JP2006087764A - Led fiber light source device and endoscope using the same - Google Patents

Led fiber light source device and endoscope using the same Download PDF

Info

Publication number
JP2006087764A
JP2006087764A JP2004278791A JP2004278791A JP2006087764A JP 2006087764 A JP2006087764 A JP 2006087764A JP 2004278791 A JP2004278791 A JP 2004278791A JP 2004278791 A JP2004278791 A JP 2004278791A JP 2006087764 A JP2006087764 A JP 2006087764A
Authority
JP
Japan
Prior art keywords
led
leds
light source
lamp
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004278791A
Other languages
Japanese (ja)
Other versions
JP4817632B2 (en
Inventor
Hiromi Yasujima
弘美 安島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004278791A priority Critical patent/JP4817632B2/en
Publication of JP2006087764A publication Critical patent/JP2006087764A/en
Application granted granted Critical
Publication of JP4817632B2 publication Critical patent/JP4817632B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate the mechanical movement of a sub-lamp by putting the sub-lamp in alignment with a main lamp so that the light can be concentrated on the same light path as a backup configuration and to develop a method for collimating a plurality of LEDs (light emitting diodes) each having a different wavelength in order to raise the brightness and change the light source wavelength. <P>SOLUTION: The subject device is provided with a plurality of fixed LEDs, a collimation means which includes a collimating lens or a reflecting mirror for collimating each outputted light from the LEDs, an optical focusing means which includes a condensing lens or a condensing mirror for focusing the outputted light from the collimating means, and an optical fiber with one end disposed near the focal point of the optical focusing means, and a main lamp consisting of some LEDs for regular use among the plurality of LEDs, and a sub-lamp consisting of the other LEDs that can be substituted for the main lamp. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、工業用あるいは医療用途のLEDファイバ光源装置およびこれを用いた内視鏡である。主ランプと副ランプを有する医療用の内視鏡用照明光源に用いられる。   The present invention is an LED fiber light source device for industrial or medical use and an endoscope using the same. Used as a medical endoscope illumination light source having a main lamp and a sub lamp.

医療用の内視鏡では白色光で体内を照らし(照明光学系)CCDカメラなどにて体内画像を得ている。照明光学系はキセノンランプ等の高輝度ランプ、ランプ出力を集光する集光レンズ(反射ミラー等も含まれる)、集光した光を体内に導く光ファイバで構成されたライトガイド、さらにはライトガイドからの出力を体内に照射するための照明レンズで構成されている。   Medical endoscopes illuminate the inside of the body with white light (illumination optical system) and obtain an in-vivo image with a CCD camera or the like. The illumination optical system is a high-intensity lamp such as a xenon lamp, a condensing lens (including a reflection mirror) that condenses the lamp output, a light guide composed of an optical fiber that guides the collected light into the body, and a light It consists of an illumination lens for irradiating the body with the output from the guide.

特許文献1では停電等により商用電源から電力が供給されなくなっても、副ランプを点灯して内視鏡検査の検査続行を可能にする方式が開示されている。図示していないが主ランプはキセノンランプまたはハロゲンランプである。副ランプはLEDであり、副ランプは主ランプの光路から退避していて停電時は副ランプを主ランプの光路上に移動させて使用する構造となっている。   Japanese Patent Application Laid-Open No. 2004-228561 discloses a method that enables the examination of the endoscopic examination to be continued by turning on the sub lamp even when power is not supplied from a commercial power source due to a power failure or the like. Although not shown, the main lamp is a xenon lamp or a halogen lamp. The sub lamp is an LED, and the sub lamp is retracted from the optical path of the main lamp, and is configured to be used by moving the sub lamp onto the optical path of the main lamp during a power failure.

上記のように照明光学系で用いられる高輝度ランプは発熱や、消費電力が大きく、形状が大きくなってしまうなどの問題から高出力LEDの開発状況に合わせてLEDを用いた照明光学系も提案されつつある。   As described above, high-intensity lamps used in illumination optical systems also propose illumination optical systems that use LEDs in accordance with the development status of high-power LEDs due to problems such as heat generation, large power consumption, and large shapes. It is being done.

特許文献2では複数のLED用いた内視鏡用照明光源が提案されている。複数のLEDを並べ反射鏡を用いてLEDの出射光を光ガラスファイバに導入する組み立て方法が提案されている。このように複数のLEDを用いることで高出力化を試みているが、集光効率については非常に悪いと考えられ、また停電時の対策は施されていない。   Patent Document 2 proposes an endoscope illumination light source using a plurality of LEDs. There has been proposed an assembling method in which a plurality of LEDs are arranged and light emitted from the LEDs is introduced into an optical glass fiber using a reflecting mirror. As described above, attempts have been made to increase the output by using a plurality of LEDs, but it is considered that the light collection efficiency is very bad, and no measures are taken against power failure.

図8に特許文献3で開示されている3色のLEDを用いた内視鏡の光源装置を示す。   FIG. 8 shows an endoscope light source device using three-color LEDs disclosed in Patent Document 3.

LED発光部としてのR(赤)30R、G(緑)30G、B(青)30Bの3色と各々に対応する光ファイバを3本(31R,31G,31B)用意すれば、面順次式の内視鏡装置に用いることが出来る。面順次式内視鏡とはR,G,Bの照明光を切り替えて順次被写体に照射して被写体を撮像し観察するもので高画質な映像が得られる。   If you prepare three (31R, 31G, 31B) optical fibers corresponding to each of the three colors R (red) 30R, G (green) 30G, and B (blue) 30B as the LED light emitting unit, It can be used for an endoscope apparatus. A field sequential endoscope is an apparatus that switches R, G, and B illumination light, sequentially irradiates the subject, images and observes the subject, and provides a high-quality image.

例えば、紫色や青色の光を当てると正常な組織は蛍光を出すが、癌の部分は蛍光を出しにくくなり暗く見えにくくなるため区別が出来る。青色の光を当てた場合の画像と、3色をそれぞれ当てて得られた画像を組み合わせた画像(白色光で得られた画像に相当)とを比較することで癌を発見することが出来る。   For example, when a purple or blue light is applied, normal tissue emits fluorescence, but a cancerous portion is difficult to emit fluorescence and is difficult to see in the dark. Cancer can be found by comparing an image obtained by applying blue light with an image obtained by combining images obtained by applying three colors (corresponding to an image obtained by white light).

