JP4155791B2 - Method for producing exothermic molded body - Google Patents

Method for producing exothermic molded body Download PDF

Info

Publication number
JP4155791B2
JP4155791B2 JP2002307716A JP2002307716A JP4155791B2 JP 4155791 B2 JP4155791 B2 JP 4155791B2 JP 2002307716 A JP2002307716 A JP 2002307716A JP 2002307716 A JP2002307716 A JP 2002307716A JP 4155791 B2 JP4155791 B2 JP 4155791B2
Authority
JP
Japan
Prior art keywords
molded body
water
weight
exothermic
coating liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002307716A
Other languages
Japanese (ja)
Other versions
JP2004143232A (en
Inventor
仁史 大塚
祐三 松尾
武士 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2002307716A priority Critical patent/JP4155791B2/en
Publication of JP2004143232A publication Critical patent/JP2004143232A/en
Application granted granted Critical
Publication of JP4155791B2 publication Critical patent/JP4155791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気中の酸素と被酸化性金属粉末との酸化反応に伴う発熱を利用した発熱成形体の製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
インキ状ないしクリーム状の発熱組成物が包材内に封入されている発熱体が知られている。この発熱組成物は、発熱物質、吸水性ポリマー、増粘剤、炭素成分、金属の塩化物及び水を必須成分とし、更に保水剤、pH調整剤及び界面活性剤等を含有している。
【0003】
しかし、特許文献1に記載の発熱体の製造においては、発熱組成物中に、発熱に必要な成分である発熱物質、金属の塩化物及び水がすべて含まれているので、製造過程における発熱物質の酸化ロスを抑制するためには、該発熱組成物の調製から発熱体の外装袋への封入を連続して一気に行う必要がある。従って、製造プロセスに自由度が少なく、例えば製造した発熱組成物を一旦保管しておき、必要なときにこれを用いて発熱体を製造するといった製造方法を採用しにくい。また、発熱組成物を出来るだけ空気と遮断するための手当が必要であり、ハンドリング性が良好とは言えない。更に、得られた発熱体における発熱組成物はインキ状ないしクリーム状の性状なので、例えば使用中に該発熱組成物の偏りが生じ易く、均一な発熱が起こらない場合がある。その上、該発熱組成物は流動体であることから、所望の形状に成形することが容易でない。
【0004】
【特許文献1】
特開平10−155827号公報
【0005】
従って、本発明は、製造プロセスの自由度が高く、また製造工程中での製造対象物のハンドリング性が良好な発熱成形体の製造方法を提供することを目的とする。
また本発明は、所望の形状に成形でき、また使用中に発熱物質の偏り及びこれに起因する不均一な発熱が生じない発熱成形体の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、被酸化性金属粉末、繊維材料、水及び保水剤を含み且つ水の含有量が40〜75重量%である塗工液を支持体上に塗工して含水成形体を形成し、該含水成形体を所定の含水率まで脱水した後、脱水された該含水成形体を所定の含水率まで加熱乾燥させて中間成形体を得、然る後、該中間成形体に電解質水溶液を所定量付与して発熱成形体となす発熱成形体の製造方法を提供することにより前記目的を達成したものである。
【0007】
【発明の実施の形態】
以下本発明を、その好ましい実施形態に基づき説明する。本発明の製造方法の一実施形態は、(1)塗工液の調製工程、(2)塗工液の塗工工程、(3)塗工によって形成された含水成形体の脱水工程、(4)脱水された含水成形体の加熱乾燥させて中間成形体を得る工程、(5)中間成形体の加工工程、(6)加工された中間成形体への電解質水溶液の付与工程、及び(7)酸素遮断等の後工程に大別される。以下、それぞれの工程について説明する。
【0008】
(1)塗工液の調製工程
塗工液は、被酸化性金属粉末、繊維材料、水及び保水剤を含んでおり、水を媒体とする液である。塗工液における水の含有量は40〜75重量%である。つまり、塗工液は、湿式抄紙法に用いられるスラリーと異なり、流動性の低い液である。水の含有量が75重量%超の塗工液は、固形分の沈降が起こり易く、またその流動性が高くなるので、後述する支持体上に均一塗工することが容易でない。一方、水の含有量が40重量%未満の塗工液は、流動性が低くなり過ぎて、塗工の際の負荷が大きくなり、また均一塗工することが容易でない。
【0009】
塗工液は、前述した各成分を水に添加混合することで調製される。添加の順序に特に制限は無い。尚、塗工液の調製過程において被酸化性金属粉末の酸化反応が多少進行するが、塗工液中には酸化反応を持続させるための電解質が含まれていないので、酸化反応は直ちに停止し、それ以上の酸化反応は起こらない。
【0010】
塗工液に含まれる被酸化性金属粉末としては、従来この種の発熱体に通常用いられているものを特に制限無く用いることができる。例えば、鉄粉、アルミニウム粉、亜鉛粉、マンガン粉、マグネシウム粉、カルシウム粉等が挙げられ、これらの中でも取り扱い性、安全性、製造コストの点から鉄粉が好ましく用いられる。被酸化性金属粉末は、繊維材料への定着性や酸化反応のコントロールの点から、その粒径(以下、粒径というときには、粉末の形態における最大長さをいう。)が0.1〜300μmであることが好ましく、特に、粒径0.1〜150μmものを50重量%以上含有することが好ましい。塗工液中における被酸化性金属粉末の含有量は15〜50重量%、特に25〜35重量%であることが、得られる発熱成形体における酸化反応のコントロールの点から好ましい。
