JP2006083080A - Method for producing hydrogenated aromatic polycarboxylic acid - Google Patents

Method for producing hydrogenated aromatic polycarboxylic acid Download PDF

Info

Publication number
JP2006083080A
JP2006083080A JP2004268101A JP2004268101A JP2006083080A JP 2006083080 A JP2006083080 A JP 2006083080A JP 2004268101 A JP2004268101 A JP 2004268101A JP 2004268101 A JP2004268101 A JP 2004268101A JP 2006083080 A JP2006083080 A JP 2006083080A
Authority
JP
Japan
Prior art keywords
aromatic polycarboxylic
polycarboxylic acid
acid
catalyst
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004268101A
Other languages
Japanese (ja)
Other versions
JP4622406B2 (en
Inventor
Yasuhisa Yoshida
安久 吉田
Hiroshi Masami
博司 真見
Kazuhiro Hattori
和弘 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP2004268101A priority Critical patent/JP4622406B2/en
Publication of JP2006083080A publication Critical patent/JP2006083080A/en
Application granted granted Critical
Publication of JP4622406B2 publication Critical patent/JP4622406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a hydrogenated aromatic polycarboxylic acid, by which the highly pure hydrogenated aromatic polycarboxylic acid can profitably be produced in a high yield, and to provide the hydrogenated aromatic polycarboxylic acid substantially not containing an aromatic polycarboxylic acid of raw material. <P>SOLUTION: This method for producing the hydrogenated aromatic polycarboxylic acid, comprising subjecting the aromatic polycarboxylic acid to a nucleus hydrogenation reaction in the presence of a reaction solvent and a nucleus hydrogenation catalyst, is characterized in that the catalyst is a rhodium-γ-alumina-carrying catalyst obtained by carrying a rhodium metal on a γ-alumina carrier; the specific area of the carrier is 50 to 450 m<SP>2</SP>/g; and the amount of the rhodium metal in the catalyst is 0.25 to 0.5 pt. wt. per 100 pts. wt. of the aromatic polycarboxylic acid. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、芳香族ポリカルボン酸の芳香環を核水素化反応して水素化芳香族ポリカルボン酸を製造する方法、及びその製造方法により得られる水素化芳香族ポリカルボン酸に関する。さらに詳しくは、高純度の水素化芳香族ポリカルボン酸を高収率で工業的に得ることができる製造方法に関する。   The present invention relates to a method for producing a hydrogenated aromatic polycarboxylic acid by subjecting an aromatic ring of an aromatic polycarboxylic acid to a nuclear hydrogenation reaction, and a hydrogenated aromatic polycarboxylic acid obtained by the production method. More specifically, the present invention relates to a production method capable of industrially obtaining a high purity hydrogenated aromatic polycarboxylic acid with a high yield.

水素化芳香族ポリカルボン酸は、機能性ポリイミドや機能性エポキシ樹脂の原料として多用されている。近年、それらの樹脂の高機能化に伴い、高純度の水素化芳香族ポリカルボン酸が要望されるようになった。特に、高度に透明性を必要とする用途には水素化芳香族ポリカルボン酸中の芳香環の残存量をできる限り低減させる要望が強くなった。   Hydrogenated aromatic polycarboxylic acids are frequently used as raw materials for functional polyimides and functional epoxy resins. In recent years, as the functions of these resins have increased, high purity hydrogenated aromatic polycarboxylic acids have been demanded. In particular, for applications that require a high degree of transparency, there has been a strong demand for reducing the residual amount of aromatic rings in the hydrogenated aromatic polycarboxylic acid as much as possible.

高純度の水素化芳香族ポリカルボン酸を得る方法として、(i)芳香族ポリカルボン酸を核水素化する方法(非特許文献1及び特許文献1参照)、(ii)芳香族ポリカルボン酸のエステル誘導体を経由して芳香環を核水素化する方法(特許文献2及び特許文献3参照)、が提案されている。   As a method for obtaining a high purity hydrogenated aromatic polycarboxylic acid, (i) a method of nuclear hydrogenating an aromatic polycarboxylic acid (see Non-Patent Document 1 and Patent Document 1), (ii) an aromatic polycarboxylic acid A method for nuclear hydrogenation of an aromatic ring via an ester derivative (see Patent Document 2 and Patent Document 3) has been proposed.

非特許文献1には、(i)カーボン担体にロジウム金属を5%担持した触媒(ロジウム金属の使用量;2重量%対原料)の存在下、水素圧2.7atm、60℃でピロメリット酸を核水素化する方法、(ii)アルミナ担体にロジウム金属を5%担持した触媒(ロジウム金属の使用量;2.4重量%又は0.6重量%対原料)の存在下、60−70℃でフタル酸、イソフタル酸又はテレフタル酸を核水素化反応する方法、が記載されている。   Non-Patent Document 1 describes (i) pyromellitic acid at a hydrogen pressure of 2.7 atm and 60 ° C. in the presence of a catalyst (rhodium metal used amount: 2 wt% relative to raw material) with 5% rhodium metal supported on a carbon support. (Ii) 60-70 ° C. in the presence of a catalyst having 5% rhodium metal supported on an alumina support (amount of rhodium metal used; 2.4 wt% or 0.6 wt% relative to raw material) Describes a method for nuclear hydrogenation of phthalic acid, isophthalic acid or terephthalic acid.

しかしながら、上記方法は何れも触媒の使用量が多く、また芳香族ポリカルボン酸の転化率及び選択率が必ずしも十分ではなかった為に原料の芳香族ポリカルボン酸が残存する傾向があった。   However, in any of the above methods, the amount of the catalyst used is large, and the conversion rate and selectivity of the aromatic polycarboxylic acid are not always sufficient, so that the raw material aromatic polycarboxylic acid tends to remain.

特許文献1には、ロジウム金属及び/又はパラジウム金属を含む触媒の存在下で芳香族カルボン酸を核水素化反応する方法で、回分式において該触媒の貴金属含有量が原料に対して0.5〜10重量部である水素化芳香族ポリカルボン酸の製造方法が提案されている。具体的には、5重量%カーボン担持ロジウム触媒を用いた製造方法が記載されている。   Patent Document 1 discloses a method in which an aromatic carboxylic acid is subjected to a nuclear hydrogenation reaction in the presence of a catalyst containing a rhodium metal and / or a palladium metal. A method for producing a hydrogenated aromatic polycarboxylic acid of 10 to 10 parts by weight has been proposed. Specifically, a production method using a 5% by weight carbon-supported rhodium catalyst is described.

しかしながら、この製造方法は、初期に多量の触媒量が必要であったり、反応毎に賦活処理より触媒活性を再活性化させる必要があったりなど、製造コストが上昇する傾向があった。また未反応の芳香族カルボン酸が微量に残存する傾向があったため、高度に透明性を必要とする用途には必ずしも満足できる品質であるものとは言えなかった。   However, this production method tends to increase the production cost, such as requiring a large amount of catalyst in the initial stage or reactivating the catalyst activity by activation treatment for each reaction. Moreover, since there was a tendency that a small amount of unreacted aromatic carboxylic acid remained, it could not be said that the quality was always satisfactory for applications requiring high transparency.

特許文献2及び特許文献3には、芳香族ポリカルボン酸のエステル誘導体を経由して芳香環を核水素化する方法が記載されている。   Patent Document 2 and Patent Document 3 describe a method of nuclear hydrogenating an aromatic ring via an ester derivative of an aromatic polycarboxylic acid.

しかしながら、当該製造方法は芳香族ポリカルボン酸を一旦エステル誘導体とした後に芳香環を核水素化する方法である為、全製造工程は長くなり反応装置も複雑となる傾向があった。その為に、製造コストが上昇する傾向があった。   However, since the production method is a method in which an aromatic polycarboxylic acid is once converted into an ester derivative and the aromatic ring is nuclear hydrogenated, the entire production process tends to be long and the reaction apparatus tends to be complicated. For this reason, manufacturing costs tend to increase.

”ジャーナル オブ オーガニック ケミストリー”(The Journal of Organic Chemistry),1966年,第31巻,p.3438−3439“The Journal of Organic Chemistry”, 1966, Vol. 31, p. 3438-3439 特開2003−286222号公報JP 2003-286222 A 特開平8−325196号公報JP-A-8-325196 特開平8−325201号公報JP-A-8-325201

本発明の目的は、高純度の水素化芳香族ポリカルボン酸を高収率で工業的に有利に製造する方法、及び原料の芳香族ポリカルボン酸を実質的には含有していない水素化芳香族ポリカルボン酸を提供することである。   An object of the present invention is to provide a method for producing a high-purity hydrogenated aromatic polycarboxylic acid in an industrially advantageous manner in a high yield, and a hydrogenated aroma that is substantially free from the starting aromatic polycarboxylic acid. Is to provide a group polycarboxylic acid.

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、以下の知見を得た。   As a result of intensive studies in order to solve the above-mentioned problems, the present inventors have obtained the following knowledge.

(1)特定範囲の比表面積を有する特定の担体にロジウム金属を担持した触媒の存在下で芳香族ポリカルボン酸を核水素化反応することにより、原料の芳香族ポリカルボン酸を実質的には含有しない高純度の水素化芳香族ポリカルボン酸を得られること、
(2)その触媒量が少量で所望の効果が得られること、
(3)当該触媒を賦活処理せずに核水素化反応に繰り返し供しても高い転化率と選択率を維持できること、
を見出し、係る知見に基づいて本発明を完成するに至った。
(1) The aromatic polycarboxylic acid as a raw material is substantially reduced by nuclear hydrogenation reaction of the aromatic polycarboxylic acid in the presence of a catalyst having rhodium metal supported on a specific support having a specific surface area in a specific range. Obtaining a high-purity hydrogenated aromatic polycarboxylic acid that does not contain,
(2) The desired effect can be obtained with a small amount of the catalyst,
(3) A high conversion rate and selectivity can be maintained even if the catalyst is repeatedly subjected to a nuclear hydrogenation reaction without activation.
The present invention has been completed based on such findings.

即ち、本発明は、以下の項目の発明を提供する。   That is, the present invention provides the following inventions.

(項1)触媒及び反応溶媒の存在下、芳香族ポリカルボン酸を核水素化反応して水素化芳香族ポリカルボン酸を製造する方法において、該触媒がγ−アルミナ担体にロジウム金属を担持して得られるロジウム−γ−アルミナ担持触媒であって、該担体の比表面積が50〜450m/gであり、且つ該触媒中のロジウム金属の量が芳香族ポリカルボン酸100重量部に対して0.25重量部以上0.5重量部未満の割合であることを特徴とする水素化芳香族ポリカルボン酸の製造方法。 (Item 1) In a method for producing a hydrogenated aromatic polycarboxylic acid by subjecting an aromatic polycarboxylic acid to a nuclear hydrogenation reaction in the presence of a catalyst and a reaction solvent, the catalyst carries a rhodium metal on a γ-alumina support. The rhodium-γ-alumina-supported catalyst obtained above has a specific surface area of 50 to 450 m 2 / g, and the amount of rhodium metal in the catalyst is 100 parts by weight of aromatic polycarboxylic acid. A method for producing a hydrogenated aromatic polycarboxylic acid, wherein the proportion is 0.25 part by weight or more and less than 0.5 part by weight.

(項2)上記触媒が水素で活性化された触媒である上記項1に記載の水素化芳香族ポリカルボン酸の製造方法。 (Item 2) The method for producing a hydrogenated aromatic polycarboxylic acid according to Item 1, wherein the catalyst is a catalyst activated with hydrogen.

(項3)上記反応溶媒が水である上記項1又は項2に記載の水素化芳香族ポリカルボン酸の製造方法。 (Item 3) The method for producing a hydrogenated aromatic polycarboxylic acid according to Item 1 or 2, wherein the reaction solvent is water.

(項4)核水素化反応の反応温度が40〜90℃である上記項1〜3の何れかに記載の水素化芳香族ポリカルボン酸の製造方法。 (Item 4) The method for producing a hydrogenated aromatic polycarboxylic acid according to any one of Items 1 to 3, wherein the reaction temperature of the nuclear hydrogenation reaction is 40 to 90 ° C.

(項5)核水素化反応の水素分圧が2〜20MPaである上記項1〜4の何れかに記載の水素化芳香族ポリカルボン酸の製造方法。 (Item 5) The method for producing a hydrogenated aromatic polycarboxylic acid according to any one of Items 1 to 4, wherein the hydrogen partial pressure of the nuclear hydrogenation reaction is 2 to 20 MPa.

(項6)芳香族ポリカルボン酸の基質濃度が、芳香族ポリカルボン酸と反応溶媒との合計重量に対して、5〜40重量%である上記項1〜5の何れかに記載の水素化芳香族ポリカルボン酸の製造方法。 (Item 6) The hydrogenation according to any one of Items 1 to 5, wherein the substrate concentration of the aromatic polycarboxylic acid is 5 to 40% by weight based on the total weight of the aromatic polycarboxylic acid and the reaction solvent. A method for producing an aromatic polycarboxylic acid.

(項7)芳香族ポリカルボン酸が、ピロメリット酸、トリメリット酸又はトリメシン酸である上記項1〜6の何れかに記載の水素化芳香族ポリカルボン酸の製造方法。 (Item 7) The method for producing a hydrogenated aromatic polycarboxylic acid according to any one of Items 1 to 6, wherein the aromatic polycarboxylic acid is pyromellitic acid, trimellitic acid or trimesic acid.

(項8)上記項1〜7の何れかに記載の製造方法で得られる、原料の芳香族ポリカルボン酸の含有量が0.05重量%以下である水素化芳香族ポリカルボン酸。 (Item 8) A hydrogenated aromatic polycarboxylic acid obtained by the production method according to any one of Items 1 to 7, wherein the content of the raw material aromatic polycarboxylic acid is 0.05% by weight or less.

本発明によれば、高純度の水素化芳香族ポリカルボン酸を高収率で工業的に有利に製造できる。
又、本発明の製造方法により得られた水素化芳香族ポリカルボン酸は、原料の芳香族ポリカルボン酸が極微量であるか或いは実質的に含有していないので、透明性や溶剤可溶性等を有する機能性ポリイミドやポリエステルのモノマー原料、透明性を有する機能性エポキシ樹脂の硬化剤原料などに有用である。
According to the present invention, high-purity hydrogenated aromatic polycarboxylic acid can be industrially advantageously produced in high yield.
In addition, the hydrogenated aromatic polycarboxylic acid obtained by the production method of the present invention has a very small amount of aromatic polycarboxylic acid as a raw material or substantially does not contain it, so that it has transparency and solvent solubility. It is useful as a monomer raw material for functional polyimide and polyester, and as a raw material for a curing agent for functional epoxy resin having transparency.

本発明に係る芳香族ポリカルボン酸は、芳香環上に2個以上、好ましくは3個以上のカルボキシル基を有する化合物であれば特に限定されず、公知の芳香族ポリカルボン酸が使用できる。   The aromatic polycarboxylic acid according to the present invention is not particularly limited as long as it is a compound having two or more, preferably three or more carboxyl groups on the aromatic ring, and known aromatic polycarboxylic acids can be used.

具体的には、フタル酸、イソフタル酸、テレフタル酸、1,2−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,8−ナフタレンジカルボン酸、2,3−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、9,10−アントラセンジカルボン酸、4,4’−ベンゾフェノンジカルボン酸、2,2’−ビフェニルジカルボン酸、3,3’−ビフェニルジカルボン酸、4,4’−ビフェニルジカルボン酸、3,3’−ビフェニルエーテルジカルボン酸、4,4’−ビフェニルエーテルジカルボン酸、4,4’−ビナフチルジカルボン酸等の芳香族ジカルボン酸、   Specifically, phthalic acid, isophthalic acid, terephthalic acid, 1,2-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6- Naphthalenedicarboxylic acid, 9,10-anthracene dicarboxylic acid, 4,4′-benzophenone dicarboxylic acid, 2,2′-biphenyl dicarboxylic acid, 3,3′-biphenyl dicarboxylic acid, 4,4′-biphenyl dicarboxylic acid, 3, Aromatic dicarboxylic acids such as 3′-biphenyl ether dicarboxylic acid, 4,4′-biphenyl ether dicarboxylic acid, 4,4′-binaphthyl dicarboxylic acid,

ヘミメリット酸、トリメリット酸、トリメシン酸、1,2,4−ナフタレントリカルボン酸、2,5,7−ナフタレントリカルボン酸等の芳香族トリカルボン酸、 Aromatic tricarboxylic acids such as hemimellitic acid, trimellitic acid, trimesic acid, 1,2,4-naphthalenetricarboxylic acid, 2,5,7-naphthalenetricarboxylic acid,

メロファン酸、プレーニト酸、ピロメリット酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、2,2’,3,3’−ベンゾフェノンテトラカルボン酸、2,3,3’,4’−ベンゾフェノンテトラカルボン酸、3,3’,4,4’−ビフェニルテトラカルボン酸、2,2’,3,3’−ビフェニルテトラカルボン酸、2,3,3’,4’−ビフェニルテトラカルボン酸、4,4’−オキシジフタル酸、3,3’,4,4’−ジフェニルメタンテトラカルボン酸、1,4,5,8−ナフタレンテトラカルボン酸、1,2,5,6−ナフタレンテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸、アントラセンテトラカルボン酸等の芳香族テトラカルボン酸、 Merophanic acid, planitic acid, pyromellitic acid, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid, 2,2 ′, 3,3′-benzophenone tetracarboxylic acid, 2,3,3 ′, 4′- Benzophenone tetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,2 ′, 3,3′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 4,4′-oxydiphthalic acid, 3,3 ′, 4,4′-diphenylmethanetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 2 , 3,6,7-naphthalenetetracarboxylic acid, aromatic tetracarboxylic acid such as anthracenetetracarboxylic acid,

ベンゼンペンタカルボン酸等の芳香族ペンタカルボン酸、ベンゼンヘキサカルボン酸等の芳香族ヘキサカルボン酸などが例示される。これらは、単独で又は2種以上を適宜組み合わせて使用することができる。 Examples include aromatic pentacarboxylic acids such as benzenepentacarboxylic acid and aromatic hexacarboxylic acids such as benzenehexacarboxylic acid. These can be used alone or in appropriate combination of two or more.

中でも、3個以上のカルボキシル基を有する芳香族ポリカルボン酸が好ましい。   Of these, aromatic polycarboxylic acids having 3 or more carboxyl groups are preferred.

具体的には、ピロメリット酸、トリメリット酸、トリメシン酸、2,3,6,7−ナフタレンテトラカルボン酸、3,3’,4,4’−ビフェニルテトラカルボン酸が好ましく、ピロメリット酸、トリメリット酸、トリメシン酸がより好ましい。これらは、単独で又は2種以上を適宜組み合わせて使用することができる。   Specifically, pyromellitic acid, trimellitic acid, trimesic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid are preferable, pyromellitic acid, Trimellitic acid and trimesic acid are more preferable. These can be used alone or in appropriate combination of two or more.

本発明に係る触媒は、比表面積が50〜450m/g、好ましくは80〜350m/g、より好ましくは80〜250m/gであるγ−アルミナ担体に、ロジウム金属を担持した触媒(以下、ロジウム−γ−アルミナ担持触媒という。)である。
担体にγ結晶形のアルミナを選択し、且つその比表面積を上記範囲とすることにより、反応毎に当該触媒の賦活処理を施す必要がなくなり、触媒活性の有意な向上が認められる。
The catalyst according to the present invention is a catalyst in which a rhodium metal is supported on a γ-alumina carrier having a specific surface area of 50 to 450 m 2 / g, preferably 80 to 350 m 2 / g, more preferably 80 to 250 m 2 / g ( Hereinafter, it is referred to as a rhodium-γ-alumina supported catalyst.
By selecting γ crystal form alumina as the support and setting the specific surface area within the above range, it is not necessary to carry out the activation treatment of the catalyst for each reaction, and a significant improvement in the catalyst activity is recognized.

前記γ−アルミナ担体に対するロジウム金属の担持量は、γ−アルミナ担体とロジウム金属との合計重量に対して、好ましくは1〜10重量%、より好ましくは2〜5重量%である。   The amount of rhodium metal supported on the γ-alumina carrier is preferably 1 to 10% by weight, more preferably 2 to 5% by weight, based on the total weight of the γ-alumina carrier and rhodium metal.

本発明に係る核水素化反応に供する前記ロジウム金属の量は、ロジウム−γ−アルミナ担持触媒中のロジウム金属分を基準として、芳香族ポリカルボン酸100重量部に対して、0.25重量部以上0.5重量部未満の割合であり、好ましくは0.25〜0.4重量部である。0.25重量部未満では、核水素化反応が十分に進行しないことがあり、又0.5重量部以上ではその量に見合うだけの効果が得られにくく、製造コストの上昇を招くことがある。   The amount of the rhodium metal used in the nuclear hydrogenation reaction according to the present invention is 0.25 parts by weight with respect to 100 parts by weight of the aromatic polycarboxylic acid based on the rhodium metal content in the rhodium-γ-alumina supported catalyst. The ratio is less than 0.5 parts by weight, preferably 0.25 to 0.4 parts by weight. If the amount is less than 0.25 parts by weight, the nuclear hydrogenation reaction may not proceed sufficiently, and if the amount is 0.5 parts by weight or more, it is difficult to obtain an effect commensurate with the amount, resulting in an increase in production cost. .

上記触媒の調製方法は、本発明の効果を損ねない限り、特に制限されることはなく、含浸法、沈殿法、イオン交換法などが挙げられる(例えば、触媒学会編,「触媒設計」,触媒講座5,p39〜P45,講談社サイエンティフィク(1985))。   The method for preparing the catalyst is not particularly limited as long as the effects of the present invention are not impaired, and examples thereof include an impregnation method, a precipitation method, and an ion exchange method (for example, “Catalyst Society”, “Catalyst Design”, Catalyst Lecture 5, p39-P45, Kodansha Scientific (1985)).

本発明に係るロジウム−γ−アルミナ担持触媒は、芳香族ポリカルボン酸の核水素化反応に繰り返して供してもその触媒活性の低下が小さいという利点がある。
例えば、バッチ式で核水素化反応を行った場合、その反応条件にもよるが、反応毎に賦活処理を施す必要がなく、連続的に当該核水素化反応に供しても、その触媒活性の低下が非常に小さいか或いは実質的な低下が認められない。このような利点は、生産コストの低減に大きく寄与する。
The rhodium-γ-alumina supported catalyst according to the present invention has an advantage that even if it is repeatedly used for the nuclear hydrogenation reaction of an aromatic polycarboxylic acid, the decrease in the catalytic activity is small.
For example, when a nuclear hydrogenation reaction is performed in batch mode, depending on the reaction conditions, it is not necessary to perform activation treatment for each reaction, and even if the nuclear hydrogenation reaction is continuously performed, The decrease is very small or no substantial decrease is observed. Such advantages greatly contribute to the reduction of production costs.

本発明に係るロジウム−γ−アルミナ担持触媒は、そのまま当該核水素化反応に供することができるが、水素で予め還元して活性化させておくことは、触媒活性を効果的に発現させたり、当該核水素化反応の反応時間を短縮させたりする点で有効である。   The rhodium-γ-alumina-supported catalyst according to the present invention can be used for the nuclear hydrogenation reaction as it is, but by reducing and activating in advance with hydrogen, the catalytic activity can be effectively expressed, This is effective in reducing the reaction time of the nuclear hydrogenation reaction.

前記触媒活性化の処理条件として、次の処理条件が推奨される。   As the catalyst activation treatment conditions, the following treatment conditions are recommended.

通常、活性化処理は水素及び処理溶媒の存在下で行われる。該処理溶媒は、後述の本発明に係る核水素化反応に使用される反応溶媒と同じ種類であることが好ましく、特に水が好ましい。水素分圧は0.5〜5MPaが好ましく、特に0.5〜2MPaが好ましい。また、処理温度は40〜90℃が好ましく、特に50〜70℃好ましい。処理時間は、処理条件によるが、通常0.5〜2時間である。   Usually, the activation treatment is performed in the presence of hydrogen and a treatment solvent. The treatment solvent is preferably the same type as the reaction solvent used in the nuclear hydrogenation reaction according to the present invention described later, and water is particularly preferred. The hydrogen partial pressure is preferably 0.5 to 5 MPa, and particularly preferably 0.5 to 2 MPa. The treatment temperature is preferably 40 to 90 ° C, particularly preferably 50 to 70 ° C. The treatment time is usually 0.5 to 2 hours depending on the treatment conditions.

本発明に係る核水素化反応は、反応溶媒の存在下で行われる。該反応溶媒は、芳香族ポリカルボン酸を溶解又は均一に分散若しくは懸濁させることができる溶媒であれば良い。
また該反応溶媒は、当該水素化芳香族ポリカルボン酸に対して適当な溶解度を有する必要がある。
The nuclear hydrogenation reaction according to the present invention is performed in the presence of a reaction solvent. The reaction solvent may be any solvent that can dissolve or uniformly disperse or suspend the aromatic polycarboxylic acid.
Moreover, this reaction solvent needs to have appropriate solubility with respect to the said hydrogenated aromatic polycarboxylic acid.

前記反応溶媒としては、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル等のエ−テル化合物、水などが例示される。これらは、単独で又は2種以上を適宜組み合わせて使用することができる。   Examples of the reaction solvent include ether compounds such as ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and triethylene glycol dimethyl ether, and water. These can be used alone or in appropriate combination of two or more.

前記反応溶媒の中でも水が特に好ましい。前記の水は、イオン交換水又は蒸留水が好ましい。
また、本発明に係る水素化芳香族ポリカルボン酸を電気・電子分野に利用する場合には、ナトリウム、カリウム、カルシウム、マグネシウム、鉄等の金属成分の含有量が極力少ない水を用いることが好ましい。
Among the reaction solvents, water is particularly preferable. The water is preferably ion exchange water or distilled water.
In addition, when the hydrogenated aromatic polycarboxylic acid according to the present invention is used in the electric / electronic field, it is preferable to use water having as little content as possible of metal components such as sodium, potassium, calcium, magnesium, and iron. .

反応溶媒に水を選択することにより、
(i)芳香族ポリカルボン酸が水に溶解し易いので核水素化反応が進行し易い、
(ii)得られた水素化芳香族ポリカルボン酸が水へ溶解し易いので、当該触媒との分離が容易である、
(iii)当該触媒を分離した後、その濾液を濃縮若しくは冷却することにより、水素化芳香族ポリカルボン酸を晶析させ、これを濾過や遠心分離などで固液分離することにより、より高純度の水素化芳香族ポリカルボン酸が得られ易い、
などの利点が得られる。
By selecting water as the reaction solvent
(I) Since the aromatic polycarboxylic acid is easily dissolved in water, the nuclear hydrogenation reaction is likely to proceed.
(Ii) Since the obtained hydrogenated aromatic polycarboxylic acid is easily dissolved in water, separation from the catalyst is easy.
(Iii) After separating the catalyst, the filtrate is concentrated or cooled to crystallize the hydrogenated aromatic polycarboxylic acid, and the liquid is separated into solid and liquid by filtration, centrifugation, etc. It is easy to obtain a hydrogenated aromatic polycarboxylic acid of
Advantages such as are obtained.

本発明に係る核水素化反応における芳香族ポリカルボン酸の基質濃度は、芳香族ポリカルボン酸と反応溶媒との合計重量に対して5〜40重量%が好ましい。
当該基質濃度は、目的物の水素化芳香族ポリカルボン酸が核水素化反応の反応温度でその大部分が溶解する程度であることが好ましい。
The substrate concentration of the aromatic polycarboxylic acid in the nuclear hydrogenation reaction according to the present invention is preferably 5 to 40% by weight with respect to the total weight of the aromatic polycarboxylic acid and the reaction solvent.
The substrate concentration is preferably such that most of the target hydrogenated aromatic polycarboxylic acid dissolves at the reaction temperature of the nuclear hydrogenation reaction.

本発明に係る核水素化反応の反応温度は、40〜90℃が好ましく、特に50〜70℃が好ましい。この反応温度の範囲で、反応活性の有意な向上が認められる。   The reaction temperature of the nuclear hydrogenation reaction according to the present invention is preferably 40 to 90 ° C, particularly preferably 50 to 70 ° C. A significant improvement in reaction activity is observed within this reaction temperature range.

本発明に係る核水素化反応の水素分圧は、2〜20MPaが好ましく、特に3〜10MPaが好ましい。水素分圧が2MPa未満では所望の転化率が得られにくく、本発明の目的が達せられないことがある。又水素分圧が20MPaを超える場合、それに見合うだけの効果が得られにくい。   The hydrogen partial pressure of the nuclear hydrogenation reaction according to the present invention is preferably 2 to 20 MPa, and particularly preferably 3 to 10 MPa. When the hydrogen partial pressure is less than 2 MPa, it is difficult to obtain a desired conversion rate, and the object of the present invention may not be achieved. When the hydrogen partial pressure exceeds 20 MPa, it is difficult to obtain an effect commensurate with it.

本発明に係る核水素化反応の反応時間は、基質濃度、触媒量、水素分圧、反応温度、反応装置の形状、攪拌機の形状、攪拌速度などの反応条件にもよるが、通常1〜5時間程度である。   The reaction time of the nuclear hydrogenation reaction according to the present invention depends on the reaction conditions such as substrate concentration, catalyst amount, hydrogen partial pressure, reaction temperature, reactor shape, stirrer shape, stirring speed, etc. It is about time.

本発明に係る核水素化反応に用いる反応装置は、(i)反応器が耐酸性の材質であり、(ii)耐圧構造であり、(iii)触媒と芳香族ポリカルボン酸とを十分に混合できる攪拌機を具備している反応装置であれば特に限定されず、公知の反応装置も使用できる。例えば、SUS316L製縦型若しくは横型オートクレーブ等が挙げられる。   The reactor used for the nuclear hydrogenation reaction according to the present invention is as follows: (i) the reactor is an acid-resistant material, (ii) a pressure-resistant structure, and (iii) a catalyst and an aromatic polycarboxylic acid are sufficiently mixed The reaction apparatus is not particularly limited as long as it is equipped with a stirrer that can be used, and a known reaction apparatus can also be used. For example, a vertical or horizontal autoclave made of SUS316L can be used.

本発明に係る核水素化反応の手順としては、本発明の効果を損ねない限り、特に限定されない。   The procedure for the nuclear hydrogenation reaction according to the present invention is not particularly limited as long as the effects of the present invention are not impaired.

例えば、反応装置に所定の原料、反応溶媒及び触媒を所定量仕込み、系内を不活性ガスで置換する。次に水素で置換し、所定の反応条件下(水素分圧、反応温度、反応時間、攪拌速度等)で核水素化反応を行う手順などが例示される。   For example, a predetermined amount of a predetermined raw material, reaction solvent, and catalyst are charged into a reaction apparatus, and the inside of the system is replaced with an inert gas. Next, a procedure for substituting with hydrogen and performing a nuclear hydrogenation reaction under predetermined reaction conditions (hydrogen partial pressure, reaction temperature, reaction time, stirring speed, etc.) is exemplified.

また、反応装置に触媒と反応溶媒を仕込み、上述の処理条件に従って触媒を活性化した後、原料を仕込む手順を用いても良い。   Alternatively, a procedure may be used in which a catalyst and a reaction solvent are charged into a reactor, the catalyst is activated according to the above-described processing conditions, and then a raw material is charged.

反応終了後の後処理方法としては、例えば、(1)反応終了後、当該反応温度と同程度の温度で触媒を濾別する。濾液を室温まで冷却して晶析させる。晶析後、濾過し、その濾過物を減圧乾燥(例えば、10KPa以下、60〜110℃、3〜20時間)して、目的の水素化芳香族ポリカルボン酸を得る方法、   As a post-treatment method after completion of the reaction, for example, (1) after completion of the reaction, the catalyst is filtered off at a temperature comparable to the reaction temperature. The filtrate is cooled to room temperature and crystallized. After crystallization, filtration, and the filtrate is dried under reduced pressure (for example, 10 KPa or less, 60 to 110 ° C., 3 to 20 hours) to obtain the target hydrogenated aromatic polycarboxylic acid,

(2)当該濾液から反応溶媒を減圧留去して濃縮する。濃縮後、析出した固体を濾別する。次にその濾過物を減圧乾燥して、目的の水素化芳香族ポリカルボン酸を得る方法などが例示される。 (2) The reaction solvent is distilled off from the filtrate under reduced pressure and concentrated. After concentration, the precipitated solid is filtered off. Next, a method of obtaining the target hydrogenated aromatic polycarboxylic acid by drying the filtrate under reduced pressure is exemplified.

また、核水素化反応終了後に水素化芳香族ポリカルボン酸が比較的多く析出している場合、濾過温度を上げる若しくは反応溶媒を加えるなどの手順を加えても良く、晶析時に系が増粘する場合には、反応終了後に予め反応溶媒を加えておくなどの手順を加えても良い。   In addition, when a relatively large amount of hydrogenated aromatic polycarboxylic acid is precipitated after the completion of the nuclear hydrogenation reaction, a procedure such as increasing the filtration temperature or adding a reaction solvent may be added, and the system thickens during crystallization. In this case, a procedure such as adding a reaction solvent in advance after completion of the reaction may be added.

また、濾別した触媒は、繰り返し当該核水素化反応に供することができる。   The catalyst separated by filtration can be repeatedly used for the nuclear hydrogenation reaction.

かくして本発明の水素化芳香族ポリカルボン酸の製造方法により、簡単なプロセスで、且つ工業的に有利な方法で高純度の水素化芳香族ポリカルボン酸を製造することができる。
尚、上述の原料の芳香族ポリカルボン酸の含有量が極微量であるか或いは実質的に含有していないとは、ガスクロマトグラフィー法において原料の芳香族ポリカルボン酸の検出下限以下であることを意味する。
Thus, according to the method for producing a hydrogenated aromatic polycarboxylic acid of the present invention, a high-purity hydrogenated aromatic polycarboxylic acid can be produced by a simple process and an industrially advantageous method.
Note that the content of the aromatic polycarboxylic acid of the raw material described above is extremely small or substantially not contained is below the lower limit of detection of the aromatic polycarboxylic acid of the raw material in the gas chromatography method. Means.

以下、実施例及び比較例を挙げ、本発明を詳しく説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to these Examples.

[ガスクロマトグラフィー法による組成分析]
ガスクロマトグラフィー法(以下、GLC法という。)による組成分析を行った。
<前処理>
サンプルをジエチレングリコールジメチルエーテルに固形物濃度として6重量%となるように溶解させた。次に、その溶液をジアゾメタンでメチルエステル化してGLC用サンプルを調製した。尚、注入量は0.8μLである。
<GLC分析条件>
GLC分析装置;GC−17A(島津製作所(株)製)
キャピラリーカラム;CBP−10−25M−0.25(島津製作所(株)製)
インジェクション温度;250℃
検出器温度;250℃
カラム温度;140〜240℃,昇温速度;4℃/分
キャリアーガス;ヘリウム
キャリアガス圧力;130KPa
検出器;FID
[Composition analysis by gas chromatography]
Composition analysis was performed by gas chromatography (hereinafter referred to as GLC method).
<Pretreatment>
The sample was dissolved in diethylene glycol dimethyl ether to a solid concentration of 6% by weight. Next, the solution was methyl esterified with diazomethane to prepare a sample for GLC. The injection volume is 0.8 μL.
<GLC analysis conditions>
GLC analyzer; GC-17A (manufactured by Shimadzu Corporation)
Capillary column; CBP-10-25M-0.25 (manufactured by Shimadzu Corporation)
Injection temperature: 250 ° C
Detector temperature: 250 ° C
Column temperature: 140 to 240 ° C., temperature rising rate: 4 ° C./min carrier gas; helium carrier gas pressure; 130 KPa
Detector; FID

[転化率の計算方法]
上記GLC組成分析から得られる原料の芳香族ポリカルボン酸に相当するピーク面積比A(%)から、式(1)を用いて転化率を算出した。
転化率(%)=(100−A) (1)
[Conversion rate calculation method]
From the peak area ratio A (%) corresponding to the starting aromatic polycarboxylic acid obtained from the GLC composition analysis, the conversion rate was calculated using the formula (1).
Conversion rate (%) = (100−A) (1)

[選択率の計算方法]
上記転化率C(%)及び目的物の水素化芳香族ポリカルボン酸に相当するピーク面積比B(%)から、式(2)を用いて選択率を算出した。
選択率(%)=(B/C)×100 (2)
[Selection rate calculation method]
From the conversion C (%) and the peak area ratio B (%) corresponding to the target hydrogenated aromatic polycarboxylic acid, the selectivity was calculated using the formula (2).
Selectivity (%) = (B / C) × 100 (2)

[反応収率及び純度]
目的物の水素化芳香族ポリカルボン酸に相当するピーク面積比B(%)を、反応中間物の場合に反応収率(%)とし、乾燥物の場合に純度(面積%)とした。
[Reaction yield and purity]
The peak area ratio B (%) corresponding to the target hydrogenated aromatic polycarboxylic acid was defined as the reaction yield (%) in the case of the reaction intermediate, and the purity (area%) in the case of the dried product.

[収 率]
原料の芳香族ポリカルボン酸の仕込み重量D(g)を基準として、水素化、晶析、乾燥して得られた乾燥物の重量E(g)から、式(3)を用いて収率を算出した。
収率(重量%)=(E/D)×100 (3)
[yield]
From the weight E (g) of the dried product obtained by hydrogenation, crystallization, and drying, based on the charged weight D (g) of the aromatic polycarboxylic acid of the raw material, the yield is calculated using the formula (3). Calculated.
Yield (% by weight) = (E / D) × 100 (3)

[実施例1]
攪拌機、温度計、圧力計及び導入管を具備した500mLのSUS316−L製オ−トクレ−ブに、ピロメリット酸20g、イオン交換水80g及び担体の比表面積150m/gの5重量%ロジウム−γ−アルミナ担持触媒(エヌ・イ−ケムキャット社製)1.6g(ロジウム金属として0.4重量部)を仕込み、撹拌しながら系内を窒素ガスで2回、次いで水素ガスで5回置換した。置換後、水素分圧5MPaを保持しながら昇温し、反応温度60℃で1.5時間核水素化反応を行った。
反応液をオ−トクレ−ブから抜き出し、触媒を吸引濾過(濾紙;No.5C)して、無色透明の濾液を得た。この濾液(反応粗物)をGLC法で分析した。その分析結果(ピロメリット酸の転化率、1,2,4,5−シクロヘキサンテトラカルボン酸の選択率及び反応収率)を表2に示した。
次に、上記の濾液から反応溶媒を減圧留去(オイルバス温度;105℃)して50重量%まで濃縮した。次に、室温まで冷却した後、析出した固体を吸引濾過し、少量の冷水で濾過物を洗浄した。得られた固体を90℃、0.7KPaで10時間減圧乾燥して、1,2,4,5−シクロヘキサンテトラカルボン酸14.3g(収量71.5重量%)を得た。その乾燥物のGLC分析結果を表2に示した。
尚、表1には、実施例1並びに後述の実施例2〜17及び比較例1〜4の核水素化反応の反応条件を示した。
[Example 1]
A 500 mL autoclave made of SUS316-L equipped with a stirrer, a thermometer, a pressure gauge, and an introduction tube was mixed with 20 g of pyromellitic acid, 80 g of ion-exchanged water, and 5 wt% rhodium having a specific surface area of 150 m 2 / g of the carrier. 1.6 g of γ-alumina-supported catalyst (manufactured by N-Chemcat) (0.4 parts by weight as rhodium metal) was charged, and the system was replaced twice with nitrogen gas and then five times with hydrogen gas while stirring. . After the replacement, the temperature was raised while maintaining a hydrogen partial pressure of 5 MPa, and a nuclear hydrogenation reaction was carried out at a reaction temperature of 60 ° C. for 1.5 hours.
The reaction solution was extracted from the autoclave, and the catalyst was suction filtered (filter paper; No. 5C) to obtain a colorless and transparent filtrate. The filtrate (reaction crude) was analyzed by GLC method. The analysis results (pyromellitic acid conversion, selectivity of 1,2,4,5-cyclohexanetetracarboxylic acid and reaction yield) are shown in Table 2.
Next, the reaction solvent was distilled off from the above filtrate under reduced pressure (oil bath temperature; 105 ° C.) and concentrated to 50% by weight. Next, after cooling to room temperature, the precipitated solid was subjected to suction filtration, and the filtrate was washed with a small amount of cold water. The obtained solid was dried under reduced pressure at 90 ° C. and 0.7 KPa for 10 hours to obtain 14.3 g (yield 71.5 wt%) of 1,2,4,5-cyclohexanetetracarboxylic acid. The results of GLC analysis of the dried product are shown in Table 2.
Table 1 shows the reaction conditions for the nuclear hydrogenation reaction of Example 1 and Examples 2 to 17 and Comparative Examples 1 to 4 described later.

[実施例2]
ロジウム−γ−アルミナ担持触媒1.6gを1.2gに代え、反応時間1.5時間を2時間に変えた他は、実施例1と同様に行った。
実施例1と同様に反応粗物をGLC法で分析し、その結果を表2に示した。
又、実施例1と同様に後処理を行って、1,2,4,5−シクロヘキサンテトラカルボン酸14.2g(収量71重量%)を得た。その乾燥物のGLC分析結果を表2に示した。
[Example 2]
The same procedure as in Example 1 was conducted, except that 1.6 g of the rhodium-γ-alumina supported catalyst was changed to 1.2 g and the reaction time was changed to 1.5 hours.
The reaction crude was analyzed by the GLC method in the same manner as in Example 1, and the results are shown in Table 2.
Further, post-treatment was performed in the same manner as in Example 1 to obtain 14.2 g (yield 71 wt%) of 1,2,4,5-cyclohexanetetracarboxylic acid. The results of GLC analysis of the dried product are shown in Table 2.

[実施例3]
実施例2で濾別したロジウム−γ−アルミナ担持触媒を、直ちに当該オ−トクレ−ブにピロメリット酸20g及びイオン交換水80gと共に仕込み、実施例2と同様に核水素化反応を行った。その後、同様の操作を4回繰り返して、触媒のリサイクル実験を行った。
実施例1と同様に5回目の触媒リサイクルで得た反応粗物をGLC法で分析し、その結果を表2に示した。分析結果から、触媒の活性低下は殆ど認められなかった。
又、該反応粗物を実施例1と同様に後処理を行って、1,2,4,5−シクロヘキサンテトラカルボン酸14.1g(収量70.5重量%)を得た。その乾燥物のGLC分析結果を表2に示した。
[Example 3]
The rhodium-γ-alumina-supported catalyst separated by filtration in Example 2 was immediately charged into the autoclave together with 20 g of pyromellitic acid and 80 g of ion-exchanged water, and a nuclear hydrogenation reaction was carried out in the same manner as in Example 2. Thereafter, the same operation was repeated four times to conduct a catalyst recycling experiment.
The reaction crude obtained by the fifth catalyst recycling was analyzed by the GLC method in the same manner as in Example 1, and the results are shown in Table 2. From the analysis results, almost no decrease in the activity of the catalyst was observed.
The reaction crude was post-treated in the same manner as in Example 1 to obtain 14.1 g (yield 70.5% by weight) of 1,2,4,5-cyclohexanetetracarboxylic acid. The results of GLC analysis of the dried product are shown in Table 2.

[実施例4]
ピロメリット酸20gを30gに、イオン交換水80gを90gに、5重量%ロジウム−γ−アルミナ担持触媒1.2gを1.8gに、反応時間2時間を2.5時間に変えた他は、実施例2と同様に行った。
実施例1と同様に反応粗物をGLC法で分析し、その結果を表2に示した。
又、実施例1と同様に後処理を行って、1,2,4,5−シクロヘキサンテトラカルボン酸21.3g(収量71重量%)を得た。その乾燥物のGLC分析結果を表2に示した。
[Example 4]
Other than changing 20 g of pyromellitic acid to 30 g, 80 g of ion-exchanged water, 90 g of 5 wt% rhodium-γ-alumina supported catalyst to 1.8 g, and changing the reaction time from 2 hours to 2.5 hours, The same operation as in Example 2 was performed.
The reaction crude was analyzed by the GLC method in the same manner as in Example 1, and the results are shown in Table 2.
Further, post-treatment was performed in the same manner as in Example 1 to obtain 21.3 g of 1,2,4,5-cyclohexanetetracarboxylic acid (yield 71 wt%). The results of GLC analysis of the dried product are shown in Table 2.

[実施例5]
実施例4で濾別したロジウム−γ−アルミナ担持触媒を、直ちに当該オ−トクレ−ブにピロメリット酸30g及びイオン交換水90gと共に仕込み、実施例4と同様に核水素化反応を行った。その後、同様の操作を4回繰り返して、触媒のリサイクル実験を行った。
実施例1と同様に5回目の触媒リサイクルで得た反応粗物をGLC法で分析し、その結果を表2に示した。分析結果から、触媒の活性低下は殆ど認められなかった。
又、該反応粗物を実施例1と同様に後処理を行って、1,2,4,5−シクロヘキサンテトラカルボン酸21.3g(収量71重量%)を得た。その乾燥物のGLC分析結果を表2に示した。
[Example 5]
The rhodium-γ-alumina supported catalyst separated by filtration in Example 4 was immediately charged into the autoclave together with 30 g of pyromellitic acid and 90 g of ion-exchanged water, and a nuclear hydrogenation reaction was carried out in the same manner as in Example 4. Thereafter, the same operation was repeated four times to conduct a catalyst recycling experiment.
The reaction crude obtained by the fifth catalyst recycling was analyzed by the GLC method in the same manner as in Example 1, and the results are shown in Table 2. From the analysis results, almost no decrease in the activity of the catalyst was observed.
Further, the reaction crude was subjected to post-treatment in the same manner as in Example 1 to obtain 21.3 g of 1,2,4,5-cyclohexanetetracarboxylic acid (yield 71 wt%). The results of GLC analysis of the dried product are shown in Table 2.

[実施例6]
反応溶媒をイオン交換水を蒸留水に代え、反応温度60℃を50℃に、反応時間2時間を2.5時間に変えた他は、実施例2と同様に行った。
実施例1と同様に反応粗物をGLC法で分析し、その結果を表2に示した。又、実施例1と同様に後処理を行って、1,2,4,5−シクロヘキサンテトラカルボン酸14.2g(収量71重量%)を得た。その乾燥物のGLC分析結果を表2に示した。
[Example 6]
The reaction was carried out in the same manner as in Example 2 except that ion-exchanged water was replaced with distilled water, the reaction temperature was changed from 60 ° C. to 50 ° C., and the reaction time was changed from 2 hours to 2.5 hours.
The reaction crude was analyzed by the GLC method in the same manner as in Example 1, and the results are shown in Table 2. Further, post-treatment was performed in the same manner as in Example 1 to obtain 14.2 g (yield 71 wt%) of 1,2,4,5-cyclohexanetetracarboxylic acid. The results of GLC analysis of the dried product are shown in Table 2.

[実施例7]
ロジウム−γ−アルミナ担持触媒の担体の比表面積150m/gを100m/gに代えた他は、実施例2と同様に行った。
実施例1と同様に反応粗物をGLC法で分析し、その結果を表2に示した。又、実施例1と同様に後処理を行って、1,2,4,5−シクロヘキサンテトラカルボン酸14.0g(収量70重量%)を得た。その乾燥物のGLC分析結果を表2に示した。
[Example 7]
The same procedure as in Example 2 was performed, except that the specific surface area 150 m 2 / g of the carrier of the rhodium-γ-alumina supported catalyst was changed to 100 m 2 / g.
The reaction crude was analyzed by the GLC method in the same manner as in Example 1, and the results are shown in Table 2. Further, post-treatment was carried out in the same manner as in Example 1 to obtain 14.0 g (yield 70% by weight) of 1,2,4,5-cyclohexanetetracarboxylic acid. The results of GLC analysis of the dried product are shown in Table 2.

[実施例8]
ロジウム−γ−アルミナ担持触媒の担体の比表面積150m/gを300m/gに代えた他は、実施例2と同様に行った。
実施例1と同様に反応粗物をGLC法で分析し、その結果を表2に示した。又、実施例1と同様に後処理を行って、1,2,4,5−シクロヘキサンテトラカルボン酸13.9g(収量69.5重量%)を得た。その乾燥物のGLC分析結果を表2に示した。
[Example 8]
The same procedure as in Example 2 was conducted, except that the specific surface area 150 m 2 / g of the carrier of the rhodium-γ-alumina supported catalyst was changed to 300 m 2 / g.
The reaction crude was analyzed by the GLC method in the same manner as in Example 1, and the results are shown in Table 2. Further, post-treatment was performed in the same manner as in Example 1 to obtain 13.9 g (yield 69.5% by weight) of 1,2,4,5-cyclohexanetetracarboxylic acid. The results of GLC analysis of the dried product are shown in Table 2.

[実施例9]
先に、当該オートクレーブにロジウム−γ−アルミナ担持触媒1.2g及び水80gを入れ、系内を窒素ガスで2回、次いで水素ガスで5回置換した。置換後、水素分圧5MPa、処理温度60℃、処理時間1時間還元して活性化した。次に、ピロメリット酸20gを入れて、水素分圧5MPa、反応温度60℃で1.5時間核水素化反応を行った。
実施例1と同様に反応粗物をGLC法で分析し、その結果を表2に示した。その結果、反応時間が短縮された。
又、実施例1と同様に後処理を行って、1,2,4,5−シクロヘキサンテトラカルボン酸14.1g(収量70.5重量%)を得た。その乾燥物のGLC分析結果を表2に示した。
[Example 9]
First, 1.2 g of a rhodium-γ-alumina supported catalyst and 80 g of water were put into the autoclave, and the system was replaced twice with nitrogen gas and then five times with hydrogen gas. After the replacement, the catalyst was activated by reduction with a hydrogen partial pressure of 5 MPa, a treatment temperature of 60 ° C., and a treatment time of 1 hour. Next, 20 g of pyromellitic acid was added, and a nuclear hydrogenation reaction was performed at a hydrogen partial pressure of 5 MPa and a reaction temperature of 60 ° C. for 1.5 hours.
The reaction crude was analyzed by the GLC method in the same manner as in Example 1, and the results are shown in Table 2. As a result, the reaction time was shortened.
Further, post-treatment was performed in the same manner as in Example 1 to obtain 14.1 g (yield: 70.5% by weight) of 1,2,4,5-cyclohexanetetracarboxylic acid. The results of GLC analysis of the dried product are shown in Table 2.

[実施例10]
ピロメリット酸20gをトリメリット酸20gに代え、反応時間2時間を2.5時間に変えた他は、実施例2と同様に行った。
実施例1と同様に反応粗物をGLC法で分析し、その分析結果(トリメリット酸の転化率、1,2,4−シクロヘキサントリカルボン酸の選択率及び反応収率)を表2に示した。
又、実施例1と同様に後処理を行って、1,2,4−シクロヘキサントリカルボン酸14.0g(収量70重量%)を得た。その乾燥物のGLC分析結果を表2に示した。
[Example 10]
The same procedure as in Example 2 was performed except that 20 g of pyromellitic acid was replaced with 20 g of trimellitic acid and the reaction time was changed from 2 hours to 2.5 hours.
The reaction crude was analyzed by the GLC method in the same manner as in Example 1, and the analysis results (conversion rate of trimellitic acid, selectivity of 1,2,4-cyclohexanetricarboxylic acid and reaction yield) are shown in Table 2. .
Further, post-treatment was performed in the same manner as in Example 1 to obtain 14.0 g of 1,2,4-cyclohexanetricarboxylic acid (yield 70% by weight). The results of GLC analysis of the dried product are shown in Table 2.

[実施例11]
実施例10で濾別したロジウム−γ−アルミナ担持触媒を、直ちに当該オ−トクレ−ブにピロメリット酸20g及びイオン交換水80gと共に仕込み、実施例10と同様に核水素化反応を行った。その後、同様の操作を4回繰り返して、触媒のリサイクル実験を行った。
実施例1と同様に5回目の触媒リサイクルで得た反応粗物をGLC法で分析し、その結果を表2に示した。分析結果から、触媒の活性低下は殆ど認められなかった。
又、該反応粗物を実施例1と同様に後処理を行って、1,2,4−シクロヘキサントリカルボン酸14.1g(収量70.5重量%)を得た。その乾燥物のGLC分析結果を表2に示した。
[Example 11]
The rhodium-γ-alumina supported catalyst separated by filtration in Example 10 was immediately charged into the autoclave together with 20 g of pyromellitic acid and 80 g of ion-exchanged water, and a nuclear hydrogenation reaction was carried out in the same manner as in Example 10. Thereafter, the same operation was repeated four times to conduct a catalyst recycling experiment.
The reaction crude obtained by the fifth catalyst recycling was analyzed by the GLC method in the same manner as in Example 1, and the results are shown in Table 2. From the analysis results, almost no decrease in the activity of the catalyst was observed.
Further, the reaction crude was subjected to post-treatment in the same manner as in Example 1 to obtain 14.1 g (yield 70.5% by weight) of 1,2,4-cyclohexanetricarboxylic acid. The results of GLC analysis of the dried product are shown in Table 2.

[実施例12]
ロジウム−γ−アルミナ担持触媒の担体の比表面積150m/gを100m/gに代えた他は、実施例10と同様に行った。
実施例1と同様に反応粗物をGLC法で分析し、その結果を表2に示した。
又、実施例1と同様に後処理を行って、1,2,4−シクロヘキサントリカルボン酸13.9g(収量69.5重量%)得た。その乾燥物のGLC分析結果を表2に示した。
[Example 12]
The same procedure as in Example 10 was performed except that the specific surface area 150 m 2 / g of the carrier of the rhodium-γ-alumina supported catalyst was changed to 100 m 2 / g.
The reaction crude was analyzed by the GLC method in the same manner as in Example 1, and the results are shown in Table 2.
Further, post-treatment was performed in the same manner as in Example 1 to obtain 13.9 g (yield: 69.5% by weight) of 1,2,4-cyclohexanetricarboxylic acid. The results of GLC analysis of the dried product are shown in Table 2.

[実施例13]
ロジウム−γ−アルミナ担持触媒の担体の比表面積150m/gを300m/gに代えた他は、実施例10と同様に行った。
実施例1と同様に反応粗物をGLC法で分析し、その結果を表2に示した。
又、実施例1と同様に後処理を行って、1,2,4−シクロヘキサントリカルボン酸13.8g(収量69重量%)を得た。その乾燥物のGLC分析結果を表2に示した。
[実施例14]
ピロメリット酸20gをトリメシン酸20gに代え、反応時間2時間を1時間に変えた他は、実施例2と同様に行った。
実施例1と同様に反応粗物をGLC法で分析し、その分析結果(トリメシン酸の転化率、1,3,5−シクロヘキサントリカルボン酸の選択率及び反応収率)を表2に示した。
又、実施例1と同様に後処理を行って、1,3,5−シクロヘキサントリカルボン酸14.2g(収量71重量%)を得た。その乾燥物のGLC分析結果を表2に示した。
[Example 13]
The same procedure as in Example 10 was performed, except that the specific surface area of 150 m 2 / g of the rhodium-γ-alumina supported catalyst support was changed to 300 m 2 / g.
The reaction crude was analyzed by the GLC method in the same manner as in Example 1, and the results are shown in Table 2.
Further, post-treatment was performed in the same manner as in Example 1 to obtain 13.8 g of 1,2,4-cyclohexanetricarboxylic acid (yield 69 wt%). The results of GLC analysis of the dried product are shown in Table 2.
[Example 14]
The same procedure as in Example 2 was performed except that 20 g of pyromellitic acid was replaced with 20 g of trimesic acid and the reaction time was changed from 2 hours to 1 hour.
The reaction crude was analyzed by the GLC method in the same manner as in Example 1. The analysis results (conversion rate of trimesic acid, selectivity of 1,3,5-cyclohexanetricarboxylic acid and reaction yield) are shown in Table 2.
Further, post-treatment was performed in the same manner as in Example 1 to obtain 14.3 g (yield 71 wt%) of 1,3,5-cyclohexanetricarboxylic acid. The results of GLC analysis of the dried product are shown in Table 2.

[実施例15]
実施例14で濾別したロジウム−γ−アルミナ担持触媒を、直ちに当該オ−トクレ−ブにピロメリット酸20g及びイオン交換水80gと共に仕込み、実施例14と同様に核水素化反応を行った。その後、同様の操作を4回繰り返して、触媒のリサイクル実験を行った。
実施例1と同様に5回目の触媒リサイクルで得た反応粗物をGLC法で分析し、その結果を表2に示した。分析結果から、触媒の活性低下は殆ど認められなかった。
又、該反応粗物を実施例1と同様に後処理を行って、1,3,5−シクロヘキサントリカルボン酸14.1g(収量70.5重量%)を得た。その乾燥物のGLC分析結果を表2に示した。
[Example 15]
The rhodium-γ-alumina supported catalyst separated by filtration in Example 14 was immediately charged into the autoclave together with 20 g of pyromellitic acid and 80 g of ion-exchanged water, and a nuclear hydrogenation reaction was carried out in the same manner as in Example 14. Thereafter, the same operation was repeated four times to conduct a catalyst recycling experiment.
The reaction crude obtained by the fifth catalyst recycling was analyzed by the GLC method in the same manner as in Example 1, and the results are shown in Table 2. From the analysis results, almost no decrease in the activity of the catalyst was observed.
Further, the reaction crude was subjected to post-treatment in the same manner as in Example 1 to obtain 14.1 g (yield 70.5% by weight) of 1,3,5-cyclohexanetricarboxylic acid. The results of GLC analysis of the dried product are shown in Table 2.

[実施例16]
ロジウム−γ−アルミナ担持触媒の担体の比表面積150m/gを100m/gに代えた他は、実施例14と同様に行った。
実施例1と同様に反応粗物をGLC法で分析し、その結果を表2に示した。
又、実施例1と同様に後処理を行って、1,3,5−シクロヘキサントリカルボン酸14.0g(収量70重量%)を得た。その乾燥物のGLC分析結果を表2に示した。
[Example 16]
The same procedure as in Example 14 was performed, except that the specific surface area of 150 m 2 / g of the carrier of the rhodium-γ-alumina supported catalyst was changed to 100 m 2 / g.
The reaction crude was analyzed by the GLC method in the same manner as in Example 1, and the results are shown in Table 2.
Further, post-treatment was performed in the same manner as in Example 1 to obtain 14.0 g of 1,3,5-cyclohexanetricarboxylic acid (yield 70 wt%). The results of GLC analysis of the dried product are shown in Table 2.

[実施例17]
ロジウム−γ−アルミナ担持触媒の担体の比表面積150m/gを300m/gに代えた他は、実施例14と同様に行った。
実施例1と同様に反応粗物をGLC法で分析し、その結果を表2に示した。
又、実施例1と同様に後処理を行って、1,3,5−シクロヘキサントリカルボン酸14.0g(収量70重量%)を得た。その乾燥物のGLC分析結果を表2に示した。
[Example 17]
The same procedure as in Example 14 was performed, except that the specific surface area of 150 m 2 / g of the carrier of the rhodium-γ-alumina supported catalyst was changed to 300 m 2 / g.
The reaction crude was analyzed by the GLC method in the same manner as in Example 1, and the results are shown in Table 2.
Further, post-treatment was performed in the same manner as in Example 1 to obtain 14.0 g of 1,3,5-cyclohexanetricarboxylic acid (yield 70 wt%). The results of GLC analysis of the dried product are shown in Table 2.

[比較例1]
比表面積150m/gのロジウム−γ−アルミナ担持触媒を、比表面積794m/gのカーボン担体にロジウム金属を担持した触媒(以下、ロジウム−カーボン担持触媒という。エヌ・イ−ケムキャット社製)に代えた他は、実施例1と同様に行った。
実施例1と同様に反応粗物をGLC法で分析し、その結果を表2に示した。
又、実施例1と同様に後処理を行って、1,2,4,5−シクロヘキサンテトラカルボン酸13.4g(収量67重量%)を得た。その乾燥物のGLC分析結果を表2に示した。
[Comparative Example 1]
A rhodium-γ-alumina supported catalyst having a specific surface area of 150 m 2 / g is a catalyst in which a rhodium metal is supported on a carbon support having a specific surface area of 794 m 2 / g (hereinafter referred to as a rhodium-carbon supported catalyst; manufactured by N.I. Catcat). The procedure was the same as in Example 1 except that was replaced.
The reaction crude was analyzed by the GLC method in the same manner as in Example 1, and the results are shown in Table 2.
Further, post-treatment was performed in the same manner as in Example 1 to obtain 13.4 g of 1,2,4,5-cyclohexanetetracarboxylic acid (yield: 67% by weight). The results of GLC analysis of the dried product are shown in Table 2.

[比較例2]
ロジウム−カーボン担持触媒1.6gを2.0gに、反応時間1.5時間を2時間に変えた他は、比較例1と同様に行った。
実施例1と同様に反応粗物をGLC法で分析し、その結果を表2に示した。
又、実施例1と同様に後処理を行って、1,2,4,5−シクロヘキサンテトラカルボン酸13.6g(収量68重量%)を得た。その乾燥物のGLC分析結果を表2に示した。
[Comparative Example 2]
The same procedure as in Comparative Example 1 was conducted except that 1.6 g of the rhodium-carbon supported catalyst was changed to 2.0 g and the reaction time was changed from 1.5 hours to 2 hours.
The reaction crude was analyzed by the GLC method in the same manner as in Example 1, and the results are shown in Table 2.
Further, post-treatment was performed in the same manner as in Example 1 to obtain 13.6 g of 1,2,4,5-cyclohexanetetracarboxylic acid (yield: 68% by weight). The results of GLC analysis of the dried product are shown in Table 2.

[比較例3]
比較例2で濾別したロジウム−カーボン担持触媒を、直ちに当該オ−トクレ−ブにピロメリット酸20g及びイオン交換水80gと共に仕込み、比較例2と同様に核水素化反応を行った。
実施例1と同様に反応粗物をGLC法で分析し、その結果を表2に示した。分析結果から、再使用1回にもかかわらず触媒の活性低下が認められた。
又、実施例1と同様に後処理を行って、1,2,4,5−シクロヘキサンテトラカルボン酸13.5g(収量67.5重量%)を得た。その乾燥物のGLC分析結果を表2に示した。
[Comparative Example 3]
The rhodium-carbon supported catalyst separated by filtration in Comparative Example 2 was immediately charged into the autoclave together with 20 g of pyromellitic acid and 80 g of ion-exchanged water, and a nuclear hydrogenation reaction was carried out in the same manner as in Comparative Example 2.
The reaction crude was analyzed by the GLC method in the same manner as in Example 1, and the results are shown in Table 2. From the analysis results, a decrease in the activity of the catalyst was observed despite one reuse.
Further, post-treatment was performed in the same manner as in Example 1 to obtain 13.5 g of 1,2,4,5-cyclohexanetetracarboxylic acid (yield 67.5 wt%). The results of GLC analysis of the dried product are shown in Table 2.

[比較例4]
比表面積150m/gのロジウム−γ−アルミナ担持触媒を、比表面積101m/gのチタニア担体にロジウム金属を担持した触媒(エヌ・イ−ケムキャット社製)に代えた他は、実施例2と同様に行った。
実施例1と同様に反応粗物をGLC法で分析し、その結果を表2に示した。
又、実施例1と同様に後処理を行って、1,2,4,5−シクロヘキサンテトラカルボン酸12.9g(収量64.5重量%)得た。その乾燥物のGLC分析結果を表2に示した。
[Comparative Example 4]
Example 2 except that the rhodium-γ-alumina supported catalyst having a specific surface area of 150 m 2 / g was replaced with a catalyst (manufactured by N.I. Chemcat) having a rhodium metal supported on a titania support having a specific surface area of 101 m 2 / g. As well as.
The reaction crude was analyzed by the GLC method in the same manner as in Example 1, and the results are shown in Table 2.
Further, post-treatment was performed in the same manner as in Example 1 to obtain 12.9 g (yield 64.5% by weight) of 1,2,4,5-cyclohexanetetracarboxylic acid. The results of GLC analysis of the dried product are shown in Table 2.

Figure 2006083080
Figure 2006083080

Figure 2006083080
Figure 2006083080

本発明の製造方法により、水素化芳香族ポリカルボン酸が高収率で高純度の水素化芳香族ポリカルボン酸を工業的に得ることができる。
又、本発明の製造方法により得られた水素化芳香族ポリカルボン酸は、原料の芳香族ポリカルボン酸が極微量であるか或いは実質的に含有していないので、非常に高い透明性を必要とする高機能性ポリイミドや高機能性エポキシ樹脂の原材料として有用である。
By the production method of the present invention, a hydrogenated aromatic polycarboxylic acid having a high yield and high purity can be industrially obtained.
In addition, the hydrogenated aromatic polycarboxylic acid obtained by the production method of the present invention requires very high transparency because the raw material aromatic polycarboxylic acid is a trace amount or does not substantially contain. It is useful as a raw material for high-functional polyimide and high-functional epoxy resin.

Claims (8)

触媒及び反応溶媒の存在下、芳香族ポリカルボン酸を核水素化反応して水素化芳香族ポリカルボン酸を製造する方法において、該触媒がγ−アルミナ担体にロジウム金属を担持して得られるロジウム−γ−アルミナ担持触媒であって、該担体の比表面積が50〜450m/gであり、且つ該触媒中のロジウム金属の量が芳香族ポリカルボン酸100重量部に対して0.25重量部以上0.5重量部未満の割合であることを特徴とする水素化芳香族ポリカルボン酸の製造方法。 Rhodium obtained by supporting a rhodium metal on a γ-alumina support in a process for producing a hydrogenated aromatic polycarboxylic acid by nuclear hydrogenation reaction of an aromatic polycarboxylic acid in the presence of a catalyst and a reaction solvent -Γ-alumina supported catalyst, wherein the support has a specific surface area of 50 to 450 m 2 / g, and the amount of rhodium metal in the catalyst is 0.25 weight with respect to 100 parts by weight of the aromatic polycarboxylic acid. A method for producing a hydrogenated aromatic polycarboxylic acid, characterized in that the proportion is at least 0.5 parts by weight. 上記触媒が水素で活性化された触媒である請求項1に記載の水素化芳香族ポリカルボン酸の製造方法。   The method for producing a hydrogenated aromatic polycarboxylic acid according to claim 1, wherein the catalyst is a catalyst activated with hydrogen. 上記反応溶媒が水である請求項1又は請求項2に記載の水素化芳香族ポリカルボン酸の製造方法。   The method for producing a hydrogenated aromatic polycarboxylic acid according to claim 1 or 2, wherein the reaction solvent is water. 核水素化反応の反応温度が40〜90℃である請求項1〜3の何れかに記載の水素化芳香族ポリカルボン酸の製造方法。   The method for producing a hydrogenated aromatic polycarboxylic acid according to any one of claims 1 to 3, wherein the reaction temperature of the nuclear hydrogenation reaction is 40 to 90 ° C. 核水素化反応の水素分圧が2〜20MPaである請求項1〜4の何れかに記載の水素化芳香族ポリカルボン酸の製造方法。   The method for producing a hydrogenated aromatic polycarboxylic acid according to any one of claims 1 to 4, wherein the hydrogen partial pressure of the nuclear hydrogenation reaction is 2 to 20 MPa. 芳香族ポリカルボン酸の基質濃度が、芳香族ポリカルボン酸と反応溶媒との合計重量に対して、5〜40重量%である請求項1〜5の何れかに記載の水素化芳香族ポリカルボン酸の製造方法。   The hydrogenated aromatic polycarboxylic acid according to any one of claims 1 to 5, wherein the substrate concentration of the aromatic polycarboxylic acid is 5 to 40% by weight based on the total weight of the aromatic polycarboxylic acid and the reaction solvent. Acid production method. 芳香族ポリカルボン酸が、ピロメリット酸、トリメリット酸又はトリメシン酸である請求項1〜6の何れかに記載の水素化芳香族ポリカルボン酸の製造方法。   The method for producing a hydrogenated aromatic polycarboxylic acid according to any one of claims 1 to 6, wherein the aromatic polycarboxylic acid is pyromellitic acid, trimellitic acid or trimesic acid. 請求項1〜7の何れかに記載の製造方法で得られる、原料の芳香族ポリカルボン酸の含有量が0.05重量%以下である水素化芳香族ポリカルボン酸。
A hydrogenated aromatic polycarboxylic acid obtained by the production method according to claim 1, wherein the content of the raw material aromatic polycarboxylic acid is 0.05% by weight or less.
JP2004268101A 2004-09-15 2004-09-15 Process for producing hydrogenated aromatic polycarboxylic acid Active JP4622406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004268101A JP4622406B2 (en) 2004-09-15 2004-09-15 Process for producing hydrogenated aromatic polycarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004268101A JP4622406B2 (en) 2004-09-15 2004-09-15 Process for producing hydrogenated aromatic polycarboxylic acid

Publications (2)

Publication Number Publication Date
JP2006083080A true JP2006083080A (en) 2006-03-30
JP4622406B2 JP4622406B2 (en) 2011-02-02

Family

ID=36161887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004268101A Active JP4622406B2 (en) 2004-09-15 2004-09-15 Process for producing hydrogenated aromatic polycarboxylic acid

Country Status (1)

Country Link
JP (1) JP4622406B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124313A (en) * 2004-10-28 2006-05-18 Nippon Steel Chem Co Ltd Method for producing alicyclic polycarboxylic acid and anhydride of the same
WO2007063974A1 (en) * 2005-12-02 2007-06-07 Nagoya Industrial Science Research Institute Process for hydrogenating aromatic ring of aromatic ring compound
JP2008063263A (en) * 2006-09-06 2008-03-21 Mitsubishi Gas Chem Co Inc Method for producing hydrogenated aromatic carboxylic acid
WO2010010869A1 (en) 2008-07-23 2010-01-28 三菱瓦斯化学株式会社 Process for producing hydrogenated aromatic polycarboxylic acid
TWI421240B (en) * 2011-12-12 2014-01-01 Ind Tech Res Inst Process for hydrogenation of polycarboxylic acids or derivatives thereof
JP2014181199A (en) * 2013-03-19 2014-09-29 Mitsubishi Gas Chemical Co Inc Method for manufacturing alicyclic carboxylic acid
WO2018180854A1 (en) * 2017-03-29 2018-10-04 三菱瓦斯化学株式会社 Method for producing 1,2,4,5-cyclohexanetetracarboxylic dianhydride
CN115894512A (en) * 2022-12-21 2023-04-04 大连奇凯医药科技有限公司 Synthesis and detection method of 1,2,4,5-cyclohexanetetracarboxylic dianhydride
JP7478270B2 (en) 2022-08-15 2024-05-02 中國石油化學工業開發股▲分▼有限公司 Method for purifying 1,2,4,5-cyclohexanetetracarboxylic acid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2682380B1 (en) 2011-03-01 2018-07-04 Mitsubishi Gas Chemical Company, Inc. Method for producing alicyclic carboxylic acid and catalyst used in same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010311B1 (en) * 1970-02-06 1975-04-19
JPS61191635A (en) * 1985-02-02 1986-08-26 Agency Of Ind Science & Technol Production of ethanol
JPH072702A (en) * 1993-05-06 1995-01-06 Inst Fr Petrole Method for catalytic hydrogenation
JPH07216366A (en) * 1993-12-29 1995-08-15 Inst Fr Petrole Method of reducing benzene content of gasoline
JPH10137587A (en) * 1996-11-11 1998-05-26 Cosmo Sogo Kenkyusho:Kk Production of noble metal catalyst on carrier
JP2003286222A (en) * 2001-12-28 2003-10-10 Mitsubishi Gas Chem Co Inc Method for producing hydrogenated aromatic polycarboxylic acid and method for producing hydrogenated aromatic polycarboxylic anhydride

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010311B1 (en) * 1970-02-06 1975-04-19
JPS61191635A (en) * 1985-02-02 1986-08-26 Agency Of Ind Science & Technol Production of ethanol
JPH072702A (en) * 1993-05-06 1995-01-06 Inst Fr Petrole Method for catalytic hydrogenation
JPH07216366A (en) * 1993-12-29 1995-08-15 Inst Fr Petrole Method of reducing benzene content of gasoline
JPH10137587A (en) * 1996-11-11 1998-05-26 Cosmo Sogo Kenkyusho:Kk Production of noble metal catalyst on carrier
JP2003286222A (en) * 2001-12-28 2003-10-10 Mitsubishi Gas Chem Co Inc Method for producing hydrogenated aromatic polycarboxylic acid and method for producing hydrogenated aromatic polycarboxylic anhydride

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124313A (en) * 2004-10-28 2006-05-18 Nippon Steel Chem Co Ltd Method for producing alicyclic polycarboxylic acid and anhydride of the same
WO2007063974A1 (en) * 2005-12-02 2007-06-07 Nagoya Industrial Science Research Institute Process for hydrogenating aromatic ring of aromatic ring compound
JPWO2007063974A1 (en) * 2005-12-02 2009-05-07 財団法人名古屋産業科学研究所 Method for adding hydrogen to aromatic ring of aromatic ring compound
JP2008063263A (en) * 2006-09-06 2008-03-21 Mitsubishi Gas Chem Co Inc Method for producing hydrogenated aromatic carboxylic acid
US8846973B2 (en) 2008-07-23 2014-09-30 Mitsubishi Gas Chemical Company, Inc. Process for producing hydrogenated aromatic polycarboxylic acid
WO2010010869A1 (en) 2008-07-23 2010-01-28 三菱瓦斯化学株式会社 Process for producing hydrogenated aromatic polycarboxylic acid
TWI421240B (en) * 2011-12-12 2014-01-01 Ind Tech Res Inst Process for hydrogenation of polycarboxylic acids or derivatives thereof
US8722922B2 (en) 2011-12-12 2014-05-13 Industrial Technology Research Institute Process for hydrogenation of polycarboxylic acids or derivatives therof
JP2014181199A (en) * 2013-03-19 2014-09-29 Mitsubishi Gas Chemical Co Inc Method for manufacturing alicyclic carboxylic acid
KR20190136000A (en) * 2017-03-29 2019-12-09 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Method for preparing 1,2,4,5-cyclohexanetetracarboxylic dianhydride
CN110461851A (en) * 2017-03-29 2019-11-15 三菱瓦斯化学株式会社 The manufacturing method of 1,2,4,5- cyclopentanetetracarboxylic's dianhydride
WO2018180854A1 (en) * 2017-03-29 2018-10-04 三菱瓦斯化学株式会社 Method for producing 1,2,4,5-cyclohexanetetracarboxylic dianhydride
JPWO2018180854A1 (en) * 2017-03-29 2020-02-06 三菱瓦斯化学株式会社 Method for producing 1,2,4,5-cyclohexanetetracarboxylic dianhydride
US11174269B2 (en) 2017-03-29 2021-11-16 Mitsubishi Gas Chemical Company, Inc. Method for producing 1,2,4,5-cyclohexanetetracarboxylic dianhydride
JP7196835B2 (en) 2017-03-29 2022-12-27 三菱瓦斯化学株式会社 Method for producing 1,2,4,5-cyclohexanetetracarboxylic dianhydride
KR102609305B1 (en) * 2017-03-29 2023-12-05 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Method for producing 1,2,4,5-cyclohexanetetracarboxylic dianhydride
JP7478270B2 (en) 2022-08-15 2024-05-02 中國石油化學工業開發股▲分▼有限公司 Method for purifying 1,2,4,5-cyclohexanetetracarboxylic acid
CN115894512A (en) * 2022-12-21 2023-04-04 大连奇凯医药科技有限公司 Synthesis and detection method of 1,2,4,5-cyclohexanetetracarboxylic dianhydride

Also Published As

Publication number Publication date
JP4622406B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
EP1323700B1 (en) process for producing hydrogenated aromatic polycarboxylic acid and process for producing hydrogenated aromatic polycarboxylic anhydride
JP5594140B2 (en) Method for producing hydride of aromatic polycarboxylic acid
US7547803B2 (en) Process for producing a high purity aromatic polycarboxylic acid
JP4622406B2 (en) Process for producing hydrogenated aromatic polycarboxylic acid
WO2019046412A1 (en) System and method for producing 1,4-cyclohexanedimethanol and 1,4-cyclohexanedicarboxylic acid from terephthalic acid
JP5239140B2 (en) Process for producing hydrogenated aromatic carboxylic acid
JP2006124313A (en) Method for producing alicyclic polycarboxylic acid and anhydride of the same
KR20220111955A (en) Method for purifying 1, 4-cyclohexanedimethanol composition
JP4720112B2 (en) Method for producing high purity aromatic polycarboxylic acid
JP6372765B2 (en) Process for producing bis (2-hydroxyethyl) 1,4-cyclohexanedicarboxylate
JPH0782211A (en) Production of alicyclic carboxylic acid
KR101083973B1 (en) Process for preparing hexahydrophthalic acid anhydride
JPS623139B2 (en)
JPH0827067A (en) Production of dimethyl 2,6-decahydronaphthalenedicarboxylate
JP2000226358A (en) Production of high purity dimethyl cis-2,6- decahydronaphthalenedicarboxylate
JP2004339177A (en) Method for producing bicyclo[2.2.2]octane-2,3,5,6-tetracarboxylic acid dianhydride
JP2001031622A (en) Production of decahydronaphthalenedicarboxylic acid
JP2014070036A (en) Method of producing 1,8-tetralin dicarboxylic anhydride
JP2014189496A (en) Method of producing bis(hydroxymethyl) cyclic aliphatic hydrocarbon compound
JP2000327608A (en) PRODUCTION OF HIGH-PURITY trans-2,6- DECAHYDRONAPHTHALENEDIMETHANOL
JP2000226359A (en) Production of high purity dimethyl trans-2,6- decahydronaphthalenedicarboxylate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Ref document number: 4622406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250