JP2006087923A - Method for producing exothermic shaped product - Google Patents

Method for producing exothermic shaped product Download PDF

Info

Publication number
JP2006087923A
JP2006087923A JP2005269080A JP2005269080A JP2006087923A JP 2006087923 A JP2006087923 A JP 2006087923A JP 2005269080 A JP2005269080 A JP 2005269080A JP 2005269080 A JP2005269080 A JP 2005269080A JP 2006087923 A JP2006087923 A JP 2006087923A
Authority
JP
Japan
Prior art keywords
molded body
exothermic
drying
shaped product
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005269080A
Other languages
Japanese (ja)
Inventor
Kunio Matsui
邦夫 松井
Yoshiaki Kumamoto
吉晃 熊本
Masataka Ishikawa
雅隆 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2005269080A priority Critical patent/JP2006087923A/en
Publication of JP2006087923A publication Critical patent/JP2006087923A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an exothermic shaped product which can adjust the moisture content of the exothermic shaped product rapidly and low and can produce the exothermic shaped product with good heat generating characteristics by using a simple manufacturing facility. <P>SOLUTION: A paper-making process which makes paper from a raw material composition comprising an oxygenated metal powder, a water retaining agent, a fibrous substance, an electrolyte, and water, and forms an intermediate shaped product, and a drying process which holds this intermediate shaped product formed at this paper-making process on its surface and back surface and heats and dries it while it is pressed. A pressing force in the drying process is 500 Pa-20 MPa, and the drying temperature is 60-300°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、空気中の酸素と被酸化性金属粉末との酸化反応に伴う発熱を利用した発熱成形体の製造方法に関する。   The present invention relates to a method for producing a heat-generating molded body using heat generated by an oxidation reaction between oxygen in air and an oxidizable metal powder.

空気中の酸素と被酸化性金属粉末との酸化反応に伴う発熱を利用した発熱成形体の製造方法に関する従来技術としては、例えば、下記特許文献1に記載の技術が知られている。   For example, a technique described in Patent Document 1 below is known as a related art relating to a method for producing a heat-generating molded body using heat generated by an oxidation reaction between oxygen in air and an oxidizable metal powder.

特開平1−201253号公報JP-A-1-201253

この技術は、水に繊維状物質を懸濁させ、これに鉄粉等の被酸化性金属、保水剤として活性炭、反応助剤として電解質等を加えて原料スラリーとし、該原料スラリーから抄紙して吸引脱水後、プレス加工によって所定の含水率のシート状に脱水成形して発熱成形体を製造するようにしたものである。   This technology suspends a fibrous material in water, adds an oxidizable metal such as iron powder, activated carbon as a water retention agent, an electrolyte as a reaction aid to make a raw slurry, and makes paper from the raw slurry. After the suction dehydration, the exothermic molded body is manufactured by dehydrating and forming into a sheet having a predetermined moisture content by pressing.

ところで、上述の従来技術では、原料スラリーに反応助剤である電解質が添加されているため、抄紙後の脱水成形時には既に被酸化性金属の酸化が始まっており、この酸化反応を抑えるために、製造工程を窒素、アルゴン等の不活性ガス雰囲気下で行わなければならない等製造設備が複雑にならざるを得なかった。また、プレス脱水のみで速やかに含水率50%以下に低下させることは実用上困難であり、発熱成形体の含水率を成形中に速やかに低く調整し、酸化反応を抑え得る発熱成形体の製法が望まれていた。   By the way, in the above-mentioned conventional technology, since an electrolyte as a reaction aid is added to the raw material slurry, oxidation of the oxidizable metal has already begun at the time of dehydration molding after papermaking, and in order to suppress this oxidation reaction, The manufacturing equipment has to be complicated, for example, the manufacturing process must be performed in an atmosphere of an inert gas such as nitrogen or argon. In addition, it is practically difficult to quickly reduce the moisture content to 50% or less only by press dehydration. A method for producing an exothermic molded body that can quickly adjust the moisture content of the exothermic molded article to a low level during molding to suppress the oxidation reaction. Was desired.

従って、本発明の目的は、簡便な製造設備で、含水率を速やかに低く調整可能であり、良好な発熱特性を有する発熱成形体を製造することができる発熱成形体の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for manufacturing a heat-generating molded body that can adjust a moisture content quickly and easily with a simple manufacturing facility and can manufacture a heat-generating molded body having good heat generation characteristics. It is in.

本発明者らは、被酸化性金属粉末、保水剤、繊維状物、電解質及び水を含む原料組成物から中間成形体を抄紙した後に、該中間成形体を、前記被酸化性金属が高い加熱反応性を示すと考えられる加熱下における所定の乾燥条件で乾燥することにより、成形後における含水率を低く抑えることができ、且つ発熱特性に優れる発熱成形体を製造し得ることを知見した。   The present inventors made an intermediate molded body from a raw material composition containing an oxidizable metal powder, a water retention agent, a fibrous material, an electrolyte and water, and then heated the intermediate molded body with a high oxidizable metal. It has been found that by heating under predetermined drying conditions under heating that is considered to be reactive, the moisture content after molding can be kept low and an exothermic molded article having excellent exothermic characteristics can be produced.

