JP2006084416A - Mobile body position detector - Google Patents

Mobile body position detector Download PDF

Info

Publication number
JP2006084416A
JP2006084416A JP2004271776A JP2004271776A JP2006084416A JP 2006084416 A JP2006084416 A JP 2006084416A JP 2004271776 A JP2004271776 A JP 2004271776A JP 2004271776 A JP2004271776 A JP 2004271776A JP 2006084416 A JP2006084416 A JP 2006084416A
Authority
JP
Japan
Prior art keywords
magnetic
magnetoresistive effect
magnetic material
bias magnet
type magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004271776A
Other languages
Japanese (ja)
Other versions
JP4506960B2 (en
Inventor
Kimiko Oi
きみ子 大井
Seiji Fukuoka
誠二 福岡
Toshinao Kido
利尚 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004271776A priority Critical patent/JP4506960B2/en
Publication of JP2006084416A publication Critical patent/JP2006084416A/en
Application granted granted Critical
Publication of JP4506960B2 publication Critical patent/JP4506960B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To acquire movement information (an phase A and a phase B) and home position information (a phase Z) without influence from various types of dispersion, and to carry out miniaturization and cost reduction of a bias magnet by rationalizing arrangement of the bias magnet. <P>SOLUTION: The mobile body position detector has a first soft magnetic rotor 1 having teeth 1a at certain intervals, a second soft magnetic rotor 2 integrally turning with the rotor 1 and having one cutout part 2a, a vector detecting type magnetoresistive element group 10 facing the rotor 1 to acquire the movement information, a vector detecting type magnetoresistive element group 20 facing the rotor 2 to acquire the home position information, and the bias magnet 15. The bias magnet 15 mainly has a magnetic field component in parallel with respective magnetic sensing planes of the vector detecting type magnetoresistive element groups 10 and 20 when there are no rotors 1 and 2, and it is arranged such that a magnetic flux is generated in perpendicular to each pin layer magnetization direction of the vector detecting type magnetoresistive element groups 10 and 20. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁気抵抗効果素子を用いて磁性材との相対移動に伴う磁界変化を検出する検出装置に係り、特に工業用工作機械等に用いられる軟磁性材と磁気抵抗効果素子との相対移動情報を得る場合等に用いて好適な移動体位置検出装置に関するものである。   The present invention relates to a detection device that detects a magnetic field change accompanying a relative movement with a magnetic material using a magnetoresistive effect element, and in particular, a relative movement between a soft magnetic material and a magnetoresistive effect element used in an industrial machine tool or the like. The present invention relates to a mobile body position detection apparatus suitable for use in obtaining information.

従来の移動体位置検出装置は、回転情報を得る場合に、図12のように円周に一定間隔のピッチで所定数の歯(凸部)1aを設けた第1軟磁性材回転体1と、これと一体となって回転する、円周の一部に切欠部2aを設けた第2軟磁性材回転体2とを用い、第1軟磁性材回転体1に対向してこれより90°位相差2信号(A相及びB相)を得る第1の磁気抵抗効果素子3と、第2軟磁性材回転体2に対向してこれより原点信号(Z相)を得る第2の磁気抵抗効果素子4とを備えている。そして、第1及び第2の磁気抵抗効果素子3,4の背後にそれぞれバイアス磁石5,6を配置している。バイアス磁石5,6の磁極方向は、回転体1,2の外周面に対して垂直に磁界を発生させる向きに配置する。なお、図12の従来装置で使用されている磁気抵抗効果素子は強度検知型の磁気抵抗効果素子である。   The conventional moving body position detecting device, when obtaining rotation information, includes a first soft magnetic material rotating body 1 provided with a predetermined number of teeth (convex portions) 1a at a constant pitch on the circumference as shown in FIG. The second soft magnetic material rotating body 2 that rotates integrally with this and provided with a notch 2a at a part of the circumference is opposed to the first soft magnetic material rotating body 1 and 90 ° therefrom. A first magnetoresistance effect element 3 that obtains a phase difference 2 signal (A phase and B phase) and a second magnetoresistance that faces the second soft magnetic material rotating body 2 and obtains an origin signal (Z phase) therefrom. The effect element 4 is provided. Bias magnets 5 and 6 are arranged behind the first and second magnetoresistive elements 3 and 4, respectively. The magnetic pole directions of the bias magnets 5 and 6 are arranged so as to generate a magnetic field perpendicular to the outer peripheral surfaces of the rotating bodies 1 and 2. The magnetoresistive effect element used in the conventional apparatus of FIG. 12 is an intensity detection type magnetoresistive effect element.

上記従来装置と同様の構成は下記特許文献1に開示されている。
特開平10−260061号公報
A configuration similar to that of the above-described conventional apparatus is disclosed in Patent Document 1 below.
Japanese Patent Laid-Open No. 10-260061

従来の移動体位置検出装置では、図12のように、90°位相差2信号を得るための第1の磁気抵抗効果素子と原点信号を得るための第2の磁気抵抗効果素子それぞれの背後に1個ずつバイアス磁石を配置するか、もしくは、第1及び第2の磁気抵抗効果素子それぞれの背後にわたって大きな磁石を配置することが必要である。そのためセンサ形状は大きくなり、コストも高くなる。   In the conventional moving body position detecting device, as shown in FIG. 12, behind the first magnetoresistive effect element for obtaining the 90 ° phase difference 2 signal and the second magnetoresistive effect element for obtaining the origin signal, respectively. It is necessary to arrange bias magnets one by one, or a large magnet behind each of the first and second magnetoresistive elements. Therefore, the sensor shape becomes large and the cost also increases.

また、強度検知型の磁気抵抗効果素子を用いているため、抵抗変化率は外部磁界の強さに依存する。このため、(1)磁気抵抗効果素子の抵抗値バラツキ、(2)磁気抵抗効果素子の感度(抵抗変化率)バラツキ、(3)バイアス磁石の発生磁界強度バラツキ、(4)軟磁性材回転体−磁気抵抗素子間ギャップのバラツキ等に起因して検出出力波形が変動してしまう問題がある。   In addition, since the intensity detection type magnetoresistive effect element is used, the rate of change in resistance depends on the strength of the external magnetic field. Therefore, (1) variation in resistance value of magnetoresistive effect element, (2) variation in sensitivity (resistance change rate) of magnetoresistive effect element, (3) variation in magnetic field intensity generated by bias magnet, (4) rotating body of soft magnetic material -There is a problem that the detected output waveform fluctuates due to variations in the gap between magnetoresistive elements.

本発明は、上記の点に鑑み、磁気抵抗効果素子としてベクトル検知型磁気抵抗効果素子を用いることで、各種バラツキに影響されることなく移動情報(A相及びB相)を得るベクトル検知型磁気抵抗効果素子と原点情報(Z相)を得るベクトル検知型磁気抵抗効果素子から必要な信号を得ることができるとともに、バイアス磁石の配置を合理化して、バイアス磁石の小型化や、コスト低減を図り得る移動体位置検出装置を提供することを目的とする。   In view of the above points, the present invention uses a vector detection type magnetoresistive effect element as a magnetoresistive effect element to obtain movement information (A phase and B phase) without being affected by various variations. Necessary signals can be obtained from the resistive element and the vector detection type magnetoresistive element that obtains origin information (Z-phase), and the arrangement of the bias magnet is streamlined to reduce the size and cost of the bias magnet. It is an object of the present invention to provide a movable body position detecting device.

本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。   Other objects and novel features of the present invention will be clarified in embodiments described later.

上記目的を達成するために、本発明に係る第1の移動体位置検出装置は、一定の間隔で凸部又は凹部を有する第1の磁性材と、該第1の磁性材に対して一定位置関係を保つ少なくとも1つの凸部又は凹部を有する第2の磁性材と、前記第1の磁性材に対向して移動情報を得る第1のベクトル検知型磁気抵抗効果素子と、前記第2の磁性材に対向して原点情報を得る第2のベクトル検知型磁気抵抗効果素子と、磁界を発生するバイアス磁石とを有し、前記第1及び第2の磁性材と前記第1及び第2のベクトル検知型磁気抵抗効果素子との相対位置を検出する構成であって、
前記バイアス磁石は、前記第1及び第2の磁性材が存在しないときに前記第1及び第2のベクトル検知型磁気抵抗効果素子それぞれの感磁面に平行な磁界成分を主に有し、かつ各ベクトル検知型磁気抵抗効果素子のピン層磁化方向に略垂直に磁束が発生するように配置されたことを特徴としている。
In order to achieve the above object, a first moving body position detection device according to the present invention includes a first magnetic material having convex portions or concave portions at a constant interval, and a fixed position with respect to the first magnetic material. A second magnetic material having at least one convex portion or concave portion that maintains the relationship; a first vector detection type magnetoresistive effect element that obtains movement information opposite to the first magnetic material; and the second magnetic material. A second vector detection type magnetoresistive element that obtains origin information opposite to the material; and a bias magnet that generates a magnetic field; and the first and second magnetic materials and the first and second vectors. It is configured to detect a relative position with a sensing type magnetoresistive element,
The bias magnet mainly has a magnetic field component parallel to the magnetic sensitive surface of each of the first and second vector sensing magnetoresistive elements when the first and second magnetic materials are not present, and Each vector detection type magnetoresistive effect element is arranged so as to generate a magnetic flux substantially perpendicular to the pinned layer magnetization direction.

本発明に係る第2の移動体位置検出装置は、一定の間隔で凸部又は凹部を有する第1部分及び少なくとも1つの凸部又は凹部を有する第2部分をもつ磁性材と、前記第1部分に対向して移動情報を得る第1のベクトル検知型磁気抵抗効果素子と、前記第2部分に対向して原点情報を得る第2のベクトル検知型磁気抵抗効果素子と、磁界を発生するバイアス磁石とを有し、前記第1部分及び第2部分をもつ磁性材と前記第1及び第2のベクトル検知型磁気抵抗効果素子との相対位置を検出する構成であって、
前記バイアス磁石は、前記第1部分及び第2部分をもつ磁性材が存在しないときに前記第1及び第2のベクトル検知型磁気抵抗効果素子それぞれの感磁面に平行な磁界成分を主に有し、かつ各ベクトル検知型磁気抵抗効果素子のピン層磁化方向に略垂直に磁束が発生するように配置されたことを特徴としている。
The second moving body position detecting apparatus according to the present invention includes a magnetic material having a first portion having a convex portion or a concave portion at a constant interval and a second portion having at least one convex portion or a concave portion, and the first portion. A first vector detection type magnetoresistive effect element that obtains movement information opposite to the first part, a second vector detection type magnetoresistive effect element that obtains origin information opposite to the second part, and a bias magnet that generates a magnetic field And detecting the relative position of the magnetic material having the first part and the second part and the first and second vector sensing magnetoresistive elements,
The bias magnet mainly has a magnetic field component parallel to the magnetic sensitive surface of each of the first and second vector detection type magnetoresistive effect elements when there is no magnetic material having the first part and the second part. In addition, each vector detection type magnetoresistive effect element is arranged so as to generate a magnetic flux substantially perpendicular to the pinned layer magnetization direction.

前記移動体位置検出装置において、前記バイアス磁石は、前記磁性材との相対移動方向に垂直かつ前記磁性材の凸部又は凹部を有する面に平行な方向において、前記第1のベクトル検知型磁気抵抗効果素子と前記第2のベクトル検知型磁気抵抗効果素子との間に少なくとも1個配置されているとよい。   In the moving body position detecting device, the bias magnet may be configured such that the first vector detection type magnetoresistive resistor is perpendicular to a direction of relative movement with the magnetic material and parallel to a surface having a convex portion or a concave portion of the magnetic material. It is preferable that at least one effect element is disposed between the effect element and the second vector detection type magnetoresistive effect element.

前記移動体位置検出装置において、前記バイアス磁石に軟磁性体が付加された構成であってもよい。   The moving body position detecting device may be configured such that a soft magnetic material is added to the bias magnet.

前記第1のベクトル検知型磁気抵抗効果素子による前記移動情報の検出出力波形が略正弦波であるとよい。   A detection output waveform of the movement information by the first vector detection type magnetoresistive effect element may be a substantially sine wave.

前記ベクトル検知型磁気抵抗効果素子は、スピンバルブ型巨大磁気抵抗効果素子であるとよい。   The vector detection type magnetoresistance effect element may be a spin valve type giant magnetoresistance effect element.

本発明に係る移動体位置検出装置によれば、移動情報(A相及びB相)及び原点情報(Z相)を得る磁気抵抗効果素子としてベクトル検知型磁気抵抗効果素子を用い、相対移動する磁性材が存在しないときに各ベクトル検知型磁気抵抗効果素子それぞれの感磁面に平行な磁界成分を主に有し、かつそれらのピン層磁化方向に略垂直に磁束が発生するようにバイアス磁石を配置することで、各種バラツキ(磁気抵抗効果素子の感度バラツキ、バイアス磁石の発生磁界強度バラツキ、磁性材−磁気抵抗効果素子間ギャップのバラツキ等)に影響されることなく所望の移動情報及び原点情報の検出信号を得ることができる。   According to the moving body position detecting device of the present invention, a vector detection type magnetoresistive effect element is used as a magnetoresistive effect element for obtaining movement information (A phase and B phase) and origin information (Z phase), and the relative moving magnetism. A bias magnet is used so that when there is no material, the magnetic field component is mainly parallel to the magnetic sensitive surface of each vector detection type magnetoresistive effect element, and magnetic flux is generated substantially perpendicular to the magnetization direction of the pinned layer. Arrangement of desired movement information and origin information without being affected by various variations (variation in sensitivity of magnetoresistive effect element, variation in magnetic field strength of bias magnet, variation in gap between magnetic material and magnetoresistive effect element, etc.) The detection signal can be obtained.

また、移動情報(A相及びB相)を得るベクトル検知型磁気抵抗効果素子及び原点情報(Z相)を得るベクトル検知型磁気抵抗効果素子にバイアス磁界を印加するバイアス磁石の配置を合理化して、バイアス磁石の小型化、ひいては全体形状の小型化や、コスト低減を図ることができる。   Further, the arrangement of bias magnets for applying a bias magnetic field to the vector detection type magnetoresistive effect element for obtaining movement information (A phase and B phase) and the vector detection type magnetoresistive effect element for obtaining origin information (Z phase) has been rationalized. Thus, the bias magnet can be reduced in size, and the overall shape can be reduced, and the cost can be reduced.

以下、本発明を実施するための最良の形態として、移動体位置検出装置の実施の形態を図面に従って説明する。   Hereinafter, as a best mode for carrying out the present invention, an embodiment of a moving body position detecting device will be described with reference to the drawings.

図1は本発明に係る移動体位置検出装置の実施の形態1であって、軟磁性材移動体として軟磁性材回転体の移動(回転)情報及び原点情報を得るための回転センサを構成した場合を示す。   FIG. 1 is a first embodiment of a moving body position detecting apparatus according to the present invention, in which a rotation sensor for obtaining movement (rotation) information and origin information of a soft magnetic material rotating body is configured as a soft magnetic material moving body. Show the case.

図1(A)において、第1軟磁性材回転体1は、円周となっている外周面に一定間隔の配列ピッチPで所定数の歯(凸部)1aを設けた構成であり、これと一定位置関係を保つ(一体となって回転する)第2軟磁性材回転体2は、円周となっている外周面の一部に切欠部2aを設けた構成である。   In FIG. 1A, the first soft magnetic material rotating body 1 has a configuration in which a predetermined number of teeth (convex portions) 1a are provided at a circumferentially arranged outer peripheral surface at a constant pitch P. The second soft magnetic material rotating body 2 that maintains a fixed positional relationship (rotates integrally) has a configuration in which a notch 2a is provided on a part of the outer peripheral surface that is a circumference.

第1軟磁性材回転体1に対向してこれより90°位相差2信号(A相及びB相)を得るための第1の磁気抵抗効果素子として、第1のスピンバルブ型巨大磁気抵抗素子(以下、SV−GMR素子)群10が配置されている。また、第2軟磁性材回転体2に対向してこれより原点信号(Z相)を得るための第2の磁気抵抗効果素子として、第2のSV−GMR素子群20が配置されている。また、第1及び第2のSV−GMR素子群10,20にバイアス磁界を印加するために1個のバイアス磁石15を配置している。   A first spin-valve giant magnetoresistive element as a first magnetoresistive effect element facing the first soft magnetic material rotating body 1 and obtaining two 90 ° phase difference signals (A phase and B phase) therefrom A group 10 (hereinafter referred to as an SV-GMR element) is arranged. Further, a second SV-GMR element group 20 is arranged as a second magnetoresistive effect element facing the second soft magnetic material rotating body 2 and obtaining an origin signal (Z phase) therefrom. In addition, one bias magnet 15 is arranged to apply a bias magnetic field to the first and second SV-GMR element groups 10 and 20.

ここでは、図1(B)に示すように、第1のSV−GMR素子群10として2対のSV−GMR素子R1〜R4を用い、第2のSV−GMR素子群20として1対のSV−GMR素子R5,R6を用いている。なお、図1では解りやすくするためにSV−GMR1〜6をバイアス磁石15に比較して大きく図示したが、実際には微小寸法である。   Here, as shown in FIG. 1B, two pairs of SV-GMR elements R1 to R4 are used as the first SV-GMR element group 10, and one pair of SV-GMR element groups 20 is used. -GMR elements R5 and R6 are used. In FIG. 1, SV-GMR 1 to 6 are illustrated larger than the bias magnet 15 for easy understanding, but in actuality, the dimensions are small.

第1のSV−GMR素子群10としての2対のSV−GMR素子R1〜R4は、第1軟磁性材回転体1の外周面に対向し、そのうち一方のSV−GMR素子R1,R2の対は前記外周面に対向する同一平面(回転体1の移動方向に平行な面)上にあり、かつ回転体1の移動方向に略垂直方向でかつ回転体1の厚み方向(つまり凸部を有する面に平行な方向)に配列されている。SV−GMR素子R1,R2のピン層磁化方向は回転体1の移動方向に対して互いに略順方向と略逆方向を向くように配置されている。   Two pairs of SV-GMR elements R1 to R4 as the first SV-GMR element group 10 are opposed to the outer peripheral surface of the first soft magnetic material rotating body 1, and one of the SV-GMR elements R1 and R2 is a pair. Are on the same plane (a surface parallel to the moving direction of the rotating body 1) opposite to the outer peripheral surface, and are substantially perpendicular to the moving direction of the rotating body 1 and the thickness direction of the rotating body 1 (that is, having a convex portion). In a direction parallel to the surface). The pinned layer magnetization directions of the SV-GMR elements R <b> 1 and R <b> 2 are arranged so as to be substantially forward and substantially opposite to the moving direction of the rotating body 1.

他方のSV−GMR素子R3,R4の対も回転体1の外周面に対向する同一平面(回転体1の移動方向に平行な面)上にあり、かつ回転体1の移動方向に略垂直方向(回転体1の厚み方向に)に配列されていて、SV−GMR素子R1,R2の対から回転体1の移動方向に配列間隔Lだけ離れた位置となっている。但し、配列間隔Lは、回転体1の歯1aの配列ピッチをPとしたとき、
L=nP±P/4 (nは整数) …(1)
である。なお、SV−GMR素子R3,R4のピン層磁化方向も回転体1の移動方向に対して互いに略順方向と略逆方向を向くように配置されている。
The other pair of SV-GMR elements R3 and R4 is also on the same plane (a plane parallel to the moving direction of the rotating body 1) facing the outer peripheral surface of the rotating body 1 and is substantially perpendicular to the moving direction of the rotating body 1 They are arranged in the thickness direction of the rotating body 1, and are located at a distance of the arrangement interval L in the moving direction of the rotating body 1 from the pair of SV-GMR elements R 1 and R 2. However, the arrangement interval L is P when the arrangement pitch of the teeth 1a of the rotating body 1 is P.
L = nP ± P / 4 (n is an integer) (1)
It is. The pinned layer magnetization directions of the SV-GMR elements R3 and R4 are also arranged so as to be substantially forward and substantially opposite to the moving direction of the rotating body 1, respectively.

第2のSV−GMR素子群20として1対のSV−GMR素子R5,R6は、第2軟磁性材回転体2の外周面に対向する同一平面(回転体2の移動方向に平行な面)上にあり、かつ回転体2の移動方向に略垂直方向(回転体2の厚み方向に)に配列されている。SV−GMR素子R5,R6のピン層磁化方向は回転体2の移動方向に対して互いに略順方向と略逆方向を向くように配置されている。   The pair of SV-GMR elements R5 and R6 as the second SV-GMR element group 20 are on the same plane facing the outer peripheral surface of the second soft magnetic material rotating body 2 (surface parallel to the moving direction of the rotating body 2). They are arranged in a direction substantially perpendicular to the moving direction of the rotating body 2 (in the thickness direction of the rotating body 2). The pinned layer magnetization directions of the SV-GMR elements R5 and R6 are arranged so as to be substantially forward and substantially opposite to the moving direction of the rotating body 2, respectively.

バイアス磁界発生用のバイアス磁石15は、第1及び第2軟磁性材回転体1,2の移動方向に垂直な厚み方向において、第1のSV−GMR素子群10(2対のSV−GMR素子R1〜R4)と第2のSV−GMR素子群20(1対のSV−GMR素子R5,R6)との間に1個配置されている。そして、第1及び第2回転体1,2が存在しないときに、SV−GMR素子R1〜R6位置での磁界が当該SV−GMR素子R1〜R6の感磁面に平行な磁界成分を主に有し、かつ各SV−GMR素子R1〜R6のピン層磁化方向に略垂直な磁束を発生する磁極配置(例えば、磁極面15aが前記感磁面に略垂直)となっている。なお、バイアス磁石15がSV−GMR素子R1〜R6の感磁面と回転体1,2の外周面間のギャップにはみ出さないように、バイアス磁石15の側面15bは前記感磁面と同一平面上にあるか、やや後退した位置となっている。   A bias magnet 15 for generating a bias magnetic field includes a first SV-GMR element group 10 (two pairs of SV-GMR elements) in a thickness direction perpendicular to the moving direction of the first and second soft magnetic material rotating bodies 1 and 2. R1 to R4) and one SV-GMR element group 20 (a pair of SV-GMR elements R5 and R6). When the first and second rotating bodies 1 and 2 do not exist, the magnetic field at the position of the SV-GMR elements R1 to R6 mainly has a magnetic field component parallel to the magnetosensitive surface of the SV-GMR elements R1 to R6. And a magnetic pole arrangement that generates a magnetic flux substantially perpendicular to the pinned layer magnetization direction of each of the SV-GMR elements R1 to R6 (for example, the magnetic pole surface 15a is substantially perpendicular to the magnetosensitive surface). The side surface 15b of the bias magnet 15 is flush with the magnetosensitive surface so that the bias magnet 15 does not protrude into the gap between the magnetosensitive surfaces of the SV-GMR elements R1 to R6 and the outer peripheral surfaces of the rotating bodies 1 and 2. It is in the upper or slightly retracted position.

図2(A)のように、対をなすSV−GMR素子R1,R2の直列接続及び対をなすSV−GMR素子R3,R4の直列接続に対して供給電圧Vinが供給され、SV−GMR素子R1,R2の接続点とアース(GND)間の電圧が図2(B)のA相の検出出力として得られるとともに、SV−GMR素子R3,R4の接続点とアース間の電圧がB相(A相に対して位相が90°ずれている)の検出出力として得られるようになっている(動作原理については以下の図4及び図5で説明する。)。   As shown in FIG. 2A, the supply voltage Vin is supplied to the series connection of the paired SV-GMR elements R1 and R2 and the series connection of the paired SV-GMR elements R3 and R4. A voltage between the connection point of R1 and R2 and the ground (GND) is obtained as an A-phase detection output of FIG. 2B, and a voltage between the connection point of SV-GMR elements R3 and R4 and the ground is B phase ( (The operation principle will be described in FIG. 4 and FIG. 5 below.).

また、図3(A)のように、対をなすSV−GMR素子R5,R6の直列接続に対して供給電圧Vinが供給され、SV−GMR素子R5,R6の接続点とアース間の電圧が図3(B)のZ相の検出出力として得られるようになっている(動作原理については以下の図4及び図5で説明する。)。   Further, as shown in FIG. 3A, the supply voltage Vin is supplied to the series connection of the paired SV-GMR elements R5 and R6, and the voltage between the connection point of the SV-GMR elements R5 and R6 and the ground is It can be obtained as the Z-phase detection output in FIG. 3B (the operation principle will be described with reference to FIGS. 4 and 5 below).

SV−GMR素子は、磁化方向が一方向に固定されたピン層と、電流が主として流れる非磁性層と、磁化方向が外部磁界方向(外部磁束方向)に一致するフリー層とで構成されている。ピン層磁化方向と外部磁界のベクトル方向が一致するときは低抵抗値となり、SV−GMR素子面内において外部磁界のベクトル方向を回転させると、ピン層磁化方向となす角度により抵抗値が変化し、反対方向のとき高抵抗値となる。この特性が図4に示すSV−GMR素子の面内磁気特性であり、SV−GMR素子の感磁面に平行な外部磁界が存在する条件下で、外部磁界を感磁面に垂直な回転中心軸にて回転させ、ピン層磁化方向に対する回転角度と抵抗変化率(ΔR/R)との関係を示したものである。この場合、抵抗変化率(ΔR/R)は正弦波に近い波形でなだらかに変化し、飽和領域は生じない。   The SV-GMR element is composed of a pinned layer whose magnetization direction is fixed in one direction, a nonmagnetic layer through which a current mainly flows, and a free layer whose magnetization direction matches the external magnetic field direction (external magnetic flux direction). . When the pin layer magnetization direction matches the external magnetic field vector direction, the resistance value is low. When the external magnetic field vector direction is rotated in the SV-GMR element plane, the resistance value changes depending on the angle formed with the pin layer magnetization direction. In the opposite direction, the resistance value is high. This characteristic is the in-plane magnetic characteristic of the SV-GMR element shown in FIG. 4, and the rotation center perpendicular to the magnetosensitive surface is obtained under the condition that an external magnetic field parallel to the magnetosensitive surface of the SV-GMR element exists. It shows the relationship between the rotation angle with respect to the pinned layer magnetization direction and the rate of change in resistance (ΔR / R). In this case, the rate of change in resistance (ΔR / R) changes gently with a waveform close to a sine wave, and no saturation region occurs.

本実施の形態では、図4で示したSV−GMR素子の面内磁気特性を利用するものである。すなわち、図5(A)のようにSV−GMR素子の感磁面に平行なバイアス磁石によるバイアス磁界を印加する条件下で外部磁界を変化させ、同図(B)の角度90°近傍において直線的に変化する面内磁気特性を利用して、同図(C)の略正弦波の(飽和領域の無い)出力波形を得るようにしている。   In this embodiment, the in-plane magnetic characteristics of the SV-GMR element shown in FIG. 4 are used. That is, the external magnetic field is changed under the condition that a bias magnetic field is applied by a bias magnet parallel to the magnetic sensing surface of the SV-GMR element as shown in FIG. By utilizing the in-plane magnetic characteristics that change with time, an output waveform of a substantially sine wave (without a saturation region) in FIG.

従って、図1(A),(B)の本実施の形態の配置において、移動情報を得るために設けられた第1軟磁性材回転体1の歯1aがSV−GMR素子R1,R2の対の真っ正面に対向しているときは、各SV−GMR素子R1,R2の感磁面に平行な磁界成分の向きは歯1aの影響を受けず、ピン層磁化方向に略垂直である。それに対し、回転体1の歯1aがSV−GMR素子R1,R2の正面位置から左側にずれた位置では、前記感磁面に平行な磁界成分の向きは歯1aの影響を受けて左側に曲がる(磁極面15aから出た磁束は左側に曲がる)。また、回転体1の歯1aがSV−GMR素子R1,R2の正面位置から右側にずれた位置では、前記感磁面に平行な磁界成分の向きは凸部2の影響を受けて右側に曲がる(磁極面15aから出た磁束は右側に曲がる)。従って、図5(B)の実線矢印の動作範囲で回転体1の回転に伴いピン層磁化方向に対する外部磁界方向が周期的に変化し、図5(C)のような略正弦波の検出出力が得られる。   Therefore, in the arrangement of the present embodiment shown in FIGS. 1A and 1B, the teeth 1a of the first soft magnetic material rotating body 1 provided for obtaining the movement information are the pairs of the SV-GMR elements R1 and R2. The direction of the magnetic field component parallel to the magnetic sensitive surface of each SV-GMR element R1, R2 is not affected by the tooth 1a and is substantially perpendicular to the pinned layer magnetization direction. On the other hand, when the tooth 1a of the rotating body 1 is shifted to the left side from the front position of the SV-GMR elements R1 and R2, the direction of the magnetic field component parallel to the magnetosensitive surface is bent to the left side due to the influence of the tooth 1a. (The magnetic flux emitted from the magnetic pole surface 15a bends to the left). Further, when the tooth 1a of the rotating body 1 is shifted to the right side from the front position of the SV-GMR elements R1 and R2, the direction of the magnetic field component parallel to the magnetosensitive surface is bent to the right side due to the influence of the convex portion 2. (The magnetic flux emitted from the magnetic pole surface 15a bends to the right). Accordingly, the direction of the external magnetic field with respect to the pinned layer magnetization direction periodically changes with the rotation of the rotating body 1 within the operation range indicated by the solid line arrow in FIG. 5B, and a substantially sine wave detection output as shown in FIG. Is obtained.

このことは、SV−GMR素子R3,R4の対についても同様であり、移動情報を得るためのSV−GMR素子R1,R2の対とSV−GMR素子R3,R4の対との配列間隔Lが前記(1)式の関係となっていることで、図2(B)に示す互いに90°の位相差を有するA相及びB相の実質的に正弦波の電圧波形が得られる。   This also applies to the pair of SV-GMR elements R3 and R4, and the arrangement interval L between the pair of SV-GMR elements R1 and R2 and the pair of SV-GMR elements R3 and R4 for obtaining movement information is the same. Due to the relationship of the expression (1), a substantially sine wave voltage waveform of the A phase and the B phase having a phase difference of 90 ° shown in FIG. 2B is obtained.

また、原点情報を得るために設けられた第2軟磁性材回転体2の切欠部2aにSV−GMR素子R5,R6の対が対向していないときは、各SV−GMR素子R5,R6の感磁面に平行な磁界成分の向きは切欠部2aの影響を受けず、ピン層磁化方向に略垂直である。それに対し、回転体2の切欠部2aの縁がSV−GMR素子R5,R6の左側に近くなる位置では、前記感磁面に平行な磁界成分の向きは切欠部2aの縁の影響を受けて左側に曲がる(磁極面15aから出た磁束は左側に曲がる)。また、回転体2の切欠部2aの縁がSV−GMR素子R5,R6の右側に近くなる位置では、前記感磁面に平行な磁界成分の向きは凸部2の影響を受けて右側に曲がる(磁極面15aから出た磁束は右側に曲がる)。従って、図5(B)の実線矢印の動作範囲で回転体2の1回転に伴いピン層磁化方向に対する外部磁界方向が1回周期的に変化し、図3(B)のような略正弦波のZ相の検出出力が得られる。   Further, when the pair of SV-GMR elements R5 and R6 is not opposed to the notch 2a of the second soft magnetic material rotating body 2 provided for obtaining the origin information, each of the SV-GMR elements R5 and R6 The direction of the magnetic field component parallel to the magnetosensitive surface is not affected by the notch 2a and is substantially perpendicular to the pinned layer magnetization direction. On the other hand, at the position where the edge of the notch 2a of the rotating body 2 is close to the left side of the SV-GMR elements R5 and R6, the direction of the magnetic field component parallel to the magnetosensitive surface is affected by the edge of the notch 2a. Turns to the left (the magnetic flux from the magnetic pole surface 15a turns to the left). Further, at the position where the edge of the notch 2a of the rotating body 2 is close to the right side of the SV-GMR elements R5 and R6, the direction of the magnetic field component parallel to the magnetosensitive surface is bent to the right by the influence of the convex part 2. (The magnetic flux emitted from the magnetic pole surface 15a bends to the right). Accordingly, the external magnetic field direction with respect to the pinned layer magnetization direction changes periodically once with the rotation of the rotating body 2 within the operation range indicated by the solid line arrow in FIG. 5B, and a substantially sine wave as shown in FIG. The Z-phase detection output is obtained.

この実施の形態1によれば、次の通りの効果を得ることができる。   According to the first embodiment, the following effects can be obtained.

(1) 第1軟磁性材回転体1に対向して移動情報を得る第1のベクトル検知型磁気抵抗効果素子としてのSV−GMR素子群10(R1〜R4)と、第2軟磁性材回転体2に対向して原点情報を得る第2のベクトル検知型磁気抵抗効果素子としてのSV−GMR素子群20(R5,R6)とに1個のバイアス磁界発生用バイアス磁石15を共通に利用して、移動情報(A相及びB相)を検知するSV−GMR素子群10と原点情報(Z相)を検知するSV−GMR素子群20とから必要な検出出力信号を得ることができるため、小型化を図ることができ、コスト低減が可能である。 (1) SV-GMR element group 10 (R1 to R4) as a first vector detection type magnetoresistive effect element that obtains movement information facing the first soft magnetic material rotating body 1, and the second soft magnetic material rotation One bias magnetic field generating bias magnet 15 is commonly used for the SV-GMR element group 20 (R5, R6) as the second vector detection type magnetoresistive effect element that obtains origin information facing the body 2. Therefore, since a necessary detection output signal can be obtained from the SV-GMR element group 10 that detects movement information (A phase and B phase) and the SV-GMR element group 20 that detects origin information (Z phase), The size can be reduced, and the cost can be reduced.

(2) バイアス磁石15を、第1及び第2軟磁性材回転体1,2の移動方向に垂直な厚み方向において、第1のSV−GMR素子群10と第2のSV−GMR素子群20との間に1個配置することで、第1及び第2回転体1,2が存在しないときにSV−GMR素子それぞれの感磁面に平行な磁界成分を主に有し、かつ各SV−GMR素子のピン層磁化方向に略垂直な磁束を発生可能である。このため、バイアス磁石15の配置を合理化でき、いっそうの小型化に寄与できる。 (2) The bias magnet 15 is placed in the first SV-GMR element group 10 and the second SV-GMR element group 20 in the thickness direction perpendicular to the moving direction of the first and second soft magnetic material rotating bodies 1 and 2. Between each of the SV-GMR elements when the first and second rotating bodies 1 and 2 are not present, and each SV-GMR element mainly has a magnetic field component parallel to the magnetosensitive surface. A magnetic flux substantially perpendicular to the pinned layer magnetization direction of the GMR element can be generated. For this reason, arrangement | positioning of the bias magnet 15 can be rationalized and it can contribute to the further size reduction.

(3) ベクトル検知型磁気抵抗効果素子としてのSV−GMR素子を用いており、強度検知型の磁気抵抗効果素子を用いている従来装置に比較して、バイアス磁石の発生磁界強弱バラツキや、軟磁性材回転体と磁気抵抗効果素子間ギャップ(組付けバラツキ)には影響されないので検出出力信号の安定化を図ることができる。 (3) An SV-GMR element is used as a vector detection type magnetoresistive effect element. Compared with a conventional device using a strength detection type magnetoresistive effect element, the magnetic field intensity variation of the bias magnet and softness are reduced. Since it is not influenced by the gap (assembly variation) between the magnetic material rotating body and the magnetoresistive effect element, it is possible to stabilize the detection output signal.

(4) 図5(A)のようにSV−GMR素子の感磁面に平行なバイアス磁界を印加して素子面内磁気特性を利用し、かつ動作範囲を図5(B)のようにピン層磁化方向と磁界が略直交する点を中心として両者の角度が変化する部分を利用するため(SV−GMR素子面内磁気特性変化の直線部を活用するため)、A相及びB相の検出出力として飽和の無い正弦波にきわめて近い波形が得られる。 (4) Apply a bias magnetic field parallel to the magnetosensitive surface of the SV-GMR element as shown in FIG. 5A to utilize the in-plane magnetic characteristics, and the operating range is pinned as shown in FIG. 5B. Detection of the A phase and the B phase in order to use a portion where the angle of both changes around the point where the magnetization direction of the layer and the magnetic field are substantially orthogonal (to utilize the linear portion of the in-plane magnetic property change of the SV-GMR element). A waveform very close to a sine wave without saturation can be obtained as an output.

(5) SV−GMR素子R1,R2の対、SV−GMR素子R3,R4の対、SV−GMR素子R5,R6の対は、ピン層磁化方向が軟磁性材回転体1,2の移動方向に対し、互いに略順方向と略逆方向を向くようにしたので、各SV−GMR素子の対を直列接続して供給電圧Vinを供給し、SV−GMR素子同士の接続点から検出出力を取り出すことで、1個のSV−GMR素子を使用する場合の2倍の検出出力が得られる。 (5) The pair of SV-GMR elements R1 and R2, the pair of SV-GMR elements R3 and R4, and the pair of SV-GMR elements R5 and R6 are such that the pin layer magnetization direction is the moving direction of the soft magnetic material rotating bodies 1 and 2. On the other hand, since each of the SV-GMR elements is connected in series with each other, the supply voltage Vin is supplied and the detection output is taken out from the connection point between the SV-GMR elements. Thus, a detection output twice as large as that when one SV-GMR element is used can be obtained.

図6は本発明の実施の形態2であって、移動情報(A相、B相)を得る第1のベクトル検知型磁気抵抗効果素子としてのSV−GMR素子群10と、原点情報(Z相)を得る第2のベクトル検知型磁気抵抗効果素子としてのSV−GMR素子群20とバイアス磁界発生用バイアス磁石15とを基板30に装着した構成を示す。SV−GMR素子群10及びSV−GMR素子群20は基板30の一方の面に取り付けられ、バイアス磁界発生用バイアス磁石15は基板30の他方の面に取り付けられている。バイアス磁石15は、図1(A)のように第1及び第2軟磁性材回転体にSV−GMR素子群10及びSV−GMR素子群20を対向させたときに、第1及び第2軟磁性材回転体の移動方向に垂直な厚み方向において、第1のSV−GMR素子群10と第2のSV−GMR素子群20との間に位置している。   FIG. 6 is a second embodiment of the present invention, in which an SV-GMR element group 10 as a first vector detection type magnetoresistive effect element for obtaining movement information (A phase, B phase) and origin information (Z phase) 2) shows a configuration in which an SV-GMR element group 20 as a second vector detection type magnetoresistive effect element and a bias magnetic field generating bias magnet 15 are mounted on a substrate 30. The SV-GMR element group 10 and the SV-GMR element group 20 are attached to one surface of the substrate 30, and the bias magnetic field generating bias magnet 15 is attached to the other surface of the substrate 30. When the SV-GMR element group 10 and the SV-GMR element group 20 are opposed to the first and second soft magnetic material rotating bodies as shown in FIG. It is located between the first SV-GMR element group 10 and the second SV-GMR element group 20 in the thickness direction perpendicular to the moving direction of the magnetic material rotating body.

この実施の形態2において、実際には各SV−GMR素子は微小寸法であるから、バイアス磁石15の磁極面15aから出た磁束は各SV−GMR素子の感磁面に略平行に通過するように設定できる(前記感磁面に平行な磁界成分を主に有するように設定できる)。   In the second embodiment, since each SV-GMR element is actually a small size, the magnetic flux emitted from the magnetic pole surface 15a of the bias magnet 15 passes substantially parallel to the magnetic sensitive surface of each SV-GMR element. (It can be set so as to mainly have a magnetic field component parallel to the magnetosensitive surface).

この実施の形態2の場合、基板30を使用することで、その他の増幅回路等の部品を一緒に搭載することができる。なお、この実施の形態2のその他の構成及び動作は前述の実施の形態1と同様である。   In the case of the second embodiment, by using the substrate 30, other components such as an amplifier circuit can be mounted together. Other configurations and operations of the second embodiment are the same as those of the first embodiment.

図7は本発明の実施の形態3であって、移動情報(A相、B相)を得るSV−GMR素子群10と、原点情報(Z相)を得るSV−GMR素子群20とバイアス磁界発生用バイアス磁石15とを基板30に装着した構成であるが、バイアス磁石15の長さを変更した構成を示す。この場合、SV−GMR素子群10及びSV−GMR素子群20は基板30の一方の面に取り付けられ、バイアス磁石15は基板30の他方の面に取り付けられている。そして、バイアス磁石15は、SV−GMR素子群10及びSV−GMR素子群20の両方の背面に重なるように設けられる。   FIG. 7 shows a third embodiment of the present invention, in which an SV-GMR element group 10 for obtaining movement information (A phase and B phase), an SV-GMR element group 20 for obtaining origin information (Z phase), and a bias magnetic field. A configuration in which the generating bias magnet 15 is mounted on the substrate 30 is shown in which the length of the bias magnet 15 is changed. In this case, the SV-GMR element group 10 and the SV-GMR element group 20 are attached to one surface of the substrate 30, and the bias magnet 15 is attached to the other surface of the substrate 30. The bias magnet 15 is provided so as to overlap the back surfaces of both the SV-GMR element group 10 and the SV-GMR element group 20.

この実施の形態3ではバイアス磁石15の磁極間の側面に沿って磁束が略平行に通過することを利用して、各SV−GMR素子の感磁面に平行な磁界成分が主に印加されるように設定可能である。また、基板30を使用することで、その他の増幅回路等の部品を一緒に搭載することができる。   In the third embodiment, a magnetic field component parallel to the magnetosensitive surface of each SV-GMR element is mainly applied by utilizing the fact that the magnetic flux passes substantially parallel along the side surface between the magnetic poles of the bias magnet 15. It can be set as follows. Further, by using the substrate 30, other components such as an amplifier circuit can be mounted together.

なお、この実施の形態3のその他の構成及び動作は前述の実施の形態1と同様である。   Other configurations and operations of the third embodiment are the same as those of the first embodiment.

図8は本発明の実施の形態4であって、移動情報(A相、B相)を得るSV−GMR素子群10と、原点情報(Z相)を得るSV−GMR素子群20の間にバイアス磁界発生用バイアス磁石15を配置する代わりに、SV−GMR素子群10及びSV−GMR素子群20の配列方向の延長線位置にバイアス磁界発生用バイアス磁石15を配置している。   FIG. 8 is a fourth embodiment of the present invention, and is provided between the SV-GMR element group 10 that obtains movement information (A phase and B phase) and the SV-GMR element group 20 that obtains origin information (Z phase). Instead of arranging the bias magnetic field generating bias magnet 15, the bias magnetic field generating bias magnet 15 is arranged at an extended line position in the arrangement direction of the SV-GMR element group 10 and the SV-GMR element group 20.

この実施の形態4ではバイアス磁石15の磁極面15aから垂直に出た磁束がほぼ直線的にSV−GMR素子群10及びSV−GMR素子群20の配列方向に沿って通過することにより、各SV−GMR素子の感磁面に平行な磁界成分を主に有するように設定できる。   In the fourth embodiment, a magnetic flux perpendicularly emitted from the magnetic pole surface 15a of the bias magnet 15 passes substantially linearly along the arrangement direction of the SV-GMR element group 10 and the SV-GMR element group 20, whereby each SV. -It can be set so as to mainly have a magnetic field component parallel to the magnetosensitive surface of the GMR element.

この実施の形態4は、SV−GMR素子群10及びSV−GMR素子群20が対向配置される第1及び第2軟磁性材回転体の厚みが薄く、SV−GMR素子群10とSV−GMR素子群20間にバイアス磁石15を配置するのが困難な場合にとくに適した構造である。   In the fourth embodiment, the first and second soft magnetic material rotating bodies on which the SV-GMR element group 10 and the SV-GMR element group 20 are opposed to each other are thin, and the SV-GMR element group 10 and the SV-GMR This structure is particularly suitable when it is difficult to dispose the bias magnet 15 between the element groups 20.

なお、この実施の形態4のその他の構成及び動作は前述の実施の形態1と同様である。   Other configurations and operations of the fourth embodiment are the same as those of the first embodiment.

図9は本発明の実施の形態5であって、図8と実質的に同様の構成を基板を用いて実現したものである。この場合、移動情報(A相、B相)を得るSV−GMR素子群10と、原点情報(Z相)を得るSV−GMR素子群20は基板30の一方の面に取り付けられ、バイアス磁石15は基板30の他方の面に取り付けられている。そして、バイアス磁石15は、SV−GMR素子群10及びSV−GMR素子群20の配列方向の略延長線位置に配置される。   FIG. 9 shows a fifth embodiment of the present invention in which a configuration substantially similar to that of FIG. 8 is realized using a substrate. In this case, the SV-GMR element group 10 that obtains movement information (A phase, B phase) and the SV-GMR element group 20 that obtains origin information (Z phase) are attached to one surface of the substrate 30, and the bias magnet 15 Is attached to the other surface of the substrate 30. The bias magnet 15 is disposed at a substantially extended line position in the arrangement direction of the SV-GMR element group 10 and the SV-GMR element group 20.

この実施の形態5において、実際には各SV−GMR素子は微小寸法であるから、バイアス磁石15の磁極面15aから垂直に出た磁束がほぼ直線的にSV−GMR素子群10及びSV−GMR素子群20の配列方向に沿って通過することにより、各SV−GMR素子の感磁面に平行な磁界成分を主に有するように設定できる。   In the fifth embodiment, since each SV-GMR element is actually a small size, the magnetic fluxes perpendicularly emitted from the magnetic pole surface 15a of the bias magnet 15 are almost linearly aligned with the SV-GMR element group 10 and the SV-GMR. By passing along the arrangement direction of the element group 20, it can be set so as to mainly have a magnetic field component parallel to the magnetic sensitive surface of each SV-GMR element.

この実施の形態5は、SV−GMR素子群10及びSV−GMR素子群20が対向配置される第1及び第2軟磁性材回転体の厚みが薄く、SV−GMR素子群10とSV−GMR素子群20間にバイアス磁石15を配置するのが困難な場合にとくに適した構造である。また、基板30を使用することで、その他の増幅回路等の部品を一緒に搭載することができる。   In the fifth embodiment, the first and second soft magnetic material rotating bodies on which the SV-GMR element group 10 and the SV-GMR element group 20 are opposed to each other are thin, and the SV-GMR element group 10 and the SV-GMR This structure is particularly suitable when it is difficult to dispose the bias magnet 15 between the element groups 20. Further, by using the substrate 30, other components such as an amplifier circuit can be mounted together.

なお、この実施の形態5のその他の構成及び動作は前述の実施の形態1と同様である。   Other configurations and operations of the fifth embodiment are the same as those of the first embodiment.

図10は本発明の実施の形態6であって、移動情報(A相、B相)を得るSV−GMR素子群10と、原点情報(Z相)を得るSV−GMR素子群20とバイアス磁界発生用バイアス磁石15とを基板30に装着した構成であるが、バイアス磁石15の長さ及び配置を変更した構成を示す。この場合、SV−GMR素子群10及びSV−GMR素子群20は基板30の一方の面に取り付けられ、バイアス磁石15は基板30の他方の面に取り付けられている。そして、バイアス磁石15は、一方のSV−GMR素子群10の背面に重なるように設けられ、かつバイアス磁石15の一方の磁極面がSV−GMR素子群20に近接した配置となっている。   FIG. 10 shows a sixth embodiment of the present invention, in which an SV-GMR element group 10 that obtains movement information (A phase and B phase), an SV-GMR element group 20 that obtains origin information (Z phase), and a bias magnetic field. A configuration in which the generating bias magnet 15 is mounted on the substrate 30 is shown in which the length and arrangement of the bias magnet 15 are changed. In this case, the SV-GMR element group 10 and the SV-GMR element group 20 are attached to one surface of the substrate 30, and the bias magnet 15 is attached to the other surface of the substrate 30. The bias magnet 15 is provided so as to overlap the back surface of one SV-GMR element group 10, and one magnetic pole surface of the bias magnet 15 is disposed close to the SV-GMR element group 20.

この実施の形態6のように、バイアス磁石15をSV−GMR素子の一方の背面に重ねた配置とすることにより、バイアス磁石15の磁極間の側面に沿って磁束が略平行に通過することを利用して、一方のSV−GMR素子群10の感磁面に平行な磁界成分が主に印加されるように設定可能であるとともに、磁極面近傍では磁束が磁極面に略垂直に通過することを利用して他方のSV−GMR素子群20の感磁面に平行な磁界成分が主に印加されるように設定可能である。また、基板30を使用することで、その他の増幅回路等の部品を一緒に搭載することができる。   As in the sixth embodiment, by arranging the bias magnet 15 so as to overlap one of the back surfaces of the SV-GMR element, the magnetic flux passes substantially parallel along the side surface between the magnetic poles of the bias magnet 15. It can be set so that a magnetic field component parallel to the magnetosensitive surface of one SV-GMR element group 10 is mainly applied, and the magnetic flux passes substantially perpendicular to the magnetic pole surface in the vicinity of the magnetic pole surface. Can be set so that a magnetic field component parallel to the magnetosensitive surface of the other SV-GMR element group 20 is mainly applied. Further, by using the substrate 30, other components such as an amplifier circuit can be mounted together.

なお、この実施の形態6のその他の構成及び動作は前述の実施の形態1と同様である。   Other configurations and operations of the sixth embodiment are the same as those of the first embodiment.

図11は本発明の実施の形態7であって、移動情報(A相、B相)を得るSV−GMR素子群10と、原点情報(Z相)を得るSV−GMR素子群20の間にバイアス磁界発生用バイアス磁石15を配置するとともに、その両端の磁極面に軟磁性体16を設けている。   FIG. 11 shows a seventh embodiment of the present invention, in which an SV-GMR element group 10 for obtaining movement information (A phase, B phase) and an SV-GMR element group 20 for obtaining origin information (Z phase) are shown. A bias magnet 15 for generating a bias magnetic field is disposed, and soft magnetic bodies 16 are provided on the magnetic pole surfaces at both ends thereof.

この実施の形態7では、軟磁性体16を付加することで、バイアス磁界を均一化、安定化させることができる。また、バイアス磁石15が小型であっても、その両端の磁極面に軟磁性体16を設けることで、SV−GMR素子群10,20との距離を少なくでき、各SV−GMR素子の感磁面に平行な磁界成分を主に有するように設定できる。   In the seventh embodiment, by adding the soft magnetic body 16, the bias magnetic field can be made uniform and stabilized. Further, even if the bias magnet 15 is small, by providing the soft magnetic bodies 16 on the magnetic pole surfaces at both ends, the distance from the SV-GMR element groups 10 and 20 can be reduced, and the magnetic sensitivity of each SV-GMR element can be reduced. It can be set so as to mainly have a magnetic field component parallel to the surface.

なお、この実施の形態7のその他の構成及び動作は前述の実施の形態1と同様である。   Other configurations and operations of the seventh embodiment are the same as those of the first embodiment.

上記各実施の形態では、1個のバイアス磁石15を用いたが、バイアス磁石15を複数個に分割した永久磁石の組み合わせ構造(つまり複数個のバイアス磁石の組み合わせ構造)としてもよい。   In each of the above embodiments, one bias magnet 15 is used. However, a combination structure of permanent magnets (that is, a combination structure of a plurality of bias magnets) obtained by dividing the bias magnet 15 into a plurality of parts may be used.

また、上記各実施の形態では、一定間隔ピッチで所定数の歯を設けた第1軟磁性材回転体1と、これと一体となって回転する一部に切欠部を設けた第2軟磁性材回転体2とを用いたが、両方の回転体が予め一体品として形成されたものであってもよい。すなわち、一定間隔ピッチで所定数の歯を設けた第1部分及び一部に切欠部を設けた第2部分をもつ軟磁性回転体を用いることができる。   Further, in each of the above embodiments, the first soft magnetic material rotating body 1 provided with a predetermined number of teeth at a constant interval pitch, and the second soft magnetic material provided with a notch in a part rotating integrally therewith. Although the material rotating body 2 is used, both rotating bodies may be formed in advance as an integrated product. That is, it is possible to use a soft magnetic rotating body having a first portion provided with a predetermined number of teeth at a constant interval pitch and a second portion provided with a notch portion in part.

さらに、前記第1及び第2軟磁性材回転体の代わりに、一定の間隔で凸部又は凹部を有する第1部分又は部材及び少なくとも1つの凸部又は凹部を有する第2部分又は部材を備える半円周等の曲面を有する軟磁性材回転体、あるいは平面を有する軟磁性材直線移動体を用いることも可能である。   Furthermore, instead of the first and second soft magnetic material rotating bodies, a half provided with a first portion or member having convex portions or concave portions at a constant interval and a second portion or member having at least one convex portion or concave portion. It is also possible to use a soft magnetic material rotating body having a curved surface such as a circumference or a soft magnetic material linear moving body having a flat surface.

また、移動情報(A相、B相)を得るSV−GMR素子、原点情報(Z相)を得るSV−GMR素子及びバイアス磁石は固定配置に限定されず、前記軟磁性材に対して相対移動する構成であれば本発明が適用できることは明らかである。   Further, the SV-GMR element for obtaining movement information (A phase, B phase), the SV-GMR element for obtaining origin information (Z phase), and the bias magnet are not limited to the fixed arrangement, and are relatively moved with respect to the soft magnetic material. It is apparent that the present invention can be applied to any configuration that does this.

以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。   Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the claims.

本発明に係る移動体位置検出装置の実施の形態1であって、(A)は軟磁性材回転体、SV−GMR素子及びバイアス磁石の配置を示す全体構成の斜視図、(B)は移動情報(A相、B相)を得るSV−GMR素子、原点情報(Z相)を得るSV−GMR素子及びバイアス磁石の配置を示す要部斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a first embodiment of a moving body position detecting apparatus according to the present invention, where (A) is a perspective view of the overall configuration showing the arrangement of a soft magnetic material rotating body, an SV-GMR element, and a bias magnet; It is a principal part perspective view which shows arrangement | positioning of the SV-GMR element which acquires information (A phase, B phase), the SV-GMR element which acquires origin information (Z phase), and a bias magnet. 実施の形態1において、(A)は互いに位相が90°ずれたA相及びB相の出力信号を取り出すための回路図、(B)はA相及びB相の出力信号の波形図である。In the first embodiment, (A) is a circuit diagram for extracting output signals of A phase and B phase whose phases are shifted by 90 °, and (B) is a waveform diagram of output signals of A phase and B phase. 実施の形態1において、(A)はZ相の出力信号を取り出すための回路図、(B)はZ相の出力信号の波形図である。図である。In Embodiment 1, (A) is a circuit diagram for extracting a Z-phase output signal, and (B) is a waveform diagram of the Z-phase output signal. FIG. 本発明で用いるSV−GMR素子の面内磁気特性を示す説明図である。It is explanatory drawing which shows the in-plane magnetic characteristic of the SV-GMR element used by this invention. 本発明におけるSV−GMR素子の動作説明であり、(A)はバイアス磁界とSV−GMR素子の感磁面及びピン層磁化方向との関係を示す斜視図、(B)はSV−GMR素子の素子面内磁気特性及び動作範囲を示す説明図、(C)は出力波形例を示す説明図である。FIG. 4 is an explanation of the operation of the SV-GMR element according to the present invention, where (A) is a perspective view showing the relationship between the bias magnetic field and the magnetosensitive surface of the SV-GMR element and the pinned layer magnetization direction, and (B) is the SV-GMR element. FIG. 5C is an explanatory diagram showing an in-plane magnetic characteristic and an operating range, and FIG. 本発明の実施の形態2の要部斜視図である。It is a principal part perspective view of Embodiment 2 of this invention. 本発明の実施の形態3の要部斜視図である。It is a principal part perspective view of Embodiment 3 of this invention. 本発明の実施の形態4の要部斜視図である。It is a principal part perspective view of Embodiment 4 of this invention. 本発明の実施の形態5の要部斜視図である。It is a principal part perspective view of Embodiment 5 of this invention. 本発明の実施の形態6の要部斜視図である。It is a principal part perspective view of Embodiment 6 of this invention. 本発明の実施の形態7の要部斜視図である。It is a principal part perspective view of Embodiment 7 of this invention. 従来の移動体位置検出装置の斜視図である。It is a perspective view of the conventional mobile body position detection apparatus.

符号の説明Explanation of symbols

1 第1軟磁性材回転体
1a 歯
2 第2軟磁性材回転体
2a 切欠部
3,4 磁気抵抗効果素子
5,6,15 バイアス磁石
10,20 SV−GMR素子群
15a 磁極面
15b 側面
30 基板
R1〜R6 SV−GMR素子
DESCRIPTION OF SYMBOLS 1 1st soft-magnetic material rotating body 1a tooth | gear 2 2nd soft-magnetic material rotating body 2a Notch part 3, 4 Magnetoresistive effect element 5, 6, 15 Bias magnet 10,20 SV-GMR element group 15a Magnetic pole surface 15b Side surface 30 Substrate R1-R6 SV-GMR element

Claims (6)

一定の間隔で凸部又は凹部を有する第1の磁性材と、該第1の磁性材に対して一定位置関係を保つ少なくとも1つの凸部又は凹部を有する第2の磁性材と、前記第1の磁性材に対向して移動情報を得る第1のベクトル検知型磁気抵抗効果素子と、前記第2の磁性材に対向して原点情報を得る第2のベクトル検知型磁気抵抗効果素子と、磁界を発生するバイアス磁石とを有し、前記第1及び第2の磁性材と前記第1及び第2のベクトル検知型磁気抵抗効果素子との相対位置を検出する移動体位置検出装置であって、
前記バイアス磁石は、前記第1及び第2の磁性材が存在しないときに前記第1及び第2のベクトル検知型磁気抵抗効果素子それぞれの感磁面に平行な磁界成分を主に有し、かつ各ベクトル検知型磁気抵抗効果素子のピン層磁化方向に略垂直に磁束が発生するように配置されたことを特徴とする移動体位置検出装置。
A first magnetic material having convex portions or concave portions at regular intervals; a second magnetic material having at least one convex portion or concave portion that maintains a fixed positional relationship with respect to the first magnetic material; and A first vector detection type magnetoresistive effect element that obtains movement information opposite to the magnetic material, a second vector detection type magnetoresistive effect element that obtains origin information opposite to the second magnetic material, and a magnetic field. A movable body position detecting device for detecting a relative position between the first and second magnetic materials and the first and second vector sensing type magnetoresistive effect elements,
The bias magnet mainly has a magnetic field component parallel to the magnetic sensitive surface of each of the first and second vector sensing magnetoresistive elements when the first and second magnetic materials are not present, and A moving body position detecting apparatus, wherein the vector detecting type magnetoresistive effect element is arranged so that a magnetic flux is generated substantially perpendicularly to a pinned layer magnetization direction.
一定の間隔で凸部又は凹部を有する第1部分及び少なくとも1つの凸部又は凹部を有する第2部分をもつ磁性材と、前記第1部分に対向して移動情報を得る第1のベクトル検知型磁気抵抗効果素子と、前記第2部分に対向して原点情報を得る第2のベクトル検知型磁気抵抗効果素子と、磁界を発生するバイアス磁石とを有し、前記第1部分及び第2部分をもつ磁性材と前記第1及び第2のベクトル検知型磁気抵抗効果素子との相対位置を検出する移動体位置検出装置であって、
前記バイアス磁石は、前記第1部分及び第2部分をもつ磁性材が存在しないときに前記第1及び第2のベクトル検知型磁気抵抗効果素子それぞれの感磁面に平行な磁界成分を主に有し、かつ各ベクトル検知型磁気抵抗効果素子のピン層磁化方向に略垂直に磁束が発生するように配置されたことを特徴とする移動体位置検出装置。
A magnetic material having a first part having a convex part or a concave part and a second part having at least one convex part or a concave part at a constant interval, and a first vector detection type for obtaining movement information facing the first part A magnetoresistive effect element; a second vector detection type magnetoresistive effect element that obtains origin information opposite to the second part; and a bias magnet that generates a magnetic field, wherein the first part and the second part are A moving body position detecting device for detecting a relative position between a magnetic material having the first magnetic detecting element and the second and second vector detecting magnetoresistive elements,
The bias magnet mainly has a magnetic field component parallel to the magnetic sensitive surface of each of the first and second vector detection type magnetoresistive effect elements when there is no magnetic material having the first part and the second part. And a moving body position detecting device, wherein the vector detecting type magnetoresistive effect element is arranged so as to generate a magnetic flux substantially perpendicularly to the pinned layer magnetization direction.
前記バイアス磁石は、前記磁性材との相対移動方向に垂直かつ前記磁性材の凸部又は凹部を有する面に平行な方向において、前記第1のベクトル検知型磁気抵抗効果素子と前記第2のベクトル検知型磁気抵抗効果素子との間に少なくとも1個配置されている請求項1又は2記載の移動体位置検出装置。   The bias magnet includes the first vector detection type magnetoresistive element and the second vector in a direction perpendicular to a direction of relative movement with the magnetic material and parallel to a surface having a convex portion or a concave portion of the magnetic material. The moving body position detecting device according to claim 1 or 2, wherein at least one moving body position detecting device is arranged between the detecting type magnetoresistive effect elements. 前記バイアス磁石に軟磁性体が付加されている請求項1,2又は3記載の移動体位置検出装置。   4. The moving body position detecting device according to claim 1, wherein a soft magnetic material is added to the bias magnet. 前記第1のベクトル検知型磁気抵抗効果素子による前記移動情報の検出出力波形が略正弦波である請求項1,2,3又は4記載の移動体位置検出装置。   5. The moving body position detecting device according to claim 1, wherein a detection output waveform of the movement information by the first vector detection type magnetoresistive effect element is a substantially sine wave. 前記ベクトル検知型磁気抵抗効果素子は、スピンバルブ型巨大磁気抵抗効果素子である請求項1,2,3,4又は5記載の移動体位置検出装置。   6. The moving body position detecting device according to claim 1, wherein the vector detection type magnetoresistive effect element is a spin valve type giant magnetoresistive effect element.
JP2004271776A 2004-09-17 2004-09-17 Moving body position detection device Expired - Lifetime JP4506960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004271776A JP4506960B2 (en) 2004-09-17 2004-09-17 Moving body position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004271776A JP4506960B2 (en) 2004-09-17 2004-09-17 Moving body position detection device

Publications (2)

Publication Number Publication Date
JP2006084416A true JP2006084416A (en) 2006-03-30
JP4506960B2 JP4506960B2 (en) 2010-07-21

Family

ID=36163031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004271776A Expired - Lifetime JP4506960B2 (en) 2004-09-17 2004-09-17 Moving body position detection device

Country Status (1)

Country Link
JP (1) JP4506960B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086479A (en) * 2009-10-15 2011-04-28 Tokai Rika Co Ltd Proximity sensor
JP2016186476A (en) * 2015-03-27 2016-10-27 Tdk株式会社 Magnetic sensor and magnetic encoder
JP2020030103A (en) * 2018-08-22 2020-02-27 Tdk株式会社 Rotation detection system
US11099033B2 (en) 2018-08-22 2021-08-24 Tdk Corporation Position detection system
JP2021143833A (en) * 2020-03-10 2021-09-24 三菱電機株式会社 Magnetic detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10260061A (en) * 1997-03-18 1998-09-29 Samutaku Kk Magnetic encoder
JP2005098942A (en) * 2003-09-26 2005-04-14 Tdk Corp Mobile unit detection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10260061A (en) * 1997-03-18 1998-09-29 Samutaku Kk Magnetic encoder
JP2005098942A (en) * 2003-09-26 2005-04-14 Tdk Corp Mobile unit detection device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086479A (en) * 2009-10-15 2011-04-28 Tokai Rika Co Ltd Proximity sensor
JP2016186476A (en) * 2015-03-27 2016-10-27 Tdk株式会社 Magnetic sensor and magnetic encoder
JP2020030103A (en) * 2018-08-22 2020-02-27 Tdk株式会社 Rotation detection system
US11099033B2 (en) 2018-08-22 2021-08-24 Tdk Corporation Position detection system
JP2021143833A (en) * 2020-03-10 2021-09-24 三菱電機株式会社 Magnetic detector
US11598826B2 (en) 2020-03-10 2023-03-07 Mitsubishi Electric Cornoration Magnetic detection device
DE102020213092B4 (en) 2020-03-10 2024-03-07 Mitsubishi Electric Corporation MAGNETIC DETECTION DEVICE

Also Published As

Publication number Publication date
JP4506960B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP6463789B2 (en) Magnetic angular position sensor
US9103657B2 (en) Magnetic field sensor system with a biasing magnet producing a spatially symmetric magnetic field within a plane being defined by magnetoresistive sensor elements
JP4324813B2 (en) Rotation angle detector and rotating machine
US6107793A (en) Magnetic sensing device unaffected by positioning error of magnetic field sensing elements
JP5271448B2 (en) Magnetic position detector
JP6049570B2 (en) Rotation detector
US6661225B2 (en) Revolution detecting device
US20090284254A1 (en) Magnetic sensor
WO2010098190A1 (en) Rotation detection device
JP2013174605A (en) Brushless motor
JP4582298B2 (en) Magnetic position detector
JP2006208025A (en) Magnetic sensor
JP2007285741A (en) Rotation detection device
JP2006208252A (en) Angle detector
JP5206962B2 (en) Rotation angle sensor
KR101825313B1 (en) Magnetic detection apparatus
JP2010527454A (en) Device for non-contact detection of linear or rotational movement
JP2008008699A (en) Rotation detecting apparatus
JP4506960B2 (en) Moving body position detection device
JP2009133751A (en) Moving body detection device
JP4484033B2 (en) Moving body detection device
JP4424481B2 (en) Moving body detection device
JP4737372B2 (en) Rotation angle detector
JP2004109113A (en) Magnetism detection device
JP2015133377A (en) Magnetic detection element and rotation detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4506960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4