JP2006083320A - Phenol resin molding material - Google Patents

Phenol resin molding material Download PDF

Info

Publication number
JP2006083320A
JP2006083320A JP2004271035A JP2004271035A JP2006083320A JP 2006083320 A JP2006083320 A JP 2006083320A JP 2004271035 A JP2004271035 A JP 2004271035A JP 2004271035 A JP2004271035 A JP 2004271035A JP 2006083320 A JP2006083320 A JP 2006083320A
Authority
JP
Japan
Prior art keywords
molding material
phenol resin
magnesium oxide
weight
resin molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004271035A
Other languages
Japanese (ja)
Inventor
Hidemi Tanizawa
秀実 谷澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2004271035A priority Critical patent/JP2006083320A/en
Publication of JP2006083320A publication Critical patent/JP2006083320A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phenol resin molding material having good mechanical strength and excellent in moldability and curing characteristics without impairing properties which a phenol resin has. <P>SOLUTION: The phenol resin molding material comprises a novolac phenol resin and magnesium oxide having 5-30 nm average particle diameter of primary particles. In the phenol resin molding material, the average particle diameter of secondary particles of the magnesium oxide is preferably 50-200 nm and the content of the magnesium oxide is 0.3-5.0 wt.% based on the novolac phenol resin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フェノール樹脂成形材料に関するものである。   The present invention relates to a phenol resin molding material.

フェノール樹脂は、優れた耐熱性、機械的強度及び寸法特性を有することから自動車や産業機械或いは家電製品などに使用されている。しかしながら、成形時に硬化反応させ賦形するため成形サイクルが長くなり、生産性において熱可塑性のエンプラを用いた場合に比べ劣るため、成形品のコストが高くなってしまう。これを補うため、従来は併用する硬化助剤の量を増やしたり、オルソ結合比の高いノボラック樹脂を用いることで速硬化性を付与し、ハイサイクル化を図ることが成されてきた。
しかしながら、これらの手法は、硬化速度が極度に速くなるため生産性が悪化したり、成形条件幅が非常に狭くなり成形途中で硬化してしまうなどの問題があった。また、硬化助剤の粒度は従来0.3μmから100μm程度のものが使用されているが、この粒度の硬化助剤が多くなると、硬化助剤が成形品に発生するクラックの起点となる確率が高くなり、機械的強度の低下やばらつきが大きくなるという不具合も生じやすく、このため、こうした不具合を解消し且つ硬化特性の向上が可能な技術が必要となっていた。
硬化助剤としては、レゾール型フェノール樹脂に酸化マグネシウムとアミン系硬化剤を併用することが公開されている(例えば、特許文献1参照)が、上記問題点の解決を目的としてはいない。
Phenolic resins have excellent heat resistance, mechanical strength, and dimensional characteristics, and are therefore used in automobiles, industrial machines, home appliances, and the like. However, since the molding reaction is carried out at the time of molding, the molding cycle becomes longer, and the productivity is inferior to the case where a thermoplastic engineering plastic is used, resulting in an increase in the cost of the molded product. In order to compensate for this, conventionally, it has been possible to increase the amount of curing aid used in combination or to impart high curability by using a novolak resin having a high ortho bond ratio to achieve high cycle.
However, these methods have problems that the curing rate becomes extremely fast, the productivity is deteriorated, and the molding condition width becomes very narrow and the molding is cured during the molding. In addition, the particle size of the curing aid is conventionally about 0.3 μm to 100 μm, but when the curing aid of this particle size increases, the probability that the curing aid becomes the starting point of cracks generated in the molded product is increased. There is also a problem that the mechanical strength is increased and the mechanical strength is lowered and the variation is increased. Therefore, a technique capable of solving such a problem and improving the curing characteristics is required.
As a curing aid, it has been disclosed that magnesium oxide and an amine-based curing agent are used in combination with a resol-type phenol resin (see, for example, Patent Document 1), but it is not intended to solve the above problems.

特開2003−261742号公報JP 2003-261742 A

本発明は、フェノール樹脂が有する特性を損なうことなく、機械的強度が良好であり、且つ成形性、硬化特性に優れたフェノール樹脂成形材料を提供するものである。   The present invention provides a phenol resin molding material having good mechanical strength and excellent moldability and curing characteristics without impairing the characteristics of the phenol resin.

本発明のフェノール樹脂成形材料は、以下の本発明(1)〜(6)により達成される。
(1)ノボラック型フェノール樹脂と、一次粒子の平均粒径が5〜30nmの酸化マグネシウムとを含有することを特徴とするフェノール樹脂成形材料。
(2)前記酸化マグネシウムの二次粒子の平均粒径は50〜200nmである(1)に記載のフェノール樹脂成形材料。
(3)前記酸化マグネシウムの含有量は、前記ノボラック型フェノール樹脂に対して、0.3〜5.0重量%である(1)又は(2)に記載のフェノール樹脂成形材料。
(4)前記ノボラック型フェノール樹脂の含有量は、成形材料全体に対して、20〜50重量%である(1)〜(3)のいずれかに記載のフェノール樹脂成形材料。
(5)更に、無機充填材を含むものである(1)〜(4)のいずれかに記載のフェノール樹脂成形材料。
(6)前記無機充填材の含有量は、成形材料全体に対して、45〜75重量%である(5)に記載のフェノール樹脂成形材料。
The phenol resin molding material of the present invention is achieved by the following present inventions (1) to (6).
(1) A phenolic resin molding material comprising a novolac-type phenolic resin and magnesium oxide having an average primary particle size of 5 to 30 nm.
(2) The phenol resin molding material according to (1), wherein the secondary particles of the magnesium oxide have an average particle size of 50 to 200 nm.
(3) The phenol resin molding material according to (1) or (2), wherein a content of the magnesium oxide is 0.3 to 5.0% by weight with respect to the novolac type phenol resin.
(4) The phenolic resin molding material according to any one of (1) to (3), wherein the content of the novolac type phenolic resin is 20 to 50% by weight with respect to the entire molding material.
(5) The phenol resin molding material according to any one of (1) to (4), further comprising an inorganic filler.
(6) Content of the said inorganic filler is a phenol resin molding material as described in (5) which is 45 to 75 weight% with respect to the whole molding material.

本発明は、機械的強度が良好で且つ硬化特性に優れたフェノール樹脂成形材料であり、自動車用、汎用機械用、家庭電化製品用及びその周辺機器用等に適用できる。   The present invention is a phenolic resin molding material having good mechanical strength and excellent curing characteristics, and can be applied to automobiles, general-purpose machines, home appliances, peripheral devices, and the like.

以下、本発明について詳細を説明する。
本発明のフェノール樹脂成形材料(以下、「成形材料」ということがある)は、ノボラック型フェノール樹脂と、一次粒子の平均粒径が5〜30nmの酸化マグネシウムとを含有することを特徴とする。
Hereinafter, the present invention will be described in detail.
The phenol resin molding material of the present invention (hereinafter sometimes referred to as “molding material”) is characterized by containing a novolak type phenol resin and magnesium oxide having an average primary particle size of 5 to 30 nm.

本発明で用いるノボラック型フェノール樹脂は、特に限定されるものではないが、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂等が挙げられる。これらの中でも、フェノールノボラック樹脂が成形性、コスト面で好ましい。
また、通常、ノボラック型フェノール樹脂の硬化剤としてヘキサメチレンテトラミンを使用する。ヘキサメチレンテトラミンの含有量は、ノボラック型フェノール樹脂100重量部に対し、10〜20重量部が好ましい。
ノボラック型フェノール樹脂の含有量は特に限定されないが、成形材料全体に対して、20〜50重量%であることが好ましい。更に好ましくは、30〜45重量%である。ノボラック型フェノール樹脂の含有量が上記下限値未満であると、成形材料の生産が困難となるばかりか材料の流動性が低下するため成形が困難になるといった問題が生じることがある。また、上記上限値を越えると成形収縮や後収縮による寸法変化が大きくなるため所定の成形品寸法を維持することが難しい場合がある。
The novolak type phenol resin used in the present invention is not particularly limited, and examples thereof include phenol novolak resin, cresol novolac resin, bisphenol A novolak resin and the like. Among these, phenol novolac resin is preferable in terms of moldability and cost.
Moreover, hexamethylenetetramine is usually used as a curing agent for novolac type phenolic resins. The content of hexamethylenetetramine is preferably 10 to 20 parts by weight with respect to 100 parts by weight of the novolac type phenol resin.
The content of the novolac type phenol resin is not particularly limited, but is preferably 20 to 50% by weight with respect to the entire molding material. More preferably, it is 30 to 45% by weight. When the content of the novolac type phenol resin is less than the lower limit, production of the molding material may be difficult, and the fluidity of the material may be reduced, which may cause a problem that molding becomes difficult. When the upper limit is exceeded, dimensional changes due to molding shrinkage and post-shrinkage increase, and it may be difficult to maintain a predetermined molded product dimension.

本発明の成形材料においては、一次粒子の平均粒径が5〜30nmである酸化マグネシウムを用いることを特徴とする。このような酸化マグネシウム粒子は、一次粒子の形態で存在している場合は勿論、これが凝集した二次粒子の形態においても、ノボラック型フェノール樹脂と反応できる表面積が大きい。これにより、硬化性を向上させることができるとともに、含有量を低減させることができる。   The molding material of the present invention is characterized by using magnesium oxide having an average primary particle size of 5 to 30 nm. Such magnesium oxide particles have a large surface area capable of reacting with the novolac type phenol resin not only in the form of primary particles but also in the form of secondary particles in which they are aggregated. Thereby, while being able to improve sclerosis | hardenability, content can be reduced.

そして、上記酸化マグネシウムの二次粒子の平均粒径は特に限定されないが、50〜200nmであることが好ましい。
これにより、本発明の成形材料中において酸化マグネシウムは、このような微小な二次粒子、あるいは、成形材料化する際に材料混合物に付与される撹拌、混合、混練などのエネルギーによりこの二次粒子が凝集解離してさらに細かくなった形態の粒子として存在することができると考えられる。これらの形態の酸化マグネシウム粒子は、従来のミクロンレベルのオーダーのものより細かく、成形材料中において高い分散性を有するので、ノボラック型フェノール樹脂との硬化反応をより高い精度で均一に行うことができ、硬化物に均一な硬化性を付与することができる。
The average particle size of the magnesium oxide secondary particles is not particularly limited, but is preferably 50 to 200 nm.
Thereby, in the molding material of the present invention, the magnesium oxide is such secondary particles due to such fine secondary particles or energy such as stirring, mixing, and kneading imparted to the material mixture when forming the molding material. It is considered that the particles can be present as finer particles by agglomeration and dissociation. These forms of magnesium oxide particles are finer than conventional micron-level particles and have high dispersibility in the molding material, so that the curing reaction with the novolac-type phenolic resin can be performed uniformly with higher accuracy. Uniform curability can be imparted to the cured product.

本発明の成形材料において、上記酸化マグネシウムの含有量は特に限定されないが、ノボラック型フェノール樹脂に対して、0.3〜5.0重量%であることが好ましい。さらに好ましくは0.5〜1.5重量%である。
通常、従来の比較的大きな粒径を有する酸化マグネシウムをノボラック型フェノール樹脂の硬化助剤として用いる場合、ノボラック型フェノール樹脂に対して5.1〜6.0重量%を配合するが、本発明の成形材料においては、上記平均粒径を有するものを用いるので、このように含有量を低減させることができる。
In the molding material of the present invention, the content of the magnesium oxide is not particularly limited, but is preferably 0.3 to 5.0% by weight with respect to the novolac type phenol resin. More preferably, it is 0.5 to 1.5% by weight.
Usually, when magnesium oxide having a relatively large particle size is used as a curing aid for a novolak type phenol resin, 5.1 to 6.0% by weight is blended with respect to the novolac type phenol resin. Since the molding material having the above average particle diameter is used, the content can be reduced in this way.

また、本発明の成形材料においては、充填材として無機充填材を用いることができる。
無機充填材としては、特に限定されないが、例えば、ガラス繊維、クレー、炭酸カルシウム、タルク、水酸化アルミニウム、水酸化マグネシウム、シリカ、ワラストナイト、ロックウール、マイカなどが挙げられ、これらを単独、或いは2種類以上配合して用いることができる。
本発明の成形材料において、無機充填材を用いる場合、その含有量としては特に限定されないが、成形材料全体に対して45〜75重量%が好ましい。更に50〜60重量%が好ましい。上記下限値を下回ると成形収縮や後収縮による寸法変化が大きくなるため所定の成形品寸法を維持することが難しい場合がある。また上記上限値を超えた場合、成形材料の生産が困難となるばかりか材料の流動性が低下するため成形が困難になるといった問題が生じることがある。
Moreover, in the molding material of this invention, an inorganic filler can be used as a filler.
Examples of the inorganic filler include, but are not limited to, glass fiber, clay, calcium carbonate, talc, aluminum hydroxide, magnesium hydroxide, silica, wollastonite, rock wool, mica, and the like. Or it can mix and use 2 or more types.
In the molding material of the present invention, when an inorganic filler is used, the content is not particularly limited, but is preferably 45 to 75% by weight with respect to the entire molding material. Furthermore, 50 to 60% by weight is preferable. If the value falls below the lower limit, dimensional changes due to molding shrinkage and post-shrinkage increase, and it may be difficult to maintain a predetermined molded product size. In addition, when the above upper limit is exceeded, not only the production of the molding material becomes difficult, but also the problem that the molding becomes difficult because the fluidity of the material decreases.

本発明の成形材料を製造する方法は、通常の方法が採用される。例えば、上記配合物を所定の配合割合で混合し、更に着色剤、硬化触媒等を加え加熱ロールにより混練し、シート状にしたものを顆粒状に粉砕して得られる。このとき酸化マグネシウムをフェノール樹脂と事前に溶融混合、或いは粉砕混合して用いてもよい。   As a method for producing the molding material of the present invention, a usual method is adopted. For example, it can be obtained by mixing the above-mentioned blend at a predetermined blending ratio, adding a colorant, a curing catalyst, etc., kneading with a heating roll, and pulverizing it into a sheet. At this time, magnesium oxide may be melt-mixed or pulverized and mixed with the phenol resin in advance.

本発明の成形材料は、圧縮成形、トランスファ成形、射出成形などの通常の成形方法により成形して成形品を得ることができる。   The molding material of the present invention can be molded by a conventional molding method such as compression molding, transfer molding, injection molding or the like to obtain a molded product.

以下、実施例により本発明を説明する。   Hereinafter, the present invention will be described by way of examples.

(実施例1)
ノボラック型フェノール樹脂35重量%、ヘキサメチレンテトラミン5重量%、ガラス繊維40重量%、炭酸カルシウム15.85重量%、酸化マグネシウムA0.15重量%、着色剤2重量%、離型剤2重量%を配合した原料混合物を、90℃の加熱ロールにより3分間混練した後取り出し、粉砕し顆粒状に粉砕して成形材料を得た。
Example 1
35% by weight of novolak-type phenol resin, 5% by weight of hexamethylenetetramine, 40% by weight of glass fiber, 15.85% by weight of calcium carbonate, 0.15% by weight of magnesium oxide A, 2% by weight of colorant, and 2% by weight of release agent The blended raw material mixture was kneaded for 3 minutes with a heating roll at 90 ° C., then taken out, pulverized, and pulverized into granules to obtain a molding material.

(実施例2)
炭酸カルシウムを15.95重量%に増量、酸化マグネシウムAを0.05重量%に減量した以外は実施例1と同様にして成形材料を得た。
(Example 2)
A molding material was obtained in the same manner as in Example 1 except that the amount of calcium carbonate was increased to 15.95% by weight and the amount of magnesium oxide A was decreased to 0.05% by weight.

(比較例1)
ノボラック型フェノール樹脂35重量%、ヘキサメチレンテトラミン5重量%、ガラス繊維40重量%、炭酸カルシウム14重量%、酸化マグネシウムB2重量%、着色剤2重量%、離型剤2重量%を配合した原料混合物を90℃の加熱ロールにより3分間混練した後取り出し、粉砕し顆粒状に粉砕して、成形材料を得た。
(Comparative Example 1)
Raw material mixture containing 35% by weight of novolak-type phenolic resin, 5% by weight of hexamethylenetetramine, 40% by weight of glass fiber, 14% by weight of calcium carbonate, 2% by weight of magnesium oxide, 2% by weight of colorant, and 2% by weight of release agent Was kneaded for 3 minutes with a heating roll at 90 ° C., then taken out, pulverized and pulverized into granules to obtain a molding material.

(比較例2)
炭酸カルシウムを15.85重量%に増量、酸化マグネシウムBを0.15重量%に減量した以外は、比較例1と同様にして成形材料を得た。
(Comparative Example 2)
A molding material was obtained in the same manner as in Comparative Example 1 except that the amount of calcium carbonate was increased to 15.85% by weight and the amount of magnesium oxide B was decreased to 0.15% by weight.

(比較例3)
炭酸カルシウムを13重量%に減量、酸化マグネシウムBを3重量%に増量した以外は比較例1と同様にして成形材料を得た。
(Comparative Example 3)
A molding material was obtained in the same manner as in Comparative Example 1 except that the amount of calcium carbonate was reduced to 13% by weight and the amount of magnesium oxide B was increased to 3% by weight.

Figure 2006083320
Figure 2006083320

実施例および比較例に用いた各配合成分は以下のとおりである。
(1)ノボラック型フェノール樹脂:住友ベークライト社製PR−50716
(2)ヘキサメチレンテトラミン:住友精化社製ウロトロピン
(3)ガラス繊維:日本板硝子社製チョップドストランドRES(繊維長1〜3mm、繊維径10〜13μm)
(4)炭酸カルシウム:日東粉化社製SS80
(5)酸化マグネシウムA:ホソカワミクロン社製、一次粒子の平均粒径20nm、二次粒子の平均粒径100nm
(6)酸化マグネシウムB:神島化学社製、一次粒子の平均粒径400nm、二次粒子の平均粒径2μm
(7)着色剤:カーボンブラック
(8)離型剤:ステアリン酸カルシウム
Each compounding ingredient used for an example and a comparative example is as follows.
(1) Novolac type phenolic resin: PR-50716 manufactured by Sumitomo Bakelite Co., Ltd.
(2) Hexamethylenetetramine: Urotropin manufactured by Sumitomo Seika Co., Ltd. (3) Glass fiber: Chopped strand RES manufactured by Nippon Sheet Glass Co., Ltd. (fiber length 1 to 3 mm, fiber diameter 10 to 13 μm)
(4) Calcium carbonate: SS80 manufactured by Nitto Flour Chemical Co.
(5) Magnesium oxide A: manufactured by Hosokawa Micron, average particle size of primary particles 20 nm, average particle size of secondary particles 100 nm
(6) Magnesium oxide B: manufactured by Kamishima Chemical Co., Ltd., average particle size of primary particles 400 nm, average particle size of secondary particles 2 μm
(7) Colorant: Carbon black (8) Release agent: Calcium stearate

表1の特性の内、バーコル硬度は、トランスファー成形によりφ=50×3mmtの成形品を15秒間及び25秒間で硬化させ、脱型10秒後の硬度を測定した。このときの数値が高いほど硬化度が高いことを示している。
シリンダー内熱安定性は、前部95℃、後部50℃に加熱した射出成形機のシリンダー内に材料を滞留させ、30秒間ごとに5分間まで滞留時間を変えていき、その時の射出時間を測定した。また、5分間まで滞留させることができずにヘッド硬化したものは、ヘッド硬化したときの滞留時間を記録した。
機械的強度測定用の試験片は、得られた成形材料を用いてトランスファー成形により作製した。成形条件は、金型温度175℃、硬化時間3分間とした。表1における各成形材料の特性は、以下の方法にて測定を実施した。
(1)曲げ強さ及び曲げ弾性率は、JIS K 6911「熱硬化性プラスチック一般試験方法」に準拠して測定した。
(2)シャルピー衝撃強さは、JIS K 6911「熱硬化性プラスチック一般試験方法」に準拠して測定した。
Among the properties shown in Table 1, the Barcol hardness was measured by hardening a molded product of φ = 50 × 3 mmt by transfer molding in 15 seconds and 25 seconds, and measuring the hardness after 10 seconds from demolding. The higher the value at this time, the higher the degree of curing.
In-cylinder thermal stability, the material is retained in the cylinder of an injection molding machine heated to 95 ° C at the front and 50 ° C at the rear, and the residence time is changed up to 5 minutes every 30 seconds, and the injection time at that time is measured. did. In addition, when the head was cured without being allowed to stay for 5 minutes, the residence time when the head was cured was recorded.
A test piece for measuring the mechanical strength was produced by transfer molding using the obtained molding material. The molding conditions were a mold temperature of 175 ° C. and a curing time of 3 minutes. The characteristics of each molding material in Table 1 were measured by the following method.
(1) Flexural strength and flexural modulus were measured according to JIS K 6911 “General Thermosetting Plastics Test Method”.
(2) Charpy impact strength was measured according to JIS K 6911 “General Thermosetting Plastics Test Method”.

実施例1、2はいずれも、ノボラック型フェノール樹脂と、一次粒子の平均粒径が20nmである酸化マグネシウムを含有した本発明のフェノール樹脂成形材料であり、一次粒子の平均粒径が400nmである酸化マグネシウムを配合した比較例1と比べて、少量の配合で実質的に同等の硬化性、熱安定性、機械的強度を有する成形品を得ることができた。
比較例2は、一次粒子の平均粒径が400nmである酸化マグネシウムを実施例1と同量の配合量で用いたものであるが、硬化性、機械的強度に低下がみられた。また、比較例3は、一次粒子の平均粒径が400nmである酸化マグネシウムを多く配合し、実施例と同等の硬化性を確保することはできたが、硬化助剤の量が過剰であったため熱安定性が低下し、また、このような粒径の大きな酸化マグネシウムを多量に用いたことに起因すると考えられる機械的強度の低下がみられた。
Examples 1 and 2 are both phenolic resin molding materials of the present invention containing novolac-type phenolic resin and magnesium oxide having an average primary particle diameter of 20 nm, and the average particle diameter of primary particles is 400 nm. Compared with the comparative example 1 which mix | blended magnesium oxide, the molded article which has substantially the same sclerosis | hardenability, heat stability, and mechanical strength with a small compounding was able to be obtained.
In Comparative Example 2, magnesium oxide having an average primary particle diameter of 400 nm was used in the same amount as in Example 1, but a decrease in curability and mechanical strength was observed. In Comparative Example 3, a large amount of magnesium oxide having an average primary particle size of 400 nm was blended to ensure the same curability as in the examples, but the amount of curing aid was excessive. The thermal stability was lowered, and the mechanical strength was lowered due to the large amount of magnesium oxide having such a large particle size.

本発明のフェノール樹脂成形材料は、従来の粒径の大きな酸化マグネシウムを硬化助剤として使用したフェノール樹脂成形材料に比べ少量配合で硬化性、成形性が同等で機械的強度に優れた特性を発揮する。このため、このフェノール樹脂成形材料は、自動車用部品、汎用機械用部品、家庭電化製品用部品等の機構部品用途に好適に適用されるものである。   The phenolic resin molding material of the present invention exhibits excellent mechanical strength and excellent curability and moldability in a small amount compared to conventional phenolic resin molding materials using magnesium oxide with a large particle size as a curing aid. To do. For this reason, this phenol resin molding material is suitably applied to mechanical parts applications such as automotive parts, general-purpose machine parts, and home appliance parts.

Claims (6)

ノボラック型フェノール樹脂と、一次粒子の平均粒径が5〜30nmの酸化マグネシウムとを含有することを特徴とするフェノール樹脂成形材料。 A phenol resin molding material comprising a novolac type phenol resin and magnesium oxide having an average primary particle size of 5 to 30 nm. 前記酸化マグネシウムの二次粒子の平均粒径は50〜200nmである請求項1に記載のフェノール樹脂成形材料。 The phenol resin molding material according to claim 1, wherein the average particle diameter of the secondary particles of magnesium oxide is 50 to 200 nm. 前記酸化マグネシウムの含有量は、前記ノボラック型フェノール樹脂に対して、0.3〜5.0重量%である請求項1又は2に記載のフェノール樹脂成形材料。 The phenol resin molding material according to claim 1 or 2, wherein a content of the magnesium oxide is 0.3 to 5.0% by weight with respect to the novolac type phenol resin. 前記ノボラック型フェノール樹脂の含有量は、成形材料全体に対して、20〜50重量%である請求項1〜3のいずれかに記載のフェノール樹脂成形材料。 The phenol resin molding material according to any one of claims 1 to 3, wherein a content of the novolac type phenol resin is 20 to 50% by weight with respect to the entire molding material. 更に、無機充填材を含むものである請求項1〜4のいずれかに記載のフェノール樹脂成形材料。 Furthermore, the phenol resin molding material in any one of Claims 1-4 which contains an inorganic filler. 前記無機充填材の含有量は、成形材料全体に対して、45〜75重量%である請求項5に記載のフェノール樹脂成形材料。
The phenol resin molding material according to claim 5, wherein the content of the inorganic filler is 45 to 75% by weight with respect to the entire molding material.
JP2004271035A 2004-09-17 2004-09-17 Phenol resin molding material Pending JP2006083320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004271035A JP2006083320A (en) 2004-09-17 2004-09-17 Phenol resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004271035A JP2006083320A (en) 2004-09-17 2004-09-17 Phenol resin molding material

Publications (1)

Publication Number Publication Date
JP2006083320A true JP2006083320A (en) 2006-03-30

Family

ID=36162093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004271035A Pending JP2006083320A (en) 2004-09-17 2004-09-17 Phenol resin molding material

Country Status (1)

Country Link
JP (1) JP2006083320A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2270084A1 (en) * 2009-06-30 2011-01-05 Hüttenes-Albertus Chemische-Werke GmbH Granulate and method for its production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556149A (en) * 1978-10-20 1980-04-24 Hitachi Chem Co Ltd Phenolic resin molding compound
JPH11310710A (en) * 1997-03-27 1999-11-09 Sumitomo Bakelite Co Ltd Thermosetting resin composition and semiconductor device
JP2000505040A (en) * 1996-11-18 2000-04-25 ユニバーシティー オブ コネクチカット Nanostructured oxides and hydroxides and methods for their synthesis
JP2004216544A (en) * 2002-12-25 2004-08-05 Fuji Photo Film Co Ltd Nanoparticle and method of producing nanoparticle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556149A (en) * 1978-10-20 1980-04-24 Hitachi Chem Co Ltd Phenolic resin molding compound
JP2000505040A (en) * 1996-11-18 2000-04-25 ユニバーシティー オブ コネクチカット Nanostructured oxides and hydroxides and methods for their synthesis
JPH11310710A (en) * 1997-03-27 1999-11-09 Sumitomo Bakelite Co Ltd Thermosetting resin composition and semiconductor device
JP2004216544A (en) * 2002-12-25 2004-08-05 Fuji Photo Film Co Ltd Nanoparticle and method of producing nanoparticle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2270084A1 (en) * 2009-06-30 2011-01-05 Hüttenes-Albertus Chemische-Werke GmbH Granulate and method for its production

Similar Documents

Publication Publication Date Title
JP4569469B2 (en) Phenol resin molding material for pulley, resin pulley, and method of using resin molding material
JP2006083320A (en) Phenol resin molding material
JPWO2005005541A1 (en) Phenolic resin composition
JP2011068705A (en) Phenolic resin molding material
JP5682625B2 (en) Phenolic resin molding material
JP2005048009A (en) Phenolic resin molding compound
JP4004033B2 (en) Phenolic resin molding material
JP2006257114A (en) Phenolic resin molding material for commutator
JP2002220507A (en) Phenol resin molding material
JP2006282684A (en) Phenolic resin molding material
JPWO2005040276A1 (en) Phenolic resin molding material and molded article thereof
JPH08157693A (en) Epoxy resin composition
JP5286863B2 (en) Phenolic resin molding material
JP5033154B2 (en) Phenolic resin molding material and molded article thereof
JP5552897B2 (en) Interfacial strengthened glass filler and phenolic resin molding material
WO2022064986A1 (en) Thermosetting resin composition
JP5540542B2 (en) Phenolic resin molding material and resin pulley
JP2005239794A (en) Phenol resin molding material and method for producing the same
JP2009242472A (en) Thermosetting resin composition and thermosetting resin molding material
JP2023008688A (en) Thermosetting resin composition, method for producing thermosetting resin composition, molding, and method for producing molding
JP2007077325A (en) Thermosetting resin molding material for board made of resin for electronic/electric part and board made of resin for electronic/electric part molded from said molding material
JPH08143781A (en) Thermosetting resin composition
JP2005281365A (en) Phenolic resin molding material for vibration-damping material and vibration-damping material prepared by molding the same
JP5402142B2 (en) Phenolic resin molding material
JP2011202056A (en) Phenolic resin molding material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601