【0011】
繊維材料は、得られる発熱成形体において被酸化性金属粉末を保持するためのマトリックスとなるものである。繊維材料としては、木材パルプやコットン等の天然物、各種合成繊維、合成パルプなどを用いることができる。合成物を用いる場合には、ポリエチレン及びポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリアミド、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリ酢酸ビニル又はこれらの共重合体若しくは変性体などを用いることができる。合成繊維を用いる場合には、その太さが0.1〜100dtex、特に0.5〜50dtexであることが、発熱成形体の強度の確保や塗工液の塗工性の点から好ましい。同様の理由により、繊維材料はその長さ加重平均繊維長が0.1〜3.0mmであることが好ましい。塗工液中における繊維材料の含有量は1〜10重量%、特に2〜4重量%であることが、得られる発熱成形体の強度を確保する点から好ましい。
【0012】
保水剤は、得られる発熱成形体において水分保持剤として作用し、被酸化性金属粉末の酸化反応に寄与するものである。また保水剤は、酸素保持及び被酸化性金属粉末への酸素供給剤としても作用する。保水剤としては、例えば、活性炭(椰子殻炭、木炭粉、暦青炭、泥炭、亜炭)、カーボンブラック、アセチレンブラック及び黒鉛などの炭素材料、ゼオライト、パーライト、バーミキュライト、シリカ等が挙げられる。これらの中でも保水能、酸素供給能、触媒能を有する点から活性炭が好ましく用いられる。保水剤は、被酸化性金属粉末との有効な接触状態を形成し易くなる点から、その粒径が0.1〜500μmであることが好ましく、特に、0.1〜200μmのものを50重量%以上含有することが好ましい。塗工液中における保水剤の含有量は0.5〜5重量%、特に1〜2.5重量%であることが、被酸化性金属粉末が酸化反応に十分に寄与し得る点から好ましい。
【0013】
塗工液は、前述の成分に加えて更に増粘剤を含んでいることが好ましい。これによって、塗工液の流動性をコントロールし易くなり、均一な塗工が容易になる。また繊維材料によって形成されるマトリックスの形成が良好になり、得られる発熱成形体の機械的強度が高まると共に種々の形状の発熱成形体の製造が容易になる。更に、発熱成形体からの被酸化性金属粉末の脱落も防止される。
【0014】
増粘剤としては、含水状態においてそれ自身で保形性を有するものが好ましく用いられる。また、増粘剤としては、被酸化性粉末表面との親和性があまり高くないものを用いることが好ましい。この理由は、被酸化性粉末表面との親和性が高過ぎると、該表面が増粘剤で被覆されてしまい、被酸化性粉末の酸化反応が妨げられてしまうからである。これらの要求を満たす好ましい増粘剤の例としては、ベントナイト等の粘土鉱物、澱粉系吸水剤、シリカ、炭酸カルシウム、セルロース変性物(メチルセルロース等)などが挙げられ、特にベントナイト等の粘土鉱物を用いることが好ましい。
【0015】
塗工液中における増粘剤の含有量は、増粘剤の増粘効果にもよるが、0.1〜5重量%、特に0.5〜2.5重量%であることが、塗布時における塗工液の流動性が良好となる点から好ましい。
【0016】
塗工液には、更にpH調整剤、分散性を高める界面活性剤や消泡剤などを含有させてもよい。
【0017】
(2)塗工液の塗工工程
調製された塗工液は、支持体上に塗工され、これによって含水成形体が形成される。塗工方法としては公知の塗工方法を特に制限無く用いることができる。例えばロール塗布、ダイコーティング、スクリーン印刷、スプレー塗布、ロールグラビア、ナイフコーティング、カーテンコーターなどを用いることができる。特に、塗工液の流動安定性および塗布の簡易性の点から、ダイコーティングを用いることが好ましい。塗工液の塗工量は、目的とする発熱成形体の具体的用途等に応じて決定すれば良い。
【0018】
先に述べた通り、塗工液中には電解質が含まれていないので、塗工工程における被酸化性金属粉末の酸化は進行しない。従って、塗工工程において、被酸化性金属粉末を空気と遮断するための特別の手当は必要ない。
【0019】
塗工に際しては、支持体を所定方向に走行させておき、走行する該支持体上に塗工液を塗布することが生産性の点で好ましい。典型的には、巻回された長尺状の支持体を繰り出し、繰り出された該支持体をワイヤメッシュと共に搬送し、該支持体上に塗工液を塗布することが好ましい。支持体をワイヤメッシュと共に搬送するときには、サクションボックスを用い、ワイヤメッシュを介して支持体を吸引し、支持体をワイヤメッシュ上に固定する。塗工幅は支持体幅と同一又はそれよりも狭くする。塗工厚みは、目的とする発熱成形体の具体的用途などに応じて適宜調整することができる。また塗工液をパターン塗布することで、所望の形状の発熱成形体を得ることができる。
【0020】
支持体としては、通気性のもの及び非通気性のものの双方を用いることができ、目的とする発熱成形体の具体的用途などに応じて適宜適切なものを選定すればよい。支持体は、可撓性を有するシート材料の形態や、剛直な板状の形態であり得る。例えば、空気遮断用の外装袋として支持体を用いる場合には、非通気性のシート材料を用いることが好ましい。また、発熱成形体からの被酸化性粉末等の脱落を防止するための内装袋として支持体を用いる場合には、通気性のシート材料を用いることが好ましい。従って、通気性の支持体を用いる場合には、被酸化性粉末等の脱落を防止し得る程度に小さい目開きのものを用いることが好ましい。
【0021】
非通気性の支持体の例としては、各種合成樹脂のフィルムが挙げられる。このフィルムは酸素透過性の低いものであることが好ましい。通気性の支持体の例としては各種不織布、織布、編布、開孔フィルム、水不透過性で且つ水蒸気透過性のフィルムなどが挙げられ、特に不織布を用いることが、取り扱い性、経済性等の点から好ましい。
【0022】
(3)塗工によって形成された含水成形体の脱水工程
含水成形体は所定の脱水方法によって所定の含水率まで脱水される。脱水方法としては、例えば、支持体が通気性のシート材料からなり、該支持体がワイヤメッシュと共に搬送されている場合には、サクションボックスを用い、ワイヤメッシュ及び支持体を介して含水成形体を吸引し脱水すればよい。尚、この場合には塗工液の塗工による含水成形体の形成と、含水成形体の脱水とがほぼ同時に起こる。支持体が非通気性のものからなる場合には、含水成形体をプレス脱水すればよい。何れの場合においても脱水後の含水成形体の含水率を60%以下とすることが好ましい。
【0023】
