooth in order to discharge at a target position. However, in the case of performing strong bonding, it is preferable to preferentially dissolve and join the fine protrusions generated on the surface, and it is better to use the surface roughness as required.

接合を行う部材の少なくとも一方は、好適には、例えば、直径が5mm以下の球面である必要がある。直径が5mmより大きな球面では接合の必要な電荷が大きくなり、本発明では効率的な接合が難しい。特に、直径が5mmより大きな球面を有する接合部材では、放電で生じる熱が部材に拡散し、部分的な溶融にいたらないため接合が難しい。また、直径が5mmより大きな球面では平板状の部材間での接合と同じように、どこで放電が生じるかを制御できなくなる。   At least one of the members to be joined preferably needs to be a spherical surface having a diameter of 5 mm or less, for example. If the spherical surface has a diameter larger than 5 mm, the electric charge required for bonding becomes large, and efficient bonding is difficult in the present invention. In particular, in a joining member having a spherical surface with a diameter larger than 5 mm, heat generated by electric discharge diffuses into the member and does not lead to partial melting, so that joining is difficult. In addition, when the spherical surface has a diameter larger than 5 mm, it is impossible to control where the discharge is generated as in the case of joining between flat plate-like members.

例えば、上記5mm以下の直径を有する部材は、中空状態の部材であっても中実状態の部材であっても問題はない。従来の接合技術では中空状態の部材の接合に効果的なものがあるが、本発明では外部から電荷を供給することで中実部材に対応できる。また、接合する部材が異種材料であっても導電性を有していれば接合可能である。本発明の接合方法において、放電条件としては、電荷を流して、すなわち電流にする必要があるので、接合対象となる部材が電極あるいは電線等で電源につながれている必要がある。接合の条件は材料によって異なるが、例えば、直径0.5mmのチタン球とチタンの板の接合の場合、電圧25V程度で、約200Aの電流が0.5〜1ms間流れる様に電源を設定すると良い。その際使用する電源によって設定する方法が異なる。電流値は電圧にも依存するため、材料に応じてそれぞれを変える必要がある。例えば、抵抗の高い部材は電圧を高くする必要がある。抵抗が低くて融点が高い材料(白金やタングステン)は、溶融させるために電流を大きくする必要がある。電圧が低すぎると、通常20V以下(大気中で、これは雰囲気によって異なる)、放電そのものが発生しにくくなる。放電を発生させずに接合することも可能であるが、電流の流れる時間が長くなると、接合部以外の部分が加熱されるため適切でない。本発明では、これらの放電条件は、使用する部材に応じて任意に設定することができる。   For example, the member having a diameter of 5 mm or less has no problem whether it is a hollow member or a solid member. Some conventional joining techniques are effective for joining hollow members, but the present invention can deal with solid members by supplying electric charge from the outside. Further, even if the members to be joined are made of different materials, they can be joined if they have conductivity. In the joining method of the present invention, as a discharge condition, it is necessary to flow an electric charge, that is, an electric current. Therefore, a member to be joined needs to be connected to a power source by an electrode or an electric wire. Joining conditions vary depending on the material. For example, in the case of joining a titanium sphere having a diameter of 0.5 mm and a titanium plate, the power supply is set so that a current of about 200 A flows for 0.5 to 1 ms at a voltage of about 25 V. good. The setting method differs depending on the power source used. Since the current value also depends on the voltage, it is necessary to change each according to the material. For example, a member having high resistance needs to have a high voltage. A material having a low resistance and a high melting point (platinum or tungsten) needs to have a large current for melting. When the voltage is too low, it is usually 20 V or less (in the air, which varies depending on the atmosphere), and the discharge itself is difficult to occur. Although it is possible to join without generating electric discharge, if the time during which the current flows becomes long, portions other than the joined portion are heated, which is not appropriate. In this invention, these discharge conditions can be arbitrarily set according to the member to be used.

接合時の雰囲気も特に指定しないが、金属のように容易に酸化皮膜を形成する部材においては、必要に応じて、不活性雰囲気や真空を利用する。また、窒化物系セラミックスのような部材に対しては、窒素雰囲気などを利用して、接合部に窒素欠陥が発生することを防止することもできる。ただ、放電が発生するため、可燃性ガスの利用は好ましくない。本発明の利点として、以下の点があげられる。
・接合させるために外部熱源、例えば、ヒーターやレーザー等、を必要としない。
・エネルギー効率が良い。
・接合に必要な装置が簡便にできる。
・自動化が簡単にできる(レーザーなど外部熱源の位置合わせが不要)。
・自動化によって複雑な形状の多孔質体を作ることができる。
・同じ系の球を最密充填した場合の多孔質体の空間率(約26%)以下の空間率にすることができる。本手法によれば、一つずつ粒を接合していくことができるので、並べ方を任意に変えることができる(例えば、体心立法構造など)。
・部分的に空間率の異なった多孔質体を作ることができる。
・接合部近傍のみ加熱されるため、部材の他の部分に熱による影響が出にくい。
・熱による影響、すなわち結晶粒粗大化による軟化、結晶相の変化・析出物の出現などによる脆化、などがない。
・融点の差が大きい異種部材でも接合することができる。
・微小球体を接合した接合体からなる多孔構造体を作製し、提供できる。
The atmosphere at the time of joining is not particularly specified, but an inert atmosphere or a vacuum is used as necessary for a member that easily forms an oxide film such as metal. In addition, for a member such as a nitride-based ceramic, it is possible to prevent a nitrogen defect from occurring at the joint by using a nitrogen atmosphere or the like. However, the use of flammable gas is not preferable because discharge occurs. Advantages of the present invention include the following points.
-No external heat source such as a heater or laser is required for bonding.
・ Energy efficiency is good.
-Equipment required for joining can be simplified.
-It can be easily automated (no need to align an external heat source such as a laser).
・ Porous bodies with complex shapes can be made by automation.
-It can be made into the space rate below the space rate (about 26%) of the porous body at the time of carrying out the close packing of the sphere of the same system. According to this method, since the grains can be joined one by one, the arrangement can be arbitrarily changed (for example, body-centered legislative structure).
-Porous materials with partially different porosity can be made.
-Since only the vicinity of the joint is heated, the other parts of the member are hardly affected by heat.
-There is no influence of heat, that is, softening due to coarsening of crystal grains, embrittlement due to changes in crystal phase and appearance of precipitates.
-Even dissimilar materials with large differences in melting points can be joined.
-A porous structure composed of a joined body obtained by joining microspheres can be produced and provided.

本発明により、1)微小な球面を有する部材の接合体を提供できる、2)接合体を作製し、本発明の微小な球面を有する部材の接合方法を用いて、球体や球面を有する微小部材の接合に対して接着剤などを用いることなく接合体を作製し、提供することが可能となる、3)これまで微小な球面を有する部材の接合は、印加する熱量の制御や接合位置の制御が難しいため、接着剤が有効な手法であったが、接合材の強度や耐熱性が低下するという問題があったことをふまえ、本発明では、放電現象を利用し、部材の一部を溶融することによって部材を接合することを可能としている、4)本発明では、接合する部材に導電性という特性が要求されるが、樹脂のような非導電性の部材に対しても導電性材料との複合化により対応することができる、5)微小球体の接合体からなる多孔構造体を作製し、提供できる、6)本発明は、好適には、例えば、直径5mm以下の微小な球体の接合技術として利用可能であり、部分的に球体をつけて表面積を大きくすることにより特性が改善された多孔質形状のフィルターや触媒などの製造技術として利用が可能である、という効果が奏される。   According to the present invention, 1) a joined body of members having a minute spherical surface can be provided, and 2) a joined body is produced, and the method for joining members having a minute spherical surface of the present invention is used to form a spherical member or a minute member having a spherical surface. 3) It is possible to produce and provide a joined body without using an adhesive or the like for the joining of 3). 3) The joining of members having a minute spherical surface so far is the control of the amount of heat applied and the control of the joining position. In the present invention, a part of the member is melted by utilizing the discharge phenomenon, taking into account the problem that the strength and heat resistance of the bonding material are reduced. 4) In the present invention, the member to be joined is required to have a conductive property. However, a non-conductive member such as a resin also has a conductive material. Can be handled by combining 5) A porous structure composed of a joined body of microspheres can be produced and provided. 6) The present invention can be suitably used as a joining technique for microspheres having a diameter of 5 mm or less, for example. By adding a sphere to increase the surface area, it is possible to use as a manufacturing technique for a porous filter or catalyst having improved characteristics.

以下、実施例に基づいて、本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following examples.

図1のような装置により、実験を行った。直径0.5mmの純チタンの球状粒子2を吸引電極1でピックアップし、純チタン板状3に接触させ、電圧を印加した。20V未満では放電が発生しなかったため、電圧は20V以上で行った。放電の結果、粒子と板の間で溶解部分が観察され、接合(放電接合)されていた。電圧が高いほどまた、電流が大きいほど接合部分は広くなった。   Experiments were performed using an apparatus as shown in FIG. Spherical particles 2 of pure titanium having a diameter of 0.5 mm were picked up by the suction electrode 1, brought into contact with the pure titanium plate 3, and a voltage was applied. Since discharge did not occur at less than 20V, the voltage was set at 20V or more. As a result of the discharge, a melted portion was observed between the particles and the plate and bonded (discharge bonding). The higher the voltage and the larger the current, the wider the junction.

実施例1と同様の装置によって、直径0.5mmの純チタンの球状粒子を吸引電極でピックアップしあらかじめ23Vの電圧を印加した状態で純チタン板に近づけた。その結果、放電が発生し、接合が行われた。電圧を高くすると、激しい閃光とともに激しい閃光が見られ、球状粒子が完全に蒸発し、純チタン板にも窪みが発生した。これは、放電エネルギーが高すぎたためである。   Using the same apparatus as in Example 1, spherical particles of pure titanium having a diameter of 0.5 mm were picked up by a suction electrode and brought close to a pure titanium plate in a state where a voltage of 23 V was applied in advance. As a result, discharge occurred and bonding was performed. When the voltage was increased, intense flashing was observed along with intense flashing, spherical particles were completely evaporated, and depressions were also formed on the pure titanium plate. This is because the discharge energy was too high.

実施例1と同様の手法によって、直径0.5mmの純チタンの球状粒子どうしを接触させ、20V以上の電圧を印加した。その結果、球状粒子どうしが接合した。接合部分には溶融した跡が観察された。実施例1と同様に電圧及び電流によって接合部のサイズが変わった。   In the same manner as in Example 1, spherical particles of pure titanium having a diameter of 0.5 mm were brought into contact with each other, and a voltage of 20 V or more was applied. As a result, the spherical particles were joined together. A melted mark was observed at the joint. Similar to Example 1, the size of the junction changed depending on the voltage and current.

実施例1と同様の実験を、接触時の荷重を1.5kgfにして行ったところ、電圧及び電流が大きくなると、球状粒子の変形が見られた。   When the same experiment as in Example 1 was performed with a load at the time of contact of 1.5 kgf, deformation of spherical particles was observed when the voltage and current increased.

実施例1と同様の方法で、0.5mmのチタン粒子をチタン板に接合した後、接合したチタン粒子に実施例3と同様にチタン粒子を接合した。その結果を図2に示す。これを続けることで連続体を作製できた。   In the same manner as in Example 1, 0.5 mm titanium particles were bonded to a titanium plate, and then titanium particles were bonded to the bonded titanium particles in the same manner as in Example 3. The result is shown in FIG. By continuing this, a continuous body could be produced.

実施例1と同様の方法で、0.7mmのチタン粒子をステンレス板に接合させることができた。電圧は20V以上で可能であった。接合部分は急冷凝固相を有していた。   In the same manner as in Example 1, 0.7 mm titanium particles could be bonded to the stainless steel plate. The voltage could be over 20V. The joint part had a rapidly solidified phase.

実施例1と同様の方法で、直径3mmのステンレスボールをチタン板に接触させ、電圧を印加した。電圧を60Vとすることにより、微小ながら溶融部が形成され接合された。   In the same manner as in Example 1, a stainless steel ball having a diameter of 3 mm was brought into contact with the titanium plate, and a voltage was applied. By setting the voltage to 60 V, a melted part was formed and joined although it was minute.

実施例1と同様の装置を用いて、直系0.5mmのチタン球を吸引電極でピックアップした球態で24Vの電圧を印加したまま炭化ジルコニウム板に近づけた。その結果、放電が発生し、チタン球と炭化ジルコニウム板が接合された。   Using a device similar to that of Example 1, a direct 0.5 mm titanium sphere was picked up by a suction electrode and brought close to the zirconium carbide plate while applying a voltage of 24V. As a result, discharge occurred and the titanium sphere and the zirconium carbide plate were joined.

あらかじめ、カーボン粉末を4質量%と酸化ジルコニウム粉末を混合した粉末を焼結することによって作製したカーボン含有酸化ジルコニウム板を用意した。この部材は導電性を有する。実施例1と同様の装置を用いて、直径0.5mmのチタン球を吸引電極でピックアップした状態で60Vの電圧を印加したままカーボン含有酸化ジルコニウム板に近づけた。その結果、放電が発生し、チタン球とカーボン含有酸化ジルコニウム板が接合された。   In advance, a carbon-containing zirconium oxide plate prepared by sintering a powder obtained by mixing 4% by mass of carbon powder and zirconium oxide powder was prepared. This member has conductivity. Using a device similar to that of Example 1, a titanium sphere having a diameter of 0.5 mm was picked up by a suction electrode and brought close to a carbon-containing zirconium oxide plate while applying a voltage of 60 V. As a result, discharge occurred, and the titanium sphere and the carbon-containing zirconium oxide plate were joined.

あらかじめ、直径3mmの酸化ジルモニウム球に厚さ2〜3μmのビスマス・テルル合金膜をコーティングした部材を用意した。実施例1と同様の装置を用いてコーティング球に400Vの電圧を印加したままチタン板に近づけた。その結果、放電が発生し、コーティング球がチタン板に接合された。接合部分のコーティング膜は蒸発していたが、チタンが溶融することによって接合が達成された。   In advance, a member in which a bismuth-tellurium alloy film having a thickness of 2 to 3 μm was coated on a zirconium oxide sphere having a diameter of 3 mm was prepared. Using the same apparatus as in Example 1, the coating sphere was brought close to the titanium plate while a voltage of 400 V was applied. As a result, electric discharge occurred and the coating sphere was bonded to the titanium plate. The coating film at the joint portion was evaporated, but the joining was achieved by melting titanium.

以上詳述したように、本発明は、導電性を有する微小球体の接合体及び接合方法に係るものであり、本発明により、導電性を有する微小球体の接合体及びその接合方法を提供することができる。本発明の手法は、自動化することが可能であり、例えば、CAD−CAMと類似のシステムを使って、任意の位置に球を積み重ねることが可能である。このことから、本発明の接合体を利用して、自由な形状の多孔質体、部分的に多孔質の状態が必要な製品、あるいは部分的に多孔質の空隙度合いが異なる製品を作り出すことができる。本発明により、例えば、熱交換機用のパイプの内壁に適用することで流体に接触する表面積を広げ、熱効率を向上させる部材、一つのフィルターで場所によって空間度が異なる高機能フィルターなどを作製し、提供することが可能となる。   As described in detail above, the present invention relates to a conductive microsphere assembly and a bonding method, and the present invention provides a conductive microsphere assembly and a bonding method thereof. Can do. The technique of the present invention can be automated, for example, using a system similar to CAD-CAM to stack spheres at any location. From this, it is possible to create a free-form porous body, a product that requires a partially porous state, or a product with a partially different degree of voids by using the joined body of the present invention. it can. According to the present invention, for example, by applying to the inner wall of a pipe for a heat exchanger, the surface area that comes into contact with the fluid is widened, a member that improves thermal efficiency, a high-performance filter with a different degree of space depending on the place with one filter, etc. It becomes possible to provide.

実施例で使用した装置の概要を示す。The outline | summary of the apparatus used in the Example is shown. 実施例で作製した接合体の一例の写真を示す。The photograph of an example of the joined body produced in the Example is shown.

符号の説明Explanation of symbols

1 吸引機能付き電極
2 球状部材
3 板状部材
4 電源
5 真空ポンプ
6 真空ホース
7 電線
DESCRIPTION OF SYMBOLS 1 Electrode with a suction function 2 Spherical member 3 Plate-like member 4 Power supply 5 Vacuum pump 6 Vacuum hose 7 Electric wire

Claims (12)

導電性を有する微小球と該微小球又は他の部材がその接触部で溶融接合していることを特徴とする接合体。   A joined body comprising conductive microspheres and the microspheres or other members being melt-bonded at their contact portions. 接合している微小球の少なくとも一方が、直径5mm以下の微小球面を有している請求項1に記載の接合体。   The joined body according to claim 1, wherein at least one of the joined microspheres has a microsphere having a diameter of 5 mm or less. 接合部分の面積が微小球面の中心を通る断面積より小さい請求項1に記載の接合体。   The joined body according to claim 1, wherein an area of the joined portion is smaller than a cross-sectional area passing through the center of the microsphere. 上記微小球が、中空又は中実である請求項1に記載の接合体。   The joined body according to claim 1, wherein the microsphere is hollow or solid. 上記微小球の材料が、金属、炭化系セラミックス、硼化物系セラミックス、酸化物系セラミックス、又は黒鉛である請求項1に記載の接合体。   The joined body according to claim 1, wherein the material of the microsphere is a metal, a carbonized ceramic, a boride ceramic, an oxide ceramic, or graphite. 導電性を有する微小球が、非導電性の材料に導電性物質を混入して導電性を持たせたものである請求項1に記載の接合体。   The joined body according to claim 1, wherein the conductive microspheres are obtained by mixing a non-conductive material with a conductive substance to provide conductivity. 導電性を有する微小球が、表面に導電性物質を形成したものである請求項1に記載の接合体。   The joined body according to claim 1, wherein the conductive microspheres are formed by forming a conductive material on the surface. 微小球と微小球又は他の部材を接合する方法において、接合しようとする導電性部材の少なくとも一方が直径5mm以下の微小球面を有している部材を、部材内部あるいは表面に発生する電荷を用いて放電させることにより接合させることを特徴とする微小球体の接合方法。   In a method of joining microspheres and microspheres or other members, at least one of the conductive members to be joined uses a member having a microspherical surface with a diameter of 5 mm or less, using charges generated inside or on the surface. A method for joining microspheres, characterized in that joining is performed by discharging them. 部材内部あるいは表面に発生する電荷を用いて放電させることにより溶融接合させる請求項8に記載の接合方法。   The bonding method according to claim 8, wherein the fusion bonding is performed by discharging using charges generated inside or on the surface of the member. 部材内部あるいは表面に発生する電荷を用いて導電性物質表面の酸化層や接合部材間の空気層を絶縁破壊する際に生じる放電によって部材間を溶融あるいは軟化させて接合させる請求項8に記載の接合方法。   9. The members are melted or softened and joined by electric discharge generated when the oxide layer on the surface of the conductive material or the air layer between the joining members is subjected to dielectric breakdown using charges generated in or on the members. Joining method. 部材内部あるいは表面に発生する電荷を用いて放電させることにより溶融接合させる際に部材に接触する外型を使用しない請求項8に記載の接合方法。   The bonding method according to claim 8, wherein an outer mold that contacts the member is not used when melt-bonding is performed by discharging using an electric charge generated inside or on the member. 得られた接合体を更に加熱処理する請求項8に記載の接合方法。

The joining method according to claim 8, wherein the obtained joined body is further heat-treated.

JP2004276371A 2004-09-24 2004-09-24 Conductive microsphere joined body and joining method Expired - Fee Related JP4997485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004276371A JP4997485B2 (en) 2004-09-24 2004-09-24 Conductive microsphere joined body and joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004276371A JP4997485B2 (en) 2004-09-24 2004-09-24 Conductive microsphere joined body and joining method

Publications (2)

Publication Number Publication Date
JP2006088190A true JP2006088190A (en) 2006-04-06
JP4997485B2 JP4997485B2 (en) 2012-08-08

Family

ID=36229657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004276371A Expired - Fee Related JP4997485B2 (en) 2004-09-24 2004-09-24 Conductive microsphere joined body and joining method

Country Status (1)

Country Link
JP (1) JP4997485B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117884816A (en) * 2024-03-18 2024-04-16 苏芯物联技术(南京)有限公司 Rapid process recommendation method based on historical welding current process interval

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153867A (en) * 1987-12-08 1989-06-16 Mikuni Jukogyo Kk Self-lubricating rider ring
JPH0978108A (en) * 1995-09-18 1997-03-25 Nisshin Steel Co Ltd Manufacture of amorphous alloy porous body
JPH09141447A (en) * 1995-11-22 1997-06-03 Naisu Kk Vacuum type stud gun
JP2004058248A (en) * 2002-07-31 2004-02-26 Akira Kawasaki Method and device for manufacturing three-dimensional structure body
JP2004074352A (en) * 2002-08-19 2004-03-11 National Institute For Materials Science Three-dimensionally assembling device for micro-object

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153867A (en) * 1987-12-08 1989-06-16 Mikuni Jukogyo Kk Self-lubricating rider ring
JPH0978108A (en) * 1995-09-18 1997-03-25 Nisshin Steel Co Ltd Manufacture of amorphous alloy porous body
JPH09141447A (en) * 1995-11-22 1997-06-03 Naisu Kk Vacuum type stud gun
JP2004058248A (en) * 2002-07-31 2004-02-26 Akira Kawasaki Method and device for manufacturing three-dimensional structure body
JP2004074352A (en) * 2002-08-19 2004-03-11 National Institute For Materials Science Three-dimensionally assembling device for micro-object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117884816A (en) * 2024-03-18 2024-04-16 苏芯物联技术(南京)有限公司 Rapid process recommendation method based on historical welding current process interval
CN117884816B (en) * 2024-03-18 2024-05-17 苏芯物联技术(南京)有限公司 Rapid process recommendation method based on historical welding current process interval

Also Published As

Publication number Publication date
JP4997485B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
CN101856757B (en) Powder medium diffusion reaction resistance soldering method of aluminum alloy
JP3205938U (en) Systems that use consumables in consumables and hot wire systems
EP2957376B1 (en) Method of forming a bonded article with provision of a porous interlayer region
CN101885095B (en) Powder medium diffusion reaction resistance brazing method of magnesium alloy
JP5484360B2 (en) Conductive member
US20090220813A1 (en) Braze alloy containing particulate material
JP2008183620A (en) Projection weld and method for creating the same
JP5712054B2 (en) Heater unit with shaft and manufacturing method of heater unit with shaft
US20240055707A1 (en) Method of forming a brazed joint having molybdenum material
CN107073620A (en) Solder and the method for manufacturing component by the sealed connection of material
JP2009226454A (en) Method and apparatus of joining metallic member
US20190076953A1 (en) Resistance spot welding of copper workpieces
JP4997485B2 (en) Conductive microsphere joined body and joining method
JP2003268410A (en) Method for preparing porous material and compact thereof
JP2006505693A (en) Method for forming a good contact surface on an aluminum support bar and support bar
JP2009235534A (en) Porous body forming method, electrode, and micro-spark coating device
JP2011235335A (en) Tool for friction stir welding
JP4332637B2 (en) Discharge surface treatment method and discharge surface treatment apparatus.
WO2022190956A1 (en) Dissimilar material solid-phase bonding method and dissimilar material solid-phase bonded structure
JP2009022983A (en) Method and apparatus for performing diffusion bonding of copper-made thin-walled pipe
JP6044376B2 (en) Resistance welding electrode
CN105014216A (en) Method for improving contact state at initial stage of small-scale resistance spot welding of hyperelastic beryllium bronze
JPH03264602A (en) Aluminum sintered body
JPH051364A (en) Method for diffusing and densifying thermally sprayed film
JPH11179536A (en) Tip for soldering, and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110329

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees