JP2020018914A - Endoscope system - Google Patents

Endoscope system Download PDF

Info

Publication number
JP2020018914A
JP2020018914A JP2019201346A JP2019201346A JP2020018914A JP 2020018914 A JP2020018914 A JP 2020018914A JP 2019201346 A JP2019201346 A JP 2019201346A JP 2019201346 A JP2019201346 A JP 2019201346A JP 2020018914 A JP2020018914 A JP 2020018914A
Authority
JP
Japan
Prior art keywords
light
blue
wavelength
endoscope system
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019201346A
Other languages
Japanese (ja)
Other versions
JP6827512B2 (en
Inventor
永治 大橋
Eiji Ohashi
永治 大橋
小澤 聡
Satoshi Ozawa
聡 小澤
美範 森本
Yoshinori Morimoto
美範 森本
祐樹 寺川
Yuki Terakawa
祐樹 寺川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JP2020018914A publication Critical patent/JP2020018914A/en
Application granted granted Critical
Publication of JP6827512B2 publication Critical patent/JP6827512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

To provide an endoscope system that obtains an observation image by further enhancing the contrast of a superficial blood vessel to further finely observe the superficial blood vessel.SOLUTION: An endoscope system integrates light emitted by multiple semiconductor light sources, as illumination light. The endoscope system includes: a long cut filter 48; and a mode switching unit 95 for switching the mode between a normal observation mode of disabling a cut function of the long cut filter 48 and a superficial blood vessel enhancing observation mode of enabling the cut function of the long cut filter 48. Illumination light includes green light and specific blue light. Green light and specific blue light are continuous in terms of their spectra.SELECTED DRAWING: Figure 21

Description

本発明は、内視鏡システムに関する。   The present invention relates to an endoscope system.

医療分野において、内視鏡システムを用いた内視鏡診断が普及している。内視鏡システムは、内視鏡と、内視鏡に照明光を供給する内視鏡用光源装置(以下、単に光源装置という)と、内視鏡が出力する画像信号を処理するプロセッサ装置とを備えている。内視鏡は生体内に挿入される挿入部を有する。挿入部の先端には、観察部位(被写体)に照明光を照射する照明窓と、観察部位を撮影するための観察窓が配されている。内視鏡には、光ファイバをバンドル化したファイババンドルからなるライトガイドが内蔵されている。ライトガイドは、光源装置から供給された照明光を照明窓に導光する。観察窓の奥にはCCD等の撮像素子が配されている。照明光が照射された観察部位は撮像素子で撮像され、撮像素子が出力する画像信号に基づいてプロセッサ装置で観察画像が生成される。観察画像はモニタに表示され、生体内の観察が行われる。   In the medical field, endoscope diagnosis using an endoscope system has become widespread. An endoscope system includes an endoscope, an endoscope light source device (hereinafter, simply referred to as a light source device) that supplies illumination light to the endoscope, and a processor device that processes an image signal output by the endoscope. It has. The endoscope has an insertion portion to be inserted into a living body. An illumination window for irradiating the observation site (subject) with illumination light and an observation window for photographing the observation site are arranged at the distal end of the insertion section. The endoscope has a built-in light guide composed of a fiber bundle in which optical fibers are bundled. The light guide guides the illumination light supplied from the light source device to the illumination window. An imaging element such as a CCD is arranged behind the observation window. The observation site irradiated with the illumination light is imaged by the imaging device, and an observation image is generated by the processor device based on the image signal output by the imaging device. The observation image is displayed on the monitor, and the observation inside the living body is performed.

近年の内視鏡診断においては、白色光のもとで生体組織の表面の全体的な性状を把握する従来の観察に対して、特定の波長帯域に制限された特殊光(狭帯域光)を用いた観察も盛んに行われている。特殊光を用いた観察には各種のものがあるが、波長によって生体組織内への光の深達度が異なるという光学特性を利用して、生体組織の粘膜に存在する血管を強調して表示する血管強調観察が知られている(特許文献1、2参照)。生体組織に発生する癌等の異常組織においては血管の状態が正常組織と異なるため、血管強調観察は早期癌の発見等に有用性が認められている。   In recent endoscope diagnosis, special light (narrow band light) limited to a specific wavelength band is used in contrast to the conventional observation that grasps the overall properties of the surface of living tissue under white light. The observations used are also being actively conducted. There are various types of observations using special light.However, by utilizing the optical property that the depth of light penetration into living tissue varies depending on the wavelength, blood vessels existing in the mucous membrane of living tissue are highlighted and displayed. Known blood vessel enhanced observation is known (see Patent Documents 1 and 2). In abnormal tissues such as cancers occurring in living tissues, the state of blood vessels is different from that in normal tissues, and thus, the blood vessel enhanced observation has been recognized as useful for early cancer detection and the like.

特許文献1、2に記載の光源装置には、白色光を発する光源に加えて、粘膜表層に存在する表層血管によく吸収される、例えば中心波長445nm程度の狭帯域な青色光を発する青色半導体光源が特殊光の光源として設けられている。これら各光源を点灯させて白色光と青色光を同時に観察部位に照射し、その反射光を撮像素子で撮像することで、表層血管を強調した観察画像を得ている。特許文献1、2では、より表層血管を強調した観察画像を得るために、撮像素子から出力された画像信号に対して、表層血管を強調する処理を施している。   The light source devices described in Patent Documents 1 and 2 include, in addition to a light source that emits white light, a blue semiconductor that emits, for example, a narrow band blue light having a center wavelength of about 445 nm, which is well absorbed by a surface blood vessel existing on the mucosal surface. A light source is provided as a light source for special light. By illuminating each of these light sources and simultaneously irradiating the observation site with white light and blue light, and imaging the reflected light with an image sensor, an observation image in which surface blood vessels are emphasized is obtained. In Patent Literatures 1 and 2, in order to obtain an observation image in which surface blood vessels are enhanced, a process of enhancing surface blood vessels is performed on an image signal output from an image sensor.

特開2011−098088号公報JP 2011-098088 A 特開2012−152459号公報JP 2012-152449 A

ところで、本発明者らは、図29に示す粘膜、表層血管、および中層血管の反射スペクトルの関係を見出した。図29において、粘膜の反射スペクトルを2点鎖線、表層血管の反射スペクトルを実線、中層血管の反射スペクトルを点線でそれぞれ示す。表層血管は、粘膜表面からの深さ10μmの位置に存在する太さ10μmの血管、中層血管は、粘膜表面からの深さ50μmの位置に存在する太さ10〜20μmの血管をそれぞれ代表例として示している。   By the way, the present inventors have found the relationship between the reflection spectra of the mucous membrane, the superficial blood vessels, and the middle blood vessels shown in FIG. In FIG. 29, the reflection spectrum of the mucous membrane is indicated by a two-dot chain line, the reflection spectrum of a superficial blood vessel is indicated by a solid line, and the reflection spectrum of a middle blood vessel is indicated by a dotted line. The superficial blood vessels are typically 10 μm thick blood vessels at a depth of 10 μm from the mucosal surface, and the middle blood vessels are typically 10 μm to 20 μm thick blood vessels at a depth of 50 μm from the mucosal surface. Is shown.

表層血管の反射率は、450nmを下回る波長帯域で大きく低下し、中層血管および粘膜の反射率との差が大きくなっている。一方、中層血管の反射率は、表層血管ほどではないが530nm〜560nmの波長帯域で低下し、表層血管および粘膜の反射率との差が大きくなっている。粘膜の反射率は、全波長帯域において表層血管、中層血管の反射率よりも大きくなっている。   The reflectance of the superficial blood vessels is greatly reduced in a wavelength band below 450 nm, and the difference from the reflectance of the middle blood vessels and the mucous membrane is large. On the other hand, the reflectance of the middle blood vessels is not as high as that of the surface blood vessels, but decreases in the wavelength band of 530 nm to 560 nm, and the difference from the reflectance of the surface blood vessels and the mucous membrane is large. The reflectance of the mucous membrane is higher than the reflectance of the surface blood vessels and the middle blood vessels in all wavelength bands.

表層血管と中層血管の反射率の変化に着目すると、450nmを下回る波長帯域では表層血管のほうが中層血管よりも反射率が低く、450nm付近で表層血管と中層血管の反射率が同じになり、450nm以上の波長帯域では反射率の大小が逆転して中層血管のほうが表層血管よりも反射率が低くなっている。つまり、450nmを下回る波長帯域の光を照射すると、表層血管のほうが光をよく吸収するため観察画像上で強調され、450nm以上の波長帯域の光を照射すると、逆に表層血管よりも中層血管のほうが観察画像上で強調される。このため、表層血管を観察対象とする場合は、符号Pで示す表層血管と中層血管の反射率の交点である450nm以上の波長帯域の光成分は少ないほうが、表層血管と中層血管との違いが明確に区別された高コントラストな観察画像を得ることができるのでよいことが分かる。   Focusing on the change in the reflectance of the superficial blood vessels and the middle blood vessels, the reflectivity of the superficial blood vessels is lower than that of the middle blood vessels in the wavelength band lower than 450 nm, and the reflectance of the superficial blood vessels and the middle blood vessels becomes the same around 450 nm. In the above wavelength band, the magnitude of the reflectance is reversed, and the reflectance of the middle blood vessel is lower than that of the surface blood vessel. In other words, when irradiating light in a wavelength band lower than 450 nm, the surface blood vessels absorb light better and are emphasized on the observation image, and when irradiating light in a wavelength band of 450 nm or more, conversely, the middle blood vessels are more illuminated than the surface blood vessels. This is emphasized on the observation image. For this reason, when the superficial blood vessels are to be observed, the difference between the superficial blood vessels and the middle blood vessels is smaller when the light component in the wavelength band of 450 nm or more, which is the intersection of the reflectance of the superficial blood vessels and the middle blood vessels, indicated by the symbol P is smaller. It is clear that a clearly distinguished high-contrast observation image can be obtained.

しかしながら、特許文献1、2において特殊光として用いられる中心波長445nm程度の青色光には、観察画像上の表層血管のコントラストを低下させる450nm以上の波長帯域の光成分が含まれている。このため、特許文献1、2では画像処理によって表層血管のコントラストを向上させているものの、真に表層血管と中層血管との違いが明確に区別された高コントラストな観察画像が得られているとは言い難かった。したがって、中層血管が邪魔になって表層血管を精細に観察することができないことがあった。   However, blue light having a center wavelength of about 445 nm used as special light in Patent Documents 1 and 2 contains a light component in a wavelength band of 450 nm or more that lowers the contrast of surface blood vessels on an observation image. For this reason, in Patent Documents 1 and 2, although the contrast of the superficial blood vessels is improved by image processing, a high-contrast observation image in which the difference between the superficial blood vessels and the middle blood vessels is clearly distinguished is obtained. Was hard to say. Therefore, the middle layer blood vessel may be in the way, and it may not be possible to observe the surface layer blood vessel in detail.

本発明は、上記課題に鑑みてなされたもので、生体組織の粘膜表層に存在する表層血管を強調して観察する表層血管強調観察において、表層血管のコントラストをより際立たせた観察画像を得ることができ、表層血管をより精細に観察することができる内視鏡システムを提供することを目的とする。   The present invention has been made in view of the above problems, and in a surface blood vessel enhanced observation in which surface blood vessels existing in a mucosal surface layer of a living tissue are emphasized and observed, to obtain an observation image in which the contrast of surface blood vessels is more prominent. It is an object of the present invention to provide an endoscope system capable of observing a surface blood vessel more precisely.

本発明は、複数の半導体光源が発光する光が統合された照明光を用いる内視鏡システムにおいて、ロングカットフィルタと、ロングカットフィルタのカット機能を無効化する通常観察モードと、ロングカットフィルタのカット機能を有効化する表層血管強調観察モードとを切り替えるモード切替部とを備え、照明光には緑色光と特定の青色光とが含まれ、緑色光と特定の青色光とはスペクトルが連続的である。   The present invention provides an endoscope system using integrated illumination light emitted from a plurality of semiconductor light sources, a long cut filter, a normal observation mode for disabling a cut function of the long cut filter, and a long cut filter. A mode switching unit that switches between a superficial blood vessel emphasis observation mode that enables a cut function, and the illumination light includes green light and a specific blue light, and the spectrum of the green light and the specific blue light is continuous. It is.

本発明は、複数の半導体光源が発光する光が統合された照明光を用いる内視鏡システムにおいて、ロングカットフィルタと、ロングカットフィルタのカット機能を無効化する通常観察モードと、ロングカットフィルタのカット機能を有効化する表層血管強調観察モードとを切り替えるモード切替部とを備え、照明光には緑色光、特定の青色光、及び紫色光が含まれ、緑色光と特定の青色光とはスペクトルが連続的である。   The present invention provides an endoscope system using integrated illumination light emitted from a plurality of semiconductor light sources, a long cut filter, a normal observation mode for disabling a cut function of the long cut filter, and a long cut filter. A mode switching unit that switches between a superficial blood vessel enhancement observation mode that enables a cut function, and green light, specific blue light, and purple light are included in the illumination light, and the green light and the specific blue light are spectrally separated. Is continuous.

緑色光の波長帯域よりも特定の青色光の波長帯域が狭いことが好ましい。特定の青色光は、青色光からロングカットフィルタによって切り出されたロングカット青色光であることが好ましい。ロングカットフィルタは、青色光のうち、生体組織の粘膜表層に存在する表層血管と中層に存在する中層血管の反射スペクトルにおいて、表層血管と中層血管の反射率の交点の波長以上の長波長成分であって中層血管の反射率が表層血管の反射率よりも小さくなる長波長成分の少なくとも一部をカットして、ロングカット青色光を得ることが好ましい。表層血管と中層血管の反射率の交点は、表層血管の太さが太くなるにつれて、長波長側にシフトすることが好ましい。   It is preferable that the wavelength band of the specific blue light is narrower than the wavelength band of the green light. It is preferable that the specific blue light is a long cut blue light cut out from the blue light by a long cut filter. The long cut filter is a long-wavelength component of the blue light, in the reflection spectrum of the surface blood vessels present in the mucosal surface layer of the living tissue and the middle blood vessels present in the middle layer, of the wavelength at the intersection of the reflectance of the surface blood vessels and the middle blood vessels. It is preferable to obtain at least a long-cut blue light by cutting at least a part of the long-wavelength component where the reflectance of the middle blood vessel becomes smaller than the reflectance of the surface blood vessel. It is preferable that the intersection of the reflectance between the surface blood vessel and the middle blood vessel shifts to the longer wavelength side as the thickness of the surface blood vessel increases.

青色光は、青色半導体光源が発することが好ましい。モード切替部は、青色半導体光源の前面に配置するセット位置と、青色半導体光源の前面から退避させる退避位置との間で、ロングカットフィルタをスライド移動させるロングカットフィルタ移動機構を有することが好ましい。青色光のうち、光強度の半値幅以上の波長成分の波長幅が、半値幅以下の波長成分の波長幅よりも狭いことが好ましい。緑色光、及び青色光は光路統合部によって統合されることが好ましい。   The blue light is preferably emitted from a blue semiconductor light source. It is preferable that the mode switching unit has a long cut filter moving mechanism that slides the long cut filter between a set position disposed on the front surface of the blue semiconductor light source and a retracted position retracted from the front surface of the blue semiconductor light source. In the blue light, it is preferable that the wavelength width of the wavelength component equal to or larger than the half width of the light intensity is narrower than the wavelength width of the wavelength component equal to or smaller than the half width. Preferably, the green light and the blue light are integrated by an optical path integration unit.

紫色光は、紫色半導体光源が発することが好ましい。紫色光のうち光強度の半値幅以上の波長成分の波長幅が、半値幅以下の波長成分の波長幅よりも狭いことが好ましい。緑色光、青色光、及び紫色光は光路統合部によって統合されることが好ましい。照明光には赤色光が含まれることが好ましい。   The violet light is preferably emitted from a violet semiconductor light source. It is preferable that the wavelength width of the wavelength component of the violet light whose wavelength is equal to or greater than the half width of the light intensity is narrower than the wavelength width of the wavelength component whose wavelength is equal to or less than the half width. The green light, the blue light, and the violet light are preferably integrated by an optical path integration unit. Preferably, the illumination light includes red light.

本発明によれば、表層血管のコントラストをより際立たせた観察画像を得ることができ、表層血管をより精細に観察することができる。   ADVANTAGE OF THE INVENTION According to this invention, the observation image which made the contrast of a surface blood vessel stand out more can be obtained, and a superficial blood vessel can be observed more finely.

本発明の内視鏡システムの外観図である。It is an outline view of an endoscope system of the present invention. 内視鏡の先端部の正面図である。FIG. 2 is a front view of a distal end portion of the endoscope. 内視鏡システムの電気的構成を示すブロック図である。FIG. 2 is a block diagram illustrating an electrical configuration of the endoscope system. 青色半導体光源を示す図である。It is a figure showing a blue semiconductor light source. 青色半導体光源が発する青色光の発光スペクトルを示すグラフである。5 is a graph showing an emission spectrum of blue light emitted from a blue semiconductor light source. 緑色半導体光源が発する緑色光の発光スペクトルを示すグラフである。5 is a graph showing an emission spectrum of green light emitted from a green semiconductor light source. 赤色半導体光源が発する赤色光の発光スペクトルを示すグラフである。4 is a graph showing an emission spectrum of red light emitted from a red semiconductor light source. ロングカットフィルタの透過特性を示すグラフである。5 is a graph showing transmission characteristics of a long cut filter. ロングカット青色光の発光スペクトルを示すグラフである。It is a graph which shows the emission spectrum of long cut blue light. ロングカット青色光、緑色光、赤色光により構成される照明光の発光スペクトルを示すグラフである。It is a graph which shows the light emission spectrum of illumination light comprised by long cut blue light, green light, and red light. 撮像素子のマイクロカラーフィルタの分光特性を示すグラフである。5 is a graph illustrating spectral characteristics of a micro color filter of an imaging device. 照明光の照射タイミングおよび撮像素子の動作タイミングを示す説明図である。FIG. 3 is an explanatory diagram illustrating irradiation timing of illumination light and operation timing of an image sensor. B画像に描出される表層血管および中層血管を示す図である。It is a figure showing a surface layer blood vessel and a middle layer blood vessel drawn on B picture. G画像に描出される表層血管および中層血管を示す図である。It is a figure showing a surface blood vessel and a middle blood vessel drawn on a G picture. 各半導体光源の配置と光路統合部の詳細構成を示す図である。FIG. 3 is a diagram illustrating an arrangement of each semiconductor light source and a detailed configuration of an optical path integration unit. 緑色光と赤色光の光路を統合するダイクロイックミラーのダイクロイックフィルタの透過特性を示すグラフである。9 is a graph showing transmission characteristics of a dichroic filter of a dichroic mirror integrating light paths of green light and red light. 青色光、緑色光、赤色光の光路を統合するダイクロイックミラーのダイクロイックフィルタの透過特性を示すグラフである。5 is a graph showing transmission characteristics of a dichroic filter of a dichroic mirror integrating optical paths of blue light, green light, and red light. 表層血管と中層血管の反射率の交点Pの波長が460nmである場合のロングカットフィルタの透過特性を示すグラフである。It is a graph which shows the transmission characteristic of the long cut filter in case the wavelength of the intersection P of the reflectance of a surface blood vessel and a middle blood vessel is 460 nm. 図18の例のロングカット青色光の発光スペクトルを示すグラフである。19 is a graph showing an emission spectrum of long-cut blue light in the example of FIG. 図18の例のロングカット青色光、緑色光、赤色光により構成される照明光の発光スペクトルを示すグラフである。19 is a graph showing an emission spectrum of illumination light composed of long-cut blue light, green light, and red light in the example of FIG. 18. モード切替部を設けた第2実施形態の光源装置を示す図である。It is a figure showing a light source device of a 2nd embodiment provided with a mode switching part. 青色光、緑色光、赤色光により構成される照明光の発光スペクトルを示すグラフである。It is a graph which shows the light emission spectrum of the illumination light comprised by blue light, green light, and red light. 紫色半導体光源を設けた第3実施形態の光源装置を示す図である。It is a figure showing the light source device of a 3rd embodiment provided with a purple semiconductor light source. 紫色半導体光源が発する紫色光の発光スペクトルを示すグラフである。4 is a graph showing an emission spectrum of violet light emitted from a violet semiconductor light source. ロングカット青色光、緑色光、赤色光、紫色光により構成される照明光の発光スペクトルを示すグラフである。It is a graph which shows the light emission spectrum of illumination light comprised by long cut blue light, green light, red light, and violet light. 青色光、紫色光の光路を統合するダイクロイックミラーのダイクロイックフィルタの透過特性を示すグラフである。6 is a graph showing transmission characteristics of a dichroic filter of a dichroic mirror integrating optical paths of blue light and violet light. 生体組織の散乱係数を示すグラフである。4 is a graph showing a scattering coefficient of a living tissue. 極表層血管の強調観察における照明光の照射タイミングおよび撮像素子の動作タイミングを示す説明図である。FIG. 3 is an explanatory diagram showing irradiation timing of illumination light and operation timing of an imaging element in an enhanced observation of a very superficial blood vessel. 粘膜、表層血管、および中層血管の反射スペクトルを示すグラフである。It is a graph which shows the reflection spectrum of a mucous membrane, a superficial blood vessel, and a middle blood vessel.

[第1実施形態]
図1において、内視鏡システム10は、生体内の観察部位を撮像する内視鏡11と、撮像により得られた画像信号に基づいて観察部位の観察画像を生成するプロセッサ装置12と、観察部位を照射する照明光を内視鏡11に供給する光源装置13と、観察画像を表示するモニタ14とを備えている。プロセッサ装置12には、キーボードやマウス等の操作入力部15が接続されている。
[First Embodiment]
In FIG. 1, an endoscope system 10 includes an endoscope 11 for imaging an observation site in a living body, a processor device 12 for generating an observation image of the observation site based on an image signal obtained by the imaging, and an observation site. A light source device 13 for supplying illumination light for irradiating the endoscope 11 to the endoscope 11 and a monitor 14 for displaying an observation image are provided. An operation input unit 15 such as a keyboard and a mouse is connected to the processor device 12.

内視鏡11は、生体の消化管内に挿入される挿入部16と、挿入部16の基端部分に設けられた操作部17と、内視鏡11とプロセッサ装置12および光源装置13を連結するユニバーサルコード18とを備えている。   The endoscope 11 connects the insertion section 16 to be inserted into the digestive tract of a living body, the operation section 17 provided at a base end portion of the insertion section 16, and connects the endoscope 11, the processor device 12, and the light source device 13. A universal cord 18.

挿入部16は、先端から順に連設された、先端部19、湾曲部20、可撓管部21で構成される。図2に示すように、先端部19の先端面には、観察部位に照明光を照射する照明窓22、観察部位の像を取り込むための観察窓23、観察窓23を洗浄するために送気・送水を行う送気・送水ノズル24、鉗子や電気メスといった処置具を突出させて各種処置を行うための鉗子出口25が設けられている。観察窓23の奥には、撮像素子56や結像用の対物光学系60(ともに図3参照)が内蔵されている。   The insertion portion 16 includes a distal end portion 19, a bending portion 20, and a flexible tube portion 21 that are sequentially provided from the distal end. As shown in FIG. 2, an illumination window 22 for irradiating illumination light to an observation site, an observation window 23 for capturing an image of the observation site, and an air supply for cleaning the observation window 23 are provided on the distal end surface of the distal end portion 19. An air supply / water supply nozzle 24 for supplying water and a forceps outlet 25 for projecting a treatment tool such as a forceps or an electric scalpel to perform various treatments are provided. An imaging element 56 and an objective optical system 60 for imaging (both shown in FIG. 3) are built in the back of the observation window 23.

湾曲部20は、連結された複数の湾曲駒からなり、操作部17のアングルノブ26を操作することにより、上下左右方向に湾曲動作する。湾曲部20が湾曲することにより、先端部19の向きが所望の方向に向けられる。可撓管部21は、食道や腸等曲がりくねった管道に挿入できるように可撓性を有している。挿入部16には、撮像素子56を駆動する駆動信号や撮像素子56が出力する画像信号を通信する通信ケーブル、光源装置13から供給される照明光を照明窓22に導光するライトガイド55(図3参照)等が挿通されている。   The bending section 20 is composed of a plurality of connected bending pieces, and performs a bending operation in the vertical and horizontal directions by operating the angle knob 26 of the operation section 17. By bending the bending portion 20, the direction of the distal end portion 19 is directed to a desired direction. The flexible tube portion 21 has flexibility so that it can be inserted into a winding tube such as an esophagus or an intestine. The insertion section 16 includes a communication cable for communicating a drive signal for driving the image sensor 56 and an image signal output by the image sensor 56, and a light guide 55 (see FIG. 4) for guiding illumination light supplied from the light source device 13 to the illumination window 22. (See FIG. 3).

操作部17には、アンブルノブ26の他、処置具を挿入するための鉗子口27、送気・送水ノズル24から送気・送水を行う際に操作される送気・送水ボタン28、静止画像を撮影するためのレリーズボタン(図示せず)等が設けられている。   The operation unit 17 includes, in addition to the amble knob 26, a forceps port 27 for inserting a treatment tool, an air supply / water supply button 28 operated when performing air supply / water supply from the air supply / water supply nozzle 24, and a still image. A release button (not shown) for photographing and the like are provided.

ユニバーサルコード18には、挿入部16から延設される通信ケーブルやライトガイド55が挿通されており、プロセッサ装置12および光源装置13側の一端には、コネクタ29が取り付けられている。コネクタ29は、通信用コネクタ29aと光源用コネクタ29bからなる複合タイプのコネクタである。通信用コネクタ29aと光源用コネクタ29bはそれぞれ、プロセッサ装置12と光源装置13に着脱自在に接続される。通信用コネクタ29aには通信ケーブルの一端が配設されており、光源用コネクタ29bにはライトガイド55の入射端55a(図3参照)が配設されている。   A communication cable and a light guide 55 extending from the insertion portion 16 are inserted through the universal cord 18, and a connector 29 is attached to one end of the processor device 12 and the light source device 13. The connector 29 is a composite type connector including a communication connector 29a and a light source connector 29b. The communication connector 29a and the light source connector 29b are detachably connected to the processor device 12 and the light source device 13, respectively. The communication connector 29a is provided with one end of a communication cable, and the light source connector 29b is provided with an incident end 55a (see FIG. 3) of the light guide 55.

図3において、光源装置13は、青色、緑色、赤色の3つの半導体光源35、36、37で構成される光源部40と、各半導体光源35〜37の各色光の光路を統合する光路統合部41と、各半導体光源35〜37の駆動を制御する光源制御部42とを備えている。   In FIG. 3, a light source device 13 includes a light source unit 40 including three semiconductor light sources 35, 36, and 37 of blue, green, and red, and an optical path integration unit that integrates the optical paths of the respective color lights of the semiconductor light sources 35 to 37. 41, and a light source control unit 42 that controls the driving of each of the semiconductor light sources 35 to 37.

各半導体光源35〜37は、半導体発光素子として、青色の波長帯域の光を発する青色発光ダイオード(LED:Light Emitting Diode)43、緑色の波長帯域の光を発する緑色LED44、赤色の波長帯域の光を発する赤色LED45をそれぞれ有している。各LED43〜45は、周知のようにP型半導体とN型半導体を接合したものである。そして、電圧を掛けるとPN接合部付近においてバンドギャップを超えて電子と正孔が再結合して電流が流れ、再結合時にバンドギャップに相当するエネルギーを光として放出する。各LED43〜45は、供給電力の値を増加させると、発する光の光量が増加する。   Each of the semiconductor light sources 35 to 37 includes, as semiconductor light emitting elements, a blue light emitting diode (LED) 43 that emits light in a blue wavelength band, a green LED 44 that emits light in a green wavelength band, and light in a red wavelength band. , Respectively. Each of the LEDs 43 to 45 is formed by joining a P-type semiconductor and an N-type semiconductor, as is well known. Then, when a voltage is applied, electrons and holes recombine beyond the band gap near the PN junction, causing a current to flow, and upon recombination, energy corresponding to the band gap is emitted as light. Each of the LEDs 43 to 45 increases the amount of emitted light as the value of the supplied power increases.

図4に示すように、青色半導体光源35は、青色LED43が実装される基板35aと、基板35a上に形成され、青色LED43を収容するキャビティが形成されたモールド35bと、キャビティに封入された樹脂35cとで構成される。キャビティの内面は光を反射するリフレクタとして機能する。樹脂35cには光を拡散する拡散材が分散されている。青色LED43は配線35dによって基板35aと導通可能に接続される。このような青色半導体光源35の実装形態は、一般的に表面実装型と呼ばれる。なお、各半導体光源35〜37は基本的に同じ構成であるため、青色半導体光源35を例として挙げて説明し、緑色、赤色半導体光源36、37の説明は省略する。   As shown in FIG. 4, the blue semiconductor light source 35 includes a substrate 35a on which the blue LED 43 is mounted, a mold 35b formed on the substrate 35a and having a cavity for accommodating the blue LED 43, and a resin sealed in the cavity. 35c. The inner surface of the cavity functions as a reflector that reflects light. A diffusing material that diffuses light is dispersed in the resin 35c. The blue LED 43 is conductively connected to the substrate 35a by a wiring 35d. Such a mounting form of the blue semiconductor light source 35 is generally called a surface mount type. Since the semiconductor light sources 35 to 37 have basically the same configuration, the blue semiconductor light source 35 will be described as an example, and the description of the green and red semiconductor light sources 36 and 37 will be omitted.

図5に示すように、青色半導体光源35は、例えば青色の波長帯域である440nm〜470nm付近の波長成分を有し、中心波長455±10nm、ピーク波長455nmの青色光LBを発光する。また、図6に示すように、緑色半導体光源36は、例えば緑色の波長帯域である500nm〜600nm付近の波長成分を有し、中心波長520±10nm、ピーク波長520nmの緑色光LGを発光する。さらに図7に示すように、赤色半導体光源37は、例えば赤色の波長帯域である615nm〜635nm付近の波長成分を有し、中心波長620±10nm、ピーク波長625nmの赤色光LRを発光する。なお、中心波長は各色光の発光スペクトルの幅の中心の波長を示し、ピーク波長は各色光の発光スペクトルの山型の頂点の波長を示す。   As shown in FIG. 5, the blue semiconductor light source 35 has, for example, a wavelength component around 440 nm to 470 nm, which is a blue wavelength band, and emits blue light LB having a center wavelength of 455 ± 10 nm and a peak wavelength of 455 nm. As shown in FIG. 6, the green semiconductor light source 36 has, for example, a wavelength component around 500 nm to 600 nm, which is a green wavelength band, and emits green light LG having a center wavelength of 520 ± 10 nm and a peak wavelength of 520 nm. Further, as shown in FIG. 7, the red semiconductor light source 37 has, for example, a wavelength component around 615 nm to 635 nm, which is a red wavelength band, and emits red light LR having a center wavelength of 620 ± 10 nm and a peak wavelength of 625 nm. Note that the center wavelength indicates the wavelength at the center of the width of the emission spectrum of each color light, and the peak wavelength indicates the peak wavelength of the emission spectrum of each color light.

図3において、青色半導体光源35の前面には、ロングカットフィルタ(以下、LCFと略す)48が設けられている。LCF48は、青色半導体光源35が発する青色光LBのうち、図29に示す、生体組織の粘膜表層に存在する表層血管と中層に存在する中層血管の反射スペクトルにおいて、表層血管と中層血管の反射率の交点Pの波長(450nm)以上の長波長成分をカットする。より具体的には、図8に示すように、LCF48は、波長450nm以上の緑色、赤色の波長帯域の光を反射し、それ未満の青色の波長帯域の光を透過する特性を有している。   In FIG. 3, a long cut filter (hereinafter abbreviated as LCF) 48 is provided on the front surface of the blue semiconductor light source 35. The LCF 48 is the reflectance of the surface blood vessels and the middle blood vessels in the reflection spectrum of the surface blood vessels existing in the mucosal surface layer of the living tissue and the middle blood vessels existing in the middle layer of the blue light LB emitted from the blue semiconductor light source 35 as shown in FIG. Long wavelength components equal to or longer than the wavelength (450 nm) at the intersection point P of FIG. More specifically, as shown in FIG. 8, the LCF 48 has a property of reflecting light in a green or red wavelength band having a wavelength of 450 nm or more and transmitting light in a blue wavelength band less than that. .

LCF48によって、青色光LBは、図9に示すロングカット青色光LBlc1となる。ロングカット青色光LBlc1は、青色光LBのうち、図29を用いて説明した、表層血管のコントラスト向上の妨げになる450nm以上の波長帯域の光成分が全てカットされた光である。光路統合部41には、このロングカット青色光LBlc1が入射する。   The LCF 48 converts the blue light LB into a long cut blue light LBlc1 shown in FIG. The long-cut blue light LBlc1 is light in which all the light components in the wavelength band of 450 nm or more, which prevent the improvement of the contrast of the surface blood vessels, described with reference to FIG. The long-cut blue light LBlc1 enters the optical path integration unit 41.

なお、LCF48では、交点Pの波長(450nm)以上の長波長成分を完全にカット(即ち、100%カット)することなく、表層血管のコントラスト向上を十分に確保できる程度に、交点Pの波長(450nm)以上の長波長成分の少なくとも一部(例えば、80〜95%)をカットする。これにより、ロングカット青色光LBlc1のスペクトルは、それよりも長波長側の緑色光LGのスペクトルと離散的にならず、連続的になる。   Note that the LCF 48 does not completely cut (ie, cuts 100%) the long wavelength component longer than the wavelength (450 nm) of the intersection P, and the wavelength of the intersection P ( At least a part (for example, 80 to 95%) of a long wavelength component of 450 nm or more is cut. Accordingly, the spectrum of the long-cut blue light LBlc1 is not discrete but continuous with the spectrum of the green light LG on the longer wavelength side.

各LED43〜45には、ドライバ50、51、52がそれぞれ接続されている。光源制御部42は、これら各ドライバ50〜52を介して、各LED43〜45の点灯、消灯および光量の制御を行う。光量の制御は、プロセッサ装置12から受信する露出制御信号に基づいて、各LED43〜45に供給する電力を変更することで行う。   Drivers 50, 51, and 52 are connected to the LEDs 43 to 45, respectively. The light source control unit 42 controls the turning on / off of the LEDs 43 to 45 and the amount of light via the drivers 50 to 52. The control of the light amount is performed by changing the power supplied to each of the LEDs 43 to 45 based on the exposure control signal received from the processor device 12.

各ドライバ50〜52は、光源制御部42の制御の下、各LED43〜45に駆動電流を連続的に与えることで各LED43〜45を点灯させる。そして、プロセッサ装置12から受信した露出制御信号に応じて、与える駆動電流値を変化させることにより各LED43〜45への供給電力を変更し、青色光LB、緑色光LG、赤色光LRの光量をそれぞれ独立に制御する。なお、駆動電流を連続的に与えるのではなくパルス状に与え、駆動電流パルスの振幅を変化させるPAM(Pulse Amplitude Modulation)制御や、駆動電流パルスのデューティ比を変化させるPWM(Pulse Width Modulation)制御を行ってもよい。   Under the control of the light source control unit 42, the drivers 50 to 52 light each of the LEDs 43 to 45 by continuously applying a drive current to each of the LEDs 43 to 45. Then, the supply power to each of the LEDs 43 to 45 is changed by changing the drive current value to be given in accordance with the exposure control signal received from the processor device 12, and the light amounts of the blue light LB, the green light LG, and the red light LR are changed. Each is controlled independently. It should be noted that the drive current is not applied continuously but in the form of a pulse, and PAM (Pulse Amplitude Modulation) control for changing the amplitude of the drive current pulse or PWM (Pulse Width Modulation) control for changing the duty ratio of the drive current pulse May be performed.

光路統合部41は、ロングカット青色光LBlc1、緑色光LG、赤色光LRの光路を1つの光路に統合する。光路統合部41の光出射部は、光源用コネクタ29bが接続されるレセプタクルコネクタ54の近傍に配置されている。光路統合部41は、各半導体光源35〜37から入射された光を、内視鏡11のライトガイド55の入射端55aに出射する。なお、図示は省略するが、光源用コネクタ29bとレセプタクルコネクタ54にはそれぞれ保護ガラスが設けられている。   The optical path integration unit 41 integrates the optical paths of the long-cut blue light LBlc1, the green light LG, and the red light LR into one optical path. The light emitting unit of the optical path integrating unit 41 is arranged near the receptacle connector 54 to which the light source connector 29b is connected. The light path integrating unit 41 emits light incident from each of the semiconductor light sources 35 to 37 to an incident end 55 a of a light guide 55 of the endoscope 11. Although not shown, the light source connector 29b and the receptacle connector 54 are provided with protective glass, respectively.

光路統合部41で統合されたロングカット青色光LBlc1、緑色光LG、赤色光LRの混合光の発光スペクトルを図10に示す。この混合光は照明光LW1として利用される。なお、図10に示す照明光LW1の発光スペクトルは一例であり、所望の観察画像の色味等に応じて目標とする照明光LW1の発光スペクトルを様々に変更してもよい。具体的には、ロングカット青色光LBlc1、緑色光LG、赤色光LRの光量の割合(各LED43〜45の駆動電流値の割合)を変更し、目標とする発光スペクトルの照明光LW1を生成する。ここで、上記したように、ロングカット青色光LBlc1と緑色光LGとはスペクトルが連続的になっており、更に、緑色光LGと赤色光LRともスペクトルが連続的になっていることから、照明光LW1のスペクトルは波長帯域(約400〜約670nm)全体で連続的である。したがって、照明光LW1は、波長帯域全体でスペクトルが連続的であるキセノンランプとの同等又は類似の演色性を持つ。   FIG. 10 shows the emission spectrum of the mixed light of the long cut blue light LBlc1, the green light LG, and the red light LR integrated by the optical path integration unit 41. This mixed light is used as illumination light LW1. Note that the emission spectrum of the illumination light LW1 shown in FIG. 10 is an example, and the emission spectrum of the target illumination light LW1 may be variously changed according to the color of a desired observation image. Specifically, the ratio of the light amounts of the long-cut blue light LBlc1, the green light LG, and the red light LR (the ratio of the drive current values of the LEDs 43 to 45) is changed to generate the illumination light LW1 having the target emission spectrum. . Here, as described above, the long cut blue light LBlc1 and the green light LG have continuous spectra, and further, the green light LG and the red light LR have continuous spectra. The spectrum of the light LW1 is continuous over the entire wavelength band (about 400 to about 670 nm). Therefore, the illumination light LW1 has the same or similar color rendering as a xenon lamp whose spectrum is continuous over the entire wavelength band.

光源制御部42は、目標とする発光スペクトルを維持しつつ、照明光の露出制御を行う。照明光を構成する各色光の光量の割合が変わると、照明光の発光スペクトルが変化して観察画像の色味が変わってしまう。このため光源制御部42は、各色光の光量の割合が一定となるよう、各ドライバ50〜52を通じて各LED43〜45に与える駆動電流値を独立に変化させ、各色光の光量を増減させる。   The light source control unit 42 controls exposure of illumination light while maintaining a target emission spectrum. When the ratio of the light amount of each color light constituting the illumination light changes, the emission spectrum of the illumination light changes and the color of the observed image changes. For this reason, the light source control unit 42 independently changes the drive current value given to each of the LEDs 43 to 45 through each of the drivers 50 to 52 to increase or decrease the light amount of each color light so that the ratio of the light amount of each color light becomes constant.

内視鏡11は、ライトガイド55、撮像素子56、アナログ処理回路57(AFE:Analog Front End)、および撮像制御部58を備えている。ライトガイド55は、複数本の光ファイバをバンドル化したファイババンドルである。光源用コネクタ29bが光源装置13に接続されたときに、光源用コネクタ29bに配置されたライトガイド55の入射端55aが光路統合部41の光出射部と対向する。先端部19に位置するライトガイド55の出射端は、2つの照明窓22に光が導光されるように、照明窓22の前段で2本に分岐している。   The endoscope 11 includes a light guide 55, an imaging element 56, an analog processing circuit 57 (AFE: Analog Front End), and an imaging control unit 58. The light guide 55 is a fiber bundle in which a plurality of optical fibers are bundled. When the light source connector 29b is connected to the light source device 13, the incident end 55a of the light guide 55 disposed on the light source connector 29b faces the light emitting part of the optical path integrating unit 41. The exit end of the light guide 55 located at the distal end portion 19 is branched into two in front of the illumination windows 22 so that light is guided to the two illumination windows 22.

照明窓22の奥には、照射レンズ59が配置されている。光源装置13から供給された照明光は、ライトガイド55により照射レンズ59に導光されて照明窓22から観察部位に向けて照射される。照射レンズ59は凹レンズからなり、ライトガイド55から出射する光の発散角を広げる。これにより、観察部位の広い範囲に照明光を照射することができる。   An illumination lens 59 is arranged behind the illumination window 22. The illumination light supplied from the light source device 13 is guided to the illumination lens 59 by the light guide 55 and is emitted from the illumination window 22 toward the observation site. The irradiation lens 59 is formed of a concave lens, and widens the divergence angle of light emitted from the light guide 55. This makes it possible to irradiate the illumination light over a wide range of the observation site.

観察窓23の奥には、対物光学系60と撮像素子56が配置されている。観察部位の像は、観察窓23を通して対物光学系60に入射し、対物光学系60によって撮像素子56の撮像面56aに結像される。   An objective optical system 60 and an image sensor 56 are arranged behind the observation window 23. The image of the observation site enters the objective optical system 60 through the observation window 23, and is formed on the imaging surface 56a of the imaging element 56 by the objective optical system 60.

撮像素子56は、CCDイメージセンサやCMOSイメージセンサ等からなり、その撮像面56aには、フォトダイオード等の画素を構成する複数の光電変換素子がマトリックス状に配列されている。撮像素子56は、撮像面56aで受光した光を光電変換して、各画素においてそれぞれの受光量に応じた信号電荷を蓄積する。信号電荷はアンプによって電圧信号に変換されて読み出される。電圧信号は画像信号として撮像素子56からAFE57に出力される。   The imaging element 56 is composed of a CCD image sensor, a CMOS image sensor, or the like, and a plurality of photoelectric conversion elements constituting pixels such as photodiodes are arranged in a matrix on an imaging surface 56a. The imaging element 56 photoelectrically converts the light received on the imaging surface 56a, and accumulates signal charges corresponding to the amount of received light in each pixel. The signal charge is converted into a voltage signal by an amplifier and read. The voltage signal is output from the image sensor 56 to the AFE 57 as an image signal.

AFE(Analog Front End)57は、相関二重サンプリング回路、自動ゲイン制御回路、およびアナログ/デジタル変換器(いずれも図示省略)で構成されている。相関二重サンプリング回路は、撮像素子56からのアナログの画像信号に対して相関二重サンプリング処理を施し、信号電荷のリセットに起因するノイズを除去する。自動ゲイン制御回路は、相関二重サンプリング回路によりノイズが除去された画像信号を増幅する。アナログ/デジタル変換器は、自動ゲイン制御回路で増幅された画像信号を、所定のビット数に応じた階調値を持つデジタルな画像信号に変換してプロセッサ装置12に入力する。   The AFE (Analog Front End) 57 includes a correlated double sampling circuit, an automatic gain control circuit, and an analog / digital converter (all not shown). The correlated double sampling circuit performs correlated double sampling processing on an analog image signal from the image sensor 56, and removes noise caused by resetting signal charges. The automatic gain control circuit amplifies the image signal from which noise has been removed by the correlated double sampling circuit. The analog / digital converter converts the image signal amplified by the automatic gain control circuit into a digital image signal having a gradation value corresponding to a predetermined number of bits and inputs the digital image signal to the processor device 12.

撮像制御部58は、プロセッサ装置12内のコントローラ65に接続されており、コントローラ65から入力される基準クロック信号に同期して、撮像素子56に対して駆動信号を入力する。撮像素子56は、撮像制御部58からの駆動信号に基づいて、所定のフレームレートで画像信号をAFE57に出力する。   The imaging control unit 58 is connected to a controller 65 in the processor device 12 and inputs a drive signal to the imaging device 56 in synchronization with a reference clock signal input from the controller 65. The imaging element 56 outputs an image signal to the AFE 57 at a predetermined frame rate based on a drive signal from the imaging control unit 58.

撮像素子56は、カラー撮像素子であり、撮像面56aには、図11に示すような分光特性を有するB、G、Rの3色のマイクロカラーフィルタが設けられ、各マイクロカラーフィルタが各画素に割り当てられている。マイクロカラーフィルタの配列は例えばベイヤー配列である。   The image sensor 56 is a color image sensor, and the image pickup surface 56a is provided with three color filters of B, G, and R having spectral characteristics as shown in FIG. Assigned to. The arrangement of the micro color filters is, for example, a Bayer arrangement.

Bフィルタが割り当てられたB画素は約380nm〜560nmの波長帯域の光に感応し、Gフィルタが割り当てられたG画素は約450nm〜630nmの波長帯域の光に感応する。また、Rフィルタが割り当てられたR画素は約580nm〜800nmの波長帯域の光に感応する。照明光LW1を構成するロングカット青色光LBlc1、緑色光LG、赤色光LRは、ロングカット青色光LBlc1に対応する反射光が主としてB画素、緑色光LGに対応する反射光が主としてG画素、赤色光LRに対応する反射光が主としてR画素でそれぞれ受光される。   The B pixel to which the B filter is assigned is sensitive to light in the wavelength band of about 380 nm to 560 nm, and the G pixel to which the G filter is assigned is sensitive to light in the wavelength band of about 450 nm to 630 nm. The R pixel to which the R filter is assigned is sensitive to light in a wavelength band of about 580 nm to 800 nm. The long cut blue light LBlc1, the green light LG, and the red light LR that constitute the illumination light LW1 are mainly B pixels that are reflected light corresponding to the long cut blue light LBlc1, G pixels that are mainly reflected light corresponding to the green light LG, and red. The reflected light corresponding to the light LR is mainly received by each of the R pixels.

図12に示すように、撮像素子56は、1フレームの取得期間内で、画素に信号電荷を蓄積する蓄積動作と、蓄積した信号電荷を読み出す読み出し動作を行う。撮像素子56の蓄積動作のタイミングに合わせて、各半導体光源35〜37が点灯し、ロングカット青色光LBlc1、緑色光LG、赤色光LRの混合光からなる照明光LW1(LBlc1+LG+LR)が観察部位に照射され、その反射光が撮像素子56に入射する。撮像素子56は、照明光LW1の反射光をマイクロカラーフィルタで色分離する。ロングカット青色光LBlc1に対応する反射光をB画素が受光し、緑色光LGに対応する反射光をG画素が、赤色光LRに対応する反射光をR画素がそれぞれ受光する。撮像素子56は、読み出しタイミングに合わせて、B、G、Rの各画素の画素値が混在した1フレーム分の画像信号B、G、Rをフレームレートに従って順次出力する。   As shown in FIG. 12, the image sensor 56 performs an accumulation operation of accumulating signal charges in pixels and a reading operation of reading out the accumulated signal charges within an acquisition period of one frame. The semiconductor light sources 35 to 37 are turned on in accordance with the timing of the accumulation operation of the imaging element 56, and the illumination light LW1 (LBlc1 + LG + LR) composed of a mixed light of the long-cut blue light LBlc1, the green light LG, and the red light LR is applied to the observation site. Irradiated, the reflected light is incident on the image sensor 56. The image sensor 56 separates the reflected light of the illumination light LW1 by using a micro color filter. The B pixel receives the reflected light corresponding to the long cut blue light LBlc1, the G pixel receives the reflected light corresponding to the green light LG, and the R pixel receives the reflected light corresponding to the red light LR. The image sensor 56 sequentially outputs the image signals B, G, and R for one frame in which the pixel values of the B, G, and R pixels are mixed in accordance with the frame rate in accordance with the readout timing.

図3において、プロセッサ装置12は、コントローラ65の他、DSP(Digital Signal Processor)66と、画像処理部67と、フレームメモリ68と、表示制御回路69とを備えている。コントローラ65は、CPU(Central Processing Unit)、制御プログラムや制御に必要な設定データを記憶するROM(Read Only Memory)、プログラムをロードして作業メモリとして機能するRAM(Random Access Memory)等を有し、CPUが制御プログラムを実行することにより、プロセッサ装置12の各部を制御する。   In FIG. 3, the processor device 12 includes a controller 65, a DSP (Digital Signal Processor) 66, an image processing unit 67, a frame memory 68, and a display control circuit 69. The controller 65 has a CPU (Central Processing Unit), a ROM (Read Only Memory) that stores a control program and setting data necessary for control, a RAM (Random Access Memory) that loads a program and functions as a working memory, and the like. The CPU controls each unit of the processor device 12 by executing the control program.

DSP66は、撮像素子56が出力する画像信号を取得する。DSP66は、B、G、Rの各画素に対応する信号が混在した画像信号を、B、G、Rの画像信号に分離し、各色の画像信号に対して画素補間処理を行う。これにより、各画素にB、G、Rの画像信号が割り当てられる。この他、DSP66は、ガンマ補正や、B、G、Rの各画像信号に対してホワイトバランス補正等の信号処理を施す。   The DSP 66 acquires an image signal output from the image sensor 56. The DSP 66 separates an image signal in which signals corresponding to B, G, and R pixels are mixed into B, G, and R image signals, and performs a pixel interpolation process on the image signal of each color. Thereby, B, G, and R image signals are assigned to each pixel. In addition, the DSP 66 performs signal processing such as gamma correction and white balance correction on each of the B, G, and R image signals.

また、DSP66は、画像信号B、G、Rに基づいて露出値を算出して、画像全体の光量が不足している場合(露出アンダー)には照明光の光量を上げるように、一方、光量が高すぎる場合(露出オーバー)には照明光の光量を下げるように制御する露出制御信号をコントローラ65に出力する。コントローラ65は、光源装置13の光源制御部42に露出制御信号を送信する。   The DSP 66 calculates an exposure value based on the image signals B, G, and R, and increases the light amount of the illumination light when the light amount of the entire image is insufficient (underexposure). Is too high (overexposure), an exposure control signal for controlling to reduce the amount of illumination light is output to the controller 65. The controller 65 transmits an exposure control signal to the light source control unit 42 of the light source device 13.

フレームメモリ68は、DSP66が出力する画像データや、画像処理部67が処理した処理済みの画像データを記憶する。表示制御回路69は、フレームメモリ68から画像処理済みの画像データを読み出して、コンポジット信号やコンポーネント信号等のビデオ信号に変換してモニタ14に出力する。   The frame memory 68 stores image data output by the DSP 66 and processed image data processed by the image processing unit 67. The display control circuit 69 reads out the image-processed image data from the frame memory 68, converts the image data into a video signal such as a composite signal or a component signal, and outputs the video signal to the monitor 14.

画像処理部67は、DSP66によってB、G、Rの各色に色分離された画像信号B、G、Rに基づいて、観察画像を生成する。この観察画像がモニタ14に出力される。画像処理部67は、フレームメモリ68内の画像信号B、G、Rが更新される毎に、観察画像を更新する。画像信号Bには、照明光LW1を構成するロングカット青色光LBlc1に対応する反射光の成分が含まれている。前述のように、ロングカット青色光LBlc1は、表層血管のコントラスト向上の妨げになる450nm以上の波長帯域の光成分が全てカットされた光であるため、表層血管が高コントラストで描出される。癌等の病変においては、正常組織と比較して表層血管の密集度が高くなる傾向がある等、血管のパターンに特徴があるため、腫瘍の良悪鑑別を目的とする観察においては、表層血管が鮮明に描出されることが好ましい。   The image processing unit 67 generates an observation image based on the image signals B, G, and R color-separated into B, G, and R colors by the DSP 66. This observation image is output to the monitor 14. The image processing unit 67 updates the observation image each time the image signals B, G, and R in the frame memory 68 are updated. The image signal B includes a reflected light component corresponding to the long-cut blue light LBlc1 included in the illumination light LW1. As described above, since the long-cut blue light LBlc1 is light in which all light components in a wavelength band of 450 nm or more that hinder improvement in contrast of the surface blood vessels are cut off, the surface blood vessels are drawn with high contrast. In lesions such as cancer, since the pattern of the blood vessels is characteristic, for example, the density of superficial blood vessels tends to be higher than that of normal tissues, the observation of superficial vascular Is preferably drawn clearly.

画像処理部67は、画像信号B、G、Rに対して表層血管を強調する処理を施す強調処理部70を有している。   The image processing unit 67 includes an enhancement processing unit 70 that performs a process of enhancing surface blood vessels on the image signals B, G, and R.

ここで、各画素の画像信号Bで表される画像(以下、B画像という)71には、図13に太線および薄いハッチングで示すように、表層血管72が高コントラストで描出されるが、細線のみで示すように中層血管73も多少映り込んでいる。これは中層血管も450nmを下回る波長帯域の光を多少なりとも吸収するためである。ただし、450nm以上の波長帯域の光が照射された場合よりも、B画像71内の中層血管73の映り込みは多くはない。一方、各画素の画像信号Gで表される画像(以下、G画像という)74には、図14に太線および薄いハッチングで示すように、B画像71とは逆に中層血管73が高コントラストで描出される。そして、細線のみで示すように表層血管72も多少映り込んでいる。画像信号Gには、表層血管72よりも中層血管73の吸収が大きい530nm〜560nmの波長帯域の緑色光LGに対応する反射光の成分が含まれているので、G画像74は強調される血管がB画像71とは逆に中層血管73となる。   Here, in the image 71 represented by the image signal B of each pixel (hereinafter, referred to as a B image) 71, as shown by a thick line and a thin hatching in FIG. As shown by only the figure, the middle blood vessel 73 is also slightly reflected. This is because the middle blood vessels also absorb light in the wavelength band below 450 nm at all. However, the reflection of the middle blood vessel 73 in the B image 71 is less than that in the case where the light in the wavelength band of 450 nm or more is irradiated. On the other hand, in the image (hereinafter, referred to as G image) 74 represented by the image signal G of each pixel, as shown by a thick line and light hatching in FIG. Is rendered. The surface blood vessels 72 are also slightly reflected as shown by the thin lines only. Since the image signal G includes a reflected light component corresponding to the green light LG in the wavelength band of 530 nm to 560 nm in which the absorption of the middle blood vessel 73 is larger than that of the surface blood vessel 72, the G image 74 is emphasized. Becomes a middle-layer blood vessel 73 opposite to the B image 71.

強調処理部70は、中層血管73の輪郭を抑制し、相対的に表層血管72の輪郭を強調する処理を行う。具体的には、G画像74内の中層血管73の領域を抽出し、画像信号B、G、Rを元に生成したフルカラー画像において、G画像74で抽出した中層血管73の領域の画素値と、中層血管73の領域に隣接する他の領域(表層血管72や粘膜表面)の画素値の差を縮めて、中層血管73の領域と他の領域を同化させる。画像処理部67は、輪郭抑制処理が施されたフルカラー画像を観察画像として出力する。なお、B画像71内の表層血管72の領域を抽出して、抽出した表層血管72の領域と他の領域との画素値の差を広げて、表層血管72の領域に対して輪郭強調処理を施したフルカラー画像を観察画像としてもよい。   The emphasis processing unit 70 performs a process of suppressing the contour of the middle blood vessel 73 and relatively emphasizing the contour of the surface blood vessel 72. Specifically, the region of the middle blood vessel 73 in the G image 74 is extracted, and in the full-color image generated based on the image signals B, G, and R, the pixel value of the region of the middle blood vessel 73 extracted in the G image 74 and Then, the difference between the pixel values of the other region (the surface blood vessel 72 and the mucosal surface) adjacent to the region of the middle blood vessel 73 is reduced, and the region of the middle blood vessel 73 and the other region are assimilated. The image processing unit 67 outputs a full-color image on which the contour suppression processing has been performed as an observation image. Note that the region of the surface blood vessel 72 in the B image 71 is extracted, the difference in pixel value between the extracted surface blood vessel 72 region and the other region is widened, and the contour enhancement process is performed on the surface blood vessel 72 region. The applied full-color image may be used as the observation image.

図15において、光路統合部41は、各半導体光源35〜37が発する各色光をコリメートするコリメータレンズ80、81、82と、ダイクロイックミラー83、84と、光路統合部41から出射する光をライトガイド55の入射端55aに集光する集光レンズ85とで構成されている。各ダイクロイックミラー83、84は、透明なガラス板に所定の透過特性を有するダイクロイックフィルタを形成した光学部材である。   In FIG. 15, an optical path integrating unit 41 includes collimator lenses 80, 81, and 82 for collimating the respective color lights emitted from the semiconductor light sources 35 to 37, dichroic mirrors 83 and 84, and a light guide for emitting light from the optical path integrating unit 41. And a condensing lens 85 for condensing the light at the incident end 55a. Each of the dichroic mirrors 83 and 84 is an optical member in which a dichroic filter having a predetermined transmission characteristic is formed on a transparent glass plate.

緑色半導体光源36は、その光軸がライトガイド55の光軸と一致する位置に配置されている。そして、緑色半導体光源36と赤色半導体光源37は、互いの光軸が直交するように配置されている。これら緑色半導体光源36と赤色半導体光源37の光軸が直交する位置に、ダイクロイックミラー83が設けられている。同様に、青色半導体光源35も、緑色半導体光源36の光軸と直交するように配置され、これらの光軸が直交する位置に、ダイクロイックミラー84が設けられている。ダイクロイックミラー83は緑色半導体光源36、赤色半導体光源37の光軸、ダイクロイックミラー84は青色半導体光源35、緑色半導体光源36の光軸に対して、それぞれ45°傾けた姿勢で配置されている。   The green semiconductor light source 36 is disposed at a position where its optical axis coincides with the optical axis of the light guide 55. The green semiconductor light source 36 and the red semiconductor light source 37 are arranged so that their optical axes are orthogonal to each other. A dichroic mirror 83 is provided at a position where the optical axes of the green semiconductor light source 36 and the red semiconductor light source 37 are orthogonal to each other. Similarly, the blue semiconductor light source 35 is also arranged so as to be orthogonal to the optical axis of the green semiconductor light source 36, and a dichroic mirror 84 is provided at a position where these optical axes are orthogonal. The dichroic mirror 83 is arranged at an angle of 45 ° with respect to the optical axes of the green semiconductor light source 36 and the red semiconductor light source 37, and the dichroic mirror 84 is inclined at 45 ° with respect to the optical axes of the blue semiconductor light source 35 and the green semiconductor light source 36.

図16に示すように、ダイクロイックミラー83のダイクロイックフィルタは、約610nm以上の赤色の波長帯域の光を反射し、それ未満の青色、緑色の波長帯域の光を透過する特性を有している。ダイクロイックミラー83は、コリメータレンズ81を介して緑色半導体光源36から入射した緑色光LGを下流側に透過させ、コリメータレンズ82を介して赤色半導体光源37から入射した赤色光LRを反射させる。これにより緑色光LGと赤色光LRの光路が統合される。   As shown in FIG. 16, the dichroic filter of the dichroic mirror 83 has a characteristic of reflecting light in the red wavelength band of about 610 nm or more and transmitting light in the blue and green wavelength bands less than that. The dichroic mirror 83 transmits the green light LG incident from the green semiconductor light source 36 via the collimator lens 81 to the downstream side, and reflects the red light LR incident from the red semiconductor light source 37 via the collimator lens 82. Thereby, the light paths of the green light LG and the red light LR are integrated.

図17に示すように、ダイクロイックミラー84のダイクロイックフィルタは、約470nm未満の青色の波長帯域の光を反射し、それ以上の緑色、赤色の波長帯域の光を透過する特性を有している。このため、ダイクロイックミラー84は、ダイクロイックミラー83を透過した緑色光LG、およびダイクロイックミラー83で反射した赤色光LRを透過させる。さらに、ダイクロイックミラー84は、LCF48、およびコリメータレンズ80を介して入射したロングカット青色光LBlc1を反射させる。このダイクロイックミラー84により、ロングカット青色光LBlc1、緑色光LG、および赤色光LRの全ての光路が統合され、照明光LW1が生成される。   As shown in FIG. 17, the dichroic filter of the dichroic mirror 84 has a characteristic of reflecting light in the blue wavelength band of less than about 470 nm and transmitting light in the green and red wavelength bands. Therefore, the dichroic mirror 84 transmits the green light LG transmitted through the dichroic mirror 83 and the red light LR reflected by the dichroic mirror 83. Further, the dichroic mirror 84 reflects the long-cut blue light LBlc1 incident via the LCF 48 and the collimator lens 80. The dichroic mirror 84 integrates all optical paths of the long-cut blue light LBlc1, the green light LG, and the red light LR, and generates the illumination light LW1.

以下、上記構成による作用について説明する。内視鏡診断を行う場合には、内視鏡11をプロセッサ装置12と光源装置13に接続し、プロセッサ装置12と光源装置13の電源を入れて、内視鏡システム10を起動する。   Hereinafter, the operation of the above configuration will be described. When performing an endoscope diagnosis, the endoscope 11 is connected to the processor device 12 and the light source device 13, the power of the processor device 12 and the light source device 13 is turned on, and the endoscope system 10 is started.

内視鏡11の挿入部16を被検者の消化管内に挿入して、消化管内の観察を開始する。光源制御部42は、各LED43〜45に与える駆動電流値を設定して、各半導体光源35〜37の点灯を開始する。そして、目標とする発光スペクトルを維持しつつ光量制御を行う。   The insertion section 16 of the endoscope 11 is inserted into the digestive tract of the subject, and observation inside the digestive tract is started. The light source control unit 42 sets a drive current value to be given to each of the LEDs 43 to 45 and starts lighting of each of the semiconductor light sources 35 to 37. Then, light amount control is performed while maintaining a target emission spectrum.

各半導体光源35〜37は、各LED43〜45による青色光LB、緑色光LG、赤色光LRをそれぞれ発する。青色光LBはLCF48を透過してロングカット青色光LBlc1となる。ロングカット青色光LBlc1、緑色光LG、赤色光LRは光路統合部41のコリメータレンズ80〜82にそれぞれ入射する。   The semiconductor light sources 35 to 37 emit blue light LB, green light LG, and red light LR from the LEDs 43 to 45, respectively. The blue light LB passes through the LCF 48 and becomes a long cut blue light LBlc1. The long-cut blue light LBlc1, the green light LG, and the red light LR enter the collimator lenses 80 to 82 of the optical path integration unit 41, respectively.

青色光LBは、ピーク波長が455nmで、440nm〜470nm付近の波長成分を有する。図29を用いて説明したように、青色光LBのうちの450nm以上の波長帯域の光成分は、表層血管と中層血管のコントラスト差を高めて表層血管を高コントラストで描出するためには、カットしたほうがよい。そこで、本実施形態では、LCF48により、450nm以上の長波長成分をカットし、表層血管のコントラストの悪化を招かないようにしている。   The blue light LB has a peak wavelength of 455 nm and has a wavelength component around 440 nm to 470 nm. As described with reference to FIG. 29, the light component in the wavelength band of 450 nm or more of the blue light LB is cut in order to increase the contrast difference between the surface blood vessel and the middle blood vessel and draw the surface blood vessel with high contrast. You had better. Therefore, in the present embodiment, the LCF 48 cuts long wavelength components of 450 nm or more so as to prevent deterioration of the contrast of the surface blood vessels.

ロングカット青色光LBlc1はダイクロイックミラー84で反射される。緑色光LGはダイクロイックミラー83、84を透過する。赤色光LRはダイクロイックミラー83で反射し、ダイクロイックミラー84を透過する。ダイクロイックミラー83、84によって、ロングカット青色光LBlc1、緑色光LG、赤色光LRの光路が統合される。これらロングカット青色光LBlc1、緑色光LG、赤色光LRは、集光レンズ85に入射する。これにより、ロングカット青色光LBlc1、緑色光LG、赤色光LRで構成される照明光LW1が生成される。集光レンズ85は、照明光LW1を内視鏡11のライトガイド55の入射端55aに集光し、照明光LW1を内視鏡11に供給する。   The long-cut blue light LBlc1 is reflected by the dichroic mirror 84. The green light LG passes through the dichroic mirrors 83 and 84. The red light LR is reflected by the dichroic mirror 83 and passes through the dichroic mirror 84. The optical paths of the long-cut blue light LBlc1, the green light LG, and the red light LR are integrated by the dichroic mirrors 83 and 84. The long cut blue light LBlc1, green light LG, and red light LR enter the condenser lens 85. Thereby, the illumination light LW1 composed of the long-cut blue light LBlc1, the green light LG, and the red light LR is generated. The condenser lens 85 condenses the illumination light LW1 on the incident end 55a of the light guide 55 of the endoscope 11, and supplies the illumination light LW1 to the endoscope 11.

内視鏡11において、照明光LW1はライトガイド55を通じて照明窓22に導光されて、照明窓22から観察部位に照射される。観察部位で反射した照明光LW1の反射光は、観察窓23から撮像素子56に入射する。撮像素子56は画像信号B、G、Rをプロセッサ装置12のDSP66に出力する。DSP66は画像信号B、G、Rを色分離して、画像処理部67に入力する。撮像素子56による撮像動作は所定のフレームレートで繰り返される。   In the endoscope 11, the illumination light LW1 is guided to the illumination window 22 through the light guide 55, and is emitted from the illumination window 22 to the observation site. The reflected light of the illumination light LW <b> 1 reflected at the observation site enters the image sensor 56 from the observation window 23. The image sensor 56 outputs the image signals B, G, and R to the DSP 66 of the processor device 12. The DSP 66 separates the image signals B, G, and R into colors and inputs the color-separated signals to the image processing unit 67. The imaging operation by the imaging element 56 is repeated at a predetermined frame rate.

強調処理部70は、入力された画像信号B、G、Rに対して表層血管を強調する処理を施す。画像処理部67は、この強調処理を施した画像信号B、G、Rを元に観察画像を生成する。観察画像は表示制御回路69を通じてモニタ14に出力される。観察画像は撮像素子56のフレームレートに従って更新される。   The emphasis processing unit 70 performs a process of emphasizing surface blood vessels on the input image signals B, G, and R. The image processing unit 67 generates an observation image based on the image signals B, G, and R that have been subjected to the enhancement processing. The observation image is output to the monitor 14 through the display control circuit 69. The observation image is updated according to the frame rate of the image sensor 56.

また、DSP66は、画像信号B、G、Rに基づいて露出値を算出し、算出した露出値に応じた露出制御信号を光源装置13の光源制御部42に送信する。光源制御部42は、受信した露出制御信号に基づいて、各色光の光量の割合が一定となるよう(目標とする発光スペクトルが変化しないよう)各半導体光源35〜37の駆動電流値を決定する。そして、決定した駆動電流値で各半導体光源35〜37を駆動する。これにより、各半導体光源35〜37による、照明光LW1を構成するロングカット青色光LBlc1、緑色光LG、赤色光LRの光量を、観察に適した割合に一定に保つことができる。   The DSP 66 calculates an exposure value based on the image signals B, G, and R, and transmits an exposure control signal corresponding to the calculated exposure value to the light source control unit 42 of the light source device 13. The light source control unit 42 determines the drive current value of each of the semiconductor light sources 35 to 37 based on the received exposure control signal such that the ratio of the light amount of each color light becomes constant (the target emission spectrum does not change). . Then, each of the semiconductor light sources 35 to 37 is driven by the determined drive current value. Accordingly, the light amounts of the long-cut blue light LBlc1, green light LG, and red light LR constituting the illumination light LW1 by the semiconductor light sources 35 to 37 can be kept constant at a ratio suitable for observation.

青色光LB、緑色光LG、赤色光LRの光量をそれぞれ独立に制御可能であるため、目標とする発光スペクトルの照明光LW1の生成が容易であり、また、目標とする発光スペクトルを維持しつつ、照明光の露出制御を行うことも容易である。   Since the amounts of the blue light LB, the green light LG, and the red light LR can be controlled independently of each other, it is easy to generate the illumination light LW1 having the target emission spectrum, and while maintaining the target emission spectrum. It is also easy to control the exposure of the illumination light.

照明光LW1を構成するロングカット青色光LBlc1には、観察画像上の表層血管のコントラストを悪化させる成分が全く含まれていない。また、強調処理部70で表層血管を強調する処理が施される。従来は表層血管を強調する処理のみを行っていたが、本発明ではこれに加えて、観察画像上の表層血管のコントラストを悪化させる光成分をLCF48で取り除いている。このため、表層血管と中層血管との違いが明確に弁別された、表層血管のより精細な観察に好適な観察画像を得ることができる。   The long-cut blue light LBlc1 constituting the illumination light LW1 does not include any component that deteriorates the contrast of the superficial blood vessels on the observation image. The emphasis processing unit 70 performs a process of emphasizing the surface blood vessels. Conventionally, only the process of emphasizing the surface blood vessels was performed. In the present invention, in addition to this, the light component that deteriorates the contrast of the surface blood vessels on the observed image is removed by the LCF 48. For this reason, it is possible to obtain an observation image suitable for finer observation of the surface blood vessels, in which the difference between the surface blood vessels and the middle blood vessels is clearly discriminated.

なお、LCF48の位置は、上記第1実施形態で例示した青色半導体光源35とコリメータレンズ80の間に限らず、青色光LBの光路上にあればよい。例えば、コリメータレンズ80とダイクロイックミラー84の間にLCF48を配置してもよい。   The position of the LCF 48 is not limited to the position between the blue semiconductor light source 35 and the collimator lens 80 illustrated in the first embodiment, but may be on the optical path of the blue light LB. For example, the LCF 48 may be arranged between the collimator lens 80 and the dichroic mirror 84.

LCF48は、例えば、400nm以上450nm未満の光を透過するバンドパス特性を有するものでもよい。ただし、バンドパス特性を有するフィルタは、上記第1実施形態で例示したショートパス特性を有するものよりも製造コストが嵩むので、上記第1実施形態のように、ショートパス特性を有するLCF48のほうがコスト面で有利である。   The LCF 48 may have, for example, a bandpass characteristic of transmitting light of 400 nm or more and less than 450 nm. However, since the filter having the band pass characteristic has a higher manufacturing cost than the filter having the short path characteristic exemplified in the first embodiment, the LCF 48 having the short path characteristic is more costly as in the first embodiment. It is advantageous in terms of aspect.

表層血管と中層血管の反射率の交点Pの波長は、上記第1実施形態で例示した、表層血管の太さが10μmの場合の450nmに限らず、観察対象とする表層血管の太さに応じて変化し、表層血管の太さが太くなるにつれ、交点Pの波長も長波長側にシフトする。具体的には、交点Pの波長は445nm〜460nmの範囲の値をとり得る。このため、LCF48でカットする波長も、観察対象とする表層血管の太さに応じて決定される。   The wavelength of the intersection point P of the reflectance between the surface blood vessel and the middle blood vessel is not limited to 450 nm when the thickness of the surface blood vessel is 10 μm, as exemplified in the first embodiment, but depends on the thickness of the surface blood vessel to be observed. As the thickness of the surface blood vessels increases, the wavelength of the intersection P also shifts to the longer wavelength side. Specifically, the wavelength of the intersection point P can take a value in the range of 445 nm to 460 nm. Therefore, the wavelength to be cut by the LCF 48 is also determined according to the thickness of the surface blood vessel to be observed.

例えば、交点Pの波長が460nmである場合は、LCF48として、波長460nm以上の緑色、赤色の波長帯域の光を反射し、それ未満の青色の波長帯域の光を透過する、図18に示す特性を有するものが用いられる。図18に示す透過特性のLCF48によって、青色光LBは、図19に示すロングカット青色光LBlc2となる。図9に示すロングカット青色光LBlc1には、青色光LBのピーク波長455nmの光成分が含まれていないが、ロングカット青色光LBlc2には、青色光LBのピーク波長455nmの光成分が含まれている。このため、ロングカット青色光LBlc2のほうが、ロングカット青色光LBlc1よりも光量が大きい。この場合、光路統合部41で統合されたロングカット青色光LBlc2、緑色光LG、赤色光LRの混合光である照明光LW2の発光スペクトルは、図20に示すようになる。なお、照明光LW2についても、照明光LW1と同様、波長帯域全体においてスペクトルが連続している。   For example, when the wavelength of the intersection point P is 460 nm, the LCF 48 reflects light in the green and red wavelength bands having a wavelength of 460 nm or more and transmits light in the blue wavelength band less than that, as shown in FIG. Is used. The LCF 48 having the transmission characteristics shown in FIG. 18 turns the blue light LB into the long-cut blue light LBlc2 shown in FIG. The long-cut blue light LBlc1 shown in FIG. 9 does not include a light component having a peak wavelength of 455 nm of the blue light LB, but the long-cut blue light LBlc2 includes a light component having a peak wavelength of 455 nm of the blue light LB. ing. Therefore, the long cut blue light LBlc2 has a larger light amount than the long cut blue light LBlc1. In this case, the emission spectrum of the illumination light LW2, which is a mixed light of the long cut blue light LBlc2, the green light LG, and the red light LR, integrated by the optical path integration unit 41 is as shown in FIG. Note that the spectrum of the illumination light LW2 is continuous over the entire wavelength band, similarly to the illumination light LW1.

なお、表層血管を強調する処理としては、上記第1実施形態で例示した方法の他に、特許文献1の特開2011−098088号公報、特許文献2の特開2012−152459号公報に記載された方法を採用してもよい。例えば、表層血管は観察画像上で比較的細く映るので、周波数成分が比較的高周波に偏ることを利用して、B画像71に周波数フィルタリングを施して、表層血管に該当する高周波成分を抽出し、この抽出した高周波成分でB画像71内の表層血管を強調することで、表層血管のコントラストを上げる。あるいは、中層血管に該当する中低周波成分を抽出し、抽出した中低周波成分でB画像71内の中層血管のコントラストを抑制し、相対的に表層血管のコントラストを上げる。   The processing for enhancing the surface blood vessels is described in Japanese Patent Application Laid-Open No. 2011-098088 of Patent Document 1 and Japanese Patent Application Laid-Open No. 2012-152559 of Patent Document 2 in addition to the method exemplified in the first embodiment. May be adopted. For example, since the surface blood vessels appear relatively thin on the observation image, the frequency component is biased toward a relatively high frequency, and the frequency filtering is performed on the B image 71 to extract the high frequency components corresponding to the surface blood vessels. The contrast of the surface blood vessels is increased by enhancing the surface blood vessels in the B image 71 with the extracted high frequency components. Alternatively, a middle-low frequency component corresponding to the middle-layer blood vessel is extracted, the contrast of the middle-layer blood vessel in the B image 71 is suppressed by the extracted middle-low-frequency component, and the contrast of the surface blood vessel is relatively increased.

輪郭抑制処理や周波数強調処理の説明からも分かるように、表層血管を強調する処理は、表層血管と中層血管のコントラスト差が広がるものであればよく、中層血管に対して表層血管のコントラストを上げる処理に限らず、表層血管に対しては何もせず、代わりに中層血管のコントラストを抑制して、相対的に表層血管のコントラストを上げる処理、および表層血管のコントラストを上げ、かつ中層血管のコントラストを抑制する処理も含まれる。   As can be seen from the description of the contour suppression processing and the frequency emphasis processing, the processing for enhancing the surface blood vessels may be any processing that widens the contrast difference between the surface blood vessels and the middle blood vessels, and increases the contrast of the surface blood vessels with respect to the middle blood vessels. Not limited to the processing, nothing is performed on the superficial blood vessels; instead, the processing of suppressing the contrast of the superficial blood vessels and increasing the contrast of superficial blood vessels relatively, and increasing the contrast of superficial blood vessels and the contrast of the superficial blood vessels Is also included.

[第2実施形態]
上記第1実施形態では、LCF48が青色半導体光源35の前面に固定され、LCF48の長波長成分のカット機能が常に有効化されているが、本発明はこれに限定されない。LCF48のカット機能の有効化、無効化を切り替えてもよい。
[Second embodiment]
In the first embodiment, the LCF 48 is fixed to the front surface of the blue semiconductor light source 35, and the long wavelength component cut function of the LCF 48 is always enabled. However, the present invention is not limited to this. The enable / disable of the cut function of the LCF 48 may be switched.

図21に示すように、本実施形態の光源装置90は、モード切替部95を備えている。モード切替部95は、LCF48のカット機能を有効化して、表層血管を強調して観察する表層血管強調観察モードと、LCF48のカット機能を無効化して、観察部位の全体の性状を観察する通常観察モードとを切り替える。なお、光源装置90は、モード切替部95が設けられている他は上記第1実施形態と同じ構成であるため、上記第1実施形態と同じ構成には同一の符号を付し、説明を省略する。   As shown in FIG. 21, the light source device 90 of the present embodiment includes a mode switching unit 95. The mode switching unit 95 activates the cut function of the LCF 48 and enhances the superficial blood vessel observation mode by emphasizing the superficial blood vessels, and disables the cut function of the LCF 48 and observes the general properties of the observation site. Switch between modes. The light source device 90 has the same configuration as that of the first embodiment except that a mode switching unit 95 is provided. Therefore, the same components as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted. I do.

モード切替部95は、モード切替ボタン96と、ロングカットフィルタ移動機構(以下、LCF移動機構と略す)97と、光源制御部98とで構成される。モード切替ボタン96は、光源制御部98に接続されている。モード切替ボタン96は、モード切替のための指示信号を光源制御部98に発する操作部材であり、例えば、光源装置90またはプロセッサ装置12の筐体の前面パネルや、内視鏡11の操作部17等に設けられている。光源制御部98は、上記第1実施形態の光源制御部42と同じく、各ドライバ50〜52を介して、各LED43〜45の点灯、消灯および光量の制御を行う他、モード切替ボタン96からの指示信号に応じて、LCF移動機構97の駆動を制御する。   The mode switching unit 95 includes a mode switching button 96, a long cut filter moving mechanism (hereinafter abbreviated as LCF moving mechanism) 97, and a light source control unit 98. The mode switching button 96 is connected to the light source control unit 98. The mode switching button 96 is an operation member that issues an instruction signal for mode switching to the light source control unit 98. For example, the mode switching button 96 is a front panel of the housing of the light source device 90 or the processor device 12, or the operation unit 17 of the endoscope 11. Etc. are provided. The light source control unit 98 controls the turning on / off of the LEDs 43 to 45 and the light amount via the drivers 50 to 52 as well as the light source control unit 42 of the first embodiment. The driving of the LCF moving mechanism 97 is controlled according to the instruction signal.

LCF移動機構97は、例えば、モータと、モータの回転力を直線運動に変えるラックアンドピニオンギヤ(ともに図示せず)とで構成され、青色半導体光源35の前面に配置する実線で示すセット位置と、青色半導体光源35の前面から退避させる点線で示す退避位置との間で、LCF48をスライド移動させる。   The LCF moving mechanism 97 includes, for example, a motor and a rack-and-pinion gear (both not shown) for changing the rotational force of the motor into a linear motion, and a set position indicated by a solid line disposed on the front surface of the blue semiconductor light source 35; The LCF 48 is slid between the retracted position indicated by the dotted line retracted from the front surface of the blue semiconductor light source 35.

LCF48がセット位置にある場合(LCF48のカット機能が有効化された場合)は、上記第1実施形態と同じく、青色光LBは、450nm以上の長波長成分がカットされてロングカット青色光LBlc1となり、観察部位には、ロングカット青色光LBlc1、緑色光LG、赤色光LRの混合光である照明光LW1が照射される。一方、LCF48が退避位置にある場合(LCF48のカット機能が無効化された場合)は、青色光LBはそのまま光路統合部41に入射する。観察部位には、青色光LB、緑色光LG、赤色光LRの混合光である、図22に示すような発光スペクトルの照明光LW0が照射される。   When the LCF 48 is at the set position (when the cut function of the LCF 48 is enabled), the blue light LB becomes a long cut blue light LBlc1 by cutting a long wavelength component of 450 nm or more, as in the first embodiment. The observation site is irradiated with illumination light LW1 that is a mixed light of the long-cut blue light LBlc1, the green light LG, and the red light LR. On the other hand, when the LCF 48 is at the retracted position (when the cut function of the LCF 48 is invalidated), the blue light LB directly enters the optical path integration unit 41. The observation site is irradiated with illumination light LW0 having an emission spectrum as shown in FIG. 22, which is a mixed light of blue light LB, green light LG, and red light LR.

照明光LW0は、緑色光LG、赤色光LRに、青色光LBがそのまま重畳されたもので、従来の観察部位の全体の性状を観察する際に照射される白色光に近い発光スペクトルを有する。照明光LW0は、照明光LW1のように青色光LBに表層血管のコントラストを向上させるための加工を施していないので、照明光LW1と比べて、観察部位の全体の性状の観察に適している。また、青色光LBの光成分がカットされていないため照明光LW1よりも光量が大きい。   The illumination light LW0 is obtained by superimposing the blue light LB on the green light LG and the red light LR as it is, and has an emission spectrum close to that of white light emitted when observing the entire properties of the conventional observation site. Unlike the illumination light LW1, the illumination light LW0 is not subjected to processing for improving the contrast of the superficial blood vessels in the blue light LB unlike the illumination light LW1, and therefore is more suitable for observing the overall properties of the observation region than the illumination light LW1. . Further, since the light component of the blue light LB is not cut, the light amount is larger than that of the illumination light LW1.

このように、モード切替部95を設けて、LCF48のカット機能を有効化または無効化する選択を術者が可能な構成とすれば、従来行われている白色光による観察部位の全体の性状の観察(通常観察モード)と、表層血管の強調観察(表層血管強調観察モード)とを両方行うことができる。観察の初期段階では、観察部位の全体の性状を観察するために通常観察モードを選択し、病変部と疑わしき観察部位が発見された場合は、表層血管強調観察モードを選択するといった使い分けができる。また、観察部位の全体の性状を観察する際には、観察部位から先端部19を離して、比較的遠景で観察部位を撮像することが多いので、照明光LW1よりも光量が増した照明光LW0を用いるほうが有利である。   As described above, if the mode switching unit 95 is provided to enable the operator to select whether to enable or disable the cut function of the LCF 48, the overall property of the observation region using white light, which has been conventionally performed, can be obtained. Both observation (normal observation mode) and enhancement observation of surface blood vessels (surface blood vessel enhancement observation mode) can be performed. In the initial stage of observation, the normal observation mode can be selected to observe the overall properties of the observation site, and when an observation site suspected of a lesion is found, the superficial blood vessel enhanced observation mode can be selected. Further, when observing the overall properties of the observation site, the distal end portion 19 is often separated from the observation site, and the observation site is often imaged in a relatively distant view. It is more advantageous to use LW0.

なお、通常観察モードと表層血管強調観察モードとでは照明光の発光スペクトルが異なるので、DSP66で行うホワイトバランス補正等の信号処理を、例えば各モードで観察画像の色味が同じになるようにする等、各モードに応じて変更することが好ましい。   Since the emission spectrum of the illumination light is different between the normal observation mode and the superficial blood vessel emphasis observation mode, the signal processing such as the white balance correction performed by the DSP 66 is performed, for example, so that the color of the observation image is the same in each mode. It is preferable to change according to each mode.

強調処理部70は、両モードで作動してもよいし、表層血管強調観察モードのときのみ作動してもよい。   The enhancement processing unit 70 may operate in both modes, or may operate only in the superficial blood vessel enhancement observation mode.

LCF48の移動機構は上記に例示したモータとラックアンドピニオンギヤで構成したものに限らない。例えば、可視光透過ガラス製の円板(ターレット)の半面にLCF48を形成し、あとの半分は何も設けずに、青色光LBがそのまま透過できるようにしておき、モータで円板を回転移動させることで、LCF48のカット機能を有効化または無効化してもよい。   The moving mechanism of the LCF 48 is not limited to the above-described motor and the rack and pinion gear. For example, an LCF 48 is formed on a half surface of a disk (turret) made of visible light transmitting glass, and the other half is not provided, so that blue light LB can be transmitted as it is, and the disk is rotated by a motor. By doing so, the cut function of the LCF 48 may be enabled or disabled.

なお、光源制御部がLCF移動機構97の駆動を制御する例を記載したが、光源制御部とは別にLCF移動機構97の駆動を制御する制御部を設けてもよい。   Although the example in which the light source controller controls the driving of the LCF moving mechanism 97 has been described, a controller that controls the driving of the LCF moving mechanism 97 may be provided separately from the light source controller.

LCF48は、上記各実施形態のような透過特性が変化しないものに限らない。例えば、圧電素子等のアクチュエータを駆動することにより、2枚の高反射光フィルタからなる基板の面間隔を変更することで、透過光の波長帯域を制御するエタロンフィルタや、偏光フィルタ間に複屈折フィルタとネマティック液晶セルを挟んで構成され、液晶セルへの印加電圧を変更することで透過光の波長帯域を制御する液晶チューナブルフィルタ等、透過特性が可変のフィルタを用いてもよい。エタロンフィルタや液晶チューナブルフィルタ等の透過特性が可変のフィルタを用いれば、LCF移動機構がいらないので、コスト、スペースの点で有利である。なお、エタロンフィルタや液晶チューナブルフィルタ等の透過特性が可変のフィルタを用いる場合、上記第2実施形態のモード切替部は、エタロンフィルタや液晶チューナブルフィルタを駆動して透過光の波長帯域を変更するドライバと、ドライバを介してエタロンフィルタや液晶チューナブルフィルタの駆動を制御する制御部とで構成される。   The LCF 48 is not limited to one in which the transmission characteristics do not change as in the above embodiments. For example, by driving an actuator such as a piezoelectric element, the surface spacing of a substrate composed of two high-reflection optical filters is changed, and thereby an etalon filter that controls the wavelength band of transmitted light, and birefringence between polarizing filters. A filter having variable transmission characteristics, such as a liquid crystal tunable filter configured to sandwich a filter and a nematic liquid crystal cell and controlling a wavelength band of transmitted light by changing a voltage applied to the liquid crystal cell, may be used. If a filter having variable transmission characteristics such as an etalon filter or a liquid crystal tunable filter is used, an LCF moving mechanism is not required, which is advantageous in terms of cost and space. When a filter having variable transmission characteristics such as an etalon filter or a liquid crystal tunable filter is used, the mode switching unit of the second embodiment changes the wavelength band of transmitted light by driving the etalon filter or the liquid crystal tunable filter. And a control unit that controls the driving of the etalon filter and the liquid crystal tunable filter via the driver.

[第3実施形態]
上記各実施形態では、光源部を青色、緑色、赤色の3つの半導体光源35〜37で構成しているが、上記各実施形態で観察対象とした表層血管のうちの粘膜表層により近い表層血管(以下、上記各実施形態で観察対象とした表層血管と区別するため極表層血管という)を強調して観察するための紫色の波長帯域の光を発する紫色半導体光源を追加してもよい。
[Third embodiment]
In each of the above embodiments, the light source unit is constituted by the three semiconductor light sources 35 to 37 of blue, green and red. Hereinafter, a violet semiconductor light source that emits light in a violet wavelength band for emphasizing and observing the superficial blood vessels to be distinguished from the superficial blood vessels to be observed in the above embodiments may be added.

図23において、本実施形態の光源装置110は、上記各実施形態の各半導体光源35〜37に加えて、紫色半導体光源115を有する光源部116と、各半導体光源35〜37、115の各色光の光路を統合する光路統合部117とを備えている。なお、光源装置110は、光源部と光路統合部の一部の構成が異なる他は上記第1実施形態と同じ構成であるため、上記第1実施形態と同じ構成には同一の符号を付し、説明を省略する。   In FIG. 23, a light source device 110 of the present embodiment includes, in addition to the semiconductor light sources 35 to 37 of the above embodiments, a light source unit 116 having a violet semiconductor light source 115, and respective color lights of the semiconductor light sources 35 to 37 and 115. And an optical path integration unit 117 that integrates the optical paths of the two. The light source device 110 has the same configuration as that of the first embodiment except that a part of the configuration of the light source unit and the optical path integration unit is different. Therefore, the same reference numerals are given to the same configurations as those of the first embodiment. The description is omitted.

紫色半導体光源115は、発光素子として、紫色の波長帯域の光を発する紫色LED(図示せず)を有している。紫色半導体光源115の具体的な構造は、図4に示す青色半導体光源35と同じである。図24に示すように、紫色半導体光源115は、例えば紫色の波長帯域である395nm〜415nm付近の波長成分を有し、中心波長405±10nm、ピーク波長405nmの紫色光LVを発光する。   The violet semiconductor light source 115 has a violet LED (not shown) that emits light in a violet wavelength band as a light emitting element. The specific structure of the violet semiconductor light source 115 is the same as that of the blue semiconductor light source 35 shown in FIG. As shown in FIG. 24, the violet semiconductor light source 115 has, for example, a wavelength component around 395 nm to 415 nm, which is a violet wavelength band, and emits violet light LV having a center wavelength of 405 ± 10 nm and a peak wavelength of 405 nm.

光路統合部117は、上記各実施形態の光路統合部41に、紫色光LVをコリメートするコリメータレンズ118と、ロングカット青色光LBlc1と、紫色光LVの光路を統合するダイクロイックミラー119を追加した構成である。光路統合部117は、ロングカット青色光LBlc1、緑色光LG、赤色光LR、および紫色光LVの光路を1つの光路に統合する。光路統合部117で統合されたロングカット青色光LBlc1、緑色光LG、赤色光LR、紫色光LVの混合光の発光スペクトルを図25に示す。この混合光は照明光LW3として利用される。   The optical path integrating unit 117 is configured by adding a collimator lens 118 for collimating the violet light LV, a long cut blue light LBlc1, and a dichroic mirror 119 for integrating the optical path of the violet light LV to the optical path integrating unit 41 of each of the above embodiments. It is. The optical path integrating unit 117 integrates the optical paths of the long cut blue light LBlc1, the green light LG, the red light LR, and the violet light LV into one optical path. FIG. 25 shows the emission spectrum of the mixed light of the long cut blue light LBlc1, the green light LG, the red light LR, and the violet light LV integrated by the optical path integration unit 117. This mixed light is used as illumination light LW3.

青色半導体光源35と紫色半導体光源115は、互いの光軸が直交するように配置され、これらの光軸が直交する位置に、ダイクロイックミラー119が設けられている。ダイクロイックミラー119は青色半導体光源35、紫色半導体光源115の光軸に対して45°傾けた姿勢で配置されている。   The blue semiconductor light source 35 and the violet semiconductor light source 115 are arranged such that their optical axes are orthogonal to each other, and a dichroic mirror 119 is provided at a position where these optical axes are orthogonal to each other. The dichroic mirror 119 is arranged at an angle of 45 ° with respect to the optical axes of the blue semiconductor light source 35 and the violet semiconductor light source 115.

図26に示すように、ダイクロイックミラー119のダイクロイックフィルタは、約430nm未満の紫色の波長帯域の光を反射し、それ以上の青色、緑色、赤色の波長帯域の光を透過する特性を有している。ダイクロイックミラー119は、コリメータレンズ80を介して入射したロングカット青色光LBlc1を下流側に透過させ、コリメータレンズ118を介して紫色半導体光源38から入射した紫色光LVを反射させる。これによりロングカット青色光LBlc1と紫色光LVの光路が統合される。ダイクロイックミラー119で反射した紫色光LVは、ダイクロイックミラー84が図17に示すように約470nm未満の青色の波長帯域の光を反射する特性を有するので、ダイクロイックミラー84で反射して集光レンズ85に向かう。これにより、ロングカット青色光LBlc1、緑色光LG、赤色光LR、および紫色光LVの全ての光の光路が統合される。   As shown in FIG. 26, the dichroic filter of the dichroic mirror 119 has a characteristic of reflecting light in the violet wavelength band of less than about 430 nm and transmitting light in the blue, green, and red wavelength bands. I have. The dichroic mirror 119 transmits the long-cut blue light LBlc1 incident via the collimator lens 80 to the downstream side, and reflects the violet light LV incident from the violet semiconductor light source 38 via the collimator lens 118. Thus, the optical paths of the long-cut blue light LBlc1 and the violet light LV are integrated. The violet light LV reflected by the dichroic mirror 119 is reflected by the dichroic mirror 84 and reflected by the condensing lens 85 because the dichroic mirror 84 has a characteristic of reflecting light in a blue wavelength band of less than about 470 nm as shown in FIG. Head for. Thereby, the optical paths of all the long cut blue light LBlc1, green light LG, red light LR, and violet light LV are integrated.

図29において、表層血管の反射率は、450nmを下回る波長帯域で大きく落ち込み、405nm付近において最も落ち込んでいる。反射率が低い波長帯域の光を観察部位に照射すると、血管においては吸収が大きいので、血管とそれ以外の部分とのコントラストに差がある観察画像が得られる。   In FIG. 29, the reflectance of the superficial blood vessels drops significantly in the wavelength band below 450 nm, and drops most around 405 nm. When light in a wavelength band having a low reflectance is applied to the observation site, an observation image having a difference in contrast between the blood vessel and other portions is obtained because the absorption is large in the blood vessel.

また、図27に示すように、生体組織の光の散乱特性にも波長依存性があり、短波長になるほど散乱係数μSは大きくなる。散乱は生体組織内への光の深達度に影響する。すなわち、散乱が大きいほど、生体組織の粘膜表層付近で反射される光が多く、中深層に到達する光が少ない。そのため、短波長であるほど深達度は低く、長波長になるほど深達度は高い。   Further, as shown in FIG. 27, the light scattering characteristic of the living tissue also has wavelength dependence, and the shorter the wavelength, the larger the scattering coefficient μS. Scattering affects the depth of light penetration into living tissue. That is, the greater the scattering, the more light is reflected near the mucosal surface layer of the living tissue, and the less light reaches the mid-depth layer. Therefore, the shorter the wavelength, the lower the depth, and the longer the wavelength, the higher the depth.

紫色半導体光源115が発する中心波長405±10nmの紫色光LVは、比較的短波長で深達度が低いので、上記各実施形態で観察対象とした表層血管のうちの粘膜表層により近い極表層血管による吸収が大きい。このため紫色光LVは極表層血管強調用の特殊光として用いられる。紫色光LVを用いることにより、ロングカット青色光LBlc1によって強調される表層血管に加えて、極表層血管が高コントラストで描出された観察画像を得ることができる。   The violet light LV having a center wavelength of 405 ± 10 nm emitted from the violet semiconductor light source 115 is a relatively short wavelength and has a low depth of penetration. Therefore, the ultra-surface blood vessels closer to the mucosal surface layer among the surface blood vessels to be observed in the above embodiments. Large absorption by For this reason, the violet light LV is used as special light for emphasizing the extremely superficial blood vessels. By using the violet light LV, it is possible to obtain an observation image in which the extremely superficial blood vessels are drawn with high contrast in addition to the superficial blood vessels emphasized by the long-cut blue light LBlc1.

図28において、極表層血管を強調観察する場合は、撮像素子56の蓄積動作のタイミングに合わせて、各半導体光源35〜37に加えて紫色半導体光源115が点灯する。各半導体光源35〜37、115が点灯すると、照明光LW1とともに、紫色光LVが追加されて、これらの混合光(LW1+LV)である図25に示す照明光LW3が観察部位に照射される。   In FIG. 28, when the extreme surface blood vessels are to be emphasized, the violet semiconductor light source 115 is turned on in addition to the semiconductor light sources 35 to 37 in accordance with the timing of the accumulation operation of the image sensor 56. When the semiconductor light sources 35 to 37 and 115 are turned on, the violet light LV is added together with the illumination light LW1, and the illumination light LW3 shown in FIG. 25, which is a mixture of these lights (LW1 + LV), is emitted to the observation site.

照明光LW1に紫色光LVが追加された照明光LW3は、撮像素子56のマイクロカラーフィルタで分光される。B画素は、ロングカット青色光LBlc1に対応する反射光に加えて、紫色光LVに対応する反射光を受光する。G画素、R画素は、上記第1実施形態と同じく、緑色光LGに対応する反射光、赤色光LRに対応する反射光をそれぞれ受光する。撮像素子56は、読み出しタイミングに合わせて、画像信号B、G、Rをフレームレートに従って順次出力する。   The illumination light LW3 obtained by adding the violet light LV to the illumination light LW1 is split by the micro color filter of the image sensor 56. The B pixel receives the reflected light corresponding to the violet light LV in addition to the reflected light corresponding to the long cut blue light LBlc1. The G pixel and the R pixel receive the reflected light corresponding to the green light LG and the reflected light corresponding to the red light LR, respectively, as in the first embodiment. The image sensor 56 sequentially outputs the image signals B, G, and R according to the frame rate in accordance with the readout timing.

この場合における画像信号Bには、照明光LW1を構成するロングカット青色光LBlc1に対応する反射光の成分に加えて、紫色光LVに対応する反射光の成分が含まれているため、表層血管だけでなく極表層血管が高コントラストで描出される。表層血管と同様に、癌等の病変においては、正常組織と比較して極表層血管の密集度が高くなる傾向がある等、極表層血管のパターンに特徴があるため、本実施形態の光源装置110によれば極表層血管が鮮明に描出されるので好ましい。   In this case, the image signal B includes the reflected light component corresponding to the violet light LV in addition to the reflected light component corresponding to the long cut blue light LBlc1 included in the illumination light LW1. In addition, very superficial blood vessels are depicted with high contrast. Like the superficial blood vessels, in a lesion such as a cancer, the pattern of the superficial blood vessels is characteristic, such as a tendency that the density of the superficial blood vessels tends to be higher than that of normal tissue. According to 110, the very superficial blood vessels are clearly depicted, which is preferable.

上記第1実施形態では、プロセッサ装置12からの露出制御信号に基づいて、各LED43〜45に与える駆動電流値を変化させることで各色光の光量制御を行っているが、LEDの発熱の影響や経時劣化の影響により、半導体光源は駆動電流値に対する出力光量が変動する場合がある。そこで、各色光の光量を測定する光量測定センサを設けて、光量測定センサが出力する光量測定信号に基づいて、各色光の光量が目標値に達しているか否かを監視してもよい。   In the first embodiment, the light amount control of each color light is performed by changing the drive current value given to each of the LEDs 43 to 45 based on the exposure control signal from the processor device 12. Due to the influence of aging, the output light amount of the semiconductor light source with respect to the drive current value may fluctuate. Therefore, a light quantity measurement sensor for measuring the light quantity of each color light may be provided, and whether or not the light quantity of each color light has reached a target value may be monitored based on the light quantity measurement signal output from the light quantity measurement sensor.

この場合、光源制御部は、光量測定信号と目標とする光量とを比較し、この比較結果に基づいて、光量が目標値となるように、露出制御で設定した各半導体光源35〜37に与える駆動電流値を微調整する。このように各色光の光量を光量測定センサで常に監視し、光量の測定結果に基づき与える駆動電流値を微調整することで、常に目標値に沿うように光量を制御することができる。このため目標とする発光スペクトルの照明光をより安定して得ることができる。   In this case, the light source control unit compares the light amount measurement signal with the target light amount, and gives the light amount to each of the semiconductor light sources 35 to 37 set by the exposure control based on the comparison result so that the light amount becomes the target value. Fine-adjust the drive current value. As described above, the light amount of each color light is constantly monitored by the light amount measurement sensor, and the drive current value given based on the measurement result of the light amount is finely adjusted, so that the light amount can always be controlled so as to be in line with the target value. Therefore, illumination light of a target emission spectrum can be more stably obtained.

上記各実施形態では、LEDのみで構成された半導体光源を挙げているが、例えば、緑色半導体光源を、紫色から青色の波長帯域の青色励起光を発する青色励起光LED、および青色励起光で励起されて緑色の波長帯域の緑色光を発する緑色蛍光体で構成された蛍光型半導体光源としてもよい。また、緑色半導体光源に代えて、あるいは加えて、赤色半導体光源を、紫色から青色の波長帯域の青色励起光を発する青色励起光LED、および青色励起光で励起されて赤色の波長帯域の赤色蛍光を発する赤色蛍光体で構成してもよい。赤色半導体光源を蛍光型半導体光源で構成する場合は、励起光LEDは紫色から青色の波長帯域の青色励起光を発する青色励起光発光素子に限らず、緑色の波長帯域の緑色励起光を発する緑色励起光発光素子であってもよい。この場合、上記第1実施形態の図4に示すモールド35bのキャビティに、樹脂35cの代わりに蛍光体を封入して蛍光型半導体光源を構成する。   In each of the above embodiments, the semiconductor light source including only the LED is described. For example, a green semiconductor light source is excited by a blue excitation light LED that emits blue excitation light in a violet to blue wavelength band, and a blue excitation light. The fluorescent semiconductor light source may be configured by a green phosphor that emits green light in a green wavelength band. In addition, instead of or in addition to the green semiconductor light source, a red semiconductor light source is provided with a blue excitation light LED emitting blue excitation light in a violet to blue wavelength band, and a red fluorescent light in a red wavelength band excited by blue excitation light. May be constituted by a red phosphor that emits light. When the red semiconductor light source is configured by a fluorescent semiconductor light source, the excitation light LED is not limited to a blue excitation light emitting element that emits blue excitation light in a violet to blue wavelength band, and a green light that emits green excitation light in a green wavelength band. An excitation light emitting element may be used. In this case, a fluorescent material is sealed in the cavity of the mold 35b of the first embodiment shown in FIG. 4 instead of the resin 35c to form a fluorescent semiconductor light source.

蛍光型半導体光源の励起光発光素子が発する光が、表層血管と中層血管の反射率の交点Pの波長以上の成分を含んでいる場合は、その光成分をカットするフィルタを設けることが好ましい。   When the light emitted from the excitation light emitting element of the fluorescent semiconductor light source includes a component that is equal to or greater than the wavelength of the intersection P of the reflectance of the surface blood vessel and the middle blood vessel, it is preferable to provide a filter that cuts off the light component.

また、図4に示したLEDの実装形態は1例であり、他の形態を採用してもよい。例えば、封止樹脂35cの光出射面に発散角を調整するマイクロレンズを設けてもよいし、あるいは表面実装型でなく、マイクロレンズが形成された砲弾型のケースにLEDを収容した形態でもよい。また、緑色半導体光源や赤色半導体光源として蛍光型半導体光源を使用する場合は、蛍光型半導体光源は励起光LEDと蛍光体を一体的に設けたものに限らず、これらを別に設けたものでもよい。この場合には、励起光LEDと蛍光体の間にレンズや光ファイバ等の導光部材を追加して、導光部材を介して励起光LEDの励起光を蛍光体に導光する。   The mounting form of the LED shown in FIG. 4 is one example, and another form may be adopted. For example, a microlens for adjusting the divergence angle may be provided on the light emitting surface of the sealing resin 35c, or a form in which the LED is housed in a shell type case in which the microlens is formed instead of the surface mount type. . Further, when a fluorescent semiconductor light source is used as the green semiconductor light source or the red semiconductor light source, the fluorescent semiconductor light source is not limited to the one in which the excitation light LED and the phosphor are provided integrally, but may be those in which these are separately provided. . In this case, a light guide member such as a lens or an optical fiber is added between the excitation light LED and the phosphor, and the excitation light of the excitation light LED is guided to the phosphor via the light guide member.

さらに、蛍光型半導体の発光素子として、LEDの代わりにレーザダイオード(LD(Laser Diode))を用いてもよい。LEDやLDの他に有機EL(Electro-Luminescence)素子を用いてもよい。蛍光型半導体光源に限らず、他の半導体光源の発光素子に、LDや有機EL素子を用いてもよい。   Furthermore, a laser diode (LD (Laser Diode)) may be used instead of the LED as the fluorescent semiconductor light emitting element. Organic EL (Electro-Luminescence) elements may be used in addition to LEDs and LDs. Not limited to the fluorescent semiconductor light source, an LD or an organic EL element may be used as a light emitting element of another semiconductor light source.

光源部の構成としては、上記各実施形態で例示した青色、緑色、赤色の各半導体光源35〜37を有するものに代えて、白色光源と青色半導体光源との組み合わせでもよい。白色光源としては、白色LEDや、青色励起光発光素子と、青色励起光で励起されて緑色から赤色のブロードな波長帯域の蛍光を発する蛍光体とで構成した蛍光型白色半導体光源等を用いてもよいし、半導体光源に限らずキセノンランプやメタルハライドランプを用いてもよい。   As a configuration of the light source unit, a combination of a white light source and a blue semiconductor light source may be used instead of the light source units having the blue, green, and red semiconductor light sources 35 to 37 illustrated in the above embodiments. As a white light source, a white LED or a fluorescent white semiconductor light source composed of a blue excitation light emitting element and a phosphor excited by the blue excitation light and emitting fluorescence in a broad wavelength band from green to red using a white LED or the like. Alternatively, a xenon lamp or a metal halide lamp may be used instead of the semiconductor light source.

また、白色光源と、白色光源が発する白色光の光路上に配置されたフィルタターレットとで光源部を構成してもよい。フィルタターレットは、可視光透過ガラス製の円板の半面にLCF48が形成され、あとの半分は何も設けられず、白色光源が発した白色光をそのまま透過するもので、モータ等により回転される。LCF48は、白色光のうちの表層血管と中層血管の反射率の交点Pの波長以上の光成分をカットしてロングカット青色光を生成する。この場合は白色光源が青色光源を兼ねる。   Further, the light source unit may be configured by a white light source and a filter turret arranged on an optical path of white light emitted from the white light source. The filter turret has an LCF 48 formed on a half surface of a disk made of visible light transmitting glass, and the other half is not provided with anything, and transmits the white light emitted by the white light source as it is, and is rotated by a motor or the like. . The LCF 48 generates a long-cut blue light by cutting a light component of the white light having a wavelength equal to or more than the wavelength of the intersection P of the reflectance of the surface blood vessel and the middle blood vessel. In this case, the white light source also serves as the blue light source.

この場合、撮像素子56の蓄積動作と同期してフィルタターレットが順次回転され、観察部位には照明光として白色光とロングカット青色光が交互に照射される。画像処理部67は、白色光を照射して得られた画像信号とロングカット青色光を照射して得られた画像信号を元に観察画像を生成する。強調処理部70は、例えば、青色光を照射して得られたB画像を、白色光を照射して得られたフルカラー画像に合成することで、表層血管を強調する。   In this case, the filter turret is sequentially rotated in synchronization with the accumulation operation of the image sensor 56, and the observation site is irradiated with white light and long-cut blue light alternately as illumination light. The image processing unit 67 generates an observation image based on an image signal obtained by irradiating white light and an image signal obtained by irradiating long-cut blue light. The emphasis processing unit 70 emphasizes surface blood vessels, for example, by combining a B image obtained by irradiating blue light with a full-color image obtained by irradiating white light.

白色光源が青色光源を兼ねる上記の場合は、青色光の光量を独立して制御することが難しいので、上記各実施形態のように青色光源を単独の青色半導体光源とし、青色光の光量を独立して制御可能な構成とするほうがより好ましい。また、青色光源を単独の青色半導体光源とすることで、白色光源が青色光源を兼ねる場合と比べて、青色光LBひいてはロングカット青色光の光量を稼ぐことができ、表層血管の視認性を向上させることができるのでより好ましい。   In the above case where the white light source also serves as the blue light source, it is difficult to independently control the light amount of the blue light. Therefore, as in the above embodiments, the blue light source is used as a single blue semiconductor light source, and the light amount of the blue light is controlled independently. It is more preferable to make the configuration controllable. In addition, by using the blue light source as a single blue semiconductor light source, compared to the case where the white light source also serves as the blue light source, the amount of blue light LB and thus the long cut blue light can be obtained, and the visibility of the surface blood vessels is improved. It is more preferable because it can be performed.

上記各実施形態における光路統合部の構成は1例であり、種々の変更が可能である。例えばダイクロイックフィルタを形成した光学部材としてダイクロイックミラーを用いているが、代わりにプリズムにダイクロイックフィルタを形成したダイクロイックプリズムを用いてもよい。また、ダイクロイックミラーやダイクロイックプリズムといった、ダイクロイックフィルタを形成した光学部材の代わりに、例えば、各半導体光源に対峙する複数の入射端と、内視鏡のライトガイドの入射端に対峙する1つの出射端を有する分岐型ライトガイドを用いて光路を統合してもよい。分岐型ライトガイドは、光ファイバをバンドル化したファイババンドルであり、一端において光ファイバを所定本数ずつ複数に分割して、入射端を複数に分岐させたものである。この場合には、分岐した各入射端のそれぞれに対応させて各半導体光源を配置する。   The configuration of the optical path integration unit in each of the above embodiments is an example, and various changes can be made. For example, a dichroic mirror is used as an optical member having a dichroic filter, but a dichroic prism having a dichroic filter formed on a prism may be used instead. Also, instead of an optical member forming a dichroic filter, such as a dichroic mirror or a dichroic prism, for example, a plurality of entrance ends facing each semiconductor light source and one exit end facing the entrance end of the light guide of the endoscope. The optical paths may be integrated using a branching light guide having The branching type light guide is a fiber bundle in which optical fibers are bundled, and one end is divided into a plurality of optical fibers by a predetermined number, and the input end is branched into a plurality. In this case, each semiconductor light source is arranged corresponding to each of the branched incident ends.

ロングカット青色光と緑色光LGの混合光や、緑色光LGと紫色光LVの混合光を観察部位に照射し、緑色光LGベースで観察画像を取得してもよい。   The observation site may be irradiated with the mixed light of the long-cut blue light and the green light LG or the mixed light of the green light LG and the violet light LV to obtain the observation image based on the green light LG.

上記各実施形態では、撮像素子56として、B、G、Rのマイクロカラーフィルタによって照明光を色分離するカラー撮像素子を有し、カラー撮像素子によってB、G、Rの画像信号を同時に取得する同時式の内視鏡システムおよびそれに用いられる光源装置を例に説明したが、モノクロ撮像素子を有し、青色、緑色、赤色の各色光を順次照射して、B、G、Rの画像信号を面順次で取得する面順次式の内視鏡システムおよびそれに用いられる光源装置に本発明を適用してもよい。   In each of the above embodiments, the image sensor 56 includes a color image sensor that separates the illumination light by the B, G, and R micro color filters, and simultaneously obtains the B, G, and R image signals by the color image sensor. The simultaneous endoscope system and the light source device used therein have been described as an example. However, the monochrome endoscope system has a monochrome image sensor, and sequentially irradiates blue, green, and red light, and outputs B, G, and R image signals. The present invention may be applied to a frame-sequential type endoscope system obtained in a frame-sequential manner and a light source device used therein.

なお、言うまでもないが、上記各実施形態は、単独で実施することも、複合して実施することも可能である。   Needless to say, each of the above embodiments can be implemented alone or in combination.

上記各実施形態では、光源装置とプロセッサ装置が別体で構成される例で説明したが、2つの装置を一体で構成してもよい。また、本発明は、照明光の観察部位の反射光をイメージガイドで導光するファイバスコープや、撮像素子と超音波トランスデューサが先端部に内蔵された超音波内視鏡を用いた内視鏡システムおよびそれに用いられる光源装置にも適用することができる。   In each of the embodiments described above, an example has been described in which the light source device and the processor device are configured separately, but the two devices may be configured integrally. Further, the present invention provides an endoscope system using a fiberscope that guides reflected light of an observation site of illumination light with an image guide, and an ultrasonic endoscope in which an imaging element and an ultrasonic transducer are incorporated in a distal end portion. Also, the present invention can be applied to a light source device used therein.

10 内視鏡システム
11 内視鏡
13、90、110 光源装置
35 青色半導体光源
36 緑色半導体光源
37 赤色半導体光源
40、116 光源部
41、117 光路統合部
42、98 光源制御部
43 青色LED
48 ロングカットフィルタ(LCF)
55 ライトガイド
56 撮像素子
95 モード切替部
96 モード切替ボタン
97 ロングカットフィルタ(LCF)移動機構
115 紫色半導体光源
DESCRIPTION OF SYMBOLS 10 Endoscope system 11 Endoscope 13, 90, 110 Light source device 35 Blue semiconductor light source 36 Green semiconductor light source 37 Red semiconductor light source 40, 116 Light source part 41, 117 Optical path integration part 42, 98 Light source control part 43 Blue LED
48 Long Cut Filter (LCF)
55 light guide 56 imaging device 95 mode switching section 96 mode switching button 97 long cut filter (LCF) moving mechanism 115 purple semiconductor light source

Claims (14)

複数の半導体光源が発光する光が統合された照明光を用いる内視鏡システムにおいて、
ロングカットフィルタと、
前記ロングカットフィルタのカット機能を無効化する通常観察モードと、前記ロングカットフィルタのカット機能を有効化する表層血管強調観察モードとを切り替えるモード切替部とを備え、
前記照明光には緑色光と特定の青色光とが含まれ、
前記緑色光と前記特定の青色光とはスペクトルが連続的である内視鏡システム。
In an endoscope system using illumination light in which light emitted by a plurality of semiconductor light sources is integrated,
A long cut filter,
A normal observation mode that disables the cut function of the long cut filter, and a mode switching unit that switches between a surface blood vessel enhancement observation mode that enables the cut function of the long cut filter,
The illumination light includes a green light and a specific blue light,
An endoscope system wherein the green light and the specific blue light have continuous spectra.
複数の半導体光源が発光する光が統合された照明光を用いる内視鏡システムにおいて、
ロングカットフィルタと、
前記ロングカットフィルタのカット機能を無効化する通常観察モードと、前記ロングカットフィルタのカット機能を有効化する表層血管強調観察モードとを切り替えるモード切替部とを備え、
前記照明光には緑色光、特定の青色光、及び紫色光が含まれ、
前記緑色光と前記特定の青色光とはスペクトルが連続的である内視鏡システム。
In an endoscope system using illumination light in which light emitted by a plurality of semiconductor light sources is integrated,
A long cut filter,
A normal observation mode that disables the cut function of the long cut filter, and a mode switching unit that switches between a surface blood vessel enhancement observation mode that enables the cut function of the long cut filter,
The illumination light includes green light, specific blue light, and violet light,
An endoscope system wherein the green light and the specific blue light have continuous spectra.
前記緑色光の波長帯域よりも前記特定の青色光の波長帯域が狭い請求項1または2記載の内視鏡システム。   The endoscope system according to claim 1, wherein a wavelength band of the specific blue light is narrower than a wavelength band of the green light. 前記特定の青色光は、青色光から前記ロングカットフィルタによって切り出されたロングカット青色光である請求項1ないし3いずれか1項記載の内視鏡システム。   4. The endoscope system according to claim 1, wherein the specific blue light is a long-cut blue light cut out from the blue light by the long-cut filter. 5. 前記ロングカットフィルタは、前記青色光のうち、生体組織の粘膜表層に存在する表層血管と中層に存在する中層血管の反射スペクトルにおいて、前記表層血管と前記中層血管の反射率の交点の波長以上の長波長成分であって中層血管の反射率が表層血管の反射率よりも小さくなる長波長成分の少なくとも一部をカットして、ロングカット青色光を得る請求項4記載の内視鏡システム。   The long cut filter, in the blue light, in the reflection spectrum of the surface blood vessels present in the mucosal surface layer of the living tissue and the middle layer blood vessels present in the middle layer, the wavelength of the wavelength of the intersection of the reflectance of the surface blood vessels and the middle layer blood vessels or more 5. The endoscope system according to claim 4, wherein a long-cut blue light is obtained by cutting at least a part of the long-wavelength component that is a long-wavelength component and the reflectance of the middle blood vessel is smaller than the reflectance of the superficial blood vessel. 前記表層血管と前記中層血管の反射率の交点は、前記表層血管の太さが太くなるにつれて、長波長側にシフトする請求項5記載の内視鏡システム。   6. The endoscope system according to claim 5, wherein the intersection of the reflectance of the surface blood vessel and the reflectance of the middle blood vessel shifts to a longer wavelength side as the thickness of the surface blood vessel increases. 前記青色光は、青色半導体光源が発する請求項4ないし6いずれか1項記載の内視鏡システム。   The endoscope system according to any one of claims 4 to 6, wherein the blue light is emitted from a blue semiconductor light source. 前記モード切替部は、前記青色半導体光源の前面に配置するセット位置と、前記青色半導体光源の前面から退避させる退避位置との間で、前記ロングカットフィルタをスライド移動させるロングカットフィルタ移動機構を有する請求項7記載の内視鏡システム。   The mode switching unit has a long cut filter moving mechanism that slides the long cut filter between a set position disposed on the front surface of the blue semiconductor light source and a retracted position retracted from the front surface of the blue semiconductor light source. The endoscope system according to claim 7. 前記青色光のうち、光強度の半値幅以上の波長成分の波長幅が、前記半値幅以下の波長成分の波長幅よりも狭い請求項4ないし8いずれか1項記載の内視鏡システム。   9. The endoscope system according to claim 4, wherein a wavelength width of a wavelength component equal to or more than a half width of light intensity of the blue light is narrower than a wavelength width of a wavelength component equal to or less than the half width. 前記緑色光、及び前記青色光は光路統合部によって統合される請求項4ないし9いずれか1項記載の内視鏡システム。   The endoscope system according to any one of claims 4 to 9, wherein the green light and the blue light are integrated by an optical path integration unit. 前記紫色光は、紫色半導体光源が発する請求項2記載の内視鏡システム。   The endoscope system according to claim 2, wherein the violet light is emitted from a violet semiconductor light source. 前記紫色光のうち光強度の半値幅以上の波長成分の波長幅が、前記半値幅以下の波長成分の波長幅よりも狭い請求項2または11記載の内視鏡システム。   The endoscope system according to claim 2, wherein a wavelength width of a wavelength component equal to or greater than a half width of light intensity of the violet light is narrower than a wavelength width of a wavelength component equal to or less than the half width. 前記緑色光、前記青色光、及び前記紫色光は光路統合部によって統合される請求項2、11、12いずれか1項記載の内視鏡システム。   The endoscope system according to claim 2, wherein the green light, the blue light, and the violet light are integrated by an optical path integration unit. 前記照明光には赤色光が含まれる請求項1ないし13いずれか1項記載の内視鏡システム。   14. The endoscope system according to claim 1, wherein the illumination light includes red light.
JP2019201346A 2013-08-27 2019-11-06 Endoscope system Active JP6827512B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013175615 2013-08-27
JP2013175615 2013-08-27

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018154651A Division JP6615959B2 (en) 2013-08-27 2018-08-21 Endoscope system

Publications (2)

Publication Number Publication Date
JP2020018914A true JP2020018914A (en) 2020-02-06
JP6827512B2 JP6827512B2 (en) 2021-02-10

Family

ID=52586281

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2015534112A Active JP6162809B2 (en) 2013-08-27 2014-08-05 Endoscope system
JP2017117438A Active JP6391772B2 (en) 2013-08-27 2017-06-15 Endoscope system
JP2018154651A Active JP6615959B2 (en) 2013-08-27 2018-08-21 Endoscope system
JP2019201346A Active JP6827512B2 (en) 2013-08-27 2019-11-06 Endoscope system

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2015534112A Active JP6162809B2 (en) 2013-08-27 2014-08-05 Endoscope system
JP2017117438A Active JP6391772B2 (en) 2013-08-27 2017-06-15 Endoscope system
JP2018154651A Active JP6615959B2 (en) 2013-08-27 2018-08-21 Endoscope system

Country Status (2)

Country Link
JP (4) JP6162809B2 (en)
WO (1) WO2015029709A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020127671A1 (en) 2020-02-06 2021-08-12 Mitsubishi Electric Corporation Semiconductor device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3354188A4 (en) * 2015-09-24 2019-04-17 Olympus Corporation Endoscope device
EP3257432B1 (en) * 2016-06-17 2023-05-10 FUJIFILM Corporation Light source device and endoscope system
EP3586716B1 (en) * 2017-03-10 2023-01-18 Sony Olympus Medical Solutions Inc. Endoscope device
WO2019039354A1 (en) * 2017-08-23 2019-02-28 富士フイルム株式会社 Light source device and endoscope system
CN112911094A (en) * 2019-12-04 2021-06-04 索尼半导体解决方案公司 Electronic device
JP7159261B2 (en) * 2020-11-04 2022-10-24 富士フイルム株式会社 endoscope system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054113A (en) * 2005-08-22 2007-03-08 Pentax Corp Electronic endoscope, endoscope light source device, endoscope processor, and endoscope system
JP2011010998A (en) * 2009-07-06 2011-01-20 Fujifilm Corp Lighting device for endoscope and endoscope apparatus
JP2011041758A (en) * 2009-08-24 2011-03-03 Olympus Medical Systems Corp Medical equipment
WO2011099322A1 (en) * 2010-02-10 2011-08-18 Hoya株式会社 Electronic endoscope system
JP2012115372A (en) * 2010-11-30 2012-06-21 Fujifilm Corp Endoscope apparatus
JP2013146484A (en) * 2012-01-23 2013-08-01 Fujifilm Corp Electronic endoscope system, image processing apparatus, image processing method, and image processing program

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3228627B2 (en) * 1993-03-19 2001-11-12 オリンパス光学工業株式会社 Endoscope image processing device
JP4817632B2 (en) * 2004-09-27 2011-11-16 京セラ株式会社 LED fiber light source device and endoscope using the same
JP4917822B2 (en) * 2006-03-30 2012-04-18 富士フイルム株式会社 Endoscope device
JP2009297290A (en) * 2008-06-13 2009-12-24 Fujifilm Corp Endoscope apparatus and image processing method thereof
JP5250342B2 (en) * 2008-08-26 2013-07-31 富士フイルム株式会社 Image processing apparatus and program
JP2011200364A (en) * 2010-03-25 2011-10-13 Hoya Corp Endoscope apparatus
JP5405373B2 (en) * 2010-03-26 2014-02-05 富士フイルム株式会社 Electronic endoscope system
JP5467971B2 (en) * 2010-08-30 2014-04-09 富士フイルム株式会社 Electronic endoscope system, processor device for electronic endoscope system, and method for operating electronic endoscope system
JP2012223376A (en) * 2011-04-20 2012-11-15 Hoya Corp Control circuit and control method of light-emitting diode for lighting, and electronic endoscope apparatus using the same
JP5858752B2 (en) * 2011-11-28 2016-02-10 富士フイルム株式会社 Endoscope light source device
CN103796571B (en) * 2012-03-29 2017-10-20 奥林巴斯株式会社 Endoscopic system
CN103619234B (en) * 2012-04-04 2017-03-01 奥林巴斯株式会社 Light supply apparatuses
JP5695684B2 (en) * 2013-02-04 2015-04-08 富士フイルム株式会社 Electronic endoscope system
JP5976045B2 (en) * 2013-08-27 2016-08-23 富士フイルム株式会社 Endoscope light source device and endoscope system using the same
JP6247610B2 (en) * 2014-07-30 2017-12-13 富士フイルム株式会社 Endoscope system, operation method of endoscope system, light source device, and operation method of light source device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054113A (en) * 2005-08-22 2007-03-08 Pentax Corp Electronic endoscope, endoscope light source device, endoscope processor, and endoscope system
JP2011010998A (en) * 2009-07-06 2011-01-20 Fujifilm Corp Lighting device for endoscope and endoscope apparatus
JP2011041758A (en) * 2009-08-24 2011-03-03 Olympus Medical Systems Corp Medical equipment
WO2011099322A1 (en) * 2010-02-10 2011-08-18 Hoya株式会社 Electronic endoscope system
JP2012115372A (en) * 2010-11-30 2012-06-21 Fujifilm Corp Endoscope apparatus
JP2013146484A (en) * 2012-01-23 2013-08-01 Fujifilm Corp Electronic endoscope system, image processing apparatus, image processing method, and image processing program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020127671A1 (en) 2020-02-06 2021-08-12 Mitsubishi Electric Corporation Semiconductor device

Also Published As

Publication number Publication date
JP6827512B2 (en) 2021-02-10
JPWO2015029709A1 (en) 2017-03-02
JP6615959B2 (en) 2019-12-04
JP2017185267A (en) 2017-10-12
JP6162809B2 (en) 2017-07-12
WO2015029709A1 (en) 2015-03-05
JP2018171540A (en) 2018-11-08
JP6391772B2 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
JP7280394B2 (en) Endoscope light source device
JP5997676B2 (en) Endoscope light source device and endoscope system using the same
JP6827512B2 (en) Endoscope system
JP5976045B2 (en) Endoscope light source device and endoscope system using the same
US9943230B2 (en) Endoscope system, processor device of endoscope system, and image processing method
JP5496852B2 (en) Electronic endoscope system, processor device for electronic endoscope system, and method for operating electronic endoscope system
US9456738B2 (en) Endoscopic diagnosis system
US9095250B2 (en) Endoscope apparatus with particular illumination, illumination control and image processing
EP2301416B1 (en) Method of controlling endoscope and endoscope
JP2011041758A (en) Medical equipment
JP2011092683A (en) Electronic endoscope
JP6438062B2 (en) Endoscope system
JP2012050641A (en) Endoscope system
JP2012081048A (en) Electronic endoscope system, electronic endoscope, and excitation light irradiation method
JP6196593B2 (en) Endoscope system, light source device, operation method of endoscope system, and operation method of light source device
JP2012139435A (en) Electronic endoscope
JP6115967B2 (en) Endoscope system
JP2019000148A (en) Endoscope system
JP2020010891A (en) Illumination device for endoscope and endoscope system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210119

R150 Certificate of patent or registration of utility model

Ref document number: 6827512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250