脱水工程においても被酸化性金属粉末の酸化は進行しないので、先に述べた塗工工程と同様に、被酸化性金属粉末を空気と遮断するための特別の手当は必要ない。
【0024】
(4)脱水された含水成形体の加熱乾燥工程
脱水された含水成形体は、加熱乾燥装置によって所定の含水率まで加熱乾燥される。これによって中間成形体が形成される。加熱乾燥装置としては、熱風乾燥機、赤外線乾燥機、ヤンキードライヤなどを用いることができる。生産性の点からは、ヤンキードライヤを用いることが好ましい。
【0025】
含水成形体の加熱乾燥の程度は、含水率5重量%以下とすることができる。この含水率の値は絶乾とほぼ同様のレベルであり、この程度までに乾燥されて得られた中間成形体は保形性が高く、ハンドリング性が良好となる。従って、後述する加工工程を容易に行うことができるという利点がある。別法として、含水成形体を含水率10〜15重量%程度に加熱乾燥させて中間成形体を得ることもできる。この範囲の含水率の中間成形体は、絶乾の中間成形体に比べて保形性が若干低いが、乾燥時間を短縮できるという利点がある。何れの場合においても、得られた中間成形体には、被酸化性金属粉末の酸化反応を持続させるための電解質が含まれていないので、該中間成形体を空気中に放置しておいても被酸化性金属粉末の酸化は進行しない。従って、得られた中間成形体を一旦保管しておき、別途、後述する(5)以降の工程に付すことが容易である。つまり、製造プロセスに自由度が増すという利点がある。従来の発熱体の製造方法では、最終製品の外装袋への封入までを連続して一気に行う必要があり、製造プロセスの自由度が低かった。
【0026】
(5)中間成形体の加工工程
中間成形体には所定の加工が施される。例えば、得られた中間成形体が長尺状である場合には、これを所定の大きさで毎葉に裁断する。また所定形状に打ち抜いてもよい。これらの工程においては、支持体と中間成形体とを分離させてもよく、或いは中間成形体が支持体に付着した状態で加工を行ってもよい。中間成形体には電解質、即ち塩分が含まれていないので、裁断や打ち抜きに用いられる刃が腐食しづらいという利点がある。但し、中間成形体が絶乾に近い状態ではなく、10〜15重量%程度の水分を含んでいる場合には、刃の腐食が若干起こり易い傾向にある。
【0027】
(6)加工された中間成形体への電解質水溶液の付与工程
中間成形体には電解質水溶液が付与されて、中間成形体に所定量の電解質及び水が加えられ、目的とする発熱成形体が得られる。電解質は被酸化性金属粉末の酸化反応を持続させる目的で用いられる。水は、被酸化性金属粉末の酸化反応における反応物の一つである。
【0028】
電解質水溶液は、目的とする発熱成形体の含水率が20〜40重量%となるような量及び濃度で付与されることが、十分な発熱量が長時間持続する点から好ましい。同様の理由により、電解質水溶液は、発熱成形体における被酸化性金属粉末100重量部に対して電解質が2.4〜4.8重量部となるような量及び濃度で付与されることが好ましい。これらの目的を達成するために好ましい電解質水溶液の濃度及び付与量は、中間成形体の含水率に応じて適宜調整する。
【0029】
発熱成形体の発熱量や発熱持続時間は、発熱成形体の含水率や電解質の量に大きく影響する。従って、中間成形体に電解質水溶液を付与する工程はシビアにコントロールすることが好ましい。この観点から考えると、含水率10〜15重量%の中間成形体に電解質水溶液を付与するよりも、絶乾に近い状態の中間成形体に電解質水溶液を付与する方が、発熱成形体の含水率や電解質の量をシビアにコントロールできる。この理由は、絶乾に近い状態の中間成形体の組成は、塗工液の配合組成から容易に計算できるので、電解質水溶液の濃度及び付与量をほぼ正確に決定できるのに対して、含水率10〜15重量%の中間成形体の組成は含水率によって変動することから、中間成形体の含水率を監視しながら、その変動に応じて電解質水溶液の濃度及び付与量を決定しなければならないからである。
【0030】
電解質としては、従来この種の発熱体に用いられているものを特に制限無く用いることができる。例えばアルカリ金属、アルカリ土類金属又は重金属の硫酸塩、炭酸塩、塩化物又は水酸化物等が挙げられる。これらの中でも、導電性、化学的安定性、生産コストに優れる点から、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、第1塩化鉄、第2塩化鉄等の各種塩化物が好ましく用いられる。
【0031】
電解質水溶液の付与方法としては、噴霧、ブラシによる塗布、ダイコーティング等が用いられ、付与量を正確に制御できる点から噴霧を用いることが好ましい。
【0032】
このようにして得られた発熱成形体においては、発熱成形体の重量に対する被酸化性金属粉末の割合が40〜90重量%であることが、発熱特性の点から好ましい。同様の理由から、発熱成形体の重量に対する電解質の割合は1.0〜4.0重量%、水の割合は5〜20重量%、保水剤の割合は5〜20重量%、増粘剤の割合は0.5〜5重量%であることが好ましい。
【0033】
得られた発熱成形体がシート状である場合には、後加工が容易である点から、厚さが0.1〜20mm、特に0.2〜10mmであることが好ましい。また坪量は30〜5000g/m2、特に50〜1000g/m2であることが好ましい。
【0034】
得られた発熱成形体は良好な保形性を示し、使用中に被酸化性金属粉末に偏りが生じず、均一な発熱特性を示す。また、塗工液の塗工方法に応じて種々の形状の成形体となる。更に、繊維材料からマトリックスが形成されているので、或る程度の可撓性を示し、外力に対して変形可能であり、多少の曲げに対してであれば破損することはない。その上、被酸化性金属粉末の脱落も少なくなる。
【0035】
(7)後工程
得られた発熱成形体は、外装袋に封入され酸素遮断される。この場合、支持体が非通気性である場合には、この工程に至るまでの間、発熱成形体と支持体とを分離させないでおき、この工程において支持体を外装袋の一部又は全部として利用することができる。
【0036】
以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されるものではない。例えば、前記の(5)中間成形体の加工工程を行わずに、得られた中間成形体に直ちに電解液水溶液を付与してもよい。また、中間成形体が得られた後、該中間成形体を一旦保管しておき、その後に該中間成形体に電解質水溶液を付与してもよい。
【0037】
【実施例】
以下、実施例により本発明を更に詳細に説明する。しかしながら、本発明の範囲は斯かる実施例に制限されるものではない。特に断らない限り、以下の例中、「%」は「重量%」を示す。
【0038】
〔実施例1〕
以下の表1に示す配合組成の塗工液を調整した。
【0039】
【表1】

Figure 0004155791
【0040】
走行する長尺状のポリプロピレン製不織布(坪量13g/m2)上に、エクストルージョンダイコータを用いて塗工液を連続塗工し含水成形体を形成した。塗工量は2000g/m2であった。不織布はワイヤメッシュ上に配置されワイヤメッシュと共に搬送された。ワイヤメッシュにおける裏面にはサクションボックスが配置されており、不織布は、ワイヤメッシュを介して吸引されてワイヤメッシュ上に固定されていた。含水成形体の形成と同時に、サクションボックスによる吸引で含水成形体は脱水されて、その含水率が60%以下となった。含水成形体は支持体に支持された状態でヤンキードライヤに送られ加熱乾燥されて含水率2.5%の絶乾状態となった。これによって長尺状の中間成形体が得られた。中間成形体は、ロール状に巻回された。次いで、巻回された中間成形体を繰り出し、裁断装置によって毎葉に裁断した。裁断された中間成形体に、10%塩化ナトリウム水溶液を噴霧した。噴霧量は、中間成形体の重量に対して30%であった。このようにして、発熱成形体を得た。得られた発熱成形体における含水率は22.7%、鉄粉の割合は62.7%、合成パルプの割合は4.9%、保水剤の割合は3.7%、増粘剤の割合は3.7%であった。最後に、発熱成形体をポリプロピレン製の外装袋に封入して酸素を遮断した。
【0041】
得られた発熱成形体の発熱特性を測定したところ、安定した発熱特性を示すとともに、発熱温度も十分な温度に達することが確認された。
【0042】
〔比較例1〕
以下の表2に示す配合組成の塗工液を調整した。
【0043】
【表2】
Figure 0004155791
【0044】
走行する長尺状のポリプロピレン製不織布(坪量13g/m2)上に、エクストルージョンダイコータを用いて塗工液を連続塗工し含水成形体を形成した。塗工量は2000g/m2であった。不織布はワイヤメッシュ上に配置されワイヤメッシュと共に搬送された。ワイヤメッシュにおける裏面にはサクションボックスが配置されており、不織布は、ワイヤメッシュを介して吸引されてワイヤメッシュ上に固定されていた。含水成形体の形成と同時に、サクションボックスによる吸引で含水成形体は脱水されて、その含水率が60%以下となった。含水成形体は支持体に支持された状態でヤンキードライヤに送られ加熱乾燥されて含水率22.7%の発熱成形体が得られた。この発熱成形体を毎葉に裁断した。この間、塗工液の調製並びに含水成形体の脱水、加熱乾燥及び裁断工程において、鉄粉の酸化による発熱が観察された。得られた発熱成形体における含水率は10%、鉄粉の割合は62.7%、合成パルプの割合は4.9%、保水剤の割合は3.7%、増粘剤の割合は3.7%であった。最後に、発熱成形体をポリプロピレン製の外装袋に封入して酸素を遮断した。
【0045】
得られた発熱成形体の発熱特性を測定したところ、発熱せず温度の立上がりも確認できなかった。
【0046】
【発明の効果】
本発明の発熱成形体の製造方法によれば、製造プロセスの自由度が高く、また製造工程中での製造対象物のハンドリング性が良好となる。
また本発明の発熱成形体の製造方法によれば、所望の形状に成形でき、また使用中に発熱物質の偏り及びこれに起因する不均一な発熱が生じない発熱成形体を容易に製造できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a heat-generating molded body using heat generated by an oxidation reaction between oxygen in air and an oxidizable metal powder.
[0002]
[Prior art and problems to be solved by the invention]
A heating element is known in which an ink-like or cream-like exothermic composition is enclosed in a packaging material. This exothermic composition contains exothermic substances, water-absorbing polymers, thickeners, carbon components, metal chlorides and water as essential components, and further contains water retention agents, pH adjusters, surfactants and the like.
[0003]
However, in the production of the heating element described in Patent Document 1, the exothermic composition, which contains all the exothermic substances, metal chlorides and water necessary for the exotherm, is contained in the exothermic composition. In order to suppress this oxidation loss, it is necessary to continuously encapsulate the heating element in the outer bag from the preparation of the exothermic composition. Therefore, the manufacturing process has a low degree of freedom, and it is difficult to adopt a manufacturing method in which, for example, the manufactured exothermic composition is temporarily stored and used to manufacture a heating element when necessary. In addition, it is necessary to take care to block the exothermic composition from air as much as possible, and the handling property cannot be said to be good. Furthermore, since the exothermic composition in the obtained exothermic body is ink-like or cream-like, for example, the exothermic composition tends to be biased during use, and uniform heat generation may not occur. In addition, since the exothermic composition is a fluid, it cannot be easily formed into a desired shape.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-155827
Accordingly, an object of the present invention is to provide a method for producing a heat-generating molded body having a high degree of freedom in the production process and good handling properties of the production object during the production process.
Another object of the present invention is to provide a method for producing a heat-generating molded body that can be molded into a desired shape and that does not cause unevenness of heat-generating substances and non-uniform heat generation due to this.
[0006]
[Means for Solving the Problems]
The present invention forms a water-containing molded body by applying a coating liquid containing an oxidizable metal powder, a fiber material, water and a water retention agent and having a water content of 40 to 75% by weight on a support. The water-containing molded body is dehydrated to a predetermined moisture content, and then the dehydrated water-containing molded body is heated and dried to a predetermined moisture content to obtain an intermediate molded body. After that, an electrolyte aqueous solution is added to the intermediate molded body. The object is achieved by providing a method for producing a heat generating molded body that is provided with a predetermined amount to form a heat generating molded body.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on preferred embodiments thereof. One embodiment of the production method of the present invention includes (1) a coating liquid preparation step, (2) a coating liquid coating step, (3) a dehydration step of a water-containing molded body formed by coating, (4 ) A step of heating and drying the dehydrated water-containing molded body to obtain an intermediate molded body, (5) a process of processing the intermediate molded body, (6) a step of applying an aqueous electrolyte solution to the processed intermediate molded body, and (7) It is roughly divided into subsequent processes such as oxygen blocking. Hereinafter, each process will be described.
[0008]
(1) Preparation process of coating liquid The coating liquid contains an oxidizable metal powder, a fiber material, water and a water retention agent, and is a liquid using water as a medium. The water content in the coating solution is 40 to 75% by weight. That is, the coating liquid is a liquid having low fluidity, unlike the slurry used in the wet papermaking method. A coating liquid having a water content of more than 75% by weight is likely to cause solids to settle and has high fluidity, so that it is not easy to uniformly coat the support described later. On the other hand, a coating liquid having a water content of less than 40% by weight is too low in fluidity, increasing the load during coating, and is not easy to apply uniformly.
[0009]
The coating liquid is prepared by adding and mixing the above-described components to water. There is no restriction | limiting in particular in the order of addition. Although the oxidation reaction of the oxidizable metal powder proceeds somewhat in the preparation process of the coating liquid, the oxidation reaction is immediately stopped because the coating liquid does not contain an electrolyte for sustaining the oxidation reaction. No further oxidation reaction takes place.
[0010]
As the oxidizable metal powder contained in the coating liquid, those conventionally used for this type of heating element can be used without particular limitation. For example, iron powder, aluminum powder, zinc powder, manganese powder, magnesium powder, calcium powder and the like can be mentioned. Among these, iron powder is preferably used from the viewpoints of handleability, safety, and manufacturing cost. The oxidizable metal powder has a particle size (hereinafter referred to as the maximum length in the form of powder) of 0.1 to 300 μm from the viewpoint of fixability to the fiber material and control of the oxidation reaction. In particular, it is preferable to contain 50% by weight or more of particles having a particle size of 0.1 to 150 μm. The content of the oxidizable metal powder in the coating solution is preferably 15 to 50% by weight, particularly 25 to 35% by weight, from the viewpoint of controlling the oxidation reaction in the resulting exothermic molded body.
[0011]
The fiber material serves as a matrix for holding the oxidizable metal powder in the exothermic molded body to be obtained. As the fiber material, natural products such as wood pulp and cotton, various synthetic fibers, synthetic pulp, and the like can be used. When using synthetic products, use polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polyamides, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl acetate, or copolymers or modified products thereof. Can do. When synthetic fibers are used, the thickness is preferably 0.1 to 100 dtex, particularly 0.5 to 50 dtex, from the viewpoint of ensuring the strength of the exothermic molded body and the coating property of the coating liquid. For the same reason, the fiber material preferably has a length weighted average fiber length of 0.1 to 3.0 mm. The content of the fiber material in the coating solution is preferably 1 to 10% by weight, particularly 2 to 4% by weight, from the viewpoint of securing the strength of the exothermic molded body to be obtained.
[0012]
The water retention agent acts as a moisture retention agent in the exothermic molded body to be obtained, and contributes to the oxidation reaction of the oxidizable metal powder. The water retention agent also acts as an oxygen supply agent for oxygen retention and oxidizable metal powder. Examples of water retention agents include activated carbon (coconut husk charcoal, charcoal powder, calendar bituminous coal, peat, lignite), carbon materials such as carbon black, acetylene black and graphite, zeolite, perlite, vermiculite, silica and the like. Among these, activated carbon is preferably used because it has water retention ability, oxygen supply ability, and catalytic ability. The water retention agent preferably has a particle size of 0.1 to 500 μm from the viewpoint of easily forming an effective contact state with the oxidizable metal powder. % Or more is preferable. The content of the water retention agent in the coating liquid is preferably 0.5 to 5% by weight, particularly 1 to 2.5% by weight, from the viewpoint that the oxidizable metal powder can sufficiently contribute to the oxidation reaction.
[0013]
It is preferable that the coating liquid further contains a thickener in addition to the aforementioned components. This makes it easy to control the fluidity of the coating liquid and facilitate uniform coating. Further, the formation of the matrix formed of the fiber material is improved, the mechanical strength of the resulting exothermic molded body is increased, and the manufacture of exothermic molded bodies of various shapes is facilitated. Further, the oxidizable metal powder is prevented from dropping from the exothermic molded body.
[0014]
As the thickener, those having a shape-retaining property in a water-containing state are preferably used. Further, as the thickener, it is preferable to use a thickener that does not have a high affinity with the surface of the oxidizable powder. The reason for this is that if the affinity with the surface of the oxidizable powder is too high, the surface is coated with a thickener and the oxidation reaction of the oxidizable powder is hindered. Examples of preferable thickeners that satisfy these requirements include clay minerals such as bentonite, starch-based water-absorbing agents, silica, calcium carbonate, cellulose-modified products (such as methylcellulose), and particularly clay minerals such as bentonite are used. It is preferable.
[0015]
The content of the thickener in the coating liquid is 0.1 to 5% by weight, particularly 0.5 to 2.5% by weight, depending on the thickening effect of the thickener. From the point that the fluidity of the coating liquid is good.
[0016]
The coating liquid may further contain a pH adjuster, a surfactant for improving dispersibility, an antifoaming agent, and the like.
[0017]
(2) Coating process of coating liquid The coating liquid prepared is coated on a support, thereby forming a water-containing molded body. As the coating method, a known coating method can be used without particular limitation. For example, roll coating, die coating, screen printing, spray coating, roll gravure, knife coating, curtain coater and the like can be used. In particular, it is preferable to use die coating from the viewpoint of flow stability of the coating liquid and ease of application. What is necessary is just to determine the coating amount of a coating liquid according to the specific use etc. of the target exothermic molded object.
[0018]
As described above, since no electrolyte is contained in the coating solution, the oxidation of the oxidizable metal powder does not proceed in the coating process. Therefore, no special allowance is required in order to shield the oxidizable metal powder from the air in the coating process.
[0019]
At the time of coating, it is preferable from the viewpoint of productivity that the support is caused to travel in a predetermined direction and the coating liquid is applied onto the traveling support. Typically, it is preferable that the wound long support is fed out, the fed support is transported together with the wire mesh, and the coating liquid is applied onto the support. When transporting the support together with the wire mesh, a suction box is used to suck the support through the wire mesh and fix the support on the wire mesh. The coating width is the same as or narrower than the support width. The coating thickness can be appropriately adjusted according to the specific application of the target exothermic molded article. Moreover, the exothermic molded object of a desired shape can be obtained by pattern-applying a coating liquid.
[0020]
As the support, both breathable and non-breathable ones can be used, and an appropriate one may be selected according to the specific use of the target exothermic molded body. The support may be in the form of a flexible sheet material or in the form of a rigid plate. For example, when using a support as an air-blocking outer bag, it is preferable to use a non-breathable sheet material. Moreover, when using a support body as an interior bag for preventing the oxidizable powder and the like from falling off the exothermic molded body, it is preferable to use a breathable sheet material. Therefore, when using a breathable support, it is preferable to use a material having an opening that is small enough to prevent the oxidizable powder from falling off.
[0021]
Examples of non-breathable supports include various synthetic resin films. This film preferably has a low oxygen permeability. Examples of the breathable support include various nonwoven fabrics, woven fabrics, knitted fabrics, apertured films, water-impermeable and water-vapor-permeable films, and the use of nonwoven fabrics is particularly easy to handle and economical. From the point of view, it is preferable.
[0022]
(3) Dehydration step of water-containing molded body formed by coating The water-containing molded body is dehydrated to a predetermined moisture content by a predetermined dehydration method. As a dehydration method, for example, when the support is made of a breathable sheet material and the support is transported together with the wire mesh, a water-containing molded body is formed via the wire mesh and the support using a suction box. Just suck and dehydrate. In this case, the formation of the water-containing formed body by the application of the coating liquid and the dehydration of the water-containing formed body occur almost simultaneously. When the support is made of a non-breathable material, the water-containing molded body may be press dehydrated. In any case, it is preferable that the water content of the water-containing molded product after dehydration is 60% or less.
[0023]
Since the oxidation of the oxidizable metal powder does not proceed even in the dehydration process, no special allowance is required for blocking the oxidizable metal powder from the air, as in the coating process described above.
[0024]
(4) Heat-drying process of dehydrated water-containing molded body The dehydrated water-containing molded body is heat-dried to a predetermined moisture content by a heat drying apparatus. Thereby, an intermediate molded body is formed. As the heat drying apparatus, a hot air dryer, an infrared dryer, a Yankee dryer, or the like can be used. From the viewpoint of productivity, it is preferable to use a Yankee dryer.
[0025]
The degree of heat-drying of the water-containing molded product can be 5% by weight or less. The value of the moisture content is almost the same level as that of absolutely dry, and the intermediate molded body obtained by drying to this extent has high shape retention and good handling properties. Therefore, there exists an advantage that the process process mentioned later can be performed easily. Alternatively, the intermediate molded body can be obtained by heating and drying the water-containing molded body to a water content of about 10 to 15% by weight. An intermediate molded body having a moisture content in this range has a slightly lower shape retention than an absolutely dry intermediate molded body, but has the advantage that the drying time can be shortened. In any case, since the obtained intermediate molded body does not contain an electrolyte for sustaining the oxidation reaction of the oxidizable metal powder, the intermediate molded body may be left in the air. The oxidation of the oxidizable metal powder does not proceed. Therefore, it is easy to temporarily store the obtained intermediate molded body and subject it to a process after (5) described later. In other words, there is an advantage that the degree of freedom increases in the manufacturing process. In the conventional method of manufacturing a heating element, it is necessary to continuously enclose the final product in the outer bag, and the degree of freedom in the manufacturing process is low.
[0026]
(5) Processing step of intermediate molded body The intermediate molded body is subjected to predetermined processing. For example, when the obtained intermediate molded body is long, it is cut into a leaf of a predetermined size. Further, it may be punched into a predetermined shape. In these steps, the support and the intermediate molded body may be separated, or processing may be performed with the intermediate molded body attached to the support. Since the intermediate molded body does not contain an electrolyte, that is, salt, there is an advantage that a blade used for cutting and punching is not easily corroded. However, when the intermediate molded body is not nearly completely dry and contains about 10 to 15% by weight of water, the blade tends to be slightly corroded.
[0027]
(6) Step of applying an aqueous electrolyte solution to the processed intermediate molded body An aqueous electrolyte solution is applied to the intermediate molded body, and a predetermined amount of electrolyte and water are added to the intermediate molded body to obtain a target exothermic molded body. It is done. The electrolyte is used for the purpose of maintaining the oxidation reaction of the oxidizable metal powder. Water is one of the reactants in the oxidation reaction of the oxidizable metal powder.
[0028]
The aqueous electrolyte solution is preferably applied in such an amount and concentration that the water content of the target exothermic molded article is 20 to 40% by weight from the viewpoint of maintaining a sufficient calorific value for a long time. For the same reason, the aqueous electrolyte solution is preferably applied in an amount and concentration such that the electrolyte is 2.4 to 4.8 parts by weight with respect to 100 parts by weight of the oxidizable metal powder in the exothermic molded body. In order to achieve these objects, the preferable concentration and application amount of the aqueous electrolyte solution are appropriately adjusted according to the moisture content of the intermediate molded body.
[0029]
The amount of heat generation and the duration of heat generation of the exothermic molded body greatly affect the moisture content of the exothermic molded body and the amount of electrolyte. Therefore, it is preferable to severely control the step of applying the electrolyte aqueous solution to the intermediate molded body. From this point of view, the moisture content of the exothermic molded body is more likely to be applied to the intermediate molded body in a nearly dry state than to provide the aqueous electrolyte solution to the intermediate molded body having a moisture content of 10 to 15% by weight. And the amount of electrolyte can be severely controlled. The reason for this is that the composition of the intermediate molded body in an almost dry state can be easily calculated from the composition of the coating liquid, so that the concentration and amount of the aqueous electrolyte solution can be determined almost accurately, while the moisture content Since the composition of the 10 to 15% by weight intermediate molded body varies depending on the moisture content, it is necessary to determine the concentration and applied amount of the aqueous electrolyte solution according to the variation while monitoring the moisture content of the intermediate molded body. It is.
[0030]
As the electrolyte, those conventionally used for this type of heating element can be used without particular limitation. Examples thereof include alkali metal, alkaline earth metal or heavy metal sulfates, carbonates, chlorides or hydroxides. Among these, various chlorides such as sodium chloride, potassium chloride, calcium chloride, magnesium chloride, first ferric chloride, second ferric chloride are preferably used from the viewpoint of excellent conductivity, chemical stability, and production cost.
[0031]
As an application method of the electrolyte aqueous solution, spraying, application with a brush, die coating, or the like is used, and it is preferable to use spraying from the viewpoint that the application amount can be accurately controlled.
[0032]
In the exothermic molded body thus obtained, the ratio of the oxidizable metal powder to the weight of the exothermic molded body is preferably 40 to 90% by weight from the viewpoint of the exothermic characteristics. For the same reason, the ratio of the electrolyte to the weight of the exothermic molded body is 1.0 to 4.0% by weight, the ratio of water is 5 to 20% by weight, the ratio of the water retention agent is 5 to 20% by weight, The proportion is preferably 0.5 to 5% by weight.
[0033]
When the obtained exothermic molded body is a sheet, the thickness is preferably 0.1 to 20 mm, particularly preferably 0.2 to 10 mm from the viewpoint of easy post-processing. The basis weight is preferably 30 to 5000 g / m 2 , particularly 50 to 1000 g / m 2 .
[0034]
The obtained exothermic molded article exhibits good shape retention, and the oxidizable metal powder is not biased during use and exhibits uniform exothermic characteristics. Moreover, it becomes a molded object of various shapes according to the coating method of a coating liquid. Furthermore, since the matrix is formed from the fiber material, it exhibits a certain degree of flexibility, can be deformed by an external force, and does not break if subjected to some bending. In addition, the oxidizable metal powder is less removed.
[0035]
(7) The exothermic molded body obtained in the post-process is enclosed in an outer bag and oxygen-blocked. In this case, if the support is non-breathable, the exothermic molded body and the support are not separated until reaching this step, and the support is used as a part or all of the outer bag in this step. Can be used.
[0036]
As mentioned above, although this invention was demonstrated based on the preferable embodiment, this invention is not restrict | limited to the said embodiment. For example, the aqueous electrolyte solution may be immediately applied to the obtained intermediate molded body without performing the processing step of (5) intermediate molded body. Further, after the intermediate molded body is obtained, the intermediate molded body may be temporarily stored, and then an aqueous electrolyte solution may be applied to the intermediate molded body.
[0037]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such embodiments. Unless otherwise specified, “%” in the following examples represents “% by weight”.
[0038]
[Example 1]
A coating solution having the composition shown in Table 1 below was prepared.
[0039]
[Table 1]
Figure 0004155791
[0040]
On the long polypropylene nonwoven fabric (basis weight 13g / m < 2 >) which travels, the coating liquid was continuously applied using the extrusion die coater, and the water-containing molded object was formed. The coating amount was 2000 g / m 2 . The nonwoven fabric was placed on the wire mesh and conveyed with the wire mesh. A suction box is disposed on the back surface of the wire mesh, and the nonwoven fabric is sucked through the wire mesh and fixed on the wire mesh. Simultaneously with the formation of the water-containing molded body, the water-containing molded body was dehydrated by suction with a suction box, and its water content became 60% or less. The water-containing molded product was sent to a Yankee dryer while being supported by the support, and was heat-dried to a completely dry state with a water content of 2.5%. As a result, an elongated intermediate molded body was obtained. The intermediate molded body was wound into a roll shape. Subsequently, the wound intermediate molded body was fed out and cut into each leaf by a cutting device. A 10% aqueous sodium chloride solution was sprayed on the cut intermediate molded body. The spray amount was 30% with respect to the weight of the intermediate molded body. In this way, an exothermic molded body was obtained. The moisture content of the obtained exothermic molded body was 22.7%, the ratio of iron powder was 62.7%, the ratio of synthetic pulp was 4.9%, the ratio of water retention agent was 3.7%, the ratio of thickener Was 3.7%. Finally, the exothermic molded body was sealed in a polypropylene outer bag to block oxygen.
[0041]
As a result of measuring the heat generation characteristics of the obtained heat-generating molded body, it was confirmed that the heat generation characteristics were stable and the heat generation temperature reached a sufficient temperature.
[0042]
[Comparative Example 1]
A coating solution having the composition shown in Table 2 below was prepared.
[0043]
[Table 2]
Figure 0004155791
[0044]
On the long polypropylene nonwoven fabric (basis weight 13g / m < 2 >) which travels, the coating liquid was continuously applied using the extrusion die coater, and the water-containing molded object was formed. The coating weight was 2000g / m 2. The nonwoven fabric was placed on the wire mesh and conveyed with the wire mesh. A suction box is disposed on the back surface of the wire mesh, and the nonwoven fabric is sucked through the wire mesh and fixed on the wire mesh. Simultaneously with the formation of the water-containing molded body, the water-containing molded body was dehydrated by suction with a suction box, and its water content became 60% or less. The water-containing molded body was sent to a Yankee dryer while being supported on the support, and was heat-dried to obtain an exothermic molded body having a water content of 22.7%. This exothermic molded body was cut into each leaf. During this time, heat generation due to oxidation of iron powder was observed during the preparation of the coating liquid and the dehydration, heat drying and cutting steps of the hydrous molded product. The resulting exothermic molded body had a water content of 10%, an iron powder ratio of 62.7%, a synthetic pulp ratio of 4.9%, a water retention agent ratio of 3.7%, and a thickener ratio of 3%. 0.7%. Finally, the exothermic molded body was sealed in a polypropylene outer bag to block oxygen.
[0045]
When the exothermic property of the obtained exothermic molded body was measured, no heat was generated and no rise in temperature could be confirmed.
[0046]
【The invention's effect】
According to the method for manufacturing an exothermic molded article of the present invention, the degree of freedom of the manufacturing process is high, and the handling property of the manufacturing object in the manufacturing process is good.
Further, according to the method for producing a heat-generating molded body of the present invention, a heat-generating molded body that can be molded into a desired shape and that does not generate unevenness of heat-generating substances and non-uniform heat generation due to this can be easily manufactured.

Claims (6)

被酸化性金属粉末、繊維材料、水及び保水剤を含み且つ水の含有量が40〜75重量%である塗工液を支持体上に塗工して含水成形体を形成し、該含水成形体を所定の含水率まで脱水した後、脱水された該含水成形体を所定の含水率まで加熱乾燥させて中間成形体を得、然る後、該中間成形体に電解質水溶液を所定量付与して発熱成形体となす発熱成形体の製造方法。  A water-containing molded body is formed by applying a coating liquid containing an oxidizable metal powder, a fiber material, water and a water retention agent and having a water content of 40 to 75% by weight on a support, and forming the water-containing molded body. After the body is dehydrated to a predetermined moisture content, the dehydrated water-containing molded body is heated and dried to a predetermined moisture content to obtain an intermediate molded body. After that, a predetermined amount of an aqueous electrolyte solution is applied to the intermediate molded body. A method for producing a heat-generating molded body. 前記塗工液に更に増粘剤が含まれている請求項1記載の発熱成形体の製造方法。  The method for producing an exothermic molded body according to claim 1, wherein the coating liquid further contains a thickener. 脱水された前記含水成形体を含水率5重量%以下まで加熱乾燥させて前記中間成形体を得、然る後、該中間成形体に電解質水溶液を所定量付与して前記発熱成形体の含水率を20〜40重量%にする請求項1又は2記載の発熱成形体の製造方法。  The dehydrated water-containing molded body is heated and dried to a moisture content of 5% by weight or less to obtain the intermediate molded body. After that, a predetermined amount of an aqueous electrolyte solution is applied to the intermediate molded body to obtain a moisture content of the heat-generating molded body. The manufacturing method of the exothermic molded object of Claim 1 or 2 which makes 20-40 weight%. 前記繊維材料の長さ加重平均繊維長が0.1〜3.0mmである請求項1〜3の何れかに記載の発熱成形体の製造方法。  The length-weighted average fiber length of the fiber material is 0.1 to 3.0 mm. 前記塗工液における前記被酸化性金属粉末の含有量が15〜50重量%、前記保水剤の含有量が0.5〜5重量%、前記繊維材料の含有量が1〜10重量%である請求項1〜4の何れかに記載の発熱成形体の製造方法。  The content of the oxidizable metal powder in the coating liquid is 15 to 50% by weight, the content of the water retention agent is 0.5 to 5% by weight, and the content of the fiber material is 1 to 10% by weight. The manufacturing method of the exothermic molded object in any one of Claims 1-4. 前記中間成形体が長尺状のものであり、該中間成形体を所定の大きさで毎葉に裁断するか、又は所定形状に打ち抜き、裁断又は打ち抜かれた中間成形体に電解質水溶液を付与する請求項1〜5の何れかに記載の発熱成形体の製造方法。The intermediate molded body is elongated, and the intermediate molded body is cut into a predetermined size every leaf, or is punched into a predetermined shape, and an aqueous electrolyte solution is applied to the cut or punched intermediate molded body. The manufacturing method of the heat-emitting molded object in any one of Claims 1-5.
JP2002307716A 2002-10-23 2002-10-23 Method for producing exothermic molded body Expired - Fee Related JP4155791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002307716A JP4155791B2 (en) 2002-10-23 2002-10-23 Method for producing exothermic molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002307716A JP4155791B2 (en) 2002-10-23 2002-10-23 Method for producing exothermic molded body

