JP2006086894A - Radio transmitting circuit, radio receiving circuit and radio equipment of array antenna system - Google Patents
Radio transmitting circuit, radio receiving circuit and radio equipment of array antenna system Download PDFInfo
- Publication number
- JP2006086894A JP2006086894A JP2004270405A JP2004270405A JP2006086894A JP 2006086894 A JP2006086894 A JP 2006086894A JP 2004270405 A JP2004270405 A JP 2004270405A JP 2004270405 A JP2004270405 A JP 2004270405A JP 2006086894 A JP2006086894 A JP 2006086894A
- Authority
- JP
- Japan
- Prior art keywords
- gain
- radio
- frequency
- signal
- gain controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 62
- 238000006243 chemical reaction Methods 0.000 abstract description 16
- 238000010586 diagram Methods 0.000 description 18
- 230000003044 adaptive effect Effects 0.000 description 8
- 239000013598 vector Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/16—Circuits
- H04B1/30—Circuits for homodyne or synchrodyne receivers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G3/00—Gain control in amplifiers or frequency changers
- H03G3/20—Automatic control
- H03G3/30—Automatic control in amplifiers having semiconductor devices
- H03G3/3036—Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
- H03G3/3042—Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Superheterodyne Receivers (AREA)
- Transmitters (AREA)
Abstract
Description
本発明は、無線装置に使用される無線送信回路、無線受信回路、それを用いたアレーアンテナ方式の無線装置に関する。 The present invention relates to a radio transmission circuit, a radio reception circuit, and an array antenna type radio apparatus using the same.
近年、無線通信システムにおいて、周波数の高周波化、通信の高速伝送化、多様化によりリソースとして使用される周波数帯域の不足が指摘され、その解決方法として周波数効率向上のための様々な手法が提案されている。 In recent years, in radio communication systems, it has been pointed out that there is a shortage of frequency bands used as resources due to high frequency, high speed transmission and diversification, and various methods for improving frequency efficiency have been proposed as a solution. ing.
その一つとして、例えば特許文献1に示されているようなアダプティブアレーアンテナ方式の無線装置がある。このアダプティブアレーアンテナ方式の無線装置は、複数の無線部を備え、その無線部を介して送受信される信号に位相や振幅の重み付け処理を行うことによってアンテナ指向性を制御する無線装置である。このようなアダプティブアレーアンテナ方式の無線装置では、そのアンテナ指向性を適応的に変化することによって、送受信される信号の信号対干渉波比を改善することができ、使用する無線通信回線の周波数利用効率や品質を高めることができる。
As one example, there is an adaptive array antenna wireless device as disclosed in
また、特許文献2には、無線装置に使用される無線受信回路が開示されている。特許文献2の無線受信回路は、アンテナで受信した信号を利得可変部と可変利得部にて受信信号レベルのAGC(Auto Gain Control)制御を行い、ミキサによって無線周波数を周波数変換し低い周波数に変換し受信をしている。
また、特許文献3には、無線装置に使用される無線送信回路が開示されている。特許文献3の無線送信回路は、可変利得制御器と可変利得制御器によってTPC(Transmit Power Control)制御を行い、ミキサにて無線周波数へと周波数変換を行っている。
従来の無線受信回路及び無線送信回路をアダプティブアレーアンテナ方式の無線装置に用いる際、次のような課題がある。各無線送受信回路においてAGC制御やTPC制御のため可変利得部を制御した場合、その利得変化に応じて位相変化が生じる。そのため、複数の送信回路間にて可変利得部における振幅重み付けを行った場合や、複数の受信回路間にて受信信号レベルの差があった場合のAGC動作において、各送信回路間や受信回路間の利得制御器の制御値が異なった場合、位相誤差が生じる。アダプティブアレーアンテナ方式の無線装置では、無線送信回路間及び無線受信回路間に位相誤差が生じると、重み付け処理に誤差が生じ、位相誤差が大きいほど、アンテナ指向性が大きく損なわれる。 When the conventional radio reception circuit and radio transmission circuit are used in an adaptive array antenna type radio apparatus, there are the following problems. When the variable gain unit is controlled for AGC control or TPC control in each radio transmission / reception circuit, a phase change occurs according to the gain change. Therefore, in the AGC operation when the amplitude weighting in the variable gain unit is performed between the plurality of transmission circuits, or when there is a difference in the reception signal level between the plurality of reception circuits, between each transmission circuit or between the reception circuits. If the control values of the gain controllers are different, a phase error occurs. In a wireless device of an adaptive array antenna system, when a phase error occurs between radio transmission circuits and between radio reception circuits, an error occurs in weighting processing, and the antenna directivity is greatly impaired as the phase error increases.
これらの位相誤差を補正するための一方法が、特許文献4に開示されている。図7は、特許文献4記載のアダプティブアレーアンテナ方式の無線装置に用いる無線送受信回路の図である。 One method for correcting these phase errors is disclosed in Patent Document 4. FIG. 7 is a diagram of a wireless transmission / reception circuit used in an adaptive array antenna wireless device described in Patent Document 4.
図7において、アンテナ10に受信された信号は、アンテナ共用器11を通過し、受信RF回路15によってAGC制御、周波数変換等が行われ、A/D変換器16によってアナログ信号からディジタル信号へ変換され、信号受信部17で復調等の処理がされる。また、信号送信部14より出力された送信信号は、D/A変換器13にてディジタル信号からアナログ信号に変換され、送信RF回路12にてTPC制御、周波数変換等が行われ、アンテナ共用器11を通過し、アンテナ10より出力される。
In FIG. 7, the signal received by the
図7の無線送受信回路では、複数の送信RF回路12及び受信RF回路15のAGCやTPCによる位相誤差を補正するために以下の動作を行っている。
In the radio transmission / reception circuit of FIG. 7, the following operation is performed in order to correct phase errors due to AGC and TPC of the plurality of
送信RF回路12から出力された送信信号は、受信RF回路15にてAGC制御等が行われ、A/D変換器16を通過した後、信号受信部17で受信される。基準信号発生器21にて発生された基準信号は、スイッチ20、アンテナ共用器11を通過し、受信RF回路15にてAGC制御等が行われ、A/D変換器16を通過した後、信号受信部17で受信される。その動作をすべてのTPC制御値及びAGC制御値に対して行い、それぞれ受信された送信信号と基準信号を基に受信RF回路15のAGC制御による位相変動量と送信RF回路12による位相変動量を算出し、メモリ18に補正値を蓄え、その補正値を基に無線送信回路間及び無線受信回路間の位相誤差校正を行う。
しかしながら、特許文献2や特許文献3に記載された無線受信回路及び無送信回路は、AGC制御やTPC制御の利得変動時に位相が変化するため、特許文献4に記載されたアダプティブアレーアンテナ方式の無線装置に上記無線送受信回路を用いるには、メモリに補正値を記憶しておく必要があるため、メモリ増加による回路規模の増加や、信号処理量の増加により消費電力が増加してしまうという課題がある。
However, since the phases of the wireless reception circuit and the non-transmission circuit described in
本発明はかかる点に鑑みてなされたものであり、AGC制御やTPC制御における利得変化時の位相変動が小さい無線送信回路、無線受信回路を提供することを目的とする。また、上記無線送信回路、無線受信回路を有することにより回路の小型化、消費電力の低減を図ることができるアレーアンテナ方式の無線装置を提供することを目的とする。 The present invention has been made in view of such a point, and an object thereof is to provide a wireless transmission circuit and a wireless reception circuit with small phase fluctuations at the time of gain change in AGC control and TPC control. It is another object of the present invention to provide an array antenna type radio apparatus that can reduce the size of the circuit and reduce power consumption by including the radio transmission circuit and the radio reception circuit.
本発明の無線送信回路は、送信信号の利得を制御する第1の利得制御器と、無線周波数より高い周波数のローカル信号を用いて前記第1の利得制御器にて利得を制御された送信信号の周波数を変換する周波数変換器と、前記周波数変換器にて周波数を変換された送信信号の利得を制御する第2の利得制御器と、を具備し、前記第1の利得制御器と前記第2の利得制御器とは利得変化時の位相変動が略同一である構成を採る。 The radio transmission circuit of the present invention includes a first gain controller that controls a gain of a transmission signal, and a transmission signal whose gain is controlled by the first gain controller using a local signal having a frequency higher than the radio frequency. A frequency converter that converts the frequency of the transmission signal, and a second gain controller that controls the gain of the transmission signal whose frequency has been converted by the frequency converter, and the first gain controller and the first gain controller The gain controller of 2 adopts a configuration in which the phase fluctuation at the time of gain change is substantially the same.
本発明の無線受信回路は、受信信号の利得を制御する第1の利得制御器と、無線周波数より高い周波数のローカル信号を用いて前記第1の利得制御器にて利得を制御された受信信号の周波数を変換する周波数変換器と、前記周波数変換器にて周波数を変換された受信信号の利得を制御する第2の利得制御器と、を具備し、前記第1の利得制御器と前記第2の利得制御器とは利得変化時の位相変動が略同一である構成を採る。 The radio reception circuit of the present invention includes a first gain controller that controls the gain of a received signal, and a received signal whose gain is controlled by the first gain controller using a local signal having a frequency higher than the radio frequency. A frequency converter that converts the frequency of the received signal, and a second gain controller that controls a gain of the received signal whose frequency has been converted by the frequency converter, and the first gain controller and the first gain controller The gain controller of 2 adopts a configuration in which the phase fluctuation at the time of gain change is substantially the same.
また、本発明のアレーアンテナ方式の無線装置は、上記の無線送信回路あるいは上記無線受信回路の少なくとも一方を有する構成を採る。 The array antenna type radio apparatus of the present invention employs a configuration having at least one of the radio transmission circuit and the radio reception circuit.
本発明によれば、無線送信回路、無線受信回路において、周波数変換器において無線周波数より高いローカル信号を使用しているため、第1の利得制御器と第2の利得制御器でのAGC制御、TPC制御による利得変化で起こる位相変動は逆相となり、第1及び第2の利得制御器における利得変化時の位相変動量はほぼ同量となるため、逆相になった位相変動が打ち消しあい、無線送受信回路としての位相変動を小さくすることができる。また、アレーアンテナ方式の無線装置において、上記無線送信回路あるいは無線受信回路を有することにより回路の小型化、消費電力の低減を図ることができる。 According to the present invention, since a local signal higher than the radio frequency is used in the frequency converter in the radio transmission circuit and the radio reception circuit, AGC control in the first gain controller and the second gain controller, The phase fluctuation caused by the gain change due to the TPC control becomes the reverse phase, and the phase fluctuation amount at the time of the gain change in the first and second gain controllers becomes almost the same amount. Phase fluctuation as a wireless transmission / reception circuit can be reduced. In addition, in an array antenna wireless device, the circuit can be reduced in size and power consumption can be reduced by including the wireless transmission circuit or the wireless reception circuit.
本発明の骨子は、周波数変換器にて無線周波数より高い周波数のローカル信号を用いて周波数変換し、その周波数変換器の前段及び後段に利得変化時の位相変動が略同一の利得制御器を設けることにより、利得変化時の位相変動の少なくすることである。 The essence of the present invention is that the frequency converter performs frequency conversion using a local signal having a frequency higher than the radio frequency, and a gain controller having substantially the same phase fluctuation at the time of gain change is provided at the front and rear stages of the frequency converter. Thus, the phase variation at the time of gain change is reduced.
以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(実施の形態1)
図1は、本発明の実施の形態1に係る無線送信回路100の構成を示すブロック図である。
(Embodiment 1)
FIG. 1 is a block diagram showing a configuration of
無線送信回路100は、ベースバンド部101と、直交変調部102と、増幅器103と、利得制御器104と、ミキサ105と、利得制御器106と、増幅器107と、フィルタ108と、局部発振器110とを有する。
The
ベースバンド部101は、信号の変調やTPC制御や、直交変調すると送信信号となるI信号、Q信号を生成する構成部分であり、例えばASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)といったディジタル信号処理回路で実現される。
The
直交変調部102は、ベースバンド部101から出力されたI信号、Q信号を直交変調し、増幅器103へ出力する。増幅器103は、直交変調部102の出力信号を増幅し、利得制御器104へ出力する。直交変調部102及び増幅器103はトランジスタICによって実現される。
The
利得制御器104は、利得制御器106と合わせて送信信号の利得を制御することによりTPC制御を行うものであり、例えば、−10dB利得を変化させる場合には、利得制御器で−5dB、利得制御器106で−5dB利得を制御するものである。この利得制御器104及び利得制御器106は、利得変化による位相変動が略同一のものであり、例えばディジタルアッテネータICで実現される。
The
ミキサ105は、局部発振器110より出力された無線周波数より高い周波数のローカル信号によって、利得制御器104の出力信号に対して周波数変換を行う。このミキサ105は、トランジスタによるミキサICで実現され、局部発振器110は、例えば位相負帰還制御系(PLL)で制御される電圧制御発振器(VCO)を用いた周波数シンセサイザ等の発振回路で実現される。
The
周波数変換された送信信号は、利得制御器106を通過した後、増幅器107で増幅され、フィルタ108で帯域制限された後、アンテナ109より無線送信される。例えば、増幅器107は、トランジスタICで実現され、フィルタ108は、誘電体を用いたフィルタモジュールで実現される。
The frequency-converted transmission signal passes through the
以上のように構成された無線送信回路100の動作を説明する。ベースバンド部101にて生成された送信信号(I信号、Q信号)は、直交変調部102にて直交変調される。直交変調後の信号S(t)は、以下の式(1)で表される。
S(t)=A(t)sin(ωift) ・・・(1)
The operation of the
S (t) = A (t) sin (ωift) (1)
その後、増幅器103でG1dB増幅され、利得制御器104へ入力される。利得制御器104はベースバンド部101により制御されており、送信回路全体の所望の利得制御量をNdBとすると、利得制御器104ではN/2dB利得を制御する。この際の利得制御器104における位相変動量を+α°とすると、利得制御後の信号S1(t)は以下の式(2)で表される。
S1(t)=10(G1 + N/2)/10A(t)sin(ωift+ α) ・・・(2)
Thereafter, the signal is amplified by G1 dB by the
S1 (t) = 10 (G1 + N / 2) / 10 A (t) sin (ωift + α) (2)
上記の式(2)をベクトル図で表したものが、図2(a)である。信号S1(t)はミキサ105へ入力され、局部発振器110から出力されたローカル信号を用いて周波数変換される。このローカル信号の周波数はアンテナ109から出力される時の無線周波数(RF信号)より高い周波数である。周波数関係を周波数軸で表したものを図3に示す。送信信号S1(t)の周波数は中間周波数(IF信号)である。
FIG. 2A shows the above expression (2) as a vector diagram. The signal S1 (t) is input to the
上記のローカル信号を用いて周波数変換を行った信号S2(t)は以下の式(3)で表される。
S2(t)=10(G1 + N/2)/10A(t)sin(ωift+ α)×sin(ωLot)
=10(G1 + N/2)/10A(t)sin(ωLot) − (ωift + α))
=10(G1 + N/2)/10A(t)sin(ωLo−ωif)t − α)
=10(G1 + N/2)/10A(t)sin(ωrf)t − α) ・・・(3)
*ωrf=ωLo − ωif
A signal S2 (t) obtained by performing frequency conversion using the local signal is expressed by the following equation (3).
S2 (t) = 10 (G1 + N / 2) / 10 A (t) sin (ωift + α) × sin (ωLot)
= 10 (G1 + N / 2) / 10 A (t) sin (ωLot) − (ωift + α))
= 10 (G1 + N / 2) / 10 A (t) sin (ωLo−ωif) t − α)
= 10 (G1 + N / 2) / 10 A (t) sin (ωrf) t − α) (3)
* Ωrf = ωLo − ωif
上記の式(3)をベクトル図で表したものが、図2(b)である。信号S2(t)は、元の信号S(t)に対して+α°位相がずれていたものが、周波数変換後によって元の信号S(t)に対して−α°になる。 FIG. 2B shows the above expression (3) as a vector diagram. The signal S2 (t) whose phase is shifted by + α ° with respect to the original signal S (t) becomes −α ° with respect to the original signal S (t) after frequency conversion.
信号S2(t)は、利得制御器106へ入力され、N/2dB利得を制御される。この際の位相変動量を+β°とすると、利得制御後の信号S3(t)は以下の式(4)で表される。
S3(t)=10(G1 + N/2 + N/2)/10A(t)sin(ωrf)t − α + β)
=10(G1 + N)/10A(t)sin(ωrft −α + β) ・・・(4)
The signal S2 (t) is input to the
S3 (t) = 10 (G1 + N / 2 + N / 2) / 10 A (t) sin (ωrf) t−α + β)
= 10 (G1 + N) / 10 A (t) sin (ωrft −α + β) (4)
上記の式(4)をベクトル図で表したものが、図2(c)である。上記の式(4)において、利得制御器104の位相変動+α°と利得制御器106の位相変動+β°とが略同一のものであれば、その大きさはα≒βで同相となるため、−α+β≒0となり、位相変動をほぼ打ち消しあう。また、利得制御についても、所望の利得制御量NdBになっている。
FIG. 2C shows the above expression (4) as a vector diagram. In the above equation (4), if the phase fluctuation + α ° of the
信号S3(t)は増幅器107にて増幅され、フィルタ108にて帯域制限された後、アンテナ109より無線送信される。
The signal S3 (t) is amplified by the
図4(a)は、代表的なディジタルアッテネータの位相変動量を示す図であり、図4(b)は、従来の無線送信回路にて利得制御時における位相変動量と本実施の形態の無線送信回路における利得制御時における位相変動量を示す図である。従来の無線送信回路では、40dB変化時における位相変動量が約40degreeとなるが、本実施の形態の無線送信回路では、ほぼ同量の位相変動量で打ち消しあうため、40dB変化時の位相変動量は約9degreeと小さくなることが分かる。 FIG. 4A is a diagram showing a phase variation amount of a typical digital attenuator, and FIG. 4B is a diagram showing the phase variation amount at the time of gain control in the conventional radio transmission circuit and the radio of this embodiment. It is a figure which shows the amount of phase fluctuations at the time of gain control in a transmission circuit. In the conventional wireless transmission circuit, the amount of phase fluctuation at 40 dB change is about 40 degrees. However, in the wireless transmission circuit of the present embodiment, the amount of phase fluctuation at the time of 40 dB change is canceled because almost the same amount of phase fluctuation is canceled out. It turns out that becomes small with about 9 degree.
以上のように、本実施の形態によれば、周波数変換器(ミキサ)にて無線周波数より高い周波数のローカル信号を用いて周波数変換し、周波数変換器の前段及び後段に利得変化時の位相変化量が略同一の利得制御器を設けることにより、各利得制御器における位相変動が打ち消しあうため、TPC制御時における位相変動の小さい無線送信回路を構成することができる。 As described above, according to the present embodiment, the frequency converter (mixer) performs frequency conversion using a local signal having a frequency higher than the radio frequency, and the phase change at the time of gain change at the front stage and the rear stage of the frequency converter. By providing the gain controllers having substantially the same amount, the phase fluctuations in the respective gain controllers cancel each other, so that a radio transmission circuit having a small phase fluctuation during TPC control can be configured.
(実施の形態2)
図5は、本発明の実施の形態2に係る無線受信回路200の構成を示すブロック図である。
(Embodiment 2)
FIG. 5 is a block diagram showing a configuration of
無線送信回路200は、ベースバンド部201と、直交復調部202と、増幅器203と、利得制御器204と、ミキサ205と、利得制御器206と、LNA(Low Noise Amplifier)207と、フィルタ208と、局部発振器210とを有する。
The
アンテナ209に受信された受信信号は、フィルタ208によって帯域制限され、LNA207によって増幅される。例えば、LNA207はトランジスタICで実現され、フィルタ208は誘電体を用いたフィルタモジュール等で実現される。
The received signal received by the
利得制御器206は、利得制御器204と合わせて受信信号の利得を制御することによりAGC制御を行うものであり、例えば、−10dB利得を変化させる場合には、利得制御器204で−5dB、利得制御器206で−5dB利得を制御するものである。この利得制御器204及び利得制御器206は、利得変化による位相変動が略同一のものであり、例えばディジタルアッテネータICで実現される。
The
ミキサ205は、局部発振器210から出力された無線周波数より高い周波数のローカル信号によって、利得制御器206より出力された信号に対して周波数変換を行う。ミキサ205は、トランジスタによるミキサICで実現され、局部発振器210は、例えば位相負帰還制御系(PLL)で制御される電圧制御発振器(VCO)を用いた周波数シンセサイザ等の発振回路で実現される。
The
周波数変換された受信信号は、利得制御器204を通過した後、増幅器203で増幅され、直交復調部202で直交復調され、I信号、Q信号としてベースバンド部201へ出力される。
The frequency-converted received signal passes through the
ベースバンド部201は、I信号、Q信号よりデータを復調する機能やAGC制御を行う機能を有する構成部分であり、例えばASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)といったディジタル信号処理回路で実現される。
The
以上のように構成された無線受信回路200の動作を説明する。アンテナ209に入力された受信信号は、フィルタ208にて帯域制限された後、LNA207でG1dB増幅され、利得制御器206へ入力される。
The operation of the
LNA207で増幅された信号S(t)は以下の式(5)で表される。
S(t)=10(G1)/10A(t)sin(ωrft) ・・・(5)
The signal S (t) amplified by the
S (t) = 10 (G1) / 10 A (t) sin (ωrft) (5)
利得制御器206は、ベースバンド部201により制御されており、受信回路全体の所望の利得制御量をNdBとすると、利得制御器206ではN/2dB利得を制御する。この際の利得制御器206における位相変動量を+α°とすると、利得制御後の信号S1(t)は以下の式(6)で表される。
S1(t)=10(G1 + N/2)/10A(t)sin(ωift+ α) (6)
The
S1 (t) = 10 (G1 + N / 2) / 10 A (t) sin (ωift + α) (6)
上記の式(6)をベクトル図で表したものが図2(a)である。信号S1(t)はミキサ205へ入力され、局部発振器210から出力されたローカル信号を用いて周波数変換される。このローカル信号の周波数はアンテナ209から入力される時の無線周波数(RF周波数)より高い周波数である。周波数関係を周波数軸で表したものを図3に示す。信号S1(t)の周波数は無線周波数(RF信号)としている。
FIG. 2A shows the above equation (6) as a vector diagram. The signal S1 (t) is input to the
上記のローカル信号を用いて周波数変換を行った信号S2(t)は以下の式(7)になる。
S2(t)=10(G1 + N/2)/10A(t)sin(ωrft+ α)×sin(ωLot)
=10(G1 + N/2)/10A(t)sin(ωLot) − (ωift+ α))
=10(G1 + N/2)/10A(t)sin(ωLo−ωrf)t − α)
=10(G1 + N/2)/10A(t)sin(ωif)t − α) ・・・(7)
*ωif=ωLo − ωrf
A signal S2 (t) obtained by performing frequency conversion using the local signal is expressed by the following equation (7).
S2 (t) = 10 (G1 + N / 2) / 10 A (t) sin (ωrft + α) × sin (ωLot)
= 10 (G1 + N / 2) / 10 A (t) sin (ωLot) − (ωift + α))
= 10 (G1 + N / 2) / 10 A (t) sin (ωLo−ωrf) t − α)
= 10 (G1 + N / 2) / 10 A (t) sin (ωif) t − α) (7)
* Ωif = ωLo − ωrf
上記の式(7)をベクトル図で表したものが図2(b)である。信号S2(t)は、元の信号S(t)に対して+α°位相がずれていたものが、周波数変換後によって、元の信号S(t)に対して−α°になる。 FIG. 2B shows the above expression (7) as a vector diagram. The signal S2 (t) whose phase is shifted by + α ° with respect to the original signal S (t) becomes −α ° with respect to the original signal S (t) after frequency conversion.
信号S2(t)は、利得制御器204へ入力され、N/2dB利得を制御される。この際の位相変動量は信号の周波数に依らないので+α°となる。利得制御器204から出力された信号S3(t)を式で表す。
S3(t)=10(G1 + N/2 + N/2)/10A(t)sin(ωrf)t − α + β)
=10(G1 + N)/10 A(t)sin(ωrft − α + β) ・・・(8)
The signal S2 (t) is input to the
S3 (t) = 10 (G1 + N / 2 + N / 2) / 10 A (t) sin (ωrf) t−α + β)
= 10 (G1 + N) / 10 A (t) sin (ωrft − α + β) (8)
上記の式(8)をベクトル図で表したものが図2(c)である。上記の式(8)において、利得制御器206での位相変動+α°と利得制御器204の位相変動+β°とが略同一のものであれば、その大きさはα≒βで同相となるため、−α+β≒0となり、位相変動をほぼ打ち消しあう。また、利得制御についても、所望の利得制御量NdBになっている。
FIG. 2C shows the above equation (8) as a vector diagram. In the above equation (8), if the phase fluctuation + α ° in the
その後、信号S3(t)は増幅器203にて増幅され、直交復調部202にて直交復調され、IQ信号としてベースバンド部201へ出力されデータ復調等の信号処理が行われる。
Thereafter, the signal S3 (t) is amplified by the
図4(a)は、代表的なディジタルアッテネータの位相変動量を示す図であり、図4(b)は、従来の無線受信回路にて利得制御時における位相変動量と本実施の形態の無線受信回路における利得制御時における位相変動量を示す図である。従来の無線受信回路では、40dB変化時における位相変動量が約40degreeとなるが、本実施の形態の無線受信回路では、ほぼ同量の位相変動量で打ち消しあうため、40dB変化時の位相変動量は約9degreeと小さくなることが分かる。 FIG. 4A is a diagram showing a phase variation amount of a typical digital attenuator, and FIG. 4B is a diagram showing the phase variation amount at the time of gain control in the conventional radio receiving circuit and the radio of this embodiment. It is a figure which shows the amount of phase fluctuations at the time of gain control in a receiving circuit. In the conventional radio reception circuit, the amount of phase fluctuation at 40 dB change is about 40 degrees. However, in the radio reception circuit of the present embodiment, the amount of phase fluctuation at the time of 40 dB change is canceled because almost the same amount of phase fluctuation cancels out. It turns out that becomes small with about 9 degree.
以上のように、本実施の形態によれば、周波数変換器(ミキサ)にて無線周波数より高い周波数のローカル信号を用いて周波数変換し、周波数変換器の前段及び後段に利得変化時の位相変化量が略同一の利得制御器を設けることにより、各利得制御器における位相変動が打ち消しあうため、AGC制御時における位相変動の小さい無線受信回路を構成することができる。 As described above, according to the present embodiment, the frequency converter (mixer) performs frequency conversion using a local signal having a frequency higher than the radio frequency, and the phase change at the time of gain change at the front stage and the rear stage of the frequency converter. By providing the gain controllers having substantially the same amount, the phase fluctuations in the respective gain controllers cancel each other, so that a radio receiving circuit having a small phase fluctuation during the AGC control can be configured.
(実施の形態3)
図6は、本発明の実施の形態3に係るアレーアンテナ方式の無線装置の構成を示す図である。図6に示す無線装置300は、実施の形態1で説明した複数の無線送信回路100と、実施の形態2で説明した複数の無線受信回路200と、ベースバンド部301と、複数のアレーアンテナ302を有する。
(Embodiment 3)
FIG. 6 is a diagram showing a configuration of an array antenna radio apparatus according to
なお、アレーアンテナ302は、アンテナ共用器を用いて、無線送信回路100と無線受信回路200で共有のアンテナとする構成をとっても良い。
Note that the
このように、本実施の形態によれば、実施の形態1の無線送信回路及び、実施の形態2の無線受信回路の作用効果と同様の作用効果を、無線装置300において実現することができるため、送信回路のTPC制御による位相変動及び、受信回路に置けるAGC制御による位相変動を小さくし、その位相誤差を校正するためのメモリおよび信号処理手順を削減することができる。これにより、アレーアンテナ装置の回路小型化、消費電力の低減を図ることができる。
As described above, according to the present embodiment, the
本発明は、アレーアンテナ方式の無線装置に用いるに好適である。 The present invention is suitable for use in an array antenna type radio apparatus.
100 無線送信回路
101、201、301 ベースバンド部
102 直交変調部
103、107、203 増幅器
104、106、204、206 利得制御器
105、205 ミキサ
108、208 フィルタ
109、209、302 アンテナ
110、210 局部発振器
200 無線受信回路
202 直交復調部
207 LNA
300 アレーアンテナ方式の無線装置
302 アレーアンテナ
DESCRIPTION OF
300 Array antenna
Claims (3)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004270405A JP2006086894A (en) | 2004-09-16 | 2004-09-16 | Radio transmitting circuit, radio receiving circuit and radio equipment of array antenna system |
PCT/JP2005/016821 WO2006030769A1 (en) | 2004-09-16 | 2005-09-13 | Wireless transmission circuit, wireless reception circuit, and wireless apparatus of array antenna system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004270405A JP2006086894A (en) | 2004-09-16 | 2004-09-16 | Radio transmitting circuit, radio receiving circuit and radio equipment of array antenna system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006086894A true JP2006086894A (en) | 2006-03-30 |
Family
ID=36060020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004270405A Pending JP2006086894A (en) | 2004-09-16 | 2004-09-16 | Radio transmitting circuit, radio receiving circuit and radio equipment of array antenna system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2006086894A (en) |
WO (1) | WO2006030769A1 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3019569B2 (en) * | 1991-12-30 | 2000-03-13 | 日本電気株式会社 | Automatic gain control circuit |
JPH0964673A (en) * | 1995-08-30 | 1997-03-07 | Nec Corp | Automatic gain control circuit and automatic gain control device using the circuit |
JPH1093450A (en) * | 1996-09-17 | 1998-04-10 | Fujitsu Ltd | Transmission device |
JP3709316B2 (en) * | 1999-05-28 | 2005-10-26 | 松下電器産業株式会社 | Communication apparatus and communication method |
-
2004
- 2004-09-16 JP JP2004270405A patent/JP2006086894A/en active Pending
-
2005
- 2005-09-13 WO PCT/JP2005/016821 patent/WO2006030769A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2006030769A1 (en) | 2006-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4199181B2 (en) | Transmitting apparatus and wireless communication apparatus | |
US7257385B2 (en) | Wireless communication semiconductor integrated circuit device and wireless communication system | |
JP4368592B2 (en) | Digital broadcast receiving tuner and receiving apparatus having the same | |
JP2006101388A (en) | Receiver, receiving method and mobile radio terminal | |
US7587010B2 (en) | Complex filter circuit and receiver circuit | |
JP4706871B2 (en) | Diversity receiving apparatus and gain adjusting method thereof | |
US8571143B2 (en) | Quadrature signal phase controller for controlling phase | |
US7515648B2 (en) | Transmitter and wireless communication apparatus using same | |
JP2004048581A (en) | Receiver and gain control system | |
US7840202B2 (en) | Method and system for compensation of DC offset in an RF receiver | |
JP2004297320A (en) | Diversity reception device | |
JP2007104007A (en) | Orthogonal modulator, and vector correction method in the same | |
JP2005176186A (en) | Radio receiving device | |
JP5438599B2 (en) | Wireless communication receiver | |
WO2003028231A1 (en) | Analog baseband signal processing system and method | |
US8131244B2 (en) | Method and system for dynamically adjusting intermediate frequency (IF) and filtering for microwave circuits | |
JP4554505B2 (en) | Digital signal receiver | |
JP2006086894A (en) | Radio transmitting circuit, radio receiving circuit and radio equipment of array antenna system | |
JP2019106630A (en) | Radio communication device and reflection wave phase control method | |
JP2001244861A (en) | Device and method for radio reception | |
JP2010045706A (en) | Diversity reception device and electronic apparatus using the same | |
CN114257258B (en) | Wireless radio frequency receiver and data detection method | |
CN117607924B (en) | Satellite positioning system receiving circuit, chip and receiver | |
JP2004072644A (en) | Reception circuit and radio communication equipment using the same | |
JP2006319637A (en) | Receiver |