また非特許文献1によれば内視鏡の侠帯域イメージング(NBI:Narrow Band Imaging)について論じられ、内視鏡検査の光源波長依存性について述べられている。内視鏡は被測定部の表皮検査であり、表皮を検査しやすくするため光源波長を変更できる手段を有することは重要である。
特開2002−72106号 特開2003−235796号 特許第3088165号 「生体用光研究の現状と将来展望」p43-51、光産業技術振興協会、2004年3月
Further, according to Non-Patent Document 1, Narrow Band Imaging (NBI) of an endoscope is discussed, and the light source wavelength dependency of endoscopy is described. An endoscope is a skin inspection of a part to be measured, and it is important to have means that can change the wavelength of the light source in order to facilitate the skin inspection.
JP 2002-72106 A Japanese Patent Laid-Open No. 2003-23596 Japanese Patent No. 3088165 “Current Status and Future Prospects of Biomedical Optical Research” p43-51, Optoelectronic Industry and Technology Promotion Association, March 2004

内視鏡用の光源では、主ランプが点灯しなくても副ランプが点灯するバックアップ構成や、高輝度光源でかつ光源波長を変更できることが求められている。   A light source for an endoscope is required to have a backup configuration in which a sub lamp is lit even when a main lamp is not lit, or a high-intensity light source and a light source wavelength that can be changed.

従来のバックアップ構成は副ランプをメカニカルに移動させるために構成が複雑になる。またLEDは小型化に優位であるが、現状のLED出力では輝度を高めるため複数個のLEDを使用することになる。従来のLEDを用いた光源装置の特許文献2では複数のLEDの出力がコリメートされてなくまたLED全体の大きな光源を集光するため集光効率が非常に悪い。また特許文献3ではR(赤),G(緑),B(青)色のLEDを用意し光源波長の変更を可能としているが、3本の光ファイバを用意しているため挿入部が太くなってしまう。   The conventional backup configuration is complicated because the sub lamp is moved mechanically. Although LEDs are advantageous for miniaturization, in the current LED output, a plurality of LEDs are used to increase the luminance. In Patent Document 2 of a light source device using a conventional LED, the output of a plurality of LEDs is not collimated, and a large light source of the entire LED is condensed, so the light collection efficiency is very poor. In Patent Document 3, R (red), G (green), and B (blue) LEDs are prepared to change the light source wavelength. However, since three optical fibers are prepared, the insertion portion is thick. turn into.

上記要求を解決するために、まずバックアップ構成として主ランプと副ランプを同一光路上に集光するようにレイアウトすることで、副ランプのメカニカル移動をなくす構造を開発することを課題とする。   In order to solve the above-described requirements, it is an object to develop a structure that eliminates mechanical movement of a sub lamp by first laying out a main lamp and a sub lamp so as to collect light on the same optical path as a backup configuration.

次に高輝度かつ光源波長を変更するために波長の異なる複数個のLEDを束ねる手法を開発することを課題とする。   Next, it is an object to develop a method of bundling a plurality of LEDs having different wavelengths in order to change the light source wavelength with high brightness.

本発明はこれらの課題を解決するためのものであり、固定された複数のLEDと、前記LEDからの各出力光をコリメートするコリメートレンズあるいは反射ミラーからなるコリメート手段と、前記コリメート手段からの出力光を集光する集光レンズあるいは集光ミラーからなる集光手段とを有し、前記集光手段の焦点付近に光ファイバの一端を配置し、前記複数のLEDのうち常時使用する一部のLEDからなる主ランプと、前記主ランプと切り替えて使用可能な他のLEDからなる副ランプとを有することを特徴とする。   The present invention has been made to solve these problems, and includes a plurality of fixed LEDs, a collimating means comprising a collimating lens or a reflecting mirror for collimating each output light from the LEDs, and an output from the collimating means. A condensing lens or a condensing means for condensing light, one end of an optical fiber is arranged near the focal point of the condensing means, and a part of the plurality of LEDs that are always used It has the main lamp which consists of LED, and the sub lamp which consists of other LED which can be switched and used for the said main lamp.

また、前記主ランプの不具合を検出する手段と、この不具合に応じて前記副ランプの点灯に自動的に切り替える手段を有することを特徴とする。   Further, the apparatus has means for detecting a malfunction of the main lamp, and means for automatically switching to lighting of the sub lamp according to the malfunction.

また、前記複数のLEDと前記コリメート手段の間に光ファイバを介した導光手段を有することを特徴とする。   Moreover, it has a light guide means via an optical fiber between the plurality of LEDs and the collimator means.

また、前記主ランプ及び副ランプは赤色LEDと、黄色蛍光体を青色LEDで励起する白色LEDとを含むことを特徴とする。   The main lamp and the sub lamp include a red LED and a white LED that excites a yellow phosphor with a blue LED.

また、前記主ランプ及び副ランプは、赤色LED、青色LED、緑LED、橙LED、シアンLEDのうちから3色以上を含むことを特徴とする。   In addition, the main lamp and the sub lamp include three or more colors among red LED, blue LED, green LED, orange LED, and cyan LED.

また、前記コリメート手段と集光手段の間に前記複数のLEDからの出力光を合波する波長合成ミラーを配置したことを特徴とする。   In addition, a wavelength combining mirror for combining the output lights from the plurality of LEDs is disposed between the collimating unit and the condensing unit.

また、前記LEDファイバ光源装置を光源として用いたことを特徴とする。   Further, the LED fiber light source device is used as a light source.

本発明によれば、主ランプと副ランプを切り替える際の可動部が無くなり内視鏡用光源装置の小型化、信頼性向上が実現できる。   According to the present invention, there is no moving part when switching between the main lamp and the sub lamp, and the light source device for endoscope can be reduced in size and improved in reliability.

また使用するLEDを赤色LED及び青色を主に含むLEDあるいはいくつかの色のLEDを集光レンズ、あるいは波長合成ミラーで束ねることで、光源の波長変更が可能でかつ、高輝度の内視鏡用光源装置を提供できる。   A high-luminance endoscope in which the wavelength of the light source can be changed by bundling red LEDs and LEDs mainly containing blue or LEDs of several colors with a condensing lens or a wavelength synthesis mirror. A light source device can be provided.

図1は本発明の第1の実施形態を示す構成図である。   FIG. 1 is a block diagram showing a first embodiment of the present invention.

図1(a)は全体の構成図であり、図1(b)はLED1a、1bのレイアウトを詳細に示したものである。   FIG. 1A is an overall configuration diagram, and FIG. 1B shows the layout of LEDs 1a and 1b in detail.

まず本発明は、固定された複数のLEDと、前記LEDからの各出力光をコリメートするコリメートレンズあるいは反射ミラーからなるコリメート手段と、前記コリメート手段からの出力光を集光する集光レンズあるいは集光ミラーからなる集光手段とを有し、前記集光手段の焦点付近に光ファイバの一端を配置し、前記複数のLEDのうち常時使用する一部のLEDからなる主ランプと、前記主ランプと切り替えて使用可能な他のLEDからなる副ランプとを有することが必要である。   First, according to the present invention, a plurality of fixed LEDs, a collimating means including a collimating lens or a reflecting mirror for collimating each output light from the LED, a condenser lens for collecting the output light from the collimating means, or a collecting lens. A main lamp formed of a part of the plurality of LEDs that is always used, and one end of an optical fiber disposed near the focal point of the light collecting means. And a sub lamp made of other LEDs that can be used by switching.

さらに、前記複数のLEDと前記コリメート手段の間に光ファイバを介した導光手段を有することが好ましい。   Furthermore, it is preferable to have light guide means via an optical fiber between the plurality of LEDs and the collimating means.

主ランプとしてLED1a、副ランプとしてLED1bを使用していて、図1(a)のLEDは図1(b)の断面図を表しているため、LEDは2個だけ記されている。   Since the LED 1a is used as the main lamp and the LED 1b is used as the sub lamp, and the LED of FIG. 1 (a) represents the cross-sectional view of FIG. 1 (b), only two LEDs are shown.

図1(a)は、LED1a、1b、コリメータレンズ2、集光レンズ3、光ファイバ4、LEDドライバ5、LED異常検出回路6、光ファイバ7a、7bで構成されている。   1A includes LEDs 1a and 1b, a collimator lens 2, a condenser lens 3, an optical fiber 4, an LED driver 5, an LED abnormality detection circuit 6, and optical fibers 7a and 7b.

LED1a、1bは白色で発光しそれぞれ光ファイバ7a、7bを介してコリメータレンズ2で平行光に近い光になり、集光レンズ3で集められ光ファイバ4の一端に導かれ光ファイバ4の出力端側からは白色光が出力される。   The LEDs 1a and 1b emit white light and become light close to parallel light by the collimator lens 2 via the optical fibers 7a and 7b, respectively, and are collected by the condenser lens 3 and guided to one end of the optical fiber 4 and output to the optical fiber 4 White light is output from the side.

ここで使用するLEDはその発熱対策のためヒートシンクなどが必要で、外径10mm以上の大きさを想定している。LEDの外径が大きい場合、光ファイバ7a、7bでLED1a、1bの出力光を集め、さらにファイバ7a、7b同士を近づけてコリメータレンズ2に配置することで、集光レンズ3では光ビームを小さい状態で集光できる
また本発明は前記主ランプの不具合を検出する手段と、この不具合に応じて前記副ランプの点灯に自動的に切り替える手段を有することが好ましい。
The LED used here requires a heat sink or the like for its heat generation countermeasure, and assumes an outer diameter of 10 mm or more. When the outer diameter of the LED is large, the output light of the LEDs 1a and 1b is collected by the optical fibers 7a and 7b, and the fibers 7a and 7b are placed close to each other and placed in the collimator lens 2, thereby reducing the light beam in the condenser lens It is preferable that the present invention has means for detecting a malfunction of the main lamp and means for automatically switching to lighting of the sub lamp according to the malfunction.

LEDドライバ5は図示していない商用電源の供給を受けて通常主ランプとしてLED1aを点灯させているが、LED異常検出回路6でLED1aの不具合を検出すると、副ランプであるLED1bを点灯させLED1aを消灯させる。   The LED driver 5 is supplied with a commercial power supply (not shown) and turns on the LED 1a as a normal main lamp. However, when the LED abnormality detection circuit 6 detects a failure of the LED 1a, the LED 1b as a sub lamp is turned on and the LED 1a is turned on. Turn off the light.

またこのように構成することでメカニカルな動作をせずに主ランプと副ランプの切り替えが可能となる。   In addition, with this configuration, it is possible to switch between the main lamp and the sub lamp without mechanical operation.

なおLED異常検出回路6の詳細説明は省略するが、内視鏡に内蔵されているCCDカメラの輝度信号から判断することができ、またはLED1の光量の一部をモニターする回路を付加することでも可能である。   Although detailed explanation of the LED abnormality detection circuit 6 is omitted, it can be determined from the luminance signal of the CCD camera built in the endoscope, or a circuit for monitoring a part of the light amount of the LED 1 can be added. Is possible.

上記形態ではコリメータ手段としてコリメータレンズ2を使用しているが、放物面形状の反射ミラーを加えることで集光度を高めることも可能である。   In the above embodiment, the collimator lens 2 is used as the collimator means, but it is also possible to increase the light collection degree by adding a parabolic reflecting mirror.

また本発明は前記主ランプ及び副ランプは赤色LEDと、黄色蛍光体を青色LEDで励起する白色LEDとを含むことが好ましい。   In the present invention, the main lamp and the sub lamp preferably include a red LED and a white LED that excites a yellow phosphor with a blue LED.

また本発明は前記主ランプ及び副ランプは、赤色LED、青色LED、緑LED、橙LED、シアンLEDのうちから3色以上を含むことが好ましい。   In the present invention, it is preferable that the main lamp and the sub lamp include three or more colors among red LED, blue LED, green LED, orange LED, and cyan LED.

上記形態ではLEDは白色LEDを用いているが、LEDの数量を増やすことや、複数の色、例えば赤色LEDと黄色蛍光体を青色LEDで励起する白色LEDを組み合わせたものや、赤色LED,緑色LED、青色LEDを使用し、面順次式の内視鏡光源として赤色、緑色、青色LEDの点灯を順次切り替えて使用することも出来るので、用途に応じて応用が利く。   In the above embodiment, the LED uses a white LED. However, the number of LEDs is increased, a combination of a plurality of colors, for example, a red LED and a white LED that excites a yellow phosphor with a blue LED, a red LED, and a green LED. Since LEDs and blue LEDs can be used and the lighting of red, green and blue LEDs can be sequentially switched and used as a surface-sequential type endoscope light source, the application is advantageous depending on the application.

このように、主ランプと副ランプを光ファイバ7で導光し集光レンズ3により光ファイバ4の一端に集光する構成としたので、光ファイバ4にはLED1光が集光しやすくなり、主ランプ1aが故障したとき副ランプ1bに切り替える為の可動部が無くなり装置の小型化、信頼性向上の効果がある。   In this way, the main lamp and the sub lamp are guided by the optical fiber 7 and are condensed on one end of the optical fiber 4 by the condensing lens 3, so that the LED 1 light is easily collected on the optical fiber 4, When the main lamp 1a breaks down, there is no moving part for switching to the sub lamp 1b, and there is an effect of downsizing the device and improving reliability.

また複数のLEDの出力を束ねることが可能となり光源装置の出力(輝度)を高められ、点灯するLEDを選択することで光源の波長を変更でき、可動部の無い面順次式の光源を提供できる効果がある。   In addition, the output of a plurality of LEDs can be bundled, the output (brightness) of the light source device can be increased, the wavelength of the light source can be changed by selecting the LED to be turned on, and a surface sequential light source having no moving parts can be provided. effective.

図2は第2の実施形態を示す構成図である。   FIG. 2 is a block diagram showing the second embodiment.

また本発明は前記コリメート手段と集光手段の間に前記複数のLEDからの出力光を合波する波長合成ミラーを配置するのが好ましい。   In the present invention, it is preferable that a wavelength combining mirror for combining the output lights from the plurality of LEDs is disposed between the collimating unit and the condensing unit.

LED10a、10b、コリメータレンズ11a、11b、波長合成ミラー12、光ファイバ4で構成されている。LED10a、LED10bはそれぞれ同じ波長(色)のLED2個を隣り合わせて配置している。そのうち1つは主ランプでもう一つは副ランプとして用いる。但しここで使用するLEDは小型で並べて配置できるサイズのものを想定している。   The LEDs 10a and 10b, collimator lenses 11a and 11b, a wavelength combining mirror 12, and an optical fiber 4 are included. LED10a and LED10b arrange | position two LED of the same wavelength (color) next to each other. One of them is used as a main lamp and the other as a sub lamp. However, it is assumed that the LEDs used here are small in size and can be arranged side by side.

またLED10aとLED10bの波長は異なるものである。また波長合成ミラー12aはLED10aの波長を透過し、LED10bの波長を反射する波長特性を有している。   The wavelengths of the LED 10a and the LED 10b are different. The wavelength combining mirror 12a has a wavelength characteristic that transmits the wavelength of the LED 10a and reflects the wavelength of the LED 10b.

LED10a、10bから出力された光はそれぞれコリメータレンズ11a、11bでほぼ平行光になり波長合成ミラー12aで合成され集光レンズ10aを介して光ファイバ4の一端面に集光され出力端より出力される。   The light output from the LEDs 10a and 10b becomes substantially parallel light by the collimator lenses 11a and 11b, and is combined by the wavelength combining mirror 12a and condensed on one end surface of the optical fiber 4 through the condenser lens 10a and output from the output end. The

図3は本発明の第3の実施形態を示す構成図である。   FIG. 3 is a block diagram showing a third embodiment of the present invention.

図3は図2の構成を発展させたもので、さらに波長の異なるLED10cと波長合成ミラー12bが追加されている。波長合波ミラー12bはLED10cの波長を反射し、LED10a、10bの波長は透過する波長特性を有している。このように構成することでLED10a、10b、10cの波長を合成し光ファイバの出力端から放射させることできる。   FIG. 3 is an extension of the configuration of FIG. 2, and an LED 10c and a wavelength combining mirror 12b having different wavelengths are further added. The wavelength multiplexing mirror 12b has a wavelength characteristic that reflects the wavelength of the LED 10c and transmits the wavelengths of the LEDs 10a and 10b. By comprising in this way, the wavelength of LED10a, 10b, 10c can be synthesize | combined and it can be made to radiate | emit from the output end of an optical fiber.

またLED10は同時に点灯することも可能であるが、任意のLEDを点灯させることで必要な照明波長を得ることが出来る。   The LEDs 10 can be turned on at the same time, but a necessary illumination wavelength can be obtained by turning on an arbitrary LED.

但し図2、図3では図1における光ファイバ7は用いていないのは、LED10のサイズが小さい(2mm程度)ので光ファイバ7を用いる必要はないからである。   However, the reason why the optical fiber 7 in FIG. 1 is not used in FIGS. 2 and 3 is that the size of the LED 10 is small (about 2 mm), and therefore it is not necessary to use the optical fiber 7.

このように構成することで複数のLEDの出力を束ねることが可能となり光源装置の出力(輝度)を高められる。   With this configuration, the outputs of a plurality of LEDs can be bundled, and the output (luminance) of the light source device can be increased.

またさらに、点灯するLEDを選択することで光源の波長を変更できるため、内視鏡用の光源として高輝度の光源を提供でき、なおかつ照明波長の変更が容易、可動部がなく信頼性の高い面順次式用の内視鏡用光源または、先述の侠帯域イメージング用光源を提供できる効果がある。   Furthermore, since the wavelength of the light source can be changed by selecting the LED to be lit, a high-intensity light source can be provided as the light source for the endoscope, and the illumination wavelength can be easily changed, and there is no moving part and high reliability. There is an effect that it is possible to provide the endoscope sequential light source for frame sequential type or the above-described narrowband imaging light source.

図1の実施形態に基づき実施例を説明する。   An example will be described based on the embodiment of FIG.

図4は使用した白色LEDの発光スペクトラム波形である。   FIG. 4 shows the emission spectrum waveform of the white LED used.

LED1は青色LEDに黄色蛍光体を塗布したもので白色光を出力する。1つのLEDの出力は120ルーメンの高光束LEDであるが、LED1からの出力ビーム広がり角は全方位(120度以上)である。ここで光ファイバ7は外径φ2mmのプラッチックファイバ(POF)であり、LED1の端面に直接配置され、コリメータレンズ2に導かれている。   The LED 1 is a blue LED coated with a yellow phosphor and outputs white light. The output of one LED is a 120 lumen high luminous flux LED, but the output beam divergence angle from LED 1 is omnidirectional (120 degrees or more). Here, the optical fiber 7 is a plaque fiber (POF) having an outer diameter of 2 mm, and is disposed directly on the end face of the LED 1 and led to the collimator lens 2.

なおLED1は砲弾型であり砲弾型レンズ部(φ5mm)でヒートシンク(φ20mm)が取り付けられている。そのため各LED間は20mm間隔で配置している。   The LED 1 is a bullet type, and a heat sink (φ20 mm) is attached to the bullet type lens portion (φ5 mm). For this reason, the LEDs are arranged at intervals of 20 mm.

コリメータレンズ2及び集光レンズ3も平凸レンズを使用している。   The collimator lens 2 and the condenser lens 3 also use plano-convex lenses.

光ファイバ4はφ2mmのライトガイド用の多成分ガラスバンドルファイバで長さは3mである。従ってこの光学系は、光源サイズはφ2mmのファイバ7を2本束ねたサイズ4mm、像側はファイバ4の2mmサイズの倍率0.5のレンズ系である。   The optical fiber 4 is a multi-component glass bundle fiber for a light guide having a diameter of 2 mm and has a length of 3 m. Accordingly, this optical system is a lens system having a light source size of 4 mm in which two fibers 7 having a diameter of 2 mm are bundled, and the image side is a 2 mm size of the fiber 4 and a lens system having a magnification of 0.5.

比較例として光ファイバ7を用いない場合は、光源サイズ20mmでレンズ系倍率は0.1が必要となり、倍率差で5倍でありファイバ4の端面に集光できる光量は1/25(ファイバ7のロスが無い場合)と少なくなる。   When the optical fiber 7 is not used as a comparative example, the light source size is 20 mm, the lens system magnification is 0.1, the magnification difference is 5 times, and the amount of light that can be condensed on the end face of the fiber 4 is 1/25 (fiber 7 If there is no loss of

すなわち光ファイバ7にはLED1a、1bを近づけて配置することと等価であるため、コリメータレンズ2、集光レンズ3のサイズを小さく出来、その結果光ファイバ4に集光しやすくなる効果がある。   That is, since it is equivalent to arranging the LEDs 1a and 1b close to the optical fiber 7, the size of the collimator lens 2 and the condenser lens 3 can be reduced, and as a result, there is an effect that the optical fiber 4 can be easily condensed.

また通常はLED10aを点灯しているが、LED異常検出回路で図示していないCCDカメラの輝度信号の低下を受けると異常と判断しLED1bに切り替える。   Further, although the LED 10a is normally lit, if the luminance signal of a CCD camera (not shown) is reduced by the LED abnormality detection circuit, it is determined that there is an abnormality and the LED 1b is switched.

比較例として特許文献1ではメカニカルな手段を用いて主ランプ、副ランプを切り替えているため装置が複雑となるが、本方式は電気信号だけの切り替えで可能であり、高輝度で信頼性の高い光源を提供できる効果がある。   As a comparative example, in Patent Document 1, since the main lamp and the sub lamp are switched using mechanical means, the apparatus becomes complicated. However, this method can be switched only by an electric signal, and has high luminance and high reliability. There is an effect of providing a light source.

次に図2の実施形態に基づき実施例を説明する。   Next, an example will be described based on the embodiment of FIG.

LED10aは青色LEDに黄色蛍光体を塗布した白色LEDで、LED10bは赤色LEDである。   The LED 10a is a white LED obtained by applying a yellow phosphor to a blue LED, and the LED 10b is a red LED.

図4はこのLED10aのスペクトラム、図5はLED10bのスペクトラムをそれぞれ示す。   FIG. 4 shows the spectrum of the LED 10a, and FIG. 5 shows the spectrum of the LED 10b.

波長合成ミラー12aはダイクロイックミラーでガラス基板に誘電体多層膜を蒸着して作成したものである。   The wavelength synthesizing mirror 12a is a dichroic mirror formed by depositing a dielectric multilayer film on a glass substrate.

図6は波長合成ミラーの波長特性である。   FIG. 6 shows the wavelength characteristics of the wavelength combining mirror.

赤色成分を含む波長帯域650〜750nmを反射し、青〜黄色成分を含む波長帯域450〜560nmの範囲は透過する波長特性を有している。光ファイバ4はφ2mmの多成分ガラスバンドルファイバである。   The wavelength band of 650 to 750 nm including the red component is reflected, and the wavelength band of 450 to 560 nm including the blue to yellow components has a transmitted wavelength characteristic. The optical fiber 4 is a φ2 mm multicomponent glass bundle fiber.

図7はLED10a、10bを同時に点灯した場合に光ファイバ4の端面から出力される光出力スペクトラムである。   FIG. 7 shows a light output spectrum output from the end face of the optical fiber 4 when the LEDs 10a and 10b are turned on simultaneously.

LED10aに使用したLEDのスペクトラムは図4に示したごとく波長600nm〜付近の出力が低下している。図7では波長600nm〜の赤色付近のスペクトル強度が強化され、より太陽光スペクトラム(自然光)に近い光が得られる。医療用途では自然光に近い光での内視鏡観察と、面順次式などに代表されるように照明波長を変更して観察、あるいは新しい知見を得ようとしているため本方式は使い勝手のよいものとして医療に寄与するものである。   In the spectrum of the LED used for the LED 10a, as shown in FIG. In FIG. 7, the spectral intensity in the vicinity of red with a wavelength of 600 nm is enhanced, and light closer to the sunlight spectrum (natural light) can be obtained. Endoscopic observation with light close to natural light in medical applications and observation by changing the illumination wavelength, as represented by the surface sequential method, or obtaining new knowledge It contributes to medical care.

比較例として特許文献3の開示されている方式では3本の光ファイバを用いているため内視鏡の挿入部が太くなってしまうが、本方式では前述の挿入部は1本のファイバであるため細くでき、被検者の負担が少なく操作性がよくなる効果がある。   As a comparative example, the method disclosed in Patent Document 3 uses three optical fibers, so the insertion portion of the endoscope becomes thick. In this method, the insertion portion is a single fiber. Therefore, there is an effect that the operability is improved with less burden on the subject.

また主ランプと副ランプも内蔵しているため先述のようにメカニカル可動部が無く信頼性も向上する効果がある。   Further, since the main lamp and the sub lamp are also incorporated, there is no mechanical moving part as described above, and the reliability is improved.

本発明におけるLEDファイバ光源装置の第1の実施形態を示す模式図である。It is a schematic diagram which shows 1st Embodiment of the LED fiber light source device in this invention. 本発明におけるLEDファイバ光源装置の第2の実施形態を示す模式図である。It is a schematic diagram which shows 2nd Embodiment of the LED fiber light source device in this invention. 本発明におけるLEDファイバ光源装置の第3の実施形態を示す模式図である。It is a schematic diagram which shows 3rd Embodiment of the LED fiber light source device in this invention. 使用した白色LEDの発光スペクトルを示すグラフである。It is a graph which shows the emission spectrum of the used white LED. 使用した赤色LEDの発光スペクトルを示すグラフである。It is a graph which shows the emission spectrum of the used red LED. 使用した波長合成ミラーの透過反射波長特性を示すグラフである。It is a graph which shows the transmission / reflection wavelength characteristic of the used wavelength synthetic | combination mirror. 本発明における光源装置の出力スペクトラムを示すグラフである。It is a graph which shows the output spectrum of the light source device in this invention. 従来技術の光源装置おける光源装置の出力スペクトラムを示すグラフである。It is a graph which shows the output spectrum of the light source device in the light source device of a prior art.

符号の説明Explanation of symbols

1a、1b:LED
2:コリメータレンズ
3:集光レンズ
4:光ファイバ
5:LEDドライバ
6:LED異常検出回路
7a、7b:光ファイバ
10a、10b、10c:LED
11a、11b、11c:コリメータレンズ
12a、12b:波長合成ミラー
1a, 1b: LED
2: Collimator lens 3: Condensing lens 4: Optical fiber 5: LED driver 6: LED abnormality detection circuit 7a, 7b: Optical fiber 10a, 10b, 10c: LED
11a, 11b, 11c: Collimator lenses 12a, 12b: Wavelength combining mirrors

Claims (7)

固定された複数のLEDと、前記LEDからの各出力光をコリメートするコリメートレンズあるいは反射ミラーからなるコリメート手段と、前記コリメート手段からの出力光を集光する集光レンズあるいは集光ミラーからなる集光手段とを有し、前記集光手段の焦点付近に光ファイバの一端を配置し、前記複数のLEDのうち常時使用する一部のLEDからなる主ランプと、前記主ランプと切り替えて使用可能な他のLEDからなる副ランプとを有することを特徴とするLEDファイバ光源装置。 A plurality of fixed LEDs, collimating means comprising a collimating lens or a reflecting mirror for collimating each output light from the LED, and a collecting lens comprising a condenser lens or a collecting mirror for condensing the output light from the collimating means. One end of an optical fiber is arranged in the vicinity of the focal point of the light collecting means, and can be used by switching between the main lamp consisting of some LEDs that are always used among the plurality of LEDs and the main lamp. LED fiber light source device characterized by having a sub lamp made of other LED. 前記主ランプの不具合を検出する手段と、この不具合に応じて前記副ランプの点灯に自動的に切り替える手段を有することを特徴とする請求項1記載のLEDファイバ光源装置。 2. The LED fiber light source device according to claim 1, further comprising means for detecting a malfunction of the main lamp and means for automatically switching to lighting of the sub lamp according to the malfunction. 前記複数のLEDと前記コリメート手段の間に光ファイバを介した導光手段を有することを特徴とする請求項1〜3のいずれかに記載のLEDファイバ光源装置。 The LED fiber light source device according to any one of claims 1 to 3, further comprising a light guide unit via an optical fiber between the plurality of LEDs and the collimator unit. 前記主ランプ及び副ランプは赤色LEDと、黄色蛍光体を青色LEDで励起する白色LEDとを含むことを特徴とする請求項1〜3のいずれかに記載のLEDファイバ光源装置。 4. The LED fiber light source device according to claim 1, wherein the main lamp and the sub lamp include a red LED and a white LED that excites a yellow phosphor with a blue LED. 前記主ランプ及び副ランプは、赤色LED、青色LED、緑LED、橙LED、シアンLEDのうちから3色以上を含むことを特徴とする請求項1〜3のいずれかに記載のLEDファイバ光源装置。 The LED fiber light source device according to any one of claims 1 to 3, wherein the main lamp and the sub lamp include three or more colors among red LED, blue LED, green LED, orange LED, and cyan LED. . 前記コリメート手段と集光手段の間に前記複数のLEDからの出力光を合波する波長合成ミラーを配置したことを特徴とする請求項1〜5のいずれかに記載のLEDファイバ光源装置。 6. The LED fiber light source device according to claim 1, wherein a wavelength combining mirror for combining output lights from the plurality of LEDs is disposed between the collimating unit and the condensing unit. 請求項1〜6の何れかに記載のLEDファイバ光源装置を光源として用いたことを特徴とする内視鏡。 An endoscope using the LED fiber light source device according to any one of claims 1 to 6 as a light source.
JP2004278791A 2004-09-27 2004-09-27 LED fiber light source device and endoscope using the same Expired - Fee Related JP4817632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004278791A JP4817632B2 (en) 2004-09-27 2004-09-27 LED fiber light source device and endoscope using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004278791A JP4817632B2 (en) 2004-09-27 2004-09-27 LED fiber light source device and endoscope using the same

Publications (2)

Publication Number Publication Date
JP2006087764A true JP2006087764A (en) 2006-04-06
JP4817632B2 JP4817632B2 (en) 2011-11-16

Family

ID=36229267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004278791A Expired - Fee Related JP4817632B2 (en) 2004-09-27 2004-09-27 LED fiber light source device and endoscope using the same

Country Status (1)

Country Link
JP (1) JP4817632B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2136699A2 (en) * 2007-04-09 2009-12-30 Alcon, Inc. Multi-led ophthalmic illuminator
JP2011041758A (en) * 2009-08-24 2011-03-03 Olympus Medical Systems Corp Medical equipment
WO2011026582A1 (en) * 2009-09-04 2011-03-10 Olympus Winter & Ibe Gmbh Medical luminaire having a luminophore layer
JP2012509098A (en) * 2008-11-18 2012-04-19 ストライカー・コーポレーション Endoscope light source system for feedback control and synchronization method of the endoscope light source system
JP2012080949A (en) * 2010-10-07 2012-04-26 Fujifilm Corp Light source device for endoscope
JP2012081133A (en) * 2010-10-13 2012-04-26 Fujifilm Corp Light source device for endoscope
JP2012095911A (en) * 2010-11-04 2012-05-24 Fujifilm Corp Endoscope and light source device for endoscope
CN102697449A (en) * 2010-11-15 2012-10-03 富士胶片株式会社 Endoscope and light source device for the same
US8317382B2 (en) 2009-12-23 2012-11-27 Alcon Research, Ltd. Enhanced LED illuminator
US8348430B2 (en) 2009-12-17 2013-01-08 Alcon Research, Ltd. Photonic lattice LEDs for ophthalmic illumination
US8514278B2 (en) 2006-12-29 2013-08-20 Ge Inspection Technologies Lp Inspection apparatus having illumination assembly
WO2013146014A1 (en) * 2012-03-29 2013-10-03 オリンパスメディカルシステムズ株式会社 Endoscope system
US8573801B2 (en) 2010-08-30 2013-11-05 Alcon Research, Ltd. LED illuminator
WO2014038352A1 (en) * 2012-09-07 2014-03-13 オリンパスメディカルシステムズ株式会社 Light source device and endoscope system
JP2014514685A (en) * 2011-03-08 2014-06-19 ノバダック テクノロジーズ インコーポレイテッド Full spectrum LED illuminator
JP2014240021A (en) * 2014-09-12 2014-12-25 富士フイルム株式会社 Endoscope system and driving method for the same
JP2015077335A (en) * 2013-10-18 2015-04-23 三菱電機エンジニアリング株式会社 Light source device
CN104856636A (en) * 2014-02-26 2015-08-26 富士胶片株式会社 Light source device for endoscope system
US9314374B2 (en) 2010-03-19 2016-04-19 Alcon Research, Ltd. Stroboscopic ophthalmic illuminator
WO2016185647A1 (en) * 2015-05-15 2016-11-24 ソニー株式会社 Light source device, light source driving method, and observation device
US9642532B2 (en) 2008-03-18 2017-05-09 Novadaq Technologies Inc. Imaging system for combined full-color reflectance and near-infrared imaging
WO2018003263A1 (en) * 2016-06-27 2018-01-04 ソニー株式会社 Observation device and control method for observation device
JP2018171540A (en) * 2013-08-27 2018-11-08 富士フイルム株式会社 Endoscope system
JP2020078667A (en) * 2020-02-28 2020-05-28 富士フイルム株式会社 Endoscope apparatus
US10690904B2 (en) 2016-04-12 2020-06-23 Stryker Corporation Multiple imaging modality light source
US10687697B2 (en) 2013-03-15 2020-06-23 Stryker Corporation Endoscopic light source and imaging system
US10694152B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging systems and methods for displaying fluorescence and visible images
US10869645B2 (en) 2016-06-14 2020-12-22 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
US11051684B2 (en) 2017-06-02 2021-07-06 Olympus Corporation Endoscope light source device
WO2021173547A1 (en) * 2020-02-24 2021-09-02 California Institute Of Technology Infrared absorption-based composition sensor for fluid mixtures
US11172560B2 (en) 2016-08-25 2021-11-09 Alcon Inc. Ophthalmic illumination system with controlled chromaticity
US11930278B2 (en) 2015-11-13 2024-03-12 Stryker Corporation Systems and methods for illumination and imaging of a target
US12028600B2 (en) 2021-10-04 2024-07-02 Stryker Corporation Open-field handheld fluorescence imaging systems and methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128127A (en) * 1981-02-02 1982-08-09 Olympus Optical Co Ligh source apparatus for endoscope
JPH08224240A (en) * 1995-02-22 1996-09-03 Olympus Optical Co Ltd Fluorescent diagnosing device
JPH1134391A (en) * 1997-07-24 1999-02-09 Noritsu Koki Co Ltd Image printer
JP2000066116A (en) * 1998-08-21 2000-03-03 Fuji Photo Optical Co Ltd Light source device for endoscope
JP2002102142A (en) * 2000-09-27 2002-04-09 Asahi Optical Co Ltd Fluorescent endoscope instrument and system
JP2002238846A (en) * 2001-02-21 2002-08-27 Asahi Optical Co Ltd Light source device for endoscope
JP2002373517A (en) * 2001-06-18 2002-12-26 Mitsubishi Rayon Co Ltd Illumination equipment
JP2003147346A (en) * 2001-11-15 2003-05-21 Kansai Tlo Kk Photo-functional material made by using rare earth element complex, and light emitting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128127A (en) * 1981-02-02 1982-08-09 Olympus Optical Co Ligh source apparatus for endoscope
JPH08224240A (en) * 1995-02-22 1996-09-03 Olympus Optical Co Ltd Fluorescent diagnosing device
JPH1134391A (en) * 1997-07-24 1999-02-09 Noritsu Koki Co Ltd Image printer
JP2000066116A (en) * 1998-08-21 2000-03-03 Fuji Photo Optical Co Ltd Light source device for endoscope
JP2002102142A (en) * 2000-09-27 2002-04-09 Asahi Optical Co Ltd Fluorescent endoscope instrument and system
JP2002238846A (en) * 2001-02-21 2002-08-27 Asahi Optical Co Ltd Light source device for endoscope
JP2002373517A (en) * 2001-06-18 2002-12-26 Mitsubishi Rayon Co Ltd Illumination equipment
JP2003147346A (en) * 2001-11-15 2003-05-21 Kansai Tlo Kk Photo-functional material made by using rare earth element complex, and light emitting device

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11770503B2 (en) 2006-12-22 2023-09-26 Stryker European Operations Limited Imaging systems and methods for displaying fluorescence and visible images
US10694151B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy
US10694152B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging systems and methods for displaying fluorescence and visible images
US11025867B2 (en) 2006-12-22 2021-06-01 Stryker European Operations Limited Imaging systems and methods for displaying fluorescence and visible images
US8514278B2 (en) 2006-12-29 2013-08-20 Ge Inspection Technologies Lp Inspection apparatus having illumination assembly
US7682027B2 (en) * 2007-04-09 2010-03-23 Alcon, Inc. Multi-LED ophthalmic illuminator
JP2010524194A (en) * 2007-04-09 2010-07-15 アルコン,インコーポレイティド Multi LED eye illuminator
EP2136699A2 (en) * 2007-04-09 2009-12-30 Alcon, Inc. Multi-led ophthalmic illuminator
US9642532B2 (en) 2008-03-18 2017-05-09 Novadaq Technologies Inc. Imaging system for combined full-color reflectance and near-infrared imaging
US10779734B2 (en) 2008-03-18 2020-09-22 Stryker European Operations Limited Imaging system for combine full-color reflectance and near-infrared imaging
US9459415B2 (en) 2008-11-18 2016-10-04 Stryker Corporation Endoscopic LED light source having a feedback control system
US10670817B2 (en) 2008-11-18 2020-06-02 Stryker Corporation Endoscopic LED light source
JP2012509098A (en) * 2008-11-18 2012-04-19 ストライカー・コーポレーション Endoscope light source system for feedback control and synchronization method of the endoscope light source system
US12019287B2 (en) 2008-11-18 2024-06-25 Stryker Corporation Endoscopic LED light source having a feedback control system
US11467358B2 (en) 2008-11-18 2022-10-11 Stryker Corporation Endoscopic LED light source having a feedback control system
JP2011041758A (en) * 2009-08-24 2011-03-03 Olympus Medical Systems Corp Medical equipment
WO2011026582A1 (en) * 2009-09-04 2011-03-10 Olympus Winter & Ibe Gmbh Medical luminaire having a luminophore layer
US8348430B2 (en) 2009-12-17 2013-01-08 Alcon Research, Ltd. Photonic lattice LEDs for ophthalmic illumination
US8371694B2 (en) 2009-12-17 2013-02-12 Alcon Research, Ltd. Bichromatic white ophthalmic illuminator
US8317382B2 (en) 2009-12-23 2012-11-27 Alcon Research, Ltd. Enhanced LED illuminator
US9314374B2 (en) 2010-03-19 2016-04-19 Alcon Research, Ltd. Stroboscopic ophthalmic illuminator
US8573801B2 (en) 2010-08-30 2013-11-05 Alcon Research, Ltd. LED illuminator
JP2012080949A (en) * 2010-10-07 2012-04-26 Fujifilm Corp Light source device for endoscope
JP2012081133A (en) * 2010-10-13 2012-04-26 Fujifilm Corp Light source device for endoscope
CN102551648A (en) * 2010-11-04 2012-07-11 富士胶片株式会社 Endoscope and light source device for endoscope
JP2012095911A (en) * 2010-11-04 2012-05-24 Fujifilm Corp Endoscope and light source device for endoscope
CN102697449A (en) * 2010-11-15 2012-10-03 富士胶片株式会社 Endoscope and light source device for the same
US8979301B2 (en) 2011-03-08 2015-03-17 Novadaq Technologies Inc. Full spectrum LED illuminator
JP2014514685A (en) * 2011-03-08 2014-06-19 ノバダック テクノロジーズ インコーポレイテッド Full spectrum LED illuminator
KR101840177B1 (en) * 2011-03-08 2018-03-19 노바다크 테크놀러지즈 인코포레이티드 Full spectrum led illuminator
KR20150138412A (en) * 2011-03-08 2015-12-09 노바다크 테크놀러지즈 인코포레이티드 Full spectrum led illuminator
JP2016106357A (en) * 2011-03-08 2016-06-16 ノバダック テクノロジーズ インコーポレイテッド Full spectrum LED illuminator
CN107582016A (en) * 2011-03-08 2018-01-16 诺瓦达克技术公司 Full spectrum LED illuminator
US9435496B2 (en) 2011-03-08 2016-09-06 Novadaq Technologies Inc. Full spectrum LED illuminator
KR101723762B1 (en) * 2011-03-08 2017-04-06 노바다크 테크놀러지즈 인코포레이티드 Full spectrum led illuminator
US9814378B2 (en) * 2011-03-08 2017-11-14 Novadaq Technologies Inc. Full spectrum LED illuminator having a mechanical enclosure and heatsink
CN103796571A (en) * 2012-03-29 2014-05-14 奥林巴斯医疗株式会社 Endoscope system
EP2737843A4 (en) * 2012-03-29 2015-05-06 Olympus Medical Systems Corp Endoscope system
WO2013146014A1 (en) * 2012-03-29 2013-10-03 オリンパスメディカルシステムズ株式会社 Endoscope system
US8885033B2 (en) 2012-03-29 2014-11-11 Olympus Medical Systems Corp. Endoscope system
JP5467181B1 (en) * 2012-03-29 2014-04-09 オリンパスメディカルシステムズ株式会社 Endoscope system
WO2014038352A1 (en) * 2012-09-07 2014-03-13 オリンパスメディカルシステムズ株式会社 Light source device and endoscope system
JPWO2014038352A1 (en) * 2012-09-07 2016-08-08 オリンパスメディカルシステムズ株式会社 Light source device and endoscope system
US10687697B2 (en) 2013-03-15 2020-06-23 Stryker Corporation Endoscopic light source and imaging system
JP2018171540A (en) * 2013-08-27 2018-11-08 富士フイルム株式会社 Endoscope system
JP2015077335A (en) * 2013-10-18 2015-04-23 三菱電機エンジニアリング株式会社 Light source device
JP2015159907A (en) * 2014-02-26 2015-09-07 富士フイルム株式会社 Light source apparatus for endoscope system
CN104856636A (en) * 2014-02-26 2015-08-26 富士胶片株式会社 Light source device for endoscope system
US9594242B2 (en) 2014-02-26 2017-03-14 Fujifilm Corporation Light source device for endoscope system
JP2014240021A (en) * 2014-09-12 2014-12-25 富士フイルム株式会社 Endoscope system and driving method for the same
JPWO2016185647A1 (en) * 2015-05-15 2018-03-01 ソニー株式会社 Light source device, light source driving method, and observation device
WO2016185647A1 (en) * 2015-05-15 2016-11-24 ソニー株式会社 Light source device, light source driving method, and observation device
US11930278B2 (en) 2015-11-13 2024-03-12 Stryker Corporation Systems and methods for illumination and imaging of a target
US11298024B2 (en) 2016-01-26 2022-04-12 Stryker European Operations Limited Configurable platform
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
US11169370B2 (en) 2016-04-12 2021-11-09 Stryker Corporation Multiple imaging modality light source
US11668922B2 (en) 2016-04-12 2023-06-06 Stryker Corporation Multiple imaging modality light source
US10690904B2 (en) 2016-04-12 2020-06-23 Stryker Corporation Multiple imaging modality light source
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
US10869645B2 (en) 2016-06-14 2020-12-22 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
US11756674B2 (en) 2016-06-14 2023-09-12 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
CN109414160B (en) * 2016-06-27 2021-11-16 索尼公司 Observation apparatus and method of controlling observation apparatus
WO2018003263A1 (en) * 2016-06-27 2018-01-04 ソニー株式会社 Observation device and control method for observation device
CN109414160A (en) * 2016-06-27 2019-03-01 索尼公司 The method of observation device and controlled observation equipment
JPWO2018003263A1 (en) * 2016-06-27 2019-04-18 ソニー株式会社 Observation apparatus and control method of observation apparatus
US11172560B2 (en) 2016-08-25 2021-11-09 Alcon Inc. Ophthalmic illumination system with controlled chromaticity
US11140305B2 (en) 2017-02-10 2021-10-05 Stryker European Operations Limited Open-field handheld fluorescence imaging systems and methods
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
US11051684B2 (en) 2017-06-02 2021-07-06 Olympus Corporation Endoscope light source device
US20230041370A1 (en) * 2020-02-24 2023-02-09 California Institute Of Technology Infrared absorption-based composition sensor for fluid mixtures
WO2021173547A1 (en) * 2020-02-24 2021-09-02 California Institute Of Technology Infrared absorption-based composition sensor for fluid mixtures
JP2020078667A (en) * 2020-02-28 2020-05-28 富士フイルム株式会社 Endoscope apparatus
US12028600B2 (en) 2021-10-04 2024-07-02 Stryker Corporation Open-field handheld fluorescence imaging systems and methods

Also Published As

Publication number Publication date
JP4817632B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4817632B2 (en) LED fiber light source device and endoscope using the same
JP7280394B2 (en) Endoscope light source device
JP5858752B2 (en) Endoscope light source device
US20090312607A1 (en) Light source device, imaging apparatus and endoscope apparatus
JP5749633B2 (en) Endoscope light source device
US20110172492A1 (en) Medical apparatus and endoscope apparatus
JP2009297290A (en) Endoscope apparatus and image processing method thereof
JP6438062B2 (en) Endoscope system
JP7220363B2 (en) WAVELENGTH CONVERSION MEMBER, LIGHT SOURCE DEVICE, AND LIGHTING DEVICE
WO2013089102A1 (en) Light source system having a plurality of light-conducting routes
US20120082446A1 (en) Illumination apparatus and examination system
US11076106B2 (en) Observation system and light source control apparatus
JP2011067268A (en) Endoscope apparatus and illumination control method of endoscope apparatus
CN109310311B (en) Light source device for endoscope, and endoscope system
JP2020018914A (en) Endoscope system
JP6099831B2 (en) Light source device
US20140347842A1 (en) Radiation generating apparatus and a method of generating radiation
JP7405080B2 (en) Medical system, medical light source device, and operating method of medical light source device
JP6115967B2 (en) Endoscope system
JP2009279309A (en) Endoscope light source device
JP6359998B2 (en) Endoscope
JP5698779B2 (en) Endoscope apparatus having light source device
JP2006122251A (en) Led fiber light source device and endoscopic apparatus using the same
JP2006034723A (en) Led light source equipment, and observation device and endoscope using the equipment
JP2016202441A (en) Endoscope light source device and endoscope system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4817632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees