JP2006085964A - Plasma display panel and driving method thereof - Google Patents

Plasma display panel and driving method thereof Download PDF

Info

Publication number
JP2006085964A
JP2006085964A JP2004267957A JP2004267957A JP2006085964A JP 2006085964 A JP2006085964 A JP 2006085964A JP 2004267957 A JP2004267957 A JP 2004267957A JP 2004267957 A JP2004267957 A JP 2004267957A JP 2006085964 A JP2006085964 A JP 2006085964A
Authority
JP
Japan
Prior art keywords
electrode
priming
scan
electrodes
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004267957A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tachibana
弘之 橘
Naotaka Kosugi
直貴 小杉
Shunichi Wakabayashi
俊一 若林
Shigeyuki Okumura
茂行 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004267957A priority Critical patent/JP2006085964A/en
Publication of JP2006085964A publication Critical patent/JP2006085964A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma display panel which can generate write-in discharges stably without narrowing a drive voltage margin of write-in actions, and to provide a driving method thereof. <P>SOLUTION: A pair of display electrodes on a front substrate 21 comprising a scanning electrode 22 and a sustaining electrode 23, and a data electrode 32 which is formed on a rear substrate 31, are arranged facing each other to define a main discharge cell 40. A plurality of the main discharge cells 40 are arranged in connection along the arrangement of the pairs of the display electrodes to form a main discharge cell line, and barrier ribs 34 are formed on the rear substrate 31 so that a gap 41 is formed in each portion between adjacent main discharge cell lines. A plurality of priming electrodes 29 are formed on the front substrate 21, which are arranged in parallel with the scanning electrodes 22 in a priming discharge cell 41a formed in the gap 41 on a side where two scanning electrodes 22 adjoin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、壁掛けテレビや大型モニター等に用いられるプラズマディスプレイパネルとその駆動方法に関する。   The present invention relates to a plasma display panel used for a wall-mounted television, a large monitor, and the like and a driving method thereof.

プラズマディスプレイパネル(以下、「パネル」と略記する)は、大画面、薄型、軽量であることを特徴とする視認性に優れた表示デバイスである。   A plasma display panel (hereinafter abbreviated as “panel”) is a display device with excellent visibility characterized by a large screen, a thin shape, and a light weight.

パネルとして代表的な交流面放電型パネルは、対向配置された前面板と背面板との間に多数の放電セルが形成されている。前面板は、走査電極と維持電極とからなる表示電極対が前面ガラス基板上に互いに平行に複数対形成され、それら表示電極対を覆うように誘電体層および保護層が形成されている。背面板は、背面ガラス基板上に複数の平行なデータ電極と、それらを覆うように誘電体層と、さらにその上にデータ電極と平行に複数の隔壁がそれぞれ形成され、誘電体層の表面と隔壁の側面とに蛍光体層が形成されている。そして、表示電極対とデータ電極とが立体交差するように前面板と背面板とが対向配置されて密封され、内部の放電空間には放電ガスが封入されている。このような構成のパネルにおいて、各放電セル内でガス放電により紫外線を発生させ、この紫外線でRGB各色の蛍光体を励起発光させてカラー表示を行っている。   In a typical AC surface discharge type panel as a panel, a large number of discharge cells are formed between a front plate and a back plate arranged to face each other. In the front plate, a plurality of display electrode pairs each formed of a scan electrode and a sustain electrode are formed on the front glass substrate in parallel with each other, and a dielectric layer and a protective layer are formed so as to cover the display electrode pairs. The back plate has a plurality of parallel data electrodes on the back glass substrate, a dielectric layer so as to cover them, and a plurality of barrier ribs formed on the back side in parallel with the data electrodes. A phosphor layer is formed on the side surface of the partition wall. Then, the front plate and the rear plate are arranged opposite to each other so that the display electrode pair and the data electrode are three-dimensionally crossed and sealed, and a discharge gas is sealed in the internal discharge space. In the panel having such a configuration, ultraviolet light is generated by gas discharge in each discharge cell, and phosphors of RGB colors are excited and emitted by this ultraviolet light to perform color display.

パネルを駆動する方法としてはサブフィールド法、すなわち、1フィールド期間を複数のサブフィールドに分割した上で、発光させるサブフィールドの組み合わせによって階調表示を行う方法が一般的である。ここで、各サブフィールドは初期化期間、書込み期間および維持期間を有する。   As a method of driving the panel, a subfield method, that is, a method of performing gradation display by combining subfields to emit light after dividing one field period into a plurality of subfields. Here, each subfield has an initialization period, an address period, and a sustain period.

初期化期間では、すべての放電セルで一斉に初期化放電を行い、それ以前の個々の放電セルに対する壁電荷の履歴を消すとともに、つづく書込み動作のために必要な壁電荷を形成する。加えて、放電遅れを小さくし書込み放電を安定して発生させるためのプライミング(放電のための起爆剤=励起粒子)を発生させるというはたらきをもつ。書込み期間では、走査電極に順次走査パルス電圧を印加するとともに、データ電極には表示すべき画像信号に対応した書込みパルス電圧を印加し、走査電極とデータ電極との間で選択的に書込み放電をおこし、選択的な壁電荷形成を行う。つづく維持期間では、走査電極と維持電極との間に所定の回数の維持パルス電圧を印加し、書込み放電による壁電荷形成を行った放電セルを選択的に放電させ発光させる。   In the initializing period, initializing discharge is simultaneously performed in all the discharge cells, the history of wall charges for the individual individual discharge cells is erased, and wall charges necessary for the subsequent address operation are formed. In addition, it has a function of generating priming (priming for discharge = excited particles) for reducing discharge delay and generating address discharge stably. In the address period, a scan pulse voltage is sequentially applied to the scan electrodes, and an address pulse voltage corresponding to an image signal to be displayed is applied to the data electrodes, and an address discharge is selectively performed between the scan electrodes and the data electrodes. And selective wall charge formation. In the subsequent sustain period, a predetermined number of sustain pulse voltages are applied between the scan electrodes and the sustain electrodes, and the discharge cells in which the wall charges are formed by the address discharge are selectively discharged to emit light.

このように、画像を正しく表示するためには書込み期間における選択的な書込み放電を確実に行うことが重要であるが、回路構成上の制約から書込みパルス電圧に高い電圧が使えないこと、データ電極上に形成された蛍光体層が放電をおこり難くしていること等、書込み放電に関しては放電遅れを大きくする要因が多い。したがって、書込み放電を安定して発生させるためのプライミングが非常に重要となる。   As described above, in order to correctly display an image, it is important to reliably perform selective address discharge in the address period. However, a high voltage cannot be used for the address pulse voltage due to restrictions on the circuit configuration. There are many factors that increase the discharge delay with respect to the address discharge, such as the fact that the phosphor layer formed above makes it difficult for the discharge to occur. Therefore, priming for generating the address discharge stably is very important.

しかしながら、放電によって生じるプライミングは時間の経過とともに急速に減少する。そのため、上述したパネルの駆動方法において、初期化放電から長い時間が経過した書込み放電に対しては初期化放電で生じたプライミングが不足して放電遅れが大きくなり、書込み動作が不安定になって画像表示品質が低下するといった問題があった。あるいは、書込み動作を安定して行うために書込み時間を長く設定し、その結果、書込み期間に費やす時間が大きくなりすぎるといった問題があった。   However, the priming caused by the discharge decreases rapidly with time. For this reason, in the above-described panel driving method, the address discharge after a long time has passed from the initialization discharge, the priming caused by the initialization discharge is insufficient, the discharge delay becomes large, and the address operation becomes unstable. There has been a problem that the image display quality deteriorates. Alternatively, there is a problem in that the writing time is set long in order to perform the writing operation stably, and as a result, the time spent in the writing period becomes too long.

これらの問題を解決するために、プライミング電極を設けてプライミングを発生させ、放電遅れを小さくするパネルとその駆動方法が提案されている(たとえば特許文献1)。
特開平9−245627号公報
In order to solve these problems, a panel and a driving method thereof have been proposed in which a priming electrode is provided to generate priming to reduce a discharge delay (for example, Patent Document 1).
JP-A-9-245627

しかしながら上述のパネルにおいては、隣接する放電セルが相互干渉をおこしやすく、特に書込み期間において、隣接する放電セルの書込み放電にともない発生するプライミングの影響を受けて誤書込み、あるいは書込み不良を生じるおそれがあり、そのため書込み動作の駆動電圧マージンが狭くなるという課題があった。   However, in the above-mentioned panel, adjacent discharge cells are likely to cause mutual interference, and in particular, in the address period, there is a possibility that erroneous writing or writing failure may occur due to the influence of priming that occurs due to the address discharge of the adjacent discharge cells. Therefore, there is a problem that the drive voltage margin of the write operation is narrowed.

本発明はこれらの課題に鑑みなされたものであり、書込み動作の駆動電圧マージンを狭めることなく書込み放電を安定して発生させることができるプラズマディスプレイパネルとその駆動方法を提供することを目的とする。   The present invention has been made in view of these problems, and an object of the present invention is to provide a plasma display panel capable of stably generating an address discharge without narrowing the drive voltage margin of the address operation and a method for driving the plasma display panel. .

本発明のプラズマディスプレイパネルは、第1の基板上に平行に配置されかつ表示電極対を構成する走査電極および維持電極と、放電空間を挟んで第1の基板に対向配置された第2の基板上に走査電極と交差する方向に配置されかつ表示電極対とで主放電セルを構成するデータ電極と、主放電セルを区画し主放電セルが表示電極対に沿って複数連結した主放電セル行を形成するとともに隣接する主放電セル行の間に隙間部を設けた隔壁とを有し、第1の基板上において2本の走査電極が隣り合う隙間部に対応する位置に走査電極と平行にプライミング電極を配置したことを特徴とする。この構成により、書込み動作の駆動電圧マージンを狭めることなく書込み放電を安定して発生させることができるプラズマディスプレイパネルを提供することができる。   A plasma display panel according to the present invention includes a scan electrode and a sustain electrode that are arranged in parallel on a first substrate and that constitute a display electrode pair, and a second substrate that is disposed opposite to the first substrate across a discharge space. A data electrode which is arranged in a direction intersecting with the scanning electrode and forms a main discharge cell with a display electrode pair, and a main discharge cell row which divides the main discharge cell and a plurality of main discharge cells are connected along the display electrode pair And a barrier rib provided between adjacent main discharge cell rows, and two scan electrodes on the first substrate at positions corresponding to the adjacent gap portions in parallel with the scan electrodes A priming electrode is arranged. With this configuration, it is possible to provide a plasma display panel that can stably generate an address discharge without narrowing the drive voltage margin of the address operation.

また、本発明のプラズマディスプレイパネルの駆動方法は、上記プラズマディスプレイパネルの駆動方法であって、1フィールドを初期化期間、書込み期間、維持期間を有する複数のサブフィールドで構成し、書込み期間において、走査電極には走査パルス電圧を順次印加し、走査パルス電圧を印加された走査電極に隣接するプライミング電極には走査パルス電圧の印加に先立ってプライミング電極とデータ電極との間でプライミング放電を生じさせるためのプライミングパルス電圧を印加することを特徴とする。この方法により、書込み動作の駆動電圧マージンを狭めることなく書込み放電を安定して発生させることができるプラズマディスプレイパネルの駆動方法を提供することができる。   Further, the plasma display panel driving method of the present invention is the plasma display panel driving method described above, wherein one field is composed of a plurality of subfields having an initialization period, an address period, and a sustain period. A scan pulse voltage is sequentially applied to the scan electrode, and a priming discharge is generated between the priming electrode and the data electrode before the scan pulse voltage is applied to the priming electrode adjacent to the scan electrode to which the scan pulse voltage is applied. For this purpose, a priming pulse voltage is applied. By this method, it is possible to provide a plasma display panel driving method capable of stably generating address discharge without narrowing the driving voltage margin of the address operation.

また、本発明のプラズマディスプレイパネルの駆動方法は、書込み期間において、走査電極に走査パルス電圧を印加している時間とプライミング電極にプライミングパルス電圧を印加している時間とには重なりがあることが望ましい。この方法により、書込み放電を行いながらプライミング放電も行うのでプライミング放電のための時間をあらたに設ける必要がなく、書込み期間の長さを変えることなく書込み放電を安定して発生させることができる。   In the plasma display panel driving method of the present invention, there is an overlap between the time during which the scan pulse voltage is applied to the scan electrode and the time during which the priming pulse voltage is applied to the priming electrode in the address period. desirable. By this method, since priming discharge is also performed while performing address discharge, it is not necessary to newly provide time for priming discharge, and address discharge can be stably generated without changing the length of the address period.

また、本発明のプラズマディスプレイパネルの駆動方法は、プライミング電極にプライミングパルス電圧を印加した後、プライミングパルス電圧を印加されたプライミング電極に隣接する走査電極のうち、最初に走査パルス電圧を印加する走査電極の走査パルス電圧のパルス幅は、つぎに走査パルス電圧を印加する走査電極の走査パルス電圧のパルス幅よりも狭く設定してもよい。この方法により、書込み放電を安定して発生させながら書込み期間を短縮することができる。   In the plasma display panel driving method of the present invention, after applying the priming pulse voltage to the priming electrode, the scanning pulse voltage is first applied among the scanning electrodes adjacent to the priming electrode to which the priming pulse voltage is applied. The pulse width of the scan pulse voltage of the electrode may be set narrower than the pulse width of the scan pulse voltage of the scan electrode to which the scan pulse voltage is next applied. By this method, the address period can be shortened while the address discharge is stably generated.

本発明によれば、書込み動作の駆動電圧マージンを狭めることなく書込み放電を安定して発生させることができるプラズマディスプレイパネルとその駆動方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the plasma display panel which can generate | occur | produce address discharge stably, without narrowing the drive voltage margin of address operation, and its drive method can be provided.

以下、本発明の実施の形態におけるパネルとその駆動方法について、図面を用いて説明する。   Hereinafter, a panel and a driving method thereof according to an embodiment of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は本発明の実施の形態1におけるパネルの構造を示す分解斜視図であり、図2は同パネルの断面図である。第1の基板であるガラス製の前面基板21と第2の基板である背面基板31とが放電空間を挟んで対向配置され、放電空間には放電によって紫外線を放射するネオンとキセノンとの混合ガスが封入されている。
(Embodiment 1)
FIG. 1 is an exploded perspective view showing the structure of the panel according to Embodiment 1 of the present invention, and FIG. 2 is a sectional view of the panel. A glass front substrate 21 which is a first substrate and a rear substrate 31 which is a second substrate are arranged opposite to each other with a discharge space interposed therebetween, and a mixed gas of neon and xenon which emits ultraviolet rays by discharge in the discharge space. Is enclosed.

前面基板21上には、走査電極22と維持電極23とからなる表示電極対が互いに平行に複数対形成されている。このとき、たとえば走査電極22−維持電極23の順で構成された表示電極対に隣接する表示電極対は維持電極23−走査電極22の順で構成されている。そして、隣接する表示電極対の間のうち、走査電極22が対向する側にはプライミング電極29が表示電極対と平行に構成されている。したがって、前面基板21上には、維持電極23−走査電極22−プライミング電極29−走査電極22−維持電極23−維持電極23−走査電極22−プライミング電極29−走査電極22−維持電極23−・・・となるように配列されている。走査電極22と維持電極23は、それぞれ透明電極22a、23aとその透明電極22a、23a上に形成された金属母線22b、23bとから構成されている。走査電極22−走査電極22間、および維持電極23−維持電極23間には黒色材料からなる光吸収層28が設けられており、プライミング電極29は走査電極22−走査電極22間に設けられた光吸収層28上に金属母線を用いて構成されている。そして、これらの走査電極22、維持電極23、プライミング電極29および光吸収層28とを覆うように誘電体層24および保護層25が形成されている。   On the front substrate 21, a plurality of display electrode pairs composed of the scan electrodes 22 and the sustain electrodes 23 are formed in parallel to each other. At this time, for example, the display electrode pair adjacent to the display electrode pair configured in the order of scan electrode 22 -sustain electrode 23 is configured in the order of sustain electrode 23 -scan electrode 22. A priming electrode 29 is formed in parallel with the display electrode pair on the side facing the scanning electrode 22 between adjacent display electrode pairs. Therefore, on front substrate 21, sustain electrode 23-scan electrode 22-priming electrode 29-scan electrode 22-sustain electrode 23-sustain electrode 23-scan electrode 22-priming electrode 29-scan electrode 22-sustain electrode 23-.・ It is arranged so that Scan electrode 22 and sustain electrode 23 are each composed of transparent electrodes 22a and 23a and metal bus bars 22b and 23b formed on transparent electrodes 22a and 23a, respectively. A light absorption layer 28 made of a black material is provided between scan electrode 22 and scan electrode 22 and between sustain electrode 23 and sustain electrode 23, and priming electrode 29 is provided between scan electrode 22 and scan electrode 22. A metal bus is used on the light absorption layer 28. A dielectric layer 24 and a protective layer 25 are formed so as to cover the scan electrode 22, the sustain electrode 23, the priming electrode 29, and the light absorption layer 28.

背面基板31上には、走査電極22と交差する方向にデータ電極32が互いに平行に複数形成され、そしてデータ電極32を覆うように誘電体層33が形成されている。そして誘電体層33の上に主放電セル40を区画するための隔壁34が形成されている。   On the rear substrate 31, a plurality of data electrodes 32 are formed in parallel to each other in a direction intersecting with the scanning electrodes 22, and a dielectric layer 33 is formed so as to cover the data electrodes 32. A partition wall 34 for partitioning the main discharge cell 40 is formed on the dielectric layer 33.

隔壁34は、データ電極32と平行な方向に延びる縦壁部34aと、主放電セル40を形成するとともに主放電セル40の間に隙間部41を形成する横壁部34bとで構成されている。その結果、隔壁34は走査電極22と維持電極23とからなる一対の表示電極対に沿って主放電セル40を複数連結した主放電セル行を形成し、隣接した主放電セル行の間に隙間部41を生じる。隙間部41のうち、2本の走査電極22が隣り合う側に位置する隙間部の前面基板21上にはプライミング電極29が形成されており、この隙間部はプライミング放電セル41aとしてはたらく。すなわち隙間部41は1つおきにプライミング電極29を有するプライミング放電セル41aとなっている。なお、隙間部41bは2本の維持電極23が隣り合う側に位置する隙間部である。   The partition wall 34 includes a vertical wall portion 34 a extending in a direction parallel to the data electrode 32, and a horizontal wall portion 34 b that forms the main discharge cell 40 and forms a gap portion 41 between the main discharge cells 40. As a result, the barrier ribs 34 form a main discharge cell row in which a plurality of main discharge cells 40 are connected along a pair of display electrodes including the scan electrode 22 and the sustain electrode 23, and a gap is formed between adjacent main discharge cell rows. Part 41 is produced. A priming electrode 29 is formed on the front substrate 21 of the gap portion on the side where the two scanning electrodes 22 are adjacent to each other in the gap portion 41, and this gap portion serves as a priming discharge cell 41a. In other words, every other gap portion 41 is a priming discharge cell 41 a having the priming electrodes 29. The gap 41b is a gap located on the side where the two sustain electrodes 23 are adjacent to each other.

そして、これら隔壁34の頂部は前面基板21に当接するように平坦に形成されている。これは、隣接する主放電セル40の相互干渉を防ぐためであり、特に書込み期間において隣接する主放電セル40の書込み放電にともない発生するプライミングの影響を受けて誤書込みを生じる等の誤動作を防ぐためである。さらには、プライミング放電にともない、プライミング放電セル41aに隣接する主放電セル40の壁電荷が減少し書込み不良を生じる等の誤動作を防ぐためである。   The tops of the partition walls 34 are formed flat so as to contact the front substrate 21. This is to prevent mutual interference between the adjacent main discharge cells 40, and in particular prevents malfunction such as erroneous writing due to the influence of priming that occurs due to the address discharge of the adjacent main discharge cells 40 in the address period. Because. Furthermore, this is to prevent malfunction such as a write failure due to a decrease in wall charges of the main discharge cell 40 adjacent to the priming discharge cell 41a accompanying the priming discharge.

そして、隔壁34により区画された主放電セル40に対応する誘電体層33の表面と隔壁34の側面とに蛍光体層35が設けられている。なお、図1では隙間部41側に蛍光体層35を形成していないが、蛍光体層35を形成する構成としてもよい。   A phosphor layer 35 is provided on the surface of the dielectric layer 33 corresponding to the main discharge cells 40 partitioned by the barrier ribs 34 and on the side surfaces of the barrier ribs 34. In FIG. 1, the phosphor layer 35 is not formed on the gap 41 side, but the phosphor layer 35 may be formed.

なお、上述の説明ではデータ電極32を覆うように誘電体層33が形成されているが、この誘電体層33は形成しなくてもよい。   In the above description, the dielectric layer 33 is formed so as to cover the data electrode 32. However, the dielectric layer 33 may not be formed.

図3は本発明の実施の形態1におけるパネルの電極配列図である。列方向にm列のデータ電極D〜D(図1のデータ電極32)が配列され、行方向にn行の走査電極SC〜SC(図1の走査電極22)とn行の維持電極SU〜SU(図1の維持電極23)とn/2行のプライミング電極PR〜PRn−1(図1のプライミング電極29)とが維持電極SU−走査電極SC−プライミング電極PR−走査電極SC−維持電極SU−維持電極SU−走査電極SC−プライミング電極PR−走査電極SC−維持電極SU−・・・となるように配列されている。そして、一対の走査電極SC、維持電極SU(i=1〜n)と1つのデータ電極D(j=1〜m)とを含む主放電セルCi,j(図1の主放電セル40)が放電空間内にm×n個形成される。またプライミング電極PR(pは奇数)とデータ電極D〜Dとを含むプライミング放電セルPS(図1のプライミング放電セル41a)が放電空間内にn/2個形成される。そして詳細は後述するが、書込み期間においてこのプライミング放電セルPSで発生したプライミングは、プライミング放電セルPSに隣接する主放電セルCp,1〜Cp,m、Cp+1,1〜Cp+1,mに供給される。 FIG. 3 is an electrode array diagram of the panel according to Embodiment 1 of the present invention. M columns of data electrodes D 1 to D m (data electrodes 32 in FIG. 1) are arranged in the column direction, and n rows of scan electrodes SC 1 to SC n (scan electrodes 22 in FIG. 1) and n rows of data electrodes are arranged in the row direction. Sustain electrodes SU 1 to SU n (sustain electrode 23 in FIG. 1) and n / 2 rows of priming electrodes PR 1 to PR n-1 (priming electrode 29 in FIG. 1) are sustain electrodes SU 1 -scan electrode SC 1-. priming electrodes PR 1 - scan electrode SC 2 - sustain electrode SU 2 - sustain electrode SU 3 - scan electrode SC 3 - priming electrode PR 3 - scan electrode SC 4 - sustain electrode SU 4 - are arranged so as to ... Yes. A main discharge cell C i, j (main discharge in FIG. 1) including a pair of scan electrodes SC i , sustain electrodes SU i (i = 1 to n) and one data electrode D j (j = 1 to m ). M × n cells 40) are formed in the discharge space. In addition, n / 2 priming discharge cells PS p (priming discharge cells 41a in FIG. 1) including priming electrodes PR p (p is an odd number) and data electrodes D 1 to D m are formed in the discharge space. The details will be described later, the priming generated in the write period in the priming discharge cell PS p, the main discharge cell C p adjacent to priming discharge cell PS p, 1 ~C p, m , C p + 1,1 ~C p + 1 , M.

図4は、本発明の実施の形態1におけるパネルを用いたプラズマディスプレイ装置の回路構成の一例を示すブロック図である。ディスプレイ装置100は、画像信号処理回路101、データ電極駆動回路102、タイミング制御回路103、走査電極駆動回路104、維持電極駆動回路105およびプライミング電極駆動回路106を有している。画像信号および同期信号は、画像信号処理回路101に入力される。画像信号処理回路101は、画像信号および同期信号に基づいて、各サブフィールドを点灯するか否かを制御するサブフィールド信号をデータ電極駆動回路102に出力する。また、同期信号はタイミング制御回路103にも入力される。タイミング制御回路103は同期信号に基づいて、データ電極駆動回路102、走査電極駆動回路104、維持電極駆動回路105、プライミング電極駆動回路106にタイミング制御信号を出力する。   FIG. 4 is a block diagram showing an example of a circuit configuration of the plasma display device using the panel according to Embodiment 1 of the present invention. The display device 100 includes an image signal processing circuit 101, a data electrode driving circuit 102, a timing control circuit 103, a scanning electrode driving circuit 104, a sustain electrode driving circuit 105, and a priming electrode driving circuit 106. The image signal and the synchronization signal are input to the image signal processing circuit 101. The image signal processing circuit 101 outputs to the data electrode driving circuit 102 a subfield signal for controlling whether or not each subfield is lit based on the image signal and the synchronization signal. The synchronization signal is also input to the timing control circuit 103. The timing control circuit 103 outputs a timing control signal to the data electrode driving circuit 102, the scan electrode driving circuit 104, the sustain electrode driving circuit 105, and the priming electrode driving circuit 106 based on the synchronization signal.

データ電極駆動回路102は、サブフィールド信号およびタイミング制御信号に応じて、パネル10のデータ電極32(図3のデータ電極D〜D)に所定の駆動波形電圧を印加する。走査電極駆動回路104はタイミング制御信号に応じてパネル10の走査電極22(図3の走査電極SC〜SC)に所定の駆動波形電圧を印加し、維持電極駆動回路105はタイミング制御信号に応じてパネル10の維持電極23(図3の維持電極SU〜SU)に所定の駆動波形電圧を印加する。プライミング電極駆動回路106はタイミング制御信号に応じてパネル10のプライミング電極29(図3のプライミング電極PR〜PRn−1)に所定の駆動波形電圧を印加する。データ電極駆動回路102、走査電極駆動回路104、維持電極駆動回路105、プライミング電極駆動回路106には電源回路(図示せず)から必要な電力が供給されている。 The data electrode driving circuit 102 applies a predetermined driving waveform voltage to the data electrodes 32 (data electrodes D 1 to D m in FIG. 3) of the panel 10 according to the subfield signal and the timing control signal. Scan electrode drive circuit 104 applies a predetermined drive waveform voltage to scan electrode 22 (scan electrodes SC 1 to SC n in FIG. 3) of panel 10 according to the timing control signal, and sustain electrode drive circuit 105 receives the timing control signal. Accordingly, a predetermined drive waveform voltage is applied to sustain electrode 23 (sustain electrodes SU 1 to SU n in FIG. 3) of panel 10. The priming electrode driving circuit 106 applies a predetermined driving waveform voltage to the priming electrodes 29 (priming electrodes PR 1 to PR n-1 in FIG. 3) of the panel 10 according to the timing control signal. The data electrode driving circuit 102, the scan electrode driving circuit 104, the sustain electrode driving circuit 105, and the priming electrode driving circuit 106 are supplied with necessary power from a power supply circuit (not shown).

つぎに、パネルを駆動するための駆動波形とそのタイミングについて、パネルの動作とともに説明する。図5は、本発明の実施の形態1におけるパネルの駆動波形図である。なお本発明の実施の形態1においては、1フィールド期間が初期化期間、書込み期間、維持期間を有する複数のサブフィールドから構成され、最初のサブフィールドの初期化期間は画像表示にかかわるすべての主放電セルで初期化放電を発生させる全セル初期化動作を行い、2番目以降のサブフィールドはその直前のサブフィールドの維持期間で維持放電を行った主放電セルに対して選択的に初期化放電を発生させる選択初期化動作を行うものとして説明する。全セル初期化期間を便宜上2つに分けて前半部、後半部と呼ぶことにする。   Next, driving waveforms and timing for driving the panel will be described together with the operation of the panel. FIG. 5 is a drive waveform diagram of the panel in accordance with the first exemplary embodiment of the present invention. In the first embodiment of the present invention, one field period is composed of a plurality of subfields having an initialization period, an address period, and a sustain period, and the initialization period of the first subfield is all the main fields related to image display. Perform all-cell initializing operation to generate initializing discharge in the discharge cells, and the second and subsequent subfields are selectively initialized with respect to the main discharge cells that have been sustained in the sustain period of the immediately preceding subfield. It is assumed that the selective initialization operation for generating The all-cell initialization period is divided into two for convenience and will be referred to as the first half and the second half.

最初のサブフィールドの初期化期間前半部では、データ電極D〜D、維持電極SU〜SUをそれぞれ0(V)に保持し、走査電極SC〜SCには電圧Vi1から、維持電極SU〜SUおよびデータ電極D〜Dに対して放電開始電圧を超える電圧Vi2に向かって緩やかに上昇する傾斜波形電圧を印加する。また、プライミング電極PR〜PRn−1にも走査電極SC〜SCと同様の傾斜波形電圧を印加する。すると、主放電セルCi,j内部では、走査電極SC〜SCと維持電極SU〜SU、走査電極SC〜SCとデータ電極D〜Dとの間でそれぞれ微弱な初期化放電がおこり、プライミング放電セル内部では、プライミング電極PR〜PRn−1とデータ電極D〜Dとの間でそれぞれ微弱な初期化放電がおこる。そして、走査電極SC〜SC上部およびプライミング電極PR〜PRn−1上部に負の壁電圧が蓄積されるとともに、データ電極D〜D上部および維持電極SU〜SU上部には正の壁電圧が蓄積される。ここで、電極上部の壁電圧とは電極を覆う誘電体層上あるいは蛍光体層上に蓄積された壁電荷により生じる電圧をあらわす。 In half of the initializing period of the first subfield, data electrodes D 1 to D m, holds the sustain electrodes SU 1 to SU n in each 0 (V), the scan electrodes SC 1 to SC n from the voltage V i1 , applying a ramp waveform voltage gradually rises toward the voltage V i2 that exceeds the discharge start voltage with respect to sustain electrodes SU 1 to SU n and the data electrodes D 1 to D m. Further, the same ramp waveform voltage as that of the scan electrodes SC 1 to SC n is applied to the priming electrodes PR 1 to PR n−1 . Then, in the main discharge cells C i, j , the scan electrodes SC 1 to SC n and the sustain electrodes SU 1 to SU n , the scan electrodes SC 1 to SC n and the data electrodes D 1 to D m are weak. Initializing discharge occurs, and weak initializing discharge occurs between the priming electrodes PR 1 to PR n−1 and the data electrodes D 1 to D m inside the priming discharge cell. Negative wall voltage is accumulated on scan electrodes SC 1 to SC n upper and priming electrode PR 1 ~PR n-1 upper, data electrodes D 1 to to D m and sustain electrodes SU 1 to SU n upper Accumulates positive wall voltage. Here, the wall voltage at the top of the electrode represents a voltage generated by wall charges accumulated on the dielectric layer or the phosphor layer covering the electrode.

初期化期間後半部では、維持電極SU〜SUを正電圧Veに保ち、走査電極SC〜SCには、維持電極SU〜SUおよびデータ電極D〜Dに対して放電開始電圧以下となる電圧Vi3から放電開始電圧を超える電圧Vi4に向かって緩やかに下降する傾斜波形電圧を印加する。また、プライミング電極PR〜PRn−1にも走査電極SC〜SCと同様の傾斜波形電圧を印加する。すると、走査電極SC〜SCと維持電極SU〜SU、走査電極SC〜SCとデータ電極D〜D、プライミング電極PR〜PRn−1とデータ電極D〜Dとの間でそれぞれ微弱な初期化放電がおこる。そして、走査電極SC〜SC上部の負の壁電圧および維持電極SU〜SU上部の正の壁電圧が弱められ、データ電極D〜D上部の正の壁電圧は書込み動作に適した値に調整され、プライミング電極PR〜PRn−1上部の壁電圧もプライミング動作に適した値に調整される。以上により画像表示にかかわる全放電セルを初期化放電させる全セル初期化動作が終了する。 In the second half of the initializing period, maintaining the sustain electrodes SU 1 to SU n to a positive voltage Ve, the scan electrodes SC 1 to SC n, the discharge with respect to sustain electrodes SU 1 to SU n and the data electrodes D 1 to D m A ramp waveform voltage that gently falls from a voltage V i3 that is equal to or lower than the start voltage to a voltage V i4 that exceeds the discharge start voltage is applied. Further, the same ramp waveform voltage as that of the scan electrodes SC 1 to SC n is applied to the priming electrodes PR 1 to PR n−1 . Then, scan electrodes SC 1 to SC n and sustain electrodes SU 1 to SU n , scan electrodes SC 1 to SC n and data electrodes D 1 to D m , priming electrodes PR 1 to PR n-1 and data electrodes D 1 to D A weak initializing discharge occurs between each and m . Then, negative wall voltage and sustain electrodes SU 1 to SU n positive wall voltage on scan electrodes SC 1 to SC n upper are weakened, positive wall voltage on data electrodes D 1 to D m upper address operation The wall voltage above the priming electrodes PR 1 to PR n−1 is also adjusted to a value suitable for the priming operation. Thus, the all-cell initialization operation for initializing all the discharge cells involved in image display is completed.

書込み期間では、走査電極SC〜SCおよびプライミング電極PR〜PRn−1を一旦電圧Vcに保持する。これは、後述する書込みパルス電圧Vdの印加にともなって不要な放電を発生させないためである。そして、1行目のプライミング電極PRに負のプライミングパルス電圧Vpを印加する。このときのプライミングパルス電圧は振幅の大きなパルスであり、データ電極D〜Dに印加される書込みパルス電圧の有無にかかわらず、プライミング電極PRとデータ電極D〜Dとの間でプライミング放電が発生する。そして、1行目の主放電セルC1,1〜C1,mおよび2行目の主放電セルC2,1〜C2,m内部にプライミングを供給する。この放電によってプライミング電極PR上部には正の壁電圧が蓄積される。 In the address period, scan electrodes SC 1 to SC n and priming electrodes PR 1 to PR n−1 are temporarily held at voltage Vc. This is because unnecessary discharge is not generated with application of an address pulse voltage Vd described later. Then, applying a negative priming pulse voltage Vp to priming electrode PR 1 of the first row. Priming pulse voltage at this time is large pulse amplitude, regardless of the presence of the write pulse voltage applied to the data electrodes D 1 to D m, between the priming electrode PR 1 and the data electrodes D 1 to D m Priming discharge occurs. Then, priming is supplied to the main discharge cells C 1,1 to C 1, m in the first row and the main discharge cells C 2,1 to C 2, m in the second row. Positive wall voltage is accumulated in the priming electrodes PR 1 upper This discharge.

つぎに、1行目の走査電極SCに負の走査パルス電圧Vaを印加する。このとき同時に、データ電極D〜Dのうち1行目に表示すべき画像信号に対応するデータ電極D(kは1〜mの整数をあらわす)に正の書込みパルス電圧Vdを印加する。すると、書込みパルス電圧Vdを印加したデータ電極Dと走査電極SCとの交差部で放電が発生し、対応する主放電セルC1,kの維持電極SUと走査電極SCとの間の放電に進展する。そして、主放電セルC1,kの走査電極SC上部に正の壁電圧が蓄積され、維持電極SU上部に負の壁電圧が蓄積され、1行目の書込み動作が終了する。ここで、主放電セルC1,kの書込み放電は、プライミング電極PRとデータ電極D〜Dとの間で発生したプライミング放電からプライミングが供給された後に発生するので放電遅れが小さく安定した放電となる。 Then, to apply a negative scan pulse voltage Va to scan electrodes SC 1 of the first row. At the same time, a positive write pulse voltage Vd is applied to the data electrode D k (k represents an integer of 1 to m ) corresponding to the image signal to be displayed in the first row among the data electrodes D 1 to D m. . Then, during the discharge occurs at the intersection of the data electrode D k of applying a write pulse voltage Vd and scan electrodes SC 1, and the sustain electrodes SU 1 corresponding main discharge cells C 1, k and the scan electrodes SC 1 Progresses to discharge. The main discharge cell C 1, k positive wall voltage on scan electrodes SC 1 top of are accumulated negative wall voltage on sustain electrodes SU 1 upper is accumulated, the first line of the write operation is terminated. Here, the address discharge of the main discharge cells C 1 and k occurs after the priming is supplied from the priming discharge generated between the priming electrode PR 1 and the data electrodes D 1 to D m , so that the discharge delay is small and stable. Discharge.

つぎに、2行目の走査電極SCに走査パルス電圧Vaを印加する。このとき同時に、データ電極D〜Dのうち2行目に表示すべき画像信号に対応するデータ電極Dに正の書込みパルス電圧Vdを印加する。すると、データ電極Dと走査電極SCとの交差部で放電が発生し、対応する主放電セルC2,kの維持電極SUと走査電極SCとの間の放電に進展する。そして、主放電セルC2,kの走査電極SC上部に正の壁電圧が蓄積され、維持電極SU上部に負の壁電圧が蓄積され、2行目の書込み動作が終了する。ここでの、主放電セルC2,kの書込み放電も、プライミング電極PRとデータ電極D〜Dとの間で発生したプライミング放電からプライミングが供給された後に発生するので放電遅れが小さく安定した放電となる。 Next, scan pulse voltage Va is applied to the second line scan electrode SC 2. At the same time, applying a positive write pulse voltage Vd to data electrode D k corresponding to the image signal to be displayed on the second line of the data electrodes D 1 to D m. Then, discharge occurs at the intersection of the data electrode D k and scan electrode SC 2, develop into a discharge between the corresponding sustain electrode SU 2 main discharge cell C 2, k and scan electrode SC 2. The main discharge cell C 2, k a positive wall voltage to the scan electrodes SC 2 top of the accumulated negative wall voltage on sustain electrode SU 2 top is stored, the second line of the write operation is terminated. Here, the main discharge cell C 2, k of the writing discharge is also small discharge delay because occurs after priming is supplied from the generated priming discharge between the priming electrode PR 1 and the data electrodes D 1 to D m Stable discharge.

また、2行目の走査電極SCに走査パルス電圧Vaを印加すると同時に、プライミング電極PRにプライミングパルス電圧Vpを印加する。するとデータ電極D〜Dに印加される書込みパルス電圧の有無にかかわらず、プライミング電極PRとデータ電極D〜Dとの間でプライミング放電が発生する。そして、3行目の主放電セルC3,1〜C3,mおよび4行目の主放電セルC4,1〜C4,m内部にプライミングを供給する。この放電によってプライミング電極PR上部に正の壁電圧が蓄積される。 At the same time when applying a scan pulse voltage Va in the second row to the scan electrodes SC 2, applies a priming pulse voltage Vp to priming electrode PR 3. Then regardless of the presence of the write pulse voltage applied to the data electrodes D 1 to D m, priming discharge occurs between priming electrode PR 3 and the data electrodes D 1 to D m. Then, priming is supplied to the main discharge cells C 3,1 to C 3, m in the third row and the main discharge cells C 4,1 to C 4, m in the fourth row. Positive wall voltage is accumulated priming electrode PR 3 top by the discharge.

以下同様の書込み動作をn行目の主放電セルCn,kに至るまで行い、書込み動作を終了する。そして、それぞれの主放電セルCi,jの書込み放電は、隣接するプライミング放電セルからプライミングが供給された後に発生するので、放電遅れの小さい安定した放電となる。 Thereafter, the same address operation is performed until reaching the main discharge cells C n, k in the n- th row, and the address operation is completed. The address discharge of each main discharge cell C i, j is generated after the priming is supplied from the adjacent priming discharge cell, so that it becomes a stable discharge with a small discharge delay.

維持期間においては、走査電極SC〜SC、プライミング電極PR〜PRn−1および維持電極SU〜SUを0(V)に一旦戻す。その後、走査電極SC〜SCに正の維持パルス電圧Vsを印加する。このとき、書込み放電をおこした主放電セルCi,jにおける走査電極SC上部と維持電極SU上部との間の電圧は、維持パルス電圧Vsに加えて、書込み期間において走査電極SC上部および維持電極SU上部に蓄積された壁電圧が加算されるので放電開始電圧を超え維持放電が発生する。以降同様に、走査電極SC〜SCと維持電極SU〜SUとに維持パルス電圧を交互に印加することにより、書込み放電をおこした主放電セルCi,jに対して維持パルスの回数だけ維持放電が継続して行われる。 In the sustain period, scan electrodes SC 1 to SC n , priming electrodes PR 1 to PR n−1 and sustain electrodes SU 1 to SU n are temporarily returned to 0 (V). Then, applying a positive sustain pulse voltage Vs to scan electrodes SC 1 to SC n. At this time, the voltage between the upper portion of scan electrode SC i and upper portion of sustain electrode SU i in main discharge cell C i, j where address discharge has occurred is in addition to sustain pulse voltage Vs, and the upper portion of scan electrode SC i in the address period. Since the wall voltage accumulated on the sustain electrode SU i is added, the discharge start voltage is exceeded and a sustain discharge occurs. Thereafter, in the same manner, sustain pulse voltages are alternately applied to scan electrodes SC 1 to SC n and sustain electrodes SU 1 to SU n to thereby generate sustain pulses for main discharge cells C i, j that have undergone address discharge. The sustain discharge is continuously performed by the number of times.

なお、プライミング電極PR〜PRn−1には図4に示すように走査電極SC〜SCと同様の維持パルス電圧が印加される。書込み期間においてプライミング電極PR〜PRn−1上部には正の壁電圧が蓄積しているので、最初の維持パルス電圧印加時にはプライミング放電セル内部で放電が発生するが、それ以降は放電は発生しない。 As shown in FIG. 4, sustain pulse voltages similar to those of scan electrodes SC 1 to SC n are applied to priming electrodes PR 1 to PR n−1 . Since a positive wall voltage is accumulated on the top of the priming electrodes PR 1 to PR n−1 in the address period, a discharge occurs inside the priming discharge cell when the first sustain pulse voltage is applied, but after that a discharge occurs. do not do.

つづくサブフィールドの初期化期間では、維持電極SU〜SUを正電圧Veに保ち、走査電極SC〜SCとプライミング電極PR〜PRn−1には電圧Viに向かって緩やかに下降する傾斜波形電圧を印加する。すると、維持放電を行った主放電セルCi,kの走査電極SC〜SCと維持電極SU〜SU、データ電極D〜Dとの間、およびプライミング電極PR〜PRn−1とデータ電極D〜Dとの間でそれぞれ微弱な初期化放電がおこる。そして、走査電極SC〜SC上部および維持電極SU〜SU上部の壁電圧が弱められ、データ電極D〜D上部の正の壁電圧は書込み動作に適した値に調整され、プライミング電極PR〜PRn−1上部の正の壁電圧もプライミング動作に適した値に調整される。 In subsequent initializing period of the subfield, the sustain electrodes SU 1 to SU n held at the positive voltage Ve, is slowly toward voltage Vi 4 to the scan electrodes SC 1 to SC n and the priming electrode PR 1 ~PR n-1 Apply a falling ramp waveform voltage. Then, between the scan electrodes SC 1 to SC n and the sustain electrodes SU 1 to SU n and the data electrodes D 1 to D m of the main discharge cells C i, k that have undergone the sustain discharge, and the priming electrodes PR 1 to PR n −1 and a weak initializing discharge occur between the data electrodes D 1 to D m , respectively. Then, scan electrodes SC 1 to SC n and sustain electrodes SU 1 to SU n top of the wall voltage is weakened, positive wall voltage on data electrodes D 1 to D m upper is adjusted to a value suitable for the write operation, The positive wall voltage above the priming electrodes PR 1 to PR n−1 is also adjusted to a value suitable for the priming operation.

この後の書込み期間、維持期間、およびつづくサブフィールドの駆動波形とパネルの動作は上述と同様である。   The subsequent writing period, sustain period, and subsequent subfield drive waveforms and panel operation are the same as described above.

上述のように、初期化期間、維持期間においてはプライミング電極PR〜PRn−1には走査電極SC〜SCとほぼ同様の駆動波形電圧を印加している。これは、走査電極SC、SCp+1とプライミング電極PRとの距離が近いため、この電極間で不要な放電を発生させないためである。また、書込み期間および維持期間の最初の維持パルス電圧印加時にプライミング放電セル内部で画像表示に関係しない放電が発生するが、プライミング放電セルには光吸収層28が設けてあるので、このときに発生する発光がパネル外部に漏れることはない。そして、書込み期間において、それぞれの主放電セルCi,jの書込み放電は、隣接するプライミング放電セルからプライミングが供給された後に発生するので、放電遅れの小さい安定した放電となる。 As described above, during the initialization period and the sustain period, substantially the same drive waveform voltage as that of the scan electrodes SC 1 to SC n is applied to the priming electrodes PR 1 to PR n−1 . This is because scan electrodes SC p , SC p + 1 and the priming electrode PR p are close to each other, so that unnecessary discharge is not generated between the electrodes. In addition, a discharge not related to image display is generated inside the priming discharge cell when the first sustain pulse voltage is applied in the address period and the sustain period. However, since the light absorption layer 28 is provided in the priming discharge cell, it occurs at this time. The emitted light does not leak outside the panel. In the address period, the address discharge of each main discharge cell C i, j occurs after the priming is supplied from the adjacent priming discharge cell, so that the discharge becomes a stable discharge with a small discharge delay.

また、走査電極SCp−1に走査パルス電圧を印加している時間とプライミング電極PRにプライミングパルス電圧を印加している時間とには重なりがあるので、1行目のプライミング放電を除いて、プライミング放電のための時間をあらたに設ける必要がない。実施の形態1においては、走査電極SCp−1とデータ電極Dとの間で書込み放電を発生させると同時にプライミング電極PRとデータ電極D〜Dとの間でプライミング放電を発生させることにより、パネルの駆動時間を延ばすことなくプライミング放電を発生させることが可能となっている。 Further, since there is an overlap between the time during which the scan pulse voltage is applied to the scan electrode SC p-1 and the time during which the priming pulse voltage is applied to the priming electrode PR p , the priming discharge in the first row is excluded. It is not necessary to newly provide time for priming discharge. In the first embodiment, an address discharge is generated between scan electrode SC p-1 and data electrode D k , and at the same time, a priming discharge is generated between priming electrode PR p and data electrodes D 1 to D m . Thus, it is possible to generate priming discharge without extending the panel driving time.

なお、上述の動作説明においては、最初のサブフィールドの初期化期間はすべての主放電セルで初期化放電を行う全セル初期化動作を行い、つぎのサブフィールド以降の初期化期間は維持放電を行った主放電セルを選択的に初期化する選択初期化動作を行うものとして説明したが、これらの初期化動作は任意に組み合わせてもよい。   In the above description of the operation, the initializing period of the first subfield performs all-cell initializing operation in which initializing discharge is performed in all main discharge cells, and the sustaining discharge is performed in the initializing period after the next subfield. Although it has been described that the selective initializing operation for selectively initializing the main discharge cells is performed, these initializing operations may be arbitrarily combined.

(実施の形態2)
本発明の実施の形態2におけるパネルの構造は実施の形態1と同じである。また駆動方法においても、書込み期間において、隣接するプライミング放電セルでプライミング放電を発生させ、主放電セルCi,jにプライミングを供給した後に主放電セルCi,jの書込み放電を行うことも実施の形態1と同様である。実施の形態2が実施の形態1と異なるところは、さらに書込み放電を確実なものとするために、プライミング電極にプライミングパルス電圧を印加した後、そのプライミング電極に隣接する走査電極に対して、最初に印加する走査パルス電圧のパルス幅は、つぎに印加する走査パルス電圧のパルス幅よりも狭く設定したところである。すなわち実施の形態2においては、奇数番目の主放電セルの書込み放電の書込み時間を短く、つづく偶数番目の主放電セルの書込み放電の書込み時間を長く設定したところである。また、維持期間においてプライミング電極に最初に印加される維持パルス電圧の振幅を大きくして、プライミング放電セルの動作を安定させたことである。さらに、プライミングパルス電圧を走査パルス電圧と等しく設定できるように、初期化期間後半部においてプライミング電極に印加する駆動波形を工夫したところである。
(Embodiment 2)
The panel structure in the second embodiment of the present invention is the same as that in the first embodiment. Also in the driving method, performed in the write period, to generate a priming discharge in the adjacent priming discharge cell, main discharge cells C i, main discharge cells after providing the priming j C i, also writing discharges j This is the same as the first embodiment. The second embodiment is different from the first embodiment in that, in order to further ensure the address discharge, after applying the priming pulse voltage to the priming electrode, the scan electrode adjacent to the priming electrode is first The pulse width of the scan pulse voltage applied to is set to be narrower than the pulse width of the scan pulse voltage to be applied next. That is, in the second embodiment, the address time of the address discharge of the odd-numbered main discharge cells is set short, and the address time of the address discharge of the even-numbered main discharge cells is set long. Further, the operation of the priming discharge cell is stabilized by increasing the amplitude of the sustain pulse voltage first applied to the priming electrode during the sustain period. Furthermore, the drive waveform applied to the priming electrode in the latter half of the initialization period has been devised so that the priming pulse voltage can be set equal to the scanning pulse voltage.

つぎに、パネルを駆動するための駆動波形とそのタイミングについて、パネルの動作とともに説明する。図6は、本発明の実施の形態2におけるパネルの駆動波形図である。   Next, driving waveforms and timing for driving the panel will be described together with the operation of the panel. FIG. 6 is a drive waveform diagram of the panel according to the second embodiment of the present invention.

最初のサブフィールドの初期化期間前半部は実施の形態1と同様であるため説明を省略する。   Since the first half of the initializing period of the first subfield is the same as that of the first embodiment, the description thereof is omitted.

初期化期間後半部では、維持電極SU〜SUを正電圧Veに保ち、走査電極SC〜SCには、維持電極SU〜SUおよびデータ電極D〜Dに対して放電開始電圧以下となる電圧Vi3から放電開始電圧を超える電圧Vi4に向かって緩やかに下降する傾斜波形電圧を印加する。すると、走査電極SC〜SCと維持電極SU〜SU、走査電極SC〜SCとデータ電極D〜Dとの間でそれぞれ微弱な初期化放電がおこる。そして、走査電極SC〜SC上部の負の壁電圧および維持電極SU〜SU上部の正の壁電圧が弱められ、データ電極D〜D上部の正の壁電圧は書込み動作に適した値に調整される。また、プライミング電極PR〜PRn−1にも走査電極SC〜SCと同様の傾斜波形電圧を印加するが、実施の形態2においては図6に示すように、電圧Vi4に至る以前の電圧Vipまでしか電圧を低下させない。この場合にも、プライミング電極PR〜PRn−1とデータ電極D〜Dとの間で微弱な初期化放電がおこるが、プライミング電極PR〜PRn−1上部には大きな負の壁電圧が残留したままとなる。 In the second half of the initializing period, maintaining the sustain electrodes SU 1 to SU n to a positive voltage Ve, the scan electrodes SC 1 to SC n, the discharge with respect to sustain electrodes SU 1 to SU n and the data electrodes D 1 to D m A ramp waveform voltage that gently falls from a voltage V i3 that is equal to or lower than the start voltage to a voltage V i4 that exceeds the discharge start voltage is applied. Then, weak initializing discharge occurs between scan electrodes SC 1 to SC n and sustain electrodes SU 1 to SU n , and scan electrodes SC 1 to SC n and data electrodes D 1 to D m , respectively. Then, negative wall voltage and sustain electrodes SU 1 to SU n positive wall voltage on scan electrodes SC 1 to SC n upper are weakened, positive wall voltage on data electrodes D 1 to D m upper address operation It is adjusted to a suitable value. Further, the same ramp waveform voltage as that of scan electrodes SC 1 to SC n is applied to priming electrodes PR 1 to PR n−1 , but in the second embodiment, before reaching voltage V i4 as shown in FIG. The voltage is reduced only to the voltage V ip of. Also in this case, a weak initializing discharge occurs between the priming electrodes PR 1 to PR n−1 and the data electrodes D 1 to D m , but a large negative voltage is present on the priming electrodes PR 1 to PR n−1 . Wall voltage remains.

つづく書込み期間では、走査電極SC〜SCを一旦電圧Vcに保持しプライミング電極PR〜PRn−1を一旦電圧Vc’に保持する。実施の形態1と同様に、これらの電圧は書込みパルス電圧Vdの印加にともなって不要な放電を発生させないためである。そして、プライミング電極PRに負のプライミングパルス電圧Vp’を印加する。このときプライミング電極PR〜PRn−1上部には初期化期間に形成された大きな負の壁電圧が残っているために、プライミングパルス電圧Vp’の電圧は実施の形態1におけるプライミングパルス電圧Vpよりも浅く設定できる。実施の形態2においては、後述する走査パルス電圧Vaと等しい電圧に設定することで電源の共有化をはかり回路構成を簡素化している。そして、プライミング電極PRとデータ電極D〜Dとの間でプライミング放電を発生させ、1行目の主放電セルC1,1〜C1,mおよび2行目の主放電セルC2,1〜C2,m内部にプライミングを拡散させる。この放電によってプライミング電極PR上部に正の壁電圧が蓄積される。 In the subsequent address period, scan electrodes SC 1 to SC n are once held at voltage Vc, and priming electrodes PR 1 to PR n−1 are once held at voltage Vc ′. This is because, as in the first embodiment, these voltages do not cause unnecessary discharge with the application of the address pulse voltage Vd. Then, applying a negative priming pulse voltage Vp 'to the priming electrode PR 1. At this time, since the large negative wall voltage formed in the initialization period remains above the priming electrodes PR 1 to PR n−1 , the voltage of the priming pulse voltage Vp ′ is the priming pulse voltage Vp in the first embodiment. It can be set shallower. In the second embodiment, the circuit configuration is simplified by sharing the power supply by setting the voltage equal to the scan pulse voltage Va described later. The priming electrode PR 1 and the data electrodes D 1 to D m to generate a priming discharge between the first row of the main discharge cells C 1, 1 -C 1, m and the second line of the main discharge cells C 2 , 1 to C 2, m diffuses priming inside. Positive wall voltage is accumulated priming electrodes PR 1 upper This discharge.

つぎに、実施の形態1と同様に、1行目の走査電極SCに負の走査パルス電圧Vaを印加して1行目の書込み動作を行う。その後、2行目の走査電極SCに走査パルス電圧Vaを印加して2行目の書込み動作を行うが、このとき実施の形態2においては、1行目の走査電極SCに印加される走査パルス電圧のパルス幅は2行目の走査電極SCに印加される走査パルス電圧のパルス幅よりも狭く設定している。これは、1行目の主放電セルC1,1〜C1,mの書込み放電はプライミング放電の直後に発生するので放電遅れの小さい放電となり、書込み時間を短縮しても安定した書込みを行えるからである。さらに、2行目の主放電セルC2,1〜C2,mの書込み放電とプライミング放電との時間間隔を極力短くするためでもある。一方、2行目の主放電セルC2,1〜C2,mの書込み動作とプライミング放電との間にはいくらかの時間間隔があるので、2行目の主放電セルC2,1〜C2,mの書込み放電の放電遅れは1行目の主放電セルC1,1〜C1,mの書込み放電よりも大きくなる傾向がある。そのため、書込み放電を確実に完了させるために2行目の走査電極SCに印加される走査パルス電圧のパルス幅をやや長めに設定している。実施の形態2においてはそれぞれの走査パルス電圧のパルス幅を、たとえば1.0μsと1.2μsとに設定したが、これらの値はパネルの特性や駆動条件により最適に設定することが望ましい。この方法により、書込み時間を最適化することができ、その結果、書込み放電を安定して発生させながら書込み期間を短縮することができる。 Then, similarly, performed in the first row writing operation by applying a negative scan pulse voltage Va to scan electrodes SC 1 of the first row in the first embodiment. Thereafter, by applying a scan pulse voltage Va in the second row to the scan electrodes SC 2 to perform the second row of the write operation, but in the second embodiment that time, is applied in the first row to the scan electrodes SC 1 the pulse width of the scan pulse voltage is set narrower than the pulse width of the scan pulse voltage applied to the scan electrodes SC 2 of the second row. This is because the address discharge of the main discharge cells C 1,1 to C 1, m in the first row is generated immediately after the priming discharge, resulting in a discharge with a small discharge delay, and stable address can be performed even if the address time is shortened. Because. Furthermore, this is also for shortening the time interval between the address discharge and the priming discharge of the main discharge cells C 2,1 to C 2, m in the second row as much as possible. On the other hand, since there is some time interval between the address operation of the main discharge cells C 2,1 to C 2, m in the second row and the priming discharge, the main discharge cells C 2,1 to C in the second row. The discharge delay of the address discharge of 2, m tends to be larger than the address discharge of the main discharge cells C 1,1 to C 1, m in the first row. Therefore, and sets the pulse width of the scan pulse voltage applied to the scan electrodes SC 2 of the second row in order to complete the writing discharge surely somewhat longer. In the second embodiment, the pulse width of each scanning pulse voltage is set to 1.0 μs and 1.2 μs, for example, but these values are preferably set optimally depending on the panel characteristics and driving conditions. By this method, the address time can be optimized, and as a result, the address period can be shortened while stably generating the address discharge.

そして、実施の形態2においても実施の形態1と同様に、2行目の走査電極SCに走査パルス電圧Vaを印加して2行目の書込み動作を行うと同時に、プライミング電極PRにもプライミングパルス電圧Vp’を同時に印加してプライミング放電を発生させる。そして、3行目の主放電セルC3,1〜C3,mおよび4行目の主放電セルC4,1〜C4,m内部にプライミングを供給する。以下同様の書込み動作をn行目の主放電セルCn,kに至るまで行い、書込み動作を終了する。実施の形態2においても、それぞれの主放電セルCi,jの書込み放電は、隣接するプライミング放電セルからプライミングが供給された後に発生するので、放電遅れの小さい安定した放電となる。 Then, as in Embodiment 1 also performed in the second embodiment, by applying a scan pulse voltage Va in the second row to the scan electrodes SC 2 to perform the second row of the write operation at the same time, also to priming electrode PR 3 A priming discharge is generated by simultaneously applying the priming pulse voltage Vp ′. Then, priming is supplied to the main discharge cells C 3,1 to C 3, m in the third row and the main discharge cells C 4,1 to C 4, m in the fourth row. Thereafter, the same address operation is performed until reaching the main discharge cells C n, k in the n- th row, and the address operation is completed. Also in the second embodiment , the address discharge of each main discharge cell C i, j is generated after the priming is supplied from the adjacent priming discharge cell, so that it becomes a stable discharge with a small discharge delay.

維持期間においても、実施の形態1と同様に、走査電極SC〜SCと維持電極SU〜SUとに維持パルス電圧を交互に印加することにより、書込み放電をおこした主放電セルCi,jに対して維持パルスの回数だけ維持放電が継続して行われる。一方、プライミング電極PR〜PRn−1にも図6に示すように走査電極SC〜SCと同様の維持パルス電圧が印加されるが、最初の維持パルス電圧は、維持パルス電圧Vsよりも大きい電圧Vs’が印加されている。この理由は以下の通りである。書込み期間において、プライミング電極PRとデータ電極D〜Dとの間でプライミング放電を発生させるが、このとき、データ電極D〜Dの中には書込みパルス電圧Vdの印加されているものと、印加されていないものとが混在している。そして、プライミング放電の後、書込みパルス電圧Vdの印加されなかったデータ電極D〜D上部の壁電圧は書込みパルス電圧Vdの印加されたデータ電極D〜D上部の壁電圧よりも小さくなっている可能性がある。そこで、この壁電圧がたとえ小さい場合であっても確実に放電を発生させることができるように、最初の維持パルスの電圧を大きく設定している。 Also in the sustain period, as in the first embodiment, by applying the sustain pulse voltage alternately to the scan electrodes SC 1 to SC n and sustain electrodes SU 1 to SU n, main discharge cell having caused the address discharge C Sustain discharge is continuously performed for i and j by the number of sustain pulses. On the other hand, as shown in FIG. 6, sustain pulse voltages similar to those of scan electrodes SC 1 to SC n are applied to priming electrodes PR 1 to PR n-1 , but the first sustain pulse voltage is higher than sustain pulse voltage Vs. A larger voltage Vs ′ is applied. The reason is as follows. In the write period, but to generate a priming discharge between the priming electrode PR p and the data electrodes D 1 to D m, this time, in the data electrodes D 1 to D m is applied address pulse voltage Vd And those not applied are mixed. After the priming discharge, the wall voltage of the applied data not electrodes D 1 to D m upper address pulse voltage Vd is less than the applied data electrodes D 1 to D m top of the wall voltage of the write pulse voltage Vd It may have become. Therefore, the voltage of the first sustain pulse is set large so that the discharge can be reliably generated even when the wall voltage is small.

つづくサブフィールドの初期化期間は、全セル初期化期間後半部と同様に、維持電極SU〜SUを正電圧Veに保ち、走査電極SC〜SCには、維持電極SU〜SUおよびデータ電極D〜Dに対して放電開始電圧以下となる電圧Vi3から放電開始電圧を超える電圧Vi4に向かって緩やかに下降する傾斜波形電圧を印加する。しかし、プライミング電極PR〜PRn−1には最初のサブフィールドの初期化期間後半部と同様に、電圧Vi4に至る以前の電圧Vipまでしか電圧を低下させない。そして、プライミング電極PR〜PRn−1上部に大きな負の壁電圧を残留させたままとする。 It followed initializing period of sub-fields, as well as the all-cell second half of the initializing period, maintaining the sustain electrodes SU 1 to SU n to a positive voltage Ve, the scan electrodes SC 1 to SC n, the sustain electrodes SU 1 to SU A ramp waveform voltage that gradually falls from voltage V i3 that is equal to or lower than the discharge start voltage to voltage V i4 that exceeds the discharge start voltage is applied to n and data electrodes D 1 to D m . However, as in the latter half of the initializing period of the first subfield, the voltage is reduced only to the voltage V ip before reaching the voltage V i4 in the priming electrodes PR 1 to PR n−1 . Then, a large negative wall voltage is left on the priming electrodes PR 1 to PR n−1 .

この後の書込み期間、維持期間、およびつづくサブフィールドの駆動波形とパネルの動作は上述と同様である。   The subsequent writing period, sustain period, and subsequent subfield drive waveforms and panel operation are the same as described above.

実施の形態2においては実施の形態1において得られる効果に加えて、書込み放電を安定して発生させながら書込み期間を短縮することができる。   In the second embodiment, in addition to the effects obtained in the first embodiment, the address period can be shortened while the address discharge is stably generated.

本発明は、書込み動作の駆動電圧マージンを狭めることなく書込み放電を安定して発生させることができるので、壁掛けテレビや大型モニター等に用いられるパネルおよびその駆動方法として有用である。   INDUSTRIAL APPLICABILITY Since the present invention can stably generate an address discharge without narrowing the drive voltage margin for the address operation, it is useful as a panel used for a wall-mounted television, a large monitor, and the like and a method for driving the panel.

本発明の実施の形態1、2におけるパネルの構造を示す分解斜視図The disassembled perspective view which shows the structure of the panel in Embodiment 1, 2 of this invention. 同パネルの断面図Cross section of the panel 同パネルの電極配列図Electrode arrangement of the panel 同パネルを用いたプラズマディスプレイ装置の回路構成の一例を示すブロック図The block diagram which shows an example of the circuit structure of the plasma display apparatus using the panel 本発明の実施の形態1におけるパネルの駆動波形図Drive waveform diagram of panel in embodiment 1 of the present invention 本発明の実施の形態2におけるパネルの駆動波形図Drive waveform diagram of panel in embodiment 2 of the present invention

符号の説明Explanation of symbols

21 前面基板
22 走査電極
23 維持電極
24 誘電体層
25 保護層
28 光吸収層
29 プライミング電極
31 背面基板
32 データ電極
33 誘電体層
34 隔壁
35 蛍光体層
40 主放電セル
41 隙間部
41a プライミング放電セル
DESCRIPTION OF SYMBOLS 21 Front substrate 22 Scan electrode 23 Sustain electrode 24 Dielectric layer 25 Protection layer 28 Light absorption layer 29 Priming electrode 31 Back substrate 32 Data electrode 33 Dielectric layer 34 Partition 35 Phosphor layer 40 Main discharge cell 41 Gap part 41a Priming discharge cell

Claims (4)

第1の基板上に平行に配置されかつ表示電極対を構成する走査電極および維持電極と、
放電空間を挟んで前記第1の基板に対向配置された第2の基板上に前記走査電極と交差する方向に配置されかつ前記表示電極対とで主放電セルを構成するデータ電極と、
前記主放電セルを区画し前記主放電セルが前記表示電極対に沿って複数連結した主放電セル行を形成するとともに隣接する主放電セル行の間に隙間部を設けた隔壁とを有し、
前記第1の基板上において、2本の前記走査電極が隣り合う前記隙間部に対応する位置に、前記走査電極と平行にプライミング電極を配置したプラズマディスプレイパネル。
A scan electrode and a sustain electrode arranged in parallel on the first substrate and constituting a display electrode pair;
A data electrode disposed in a direction intersecting the scan electrode on a second substrate disposed opposite to the first substrate across a discharge space and constituting a main discharge cell with the display electrode pair;
Partitioning the main discharge cells to form a main discharge cell row in which the main discharge cells are connected together along the display electrode pair, and a partition wall provided with a gap between adjacent main discharge cell rows;
A plasma display panel in which a priming electrode is arranged in parallel with the scan electrode at a position corresponding to the gap between the two scan electrodes adjacent to each other on the first substrate.
請求項1に記載のプラズマディスプレイパネルの駆動方法であって、
1フィールドを初期化期間、書込み期間、維持期間を有する複数のサブフィールドで構成し、
前記書込み期間において、前記走査電極には走査パルス電圧を順次印加し、前記走査パルス電圧を印加された走査電極に隣接するプライミング電極には前記走査パルス電圧の印加に先立って前記プライミング電極と前記データ電極との間でプライミング放電を生じさせるためのプライミングパルス電圧を印加することを特徴とするプラズマディスプレイパネルの駆動方法。
A method for driving a plasma display panel according to claim 1,
One field is composed of a plurality of subfields having an initialization period, an address period, and a sustain period,
In the address period, a scan pulse voltage is sequentially applied to the scan electrode, and the priming electrode and the data are applied to the priming electrode adjacent to the scan electrode to which the scan pulse voltage is applied prior to the application of the scan pulse voltage. A driving method of a plasma display panel, characterized by applying a priming pulse voltage for generating a priming discharge with an electrode.
前記書込み期間において、走査電極に走査パルス電圧を印加している時間とプライミング電極にプライミングパルス電圧を印加している時間とには重なりがあることを特徴とする請求項2に記載のプラズマディスプレイパネルの駆動方法。 3. The plasma display panel according to claim 2, wherein in the address period, there is an overlap between a time during which the scan pulse voltage is applied to the scan electrode and a time during which the priming pulse voltage is applied to the priming electrode. Driving method. プライミング電極にプライミングパルス電圧を印加した後、前記プライミングパルス電圧を印加されたプライミング電極に隣接する走査電極のうち、最初に走査パルス電圧を印加する走査電極の走査パルス電圧のパルス幅は、つぎに走査パルス電圧を印加する走査電極の走査パルス電圧のパルス幅よりも狭く設定したことを特徴とする請求項2または請求項3に記載のプラズマディスプレイパネルの駆動方法。 After applying the priming pulse voltage to the priming electrode, the scan pulse voltage of the scan electrode to which the scan pulse voltage is first applied among the scan electrodes adjacent to the priming electrode to which the priming pulse voltage is applied is 4. The method of driving a plasma display panel according to claim 2, wherein the pulse width of the scan pulse voltage of the scan electrode to which the scan pulse voltage is applied is set to be narrower.
JP2004267957A 2004-09-15 2004-09-15 Plasma display panel and driving method thereof Pending JP2006085964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004267957A JP2006085964A (en) 2004-09-15 2004-09-15 Plasma display panel and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004267957A JP2006085964A (en) 2004-09-15 2004-09-15 Plasma display panel and driving method thereof

Publications (1)

Publication Number Publication Date
JP2006085964A true JP2006085964A (en) 2006-03-30

Family

ID=36164281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004267957A Pending JP2006085964A (en) 2004-09-15 2004-09-15 Plasma display panel and driving method thereof

Country Status (1)

Country Link
JP (1) JP2006085964A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096802A (en) * 2006-10-13 2008-04-24 Matsushita Electric Ind Co Ltd Driving method of plasma display panel, and plasma display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096802A (en) * 2006-10-13 2008-04-24 Matsushita Electric Ind Co Ltd Driving method of plasma display panel, and plasma display device

Similar Documents

Publication Publication Date Title
KR100715625B1 (en) Plasma display panel drive method
KR100805496B1 (en) Driving method of plasma display panel
US20060256042A1 (en) Plasma display apparatus and driving method thereof
KR100700407B1 (en) Method of driving plasma display panel
JP3888321B2 (en) Driving method of plasma display panel
JP2008287244A (en) Drive method of plasma display panel
JP4325237B2 (en) Plasma display panel
JP3988667B2 (en) Driving method of plasma display panel
JP2008287245A (en) Method for driving plasma display panel
JP2006085964A (en) Plasma display panel and driving method thereof
JP4569136B2 (en) Driving method of plasma display panel
JP4239779B2 (en) Plasma display panel
JP2007133291A (en) Driving method of plasma display panel
JP4507709B2 (en) Driving method of plasma display panel
JP2006172800A (en) Plasma display panel and its driving method
JP4461733B2 (en) Driving method of plasma display panel
JP4547949B2 (en) Driving method of plasma display panel
JP4211579B2 (en) Plasma display panel
JP4997932B2 (en) Plasma display panel driving method and plasma display device
JP2009175201A (en) Driving method of plasma display and plasma display device
JP2005135596A (en) Plasma display panel
JP2005037821A (en) Driving method of plasma display panel