本発明は、上記知見に基づきなされたものであり、被酸化性金属粉末、保水剤、繊維状物、電解質及び水を含む原料組成物を抄紙して中間成形体を形成する抄紙工程と、該抄紙工程で形成された該中間成形体をその表裏面において挟持して押圧しながら乾燥する乾燥工程とを具備する発熱成形体の製造方法を提供するものである。   The present invention has been made on the basis of the above findings, and a papermaking process for forming an intermediate formed body by papermaking a raw material composition containing an oxidizable metal powder, a water retention agent, a fibrous material, an electrolyte and water, The present invention provides a method for producing an exothermic molded body comprising a drying step in which the intermediate molded body formed in the papermaking process is dried while being sandwiched and pressed on the front and back surfaces thereof.

本発明によれば、簡便な製造設備で、発熱成形体の含水率を成形中に速やかに低く調整可能であり、良好な発熱特性を有する発熱成形体を製造することができる。   According to the present invention, the moisture content of the exothermic molded body can be quickly adjusted to low during molding with a simple manufacturing facility, and a exothermic molded body having good exothermic characteristics can be manufactured.

以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。   The present invention will be described below based on preferred embodiments with reference to the drawings.

本発明においては、先ず、少なくとも被酸化性金属粉末、保水剤、繊維状物、電解質及び水を含む原料組成物から抄紙工程で中間成形体を抄紙し形成する。   In the present invention, first, an intermediate formed body is made from a raw material composition containing at least an oxidizable metal powder, a water retention agent, a fibrous material, an electrolyte, and water in a paper making process.

前記原料組成物に含まれる前記被酸化性金属粉末には、従来から発熱成形体に用いられている被酸化性金属粉末を特に制限無く用いることができる、該被酸化性金属粉末としては、例えば、鉄粉、アルミニウム粉、亜鉛粉、マンガン粉、マグネシウム粉、カルシウム粉等が挙げられ、これらの中でも取り扱い性、安全性、製造コストの点から鉄粉が好ましく用いられる。該被酸化性金属粉末には、繊維状物への定着性、反応のコントロール等が良好なことから粒径(以下、粒径というときには、粉末の形態における最大長さをいう。)が0.1〜300μmのものを用いることが好ましく、粒径が0.1〜150μmものを50重量%以上含有するものを用いることがより好ましい。   As the oxidizable metal powder contained in the raw material composition, an oxidizable metal powder conventionally used in exothermic molded bodies can be used without particular limitation. Examples of the oxidizable metal powder include: , Iron powder, aluminum powder, zinc powder, manganese powder, magnesium powder, calcium powder, and the like. Among these, iron powder is preferably used from the viewpoints of handleability, safety, and manufacturing cost. The oxidizable metal powder has a particle size (hereinafter referred to as the maximum length in the form of the powder) of 0 because of its good fixability to a fibrous material and good control of the reaction. It is preferable to use one having a particle size of 1 to 300 μm, and more preferably one having a particle size of 0.1 to 150 μm containing 50% by weight or more.

電解質、水を除いた前記原料組成物中の前記被酸化性金属粉末の配合量は、10〜90重量%であることが好ましく、30〜80重量%であることがより好ましい。10重量%未満であると、得られる発熱成形体の温度上昇が実質的に得られない場合があり、90重量%を超えると、粉末の脱落が発生したり、得られる成形体の通気性が損なわれる場合がある。   The blending amount of the oxidizable metal powder in the raw material composition excluding the electrolyte and water is preferably 10 to 90% by weight, and more preferably 30 to 80% by weight. If it is less than 10% by weight, the temperature increase of the resulting exothermic molded body may not be substantially obtained. If it exceeds 90% by weight, the powder may fall off or the resulting molded body may have air permeability. It may be damaged.

前記原料組成物に含まれる前記保水剤としては、従来から発熱成形体に用いられている保水剤を特に制限無く用いることができる。該保水剤は、水分保持剤として働く他に、被酸化性金属粉末への酸素保持/供給剤としての機能も有している。該保水剤としては、例えば、活性炭(椰子殻炭、木炭粉、暦青炭、泥炭、亜炭)、カーボンブラック、アセチレンブラック、黒鉛、ゼオライト、パーライト、バーミキュライト、シリカ等が挙げられ、これらの中でも保水能、酸素供給能、触媒能を有する点から活性炭が好ましく用いられる。該保水剤には、被酸化性金属粉末との有効な接触状態を形成できる点から粒径が0.1〜500μmのものを用いることが好ましく、0.1〜200μmのものを50重量%以上含有するものを用いることがより好ましい。   As the water retention agent contained in the raw material composition, a water retention agent conventionally used in exothermic molded articles can be used without particular limitation. In addition to functioning as a water retention agent, the water retention agent also has a function as an oxygen retention / supply agent for the oxidizable metal powder. Examples of the water retention agent include activated carbon (coconut husk charcoal, charcoal powder, calendar bituminous coal, peat, lignite), carbon black, acetylene black, graphite, zeolite, perlite, vermiculite, silica, and the like. Activated carbon is preferably used from the viewpoint of performance, oxygen supply ability and catalytic ability. The water retention agent is preferably one having a particle size of 0.1 to 500 μm from the viewpoint that an effective contact state with the oxidizable metal powder can be formed. It is more preferable to use what is contained.

電解質、水を除いた前記原料組成物中の前記保水剤の配合量は、0.5〜60重量%であることが好ましく、1〜50重量%であることがより好ましい。0.5重量%未満であると、反応を持続するために必要な水分を蓄積できない場合があり、60重量%を超えると、得られる発熱成形体の発熱量に対する熱容量が大きくなり、発熱温度上昇が小さくなる場合がある。   The amount of the water retention agent in the raw material composition excluding the electrolyte and water is preferably 0.5 to 60% by weight, and more preferably 1 to 50% by weight. If the amount is less than 0.5% by weight, water necessary for sustaining the reaction may not be accumulated. If the amount exceeds 60% by weight, the heat capacity of the obtained heat-generating body with respect to the heat generation amount increases, and the heat generation temperature rises. May become smaller.

前記原料組成物に含まれる前記繊維状物には、天然、合成の繊維状物を特に制限無く用いることができる。該繊維状物としては、例えば、天然繊維状物としては植物繊維(コットン、カボック、木材パルプ、非木材パルプ、落花生たんぱく繊維、とうもろこしたんぱく繊維、大豆たんぱく繊維、マンナン繊維、ゴム繊維、麻、マニラ麻、サイザル麻、ニュージーランド麻、羅布麻、椰子、いぐさ、麦わら等)、動物繊維(羊毛、やぎ毛、モヘア、カシミア、アルカパ、アンゴラ、キャメル、ビキューナ、シルク、羽毛、ダウン、フェザー、アルギン繊維、キチン繊維、ガゼイン繊維等)、鉱物繊維(石綿等)が挙げられ、合成繊維状物としては、例えば、半合成繊維(アセテート、トリアセテート、酸化アセテート、プロミックス、塩化ゴム、塩酸ゴム等)、合成高分子繊維(ナイロン、アラミド、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレンテレフタレート等のポリエステル、ポリアクリロニトリル、アクリル、ポリエチレン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリウレタン、レーヨン、ビスコースレーヨン、キュプラ等)、金属繊維、炭素繊維、ガラス繊維等が挙げられる。また、これらの回収再利用品を用いることもできる。そして、これらの中でも、前記原料組成物に含まれる粉末との定着性、得られる発熱成形体の柔軟性、空隙の存在からくる酸素透過性、製造コスト等の点から、木材パルプ、コットン、ポリエステルが好ましく用いられる。該繊維状物には、平均繊維長が0.1〜50mmのものを用いることが好ましく、0.2〜20mmのものを用いることがより好ましい。繊維長が短すぎると得られる発熱成形体の強度が十分に確保できない場合があり、繊維長が長すぎると水分中での分散性が低下して均一な肉厚の発熱成形体が得られない場合がある。   As the fibrous material contained in the raw material composition, natural and synthetic fibrous materials can be used without any particular limitation. Examples of the fibrous material include plant fibers (cotton, kabok, wood pulp, non-wood pulp, peanut protein fiber, corn protein fiber, soy protein fiber, mannan fiber, rubber fiber, hemp, manila hemp , Sisal, New Zealand hemp, Rafu hemp, eggplant, rush, straw, etc.), animal fiber (wool, goat hair, mohair, cashmere, alkapa, Angola, camel, vicuña, silk, feathers, down, feather, algin fiber, chitin Fiber, casein fiber, etc.) and mineral fiber (asbestos, etc.). Examples of synthetic fibers include semi-synthetic fibers (acetate, triacetate, acetate acetate, promix, chlorinated rubber, hydrochloric acid rubber, etc.), synthetic fiber Molecular fiber (nylon, aramid, polyvinyl alcohol, polyvinyl chloride, polysalt) Vinylidene, polyesters such as polyethylene terephthalate, polyacrylonitrile, acrylic, polyethylene, polyethylene, polypropylene, polystyrene, polyurethane, rayon, viscose rayon, cupra and the like), metal fibers, carbon fibers, and glass fibers. These recovered and reused products can also be used. Among these, wood pulp, cotton, polyester from the viewpoints of fixability with the powder contained in the raw material composition, flexibility of the resulting exothermic molded body, oxygen permeability due to the presence of voids, production cost, etc. Is preferably used. The fibrous material preferably has an average fiber length of 0.1 to 50 mm, and more preferably 0.2 to 20 mm. If the fiber length is too short, the strength of the resulting exothermic molded article may not be sufficiently secured. If the fiber length is too long, the dispersibility in water will be reduced and a uniform thick exothermic molded article cannot be obtained. There is a case.

電解質、水を除いた前記原料組成物中の前記繊維状物の配合量は、2〜80重量%であることが好ましく、5〜50重量%であることがより好ましい。2重量%未満であると、前記原料組成物に含まれる被酸化性粉末等の他の成分を保持できなくなり、脱落を起こす場合があり、80重量%を超えると、得られる発熱成形体の発熱量に対する熱容量が大きくなり、温度上昇が小さくなる場合がある。   The blending amount of the fibrous material in the raw material composition excluding the electrolyte and water is preferably 2 to 80% by weight, and more preferably 5 to 50% by weight. If it is less than 2% by weight, other components such as the oxidizable powder contained in the raw material composition cannot be retained and may fall off. If it exceeds 80% by weight, the heat generation of the resulting exothermic molded body The heat capacity with respect to the quantity increases, and the temperature rise may be reduced.

前記原料組成物に含まれる前記電解質には、従来から発熱成形体に用いられているものを特に制限無く用いることができる。該電解質としては、例えば、アルカリ金属、アルカリ土類金属、又は重金属の硫酸塩、炭酸塩、塩化物若しくは水酸化物等が挙げられる。そしてこれらの中でも、導電性、化学的安定性、生産コストに優れる点から塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、塩化鉄(第1、第2)等の各種塩化物が好ましく用いられる。   As the electrolyte contained in the raw material composition, those conventionally used for exothermic molded bodies can be used without particular limitation. Examples of the electrolyte include alkali metal, alkaline earth metal, or heavy metal sulfate, carbonate, chloride, or hydroxide. Among these, various chlorides such as sodium chloride, potassium chloride, calcium chloride, magnesium chloride, and iron chloride (first and second) are preferably used from the viewpoint of excellent conductivity, chemical stability, and production cost.

前記原料組成物中の前記電解質の配合量は、対水重量比で0.5〜30%であることが好ましく、3〜25%であることがより好ましい。0.5%未満であると、得られる発熱成形体の酸化反応が抑制される場合があり、30%を超えると、余分な電解質が析出し、得られる発熱成形体の通気性を損なう場合がある。   The blending amount of the electrolyte in the raw material composition is preferably 0.5 to 30%, more preferably 3 to 25% by weight to water. If it is less than 0.5%, the oxidation reaction of the exothermic molded body to be obtained may be suppressed, and if it exceeds 30%, excess electrolyte may be deposited and the air permeability of the resulting exothermic molded body may be impaired. is there.

本発明においては、前記被酸化性金属、前記繊維状物、前記保水剤、前記電解質に加えて、前記原料組成物に、サイズ剤、着色剤、紙力増強剤、歩留向上剤、填料、増粘剤、pHコントロール剤、嵩高剤等の紙の抄造の際に通常用いられる添加物を特に制限無く添加することができる。該原料組成物中の該添加物の配合量は、添加する添加物に応じて適宜設定することができる。   In the present invention, in addition to the oxidizable metal, the fibrous material, the water retention agent, and the electrolyte, the raw material composition includes a sizing agent, a colorant, a paper strength enhancer, a yield improver, a filler, Additives usually used in papermaking such as thickeners, pH control agents, bulking agents and the like can be added without particular limitation. The blending amount of the additive in the raw material composition can be appropriately set according to the additive to be added.

次に、前記原料組成物を抄紙して所定の形態の中間成形体を成形する。
中間成形体の抄紙方法は、シート状、立体形状等の成形する発熱成形体の形態に応じて、抄紙に用いられる従来の抄紙方法を特に制限無く用いることができる。該抄紙方法としては、例えば、中間成形体をシート状とする場合には、連続抄紙式である円網抄紙機、長網抄紙機、短網抄紙機、ツインワイヤー抄紙機などを用いた抄紙方法、バッチ方式の抄紙方法である手漉法等が挙げられ、中間成形体を立体形状とする場合には、例えば、特許3155522号公報(第2頁4段17行〜第4頁8段23行)に記載のいわゆる注入法、例えば、特許3155503号公報(第2頁4段4行〜第4頁7段6行)に記載のいわゆるコア抄紙法、例えば、特許3072088号公報(第2頁4段4行〜第3頁5段43行)に記載のいわゆる水中貼り合わせ法)等が挙げられる。また、抄紙工程においては、成形体の表面にさらに前記繊維状物を漉き合わせることもできる。
Next, the raw material composition is paper-made to form an intermediate molded body having a predetermined form.
As the paper making method of the intermediate formed body, a conventional paper making method used for paper making can be used without particular limitation depending on the form of the exothermic formed body to be formed such as a sheet shape or a three-dimensional shape. As the paper making method, for example, when the intermediate formed body is in a sheet form, a paper making method using a continuous paper making type circular net paper machine, long net paper machine, short net paper machine, twin wire paper machine, etc. In the case where the intermediate molded body has a three-dimensional shape, for example, Japanese Patent No. 3155522 (page 2, line 4, line 17 to page 4, line 8, line 23). ), For example, the so-called core paper making method described in Japanese Patent No. 3155503 (2nd page, 4th row, 4th line to 4th page, 7th row, 6th line), for example, Japanese Patent No. 3072088 (second page, 4th page). The so-called underwater laminating method) described in 4th row to 3rd page, 5th row, 43th row) and the like. In the papermaking process, the fibrous material can be further combined with the surface of the molded body.

中間成形体は、抄紙後における形態を保つ(保形性)点や、機械的な強度を維持する点から、好ましくは含水率(重量含水率、以下同じ。)が70%以下、より好ましくは60%以下となるまで脱水させることが好ましい。中間成形体の脱水方法は、当該中間成形体の形態や抄紙方法に応じて適宜選択することができる。該脱水方法としては、例えば、該中間成形体がシート状の成形体の場合には、吸引による脱水のほか、加圧空気を吹き付けて脱水する方法、加圧ロールや加圧板で加圧して脱水する方法等が挙げられ、また、該中間成形体が抄紙型を用いて得られる成形体の場合には、抄紙型内に抄紙された中間成形体に加圧空気等を吹き付けて脱水する方法、抄紙型内に抄紙された中間成形体を抄紙型の内面に押圧して脱水する方法等の脱水方法が挙げられる。   The intermediate molded body preferably has a moisture content (weight moisture content, the same shall apply hereinafter) of 70% or less, more preferably from the viewpoint of maintaining the form after paper making (shape retention) and maintaining mechanical strength. It is preferable to dehydrate until it becomes 60% or less. The dewatering method of the intermediate molded body can be appropriately selected according to the form of the intermediate molded body and the papermaking method. As the dehydration method, for example, when the intermediate molded body is a sheet-like molded body, in addition to dehydration by suction, a method of dehydrating by blowing pressurized air, dehydrating by pressing with a pressure roll or a pressure plate In addition, in the case where the intermediate molded body is a molded body obtained using a papermaking mold, a method of dehydrating by spraying pressurized air or the like on the intermediate molded body that has been made into a papermaking mold, Examples of the dehydration method include a method in which the intermediate formed body formed in the papermaking mold is pressed against the inner surface of the papermaking mold and dehydrated.

次に、抄紙工程で形成された前記中間成形体をその表裏面において挟持して押圧しながら、乾燥工程で加熱乾燥する。このように中間成形体をその表裏面において挟持した状態で押圧しながら加熱乾燥することで、表裏面における空気中の酸素と当該中間成形体中の前記被酸化性金属粉末との接触が抑えられるとともに、加熱乾燥に伴って中間成形体内から発生する水蒸気によって当該中間成形体内の被酸化性金属粉末と空気中の酸素との接触が極力抑えられる。このため、乾燥工程において従来のような不活性ガス雰囲気にする必要が無く、設備を大幅に簡素化することができる。また、押圧状態下で加熱乾燥するため、成形体の含水率を、目的とする発熱成形体の含水率まで素早く到達させることができ、この点においても当該発熱成形体の製造中における被酸化性金属粉末の酸化を極端に抑えることができる。   Next, the intermediate molded body formed in the paper making process is heated and dried in the drying process while being sandwiched and pressed on the front and back surfaces. Thus, by heating and drying while pressing the intermediate molded body in a state of being sandwiched between the front and back surfaces, contact between oxygen in the air on the front and back surfaces and the oxidizable metal powder in the intermediate molded body is suppressed. At the same time, the contact between the oxidizable metal powder in the intermediate molded body and oxygen in the air is suppressed as much as possible by water vapor generated from the intermediate molded body with heat drying. For this reason, it is not necessary to use an inert gas atmosphere as in the prior art in the drying process, and the equipment can be greatly simplified. Further, since it is heated and dried under a pressed state, the moisture content of the molded body can be quickly reached to the moisture content of the target exothermic molded body, and also in this respect, the oxidizability during the production of the exothermic molded body. The oxidation of the metal powder can be extremely suppressed.

乾燥工程において前記中間成形体を挟持して押圧する際の圧力は、成形性の点で500Pa〜20MPaであることが好ましく、更に水分除去性、形状転写性、成形性の点で0.2MPa〜20MPaであることがより好ましく、0.5MPa〜8MPaであることがさらに好ましい。押圧力が500Pa未満であると、空気中の酸素と中間成形体との隔離が不十分となり、酸化反応が進行してしまう場合があり、20MPaを超えると、中間成形体の構造が密になりすぎて通気性が損なわれたり、成形体の柔軟性が損なわれたりする場合がある。   The pressure when sandwiching and pressing the intermediate molded body in the drying step is preferably 500 Pa to 20 MPa in terms of moldability, and moreover 0.2 MPa in terms of moisture removability, shape transferability, and moldability. More preferably, it is 20 MPa, and further preferably 0.5 MPa to 8 MPa. If the pressing force is less than 500 Pa, isolation between oxygen in the air and the intermediate molded body may be insufficient, and the oxidation reaction may proceed. If the pressure exceeds 20 MPa, the structure of the intermediate molded body becomes dense. In some cases, the air permeability may be impaired, and the flexibility of the molded body may be impaired.

前記中間成形体の挟持手法は、該中間成形体の形態、乾燥前の中間成形体の処理方法、乾燥前の含水率、機械的強度等に応じて適宜選択することができる。該挟持手法には、例えば、プレス機による方法、加圧ロールや加圧板で挟持する方法、キャンバーで挟持する方法、弾性体を加圧接触させる方法等が挙げられる。   The sandwiching method of the intermediate molded body can be appropriately selected according to the form of the intermediate molded body, the processing method of the intermediate molded body before drying, the moisture content before drying, the mechanical strength, and the like. Examples of the sandwiching method include a method using a press, a sandwiching method using a pressure roll or a press plate, a sandwiching method using a camber, and a method of contacting an elastic body under pressure.

また、乾燥工程における乾燥温度は、60〜300℃であることが好ましく、80〜250℃であることがより好ましく、100〜200℃であることがさらに好ましい。乾燥温度が60℃未満であると、中間成形体から発生する水蒸気による被酸化性金属粉末と空気中の酸素との隔離が不十分となる場合があり、300℃を超えると、中間成形体の含水率のコントロールが困難となったり、急激な水分の気化によって成形体の構造が破壊する場合がある。   Moreover, it is preferable that the drying temperature in a drying process is 60-300 degreeC, It is more preferable that it is 80-250 degreeC, It is further more preferable that it is 100-200 degreeC. When the drying temperature is less than 60 ° C., there may be insufficient isolation between the oxidizable metal powder and oxygen in the air by water vapor generated from the intermediate molded body. It may be difficult to control the moisture content, or the structure of the molded body may be destroyed due to rapid vaporization of moisture.

該中間成形体の乾燥方法は、中間成形体の形態、乾燥前の中間成形体の処理方法、乾燥前の含水率、乾燥後の含水率に応じて適宜選択することができる。該乾燥方法としては、例えば、加熱構造体(発熱体)との接触、加熱空気や蒸気(過熱蒸気)の吹き付け、真空乾燥、電磁波加熱、通電加熱等の乾燥方法が挙げられる。また、前述の脱水方法と組み合わせて同時に実施することもできる。   The method for drying the intermediate molded body can be appropriately selected according to the form of the intermediate molded body, the method for treating the intermediate molded body before drying, the moisture content before drying, and the moisture content after drying. Examples of the drying method include drying methods such as contact with a heating structure (heating element), spraying of heated air or steam (superheated steam), vacuum drying, electromagnetic wave heating, and electric heating. Moreover, it can also implement simultaneously with the above-mentioned dehydration method.

本発明においては、乾燥後における中間成形体(発熱成形体)の含水率は、10〜60%であることが好ましく、30〜40%であることがより好ましい。含水率が10%未満であると、使用時に酸化反応が促進せず実質的に温度上昇が得られない場合があり、含水率が60%を超えると、被酸化性粉末と酸素との接触が十分得られなくなり、実質的に温度上昇が得られないか、温度上昇が発現するのに時間がかかる場合がある。   In the present invention, the moisture content of the intermediate molded body (exothermic molded body) after drying is preferably 10 to 60%, and more preferably 30 to 40%. If the water content is less than 10%, the oxidation reaction may not be promoted during use and the temperature may not be increased substantially. If the water content exceeds 60%, contact between the oxidizable powder and oxygen may occur. In some cases, sufficient temperature cannot be obtained, and a substantial increase in temperature cannot be obtained, or it takes time for the increase in temperature to occur.

上述のように中間成形体を乾燥させた後、必要に応じて含水率を調整、安定化させて発熱成形体とすることができる。そして必要に応じ、トリミング、積層化等を施し、所定の大きさに加工することができる。   After the intermediate molded body is dried as described above, the moisture content can be adjusted and stabilized as necessary to obtain a heat generating molded body. Then, if necessary, it can be trimmed, laminated, etc., and processed into a predetermined size.

このようにして得られた発熱成形体は、例えば、シート状の形態においては、厚さが0.1〜10mm、坪量が100〜5000g/cm2、発熱到達温度が30〜150℃の良好な発熱成形体である。 The exothermic molded body thus obtained has a thickness of 0.1 to 10 mm, a basis weight of 100 to 5000 g / cm 2 , and an exothermic temperature of 30 to 150 ° C., for example, in a sheet form. This is an exothermic molded body.

このようにして得られた発熱成形体は、さらに、酸素透過性を有する被覆層で被覆することができる。該被覆層は、その全面に酸素透過性を有していてもよく、部分的に酸素透過性を有していてもよい。該被覆層には酸素透過性を有するものであれば特に制限なく用いることができる。該被覆層は、例えば、紙、不織布、多微孔質膜、微細な孔を設けた樹脂フィルム等を積層して設けることができ、また、合成樹脂塗料やエマルション塗料等を発熱成形体に含浸させて設けることもできる。
得られた発熱成形体は、使用するまでに酸素と接触するのを避けるため、非酸素透過、非水分透過性の包装袋等に収容されて提供される。
The exothermic molded body thus obtained can be further coated with a coating layer having oxygen permeability. The coating layer may have oxygen permeability over the entire surface, or may partially have oxygen permeability. Any coating layer having oxygen permeability can be used without particular limitation. The coating layer can be provided by, for example, laminating paper, non-woven fabric, a multiporous film, a resin film having fine pores, etc., and impregnating a heat-resisting molded body with a synthetic resin paint or an emulsion paint. It can also be provided.
The obtained exothermic molded body is provided in a non-oxygen permeable, non-water permeable packaging bag or the like in order to avoid contact with oxygen before use.

以上説明したように、本実施形態の発熱体の製造方法によれば、従来のような不活性ガス雰囲気下等での製造工程が不要であり簡便な製造設備で、発熱成形体の含水率を成形中に速やかに低く調整でき、良好な発熱特性の発熱成形体を製造することができる。   As described above, according to the heating element manufacturing method of this embodiment, the manufacturing process under an inert gas atmosphere or the like as in the prior art is unnecessary, and the moisture content of the heating element is reduced with simple manufacturing equipment. It is possible to adjust the temperature quickly during molding, and it is possible to produce an exothermic molded article having good exothermic characteristics.

本発明は、前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において適宜変更することができる。   The present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the spirit of the present invention.

本発明は、シート状の発熱成形体の他、立体形状を有する発熱成形体にも適用することができる。   The present invention can be applied to exothermic molded bodies having a three-dimensional shape in addition to sheet-like exothermic molded bodies.

下記実施例1〜3及び比較例1のように、発熱成形体を作製し、得られた発熱成形体について、下記のようにして発熱特性(発熱成形体の温度)を調べた。これら実施例及び比較例の発熱特性を図1及び図2に示した。
〔実施例1〜3〕
<原料組成物配合>
被酸化性金属粉末:鉄粉(平均粒径45μm)、15g
繊維状物:パルプ繊維(平均繊維長1.3mm)、2.25g
保水剤:活性炭(平均粒径40μm)、7.5g
電解質:NaCl、25g
水:蒸留水、500ml
<抄紙条件>
上記原料からなるスラリーを直径170mmのブフナーロートを用いて#50メッシュの網の上に堆積させた。
<脱水条件>
抄紙工程に引き続き、前記ブフナーロートを用いて1分間吸引脱水し、含水率70%の中間成形体を得た。
<乾燥条件>
得られた中間成形体をプレス機によって表1に記載した押圧力、乾燥温度に設定し、目標含水率40%となるように乾燥時間を調整し、シート状に成形した。
<中間成形体の形態>
得られた中間成形体は、厚みが2.8〜2.9mm、坪量が1850〜1910g/m2であった。
Exothermic molded bodies were produced as in Examples 1 to 3 and Comparative Example 1 below, and the exothermic molded bodies obtained were examined for exothermic characteristics (temperature of the exothermic molded body) as follows. The heat generation characteristics of these examples and comparative examples are shown in FIGS.
[Examples 1-3]
<Combination of raw material composition>
Oxidizable metal powder: iron powder (average particle size 45 μm), 15 g
Fibrous material: Pulp fiber (average fiber length 1.3 mm), 2.25 g
Water retention agent: activated carbon (average particle size 40 μm), 7.5 g
Electrolyte: NaCl, 25g
Water: Distilled water, 500ml
<Paper making conditions>
The slurry made of the above raw material was deposited on a # 50 mesh net using a Buchner funnel having a diameter of 170 mm.
<Dehydration conditions>
Subsequent to the paper making process, the Buchner funnel was used for suction dehydration for 1 minute to obtain an intermediate molded body having a water content of 70%.
<Drying conditions>
The obtained intermediate molded body was set to a pressing force and a drying temperature described in Table 1 with a press machine, and the drying time was adjusted so that the target moisture content was 40%, and the sheet was molded into a sheet shape.
<Form of intermediate molded body>
The obtained intermediate molded body had a thickness of 2.8 to 2.9 mm and a basis weight of 1850 to 1910 g / m 2 .

〔比較例1〕
実施例1と同様の原料組成物を用いて、実施例1と同様にして抄紙し、脱水吸引した後、プレス機で表1に示す条件で押圧しながら脱水及び乾燥したが、含水率は40%に達しなかったので、さらにこの発熱成形体を25℃、相対湿度50%の環境下で、到達含水率が約40%となるように含水率を1時間調整した。
[Comparative Example 1]
Using the same raw material composition as in Example 1, paper was made in the same manner as in Example 1, dehydrated and sucked, then dehydrated and dried while pressing with the press machine under the conditions shown in Table 1, but the water content was 40. %, The moisture content was further adjusted for 1 hour in an environment of 25 ° C. and a relative humidity of 50% so that the ultimate moisture content was about 40%.

〔発熱特性の測定〕
実施例1〜3及び比較例1で得られたそれぞれの発熱成形体について、50mm×50mmの寸法に裁断し、気温25℃、相対湿度50%の空気中において発泡スチロール上で発熱させたときの発熱特性(発熱成形体の温度)を調べた。
[Measurement of heat generation characteristics]
About each exothermic molded object obtained in Examples 1-3 and the comparative example 1, it cut | judged to the dimension of 50 mm x 50 mm, and it was heat_generation | fever when it was made to heat | fever-generate on a polystyrene foam in the air of air temperature 25 degreeC and relative humidity 50%. Characteristics (temperature of the exothermic molded body) were examined.

図1に示すように、実施例1〜3で得られた発熱成形体は、安定した発熱特性を示すとともに、発熱温度も充分な温度に達することが確認された。これに対し、図2に示すように、比較例1で得られた発熱成形体は、発熱温度が実施例に比べてかなり低いものであった。   As shown in FIG. 1, it was confirmed that the exothermic molded bodies obtained in Examples 1 to 3 showed stable exothermic characteristics and the exothermic temperature reached a sufficient temperature. On the other hand, as shown in FIG. 2, the exothermic molded body obtained in Comparative Example 1 had a considerably lower exothermic temperature than that of the Examples.

本発明の実施例により得られた発熱成形体の発熱特性を示す図である。It is a figure which shows the heat_generation | fever characteristic of the heat_generation | fever molded object obtained by the Example of this invention. 比較例により得られた発熱成形体の発熱特性を示す図である。It is a figure which shows the heat_generation | fever characteristic of the heat_generation | fever molded object obtained by the comparative example.

Claims (3)

被酸化性金属粉末、保水剤、繊維状物、電解質及び水を含む原料組成物を抄紙して中間成形体を形成する抄紙工程と、該抄紙工程で形成された該中間成形体をその表裏面において挟持して押圧しながら加熱乾燥する乾燥工程とを具備する発熱成形体の製造方法であって、
前記乾燥工程における押圧力が500Pa〜20MPaであり、且つ乾燥温度が60〜300℃である発熱成形体の製造方法。
A papermaking process for forming an intermediate molded body by papermaking a raw material composition containing an oxidizable metal powder, a water retention agent, a fibrous material, an electrolyte and water, and the intermediate molded body formed in the papermaking process on the front and back surfaces A heat-generating molded body comprising a drying step of heating and drying while sandwiching and pressing in
The manufacturing method of the exothermic molded object whose pressing force in the said drying process is 500 Pa-20 Mpa, and whose drying temperature is 60-300 degreeC.
前記抄紙工程で形成された前記中間成形体を加熱乾燥する前に含水率70%以下に脱水する工程を具備している請求項1記載の発熱成形体の製造方法。   The method for producing an exothermic molded body according to claim 1, further comprising a step of dehydrating the intermediate molded body formed in the paper making process to a moisture content of 70% or less before drying by heating. 前記乾燥工程を空気中で行う請求項1又は2記載の発熱成形体の製造方法。   The method for producing an exothermic molded body according to claim 1 or 2, wherein the drying step is performed in air.
JP2005269080A 2005-09-15 2005-09-15 Method for producing exothermic shaped product Pending JP2006087923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005269080A JP2006087923A (en) 2005-09-15 2005-09-15 Method for producing exothermic shaped product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005269080A JP2006087923A (en) 2005-09-15 2005-09-15 Method for producing exothermic shaped product

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001304271A Division JP4070439B2 (en) 2001-09-28 2001-09-28 Method for producing exothermic molded body

Publications (1)

Publication Number Publication Date
JP2006087923A true JP2006087923A (en) 2006-04-06

Family

ID=36229414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005269080A Pending JP2006087923A (en) 2005-09-15 2005-09-15 Method for producing exothermic shaped product

Country Status (1)

Country Link
JP (1) JP2006087923A (en)

Similar Documents

Publication Publication Date Title
JP2003102761A (en) Method of manufacturing heating compact
CN100450462C (en) Molded sheet
JP5294671B2 (en) Bulk paper with thermally expandable particles and method for producing the same
JP4155791B2 (en) Method for producing exothermic molded body
JP4070439B2 (en) Method for producing exothermic molded body
KR102005153B1 (en) Non-woven structure for heat insulating materials including aerogel foaming layer
JP4233380B2 (en) Exothermic molded body
JP3703469B2 (en) Molded sheet
JP4429256B2 (en) Method for producing exothermic molded body
JP2006087923A (en) Method for producing exothermic shaped product
JP5025456B2 (en) Sheet heating element, sheet heating intermediate and heating sheet
JP4458869B2 (en) Exothermic sheet
JP2006114508A (en) Manufacturing method of exoergic compact
JP5339674B2 (en) Exothermic papermaking method and manufacturing method thereof
JP2003206479A (en) Exothermic molded product
JP2005111180A (en) Heating compact
JP2000170096A (en) Low density foamed paper and its production
JP2005324049A (en) Molded sheet
JP2005058248A (en) Heat generating sheet
JP3140000B2 (en) Lightweight fiberboard and method for producing the same
JP4076511B2 (en) Sheet-like exothermic molded body
JP2005307050A (en) Molded product
JP2005319049A (en) Heating compact
JP2006305368A (en) Molded sheet
JP2005224314A (en) Sheet formed heating body