Publications (2)

Publication Number Publication Date
JP2004143232A JP2004143232A (en) 2004-05-20
JP4155791B2 true JP4155791B2 (en) 2008-09-24

Family

ID=32454052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002307716A Expired - Fee Related JP4155791B2 (en) 2002-10-23 2002-10-23 Method for producing exothermic molded body

Country Status (1)

Country Link
JP (1) JP4155791B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158919A1 (en) * 2010-06-18 2011-12-22 花王株式会社 Heating appliance
JP2012000345A (en) * 2010-06-18 2012-01-05 Kao Corp Method of manufacturing heating element
JP2012000344A (en) * 2010-06-18 2012-01-05 Kao Corp Method of manufacturing heating element
JP2012005982A (en) * 2010-06-25 2012-01-12 Kao Corp Manufacturing method of sheet having coating layer

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003102761A (en) * 2001-09-28 2003-04-08 Kao Corp Method of manufacturing heating compact
US7338516B2 (en) * 2004-12-23 2008-03-04 Kimberly-Clark Worldwide, Inc. Method for applying an exothermic coating to a substrate
JP5019820B2 (en) * 2005-08-09 2012-09-05 花王株式会社 Heating element and heat generating intermediate
US20090101867A1 (en) * 2005-08-09 2009-04-23 Kao Corporation Heat generating element and precursor thereof
JP5800589B2 (en) * 2011-06-16 2015-10-28 花王株式会社 Manufacturing method of heating element
JP5214037B2 (en) * 2012-01-11 2013-06-19 花王株式会社 Oxidizable sheet and oxidizable article
JP5840554B2 (en) * 2012-03-30 2016-01-06 花王株式会社 Heating equipment
CN110678280B (en) * 2017-05-18 2022-04-29 花王株式会社 Iron powder for heat-generating composition, method for producing same, heat-generating composition using same, and method for producing heat-generating element
JP6472917B2 (en) * 2017-05-18 2019-02-20 花王株式会社 Exothermic composition and heating element
JP7008574B2 (en) 2017-12-25 2022-02-10 花王株式会社 Manufacturing method of heating element
JP6472916B1 (en) * 2017-12-25 2019-02-20 花王株式会社 Method for producing iron powder for exothermic composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158919A1 (en) * 2010-06-18 2011-12-22 花王株式会社 Heating appliance
JP2012000345A (en) * 2010-06-18 2012-01-05 Kao Corp Method of manufacturing heating element
JP2012000344A (en) * 2010-06-18 2012-01-05 Kao Corp Method of manufacturing heating element
US9709260B2 (en) 2010-06-18 2017-07-18 Kao Corporation Heat generating device
JP2012005982A (en) * 2010-06-25 2012-01-12 Kao Corp Manufacturing method of sheet having coating layer

Also Published As

Publication number Publication date
JP2004143232A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
JP4155791B2 (en) Method for producing exothermic molded body
CN1950569B (en) Article formed into sheet, method for producing the same and exothermic formed article
JP2003102761A (en) Method of manufacturing heating compact
RU2627152C2 (en) Heating element and warming tool using same
CN100450462C (en) Molded sheet
CN101233209A (en) Heating element and heating intermediate
JP4233380B2 (en) Exothermic molded body
JP3703469B2 (en) Molded sheet
JP4458869B2 (en) Exothermic sheet
JP5025456B2 (en) Sheet heating element, sheet heating intermediate and heating sheet
JP2003102762A (en) Method of manufacturing heating compact
JP3874783B2 (en) Manufacturing method of heat generating sheet
JP4429256B2 (en) Method for producing exothermic molded body
JP7008574B2 (en) Manufacturing method of heating element
WO2019058803A1 (en) Sheet
JP2005319049A (en) Heating compact
JP2005058248A (en) Heat generating sheet
JP2006305368A (en) Molded sheet
JP4076511B2 (en) Sheet-like exothermic molded body
JP2003206479A (en) Exothermic molded product
JP2007144410A (en) Oxygen scavenger, oxygen scavenger intermediate, oxygen scavenger composite body and its production method
WO2007049676A1 (en) Oxygen scavenger, oxygen scavenger intermediate, oxygen scavenger composite, and process for producing the same
JP2006114508A (en) Manufacturing method of exoergic compact
JP2005224313A (en) Heating sheet
JP2007144407A (en) Oxygen scavenger, oxygen scavenger intermediate, oxygen scavenger composite body and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4155791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees