JPH0827067A - Production of dimethyl 2,6-decahydronaphthalenedicarboxylate - Google Patents

Production of dimethyl 2,6-decahydronaphthalenedicarboxylate

Info

Publication number
JPH0827067A
JPH0827067A JP6165125A JP16512594A JPH0827067A JP H0827067 A JPH0827067 A JP H0827067A JP 6165125 A JP6165125 A JP 6165125A JP 16512594 A JP16512594 A JP 16512594A JP H0827067 A JPH0827067 A JP H0827067A
Authority
JP
Japan
Prior art keywords
pressure
solvent
dimethyl
catalyst
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6165125A
Other languages
Japanese (ja)
Inventor
Kozo Toida
幸三 樋田
Mitsuhito Aoyanagi
三仁 青柳
Kazuhiro Sato
和広 佐藤
Koji Sumitani
浩二 隅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP6165125A priority Critical patent/JPH0827067A/en
Publication of JPH0827067A publication Critical patent/JPH0827067A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the subject compound by hydrogenation of dimethyl naphthalenedicarboxylate under relatively mild conditions. CONSTITUTION:This compound, dimethyl 2,6-decahydronaphthalenedicarboxylate, is obtained by hydrogenation of dimethyl 2,6-naphthalenedicarboxylate in a lower fatty acid ester plus saturated hydrocarbon as solvent in the presence of a palladium and/or rhodium reducing catalyst at 80-200 deg.C under a pressure of normal pressure to 30kg/cm<2>G.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】 本発明は、2,6−ナフタレン
ジカルボン酸ジメチルエステル(以後NDCEと略す
る)を水素化し、芳香環を完全に水素化した2,6−デ
カヒドロナフタレンジカルボン酸ジメチルエステル(以
後DDCEと略す)を穏和な条件で収率良く合成する技
術に関する。
TECHNICAL FIELD The present invention relates to 2,6-decahydronaphthalenedicarboxylic acid dimethyl ester obtained by hydrogenating 2,6-naphthalenedicarboxylic acid dimethyl ester (hereinafter abbreviated as NDCE) to completely hydrogenate an aromatic ring. The present invention relates to a technique for synthesizing (hereinafter abbreviated as DDCE) under mild conditions with high yield.

【0002】[0002]

【発明の背景】 NDCEを原料とするポリアルキルナ
フタレンジカルボキシレート、とりわけポリエチレン−
2,6−ナフタレンジカルボキシレートは、ポリエチレ
ンテレフタレートと比べて耐熱性、機械的特性、ガスバ
リヤー性に優れており、繊維、フィルム、ボトル及び工
業用樹脂の高機能性材料として利用されている。
BACKGROUND OF THE INVENTION Polyalkylnaphthalene dicarboxylates derived from NDCE, especially polyethylene-
2,6-naphthalenedicarboxylate is superior to polyethylene terephthalate in heat resistance, mechanical properties and gas barrier properties, and is used as a highly functional material for fibers, films, bottles and industrial resins.

【0003】しかしながら、そのガラス転移点が高いた
めに例えばボトル等の成形加工条件の設定が難しい。ま
た、ボトル成形時における蛍光の発色も問題点となって
いる。その点を解決するために、DDCEがポリマー原
料又はポリエチレン−2,6−ナフタレンジカルボキシ
レートの改質剤として注目されている。本発明はこのD
DCEを製造する方法に関するものである。
However, because of its high glass transition point, it is difficult to set molding conditions for bottles and the like. In addition, fluorescent coloration during bottle molding is also a problem. In order to solve this problem, DDCE has attracted attention as a polymer raw material or a modifier for polyethylene-2,6-naphthalene dicarboxylate. The present invention is this D
The present invention relates to a method of manufacturing DCE.

【0004】[0004]

【従来技術及び解決すべき課題】 このDDCEを製造
する方法としては、既に次の2手段が知られている。ま
ず、米国特許3534002号明細書に報告されている
方法は、シクロヘキサン溶媒中、0〜200℃(好まし
くは150℃)でNDCEを35〜700Kg/cm2
G(好ましくは80〜140Kg/cm2G)の水素と
反応させる。他の1つの報告も同じようにシクロヘキサ
ン溶媒中で150℃で約120Kg/cm2Gの水素を
用いる(英国特許1024481号明細書)。何れの方
法でもかなり高圧の水素を使用するだけでなく、用いる
ことのできる希釈剤が狭く限定されているため、高圧下
の水素の取扱いの危険性が無視できない。さらに、耐圧
反応容器並びに高圧用水素ブースターが必要になるなど
運転費用、設備費用が大きくなり効率的な方法とは言え
ない。
2. Description of the Related Art As a method of manufacturing this DDCE, the following two means are already known. First, the method reported in US Pat. No. 3,534,002 uses NDCE of 35 to 700 Kg / cm 2 at 0 to 200 ° C. (preferably 150 ° C.) in a cyclohexane solvent.
It is reacted with G (preferably 80 to 140 Kg / cm 2 G) of hydrogen. Another report likewise uses about 120 Kg / cm 2 G of hydrogen at 150 ° C. in cyclohexane solvent (GB 1024481). Not only is hydrogen used at a considerably high pressure in any of the methods, but also the diluents that can be used are narrowly limited, and therefore the danger of handling hydrogen under high pressure cannot be ignored. In addition, a pressure-resistant reactor and a high-pressure hydrogen booster are required, which increases operating costs and equipment costs, and is not an efficient method.

【0005】[0005]

【課題を解決するための手段】 一般的に水添反応では
アルコール溶媒を使用して、パラジウムや、ルテニウム
を触媒に用いると、ナフタレン環をテトラリン環に水素
化する反応に対しては比較的低い水素圧で充分反応する
が、さらに水素化させて目的のデカリンまで反応させよ
うとすると、触媒活性が低いために高温・高圧の条件で
も高収率でデカリンを得ることは艱難である。
[Means for Solving the Problems] Generally, when an alcohol solvent is used in a hydrogenation reaction and palladium or ruthenium is used as a catalyst, it is relatively low in the reaction of hydrogenating a naphthalene ring to a tetralin ring. Although it reacts sufficiently under hydrogen pressure, it is difficult to obtain decalin in high yield even under conditions of high temperature and high pressure when the hydrogenation is further carried out so that the target decalin is reacted.

【0006】本発明者は、これらの課題を解決するため
に鋭意検討した結果、溶媒として低級脂肪酸エステル及
び飽和炭化水素類を用いることにより、従来の触媒でも
比較的低圧条件下でDDCEを合成することが可能であ
ることを見いだし、本件発明に達し課題を解決するに至
った。
The present inventor has conducted extensive studies in order to solve these problems, and as a result, by using lower fatty acid esters and saturated hydrocarbons as solvents, DDCE is synthesized under relatively low pressure conditions even with conventional catalysts. It was found that this was possible, and the present invention was reached and the problem was solved.

【0007】即ち、本発明はパラジウム及び、ロジウム
からなる群から選ばれる少なくとも1種の触媒の存在下
に、2,6−ナフタレンジカルボン酸ジメチルエステル
に対して、低級脂肪酸エステル及び飽和炭化水素を溶媒
に用いて、80〜200℃の温度範囲、常圧〜30Kg
/cm2Gの圧力下で水素を作用させることからなる
2,6−デカヒドロナフタレンジカルボン酸ジメチルエ
ステルの製造法である。
That is, according to the present invention, a lower fatty acid ester and a saturated hydrocarbon are used as a solvent for 2,6-naphthalenedicarboxylic acid dimethyl ester in the presence of at least one catalyst selected from the group consisting of palladium and rhodium. Used in the temperature range of 80-200 ℃, normal pressure-30Kg
A process for producing 2,6-decahydronaphthalenedicarboxylic acid dimethyl ester, which comprises reacting hydrogen under a pressure of / cm 2 G.

【0008】本発明を以下に説明する。The present invention will be described below.

【0009】本発明に用いる触媒パラジウム及び/又は
ロジウムを支持する担体は、一般的に用いられる活性
炭、ケイソウ土、アルミナ及びゼオライトなどであり、
担体としてはなんら限定されていないが、比較的表面積
の大きい活性炭が好ましいものである。
The carrier for supporting the catalyst palladium and / or rhodium used in the present invention is generally used activated carbon, diatomaceous earth, alumina, zeolite, etc.,
The carrier is not particularly limited, but activated carbon having a relatively large surface area is preferable.

【0010】本発明に於いてNDCEを水素化させる際
の反応温度は、反応を完全に進行させるために高い方が
好ましいが、80〜200℃の範囲であれば十分であ
り、より好ましくは130〜170℃である。
In the present invention, the reaction temperature for hydrogenating NDCE is preferably higher in order to allow the reaction to proceed completely, but is preferably in the range of 80 to 200 ° C., more preferably 130. ~ 170 ° C.

【0011】本発明で用いる溶媒は、極性の低い飽和炭
化水素系の溶媒もしくは酢酸エチル等の低級脂肪酸エス
テル系であれば特に限定されない。メタノールや酢酸な
どのプロトン性の極性の高い溶媒を用いると反応は十分
には進行せず、ナフタレン環の1つの芳香環のみが水素
化された2,6−(テトラヒドロナフタレン)ジカルボ
ン酸ジメチルエステルで反応が停止してしまう傾向があ
る。
The solvent used in the present invention is not particularly limited as long as it is a saturated hydrocarbon solvent having low polarity or a lower fatty acid ester solvent such as ethyl acetate. The reaction does not proceed sufficiently with the use of a highly polar polar solvent such as methanol or acetic acid, and it is 2,6- (tetrahydronaphthalene) dicarboxylic acid dimethyl ester in which only one aromatic ring of the naphthalene ring is hydrogenated. The reaction tends to stop.

【0012】本発明に於いてNDCEを水素化させる際
の水素圧力は重要ではないが、常圧から30Kg/cm
2G(特に15〜20Kg/cm2G)で水素を作用させ
るのがよい。圧力は高いほど反応速度は上昇するが、あ
まり高すぎると急な発熱を伴い副反応や分解反応の原因
となり、逆に収率の低下を伴う。
In the present invention, the hydrogen pressure for hydrogenating NDCE is not important, but from normal pressure to 30 Kg / cm.
It is preferable to allow hydrogen to act at 2 G (particularly 15 to 20 kg / cm 2 G). The higher the pressure, the higher the reaction rate. However, if the pressure is too high, a rapid heat generation is accompanied, causing side reactions and decomposition reactions, and conversely a decrease in yield.

【0013】本発明に於けるNDCEと溶媒の重量比は
NDCEが少なくとも部分的に可溶である状態が良い
が、特に大きな影響はなく、 原料合計量/溶媒合計量(重量比)=0.01〜1.0 の範囲で実施するとよい。
The weight ratio of NDCE to the solvent in the present invention is preferably such that NDCE is at least partially soluble, but there is no particular effect and the total amount of raw materials / total amount of solvent (weight ratio) = 0. It may be carried out in the range of 01 to 1.0.

【0014】本発明でNDCEと触媒との重量比は特に
限定されないが、例えば活性炭に5重量%を含むロジウ
ムを用いる場合には、 担体を含めた触媒合計(ドライ)/原料合計重量比=
0.005〜0.1 の範囲で実施するのが好ましい。
In the present invention, the weight ratio of NDCE to the catalyst is not particularly limited. For example, when rhodium containing 5% by weight of activated carbon is used, the total catalyst (dry) including carrier / total raw material weight ratio =
It is preferably carried out in the range of 0.005 to 0.1.

【0015】本発明の水素化方法としては、水素化触媒
を溶液中に懸濁させて行う所謂懸濁床による方法、ある
いは水素化触媒を固定してこれに溶液を流す所謂固定床
による通常の方法が採用できる。さらに、例えば懸濁床
に於いては、耐圧容器に水素化触媒、原料及び溶媒を仕
込み、空間を水素で置換した後、所定の温度で、所定時
間撹拌する方法又は水素ガスを反応容器中に吹き込む方
法がある。また、例えば、固定床に於いては水素化触媒
を充填した層(例えば充填塔)に原料のNDCEを完全
に溶解した溶液と水素ガスとを並流で通じる方法等があ
り、本発明方法に於いてはこれらいずれの方法を用いて
もその結果に支障が生じることはない。
As the hydrogenation method of the present invention, a so-called suspension bed method in which a hydrogenation catalyst is suspended in a solution is used, or a so-called fixed bed in which a hydrogenation catalyst is fixed and a solution is flown therein is used. The method can be adopted. Further, for example, in a suspension bed, a method of charging a hydrogenation catalyst, a raw material and a solvent into a pressure vessel, replacing the space with hydrogen, and then stirring at a predetermined temperature for a predetermined time or by introducing hydrogen gas into a reaction vessel. There is a way to blow. Further, for example, in a fixed bed, there is a method in which a solution in which NDCE as a raw material is completely dissolved and hydrogen gas are passed in a cocurrent flow in a bed (for example, a packed tower) packed with a hydrogenation catalyst. In that case, the result will not be affected even if any of these methods is used.

【0016】本発明方法で水素化して得られたDDCE
の組成物は触媒を濾過によって除去した後、蒸留を経て
触媒溶媒を完全に除去し、さらに減圧蒸留によって精製
できる。
DDCE obtained by hydrogenation by the method of the present invention
The composition can be purified by removing the catalyst by filtration, completely removing the catalyst solvent through distillation, and further distilling under reduced pressure.

【0017】[0017]

【実施例】次に、本発明を実施例によりさらに詳しく説
明する。尚、以下の実施例の転化率、選択率は下記の式
に基づいて算出したものである。
EXAMPLES Next, the present invention will be described in more detail by way of examples. The conversion rate and selectivity in the following examples are calculated based on the following formulas.

【0018】 [0018]

【0019】[実施例1]30gの原料NDCEを内容
積500ccの撹拌機つきハステロイ製オートクレーブ
の中に、市販のロジウムを活性炭に担持せしめた触媒
(5%Rh−C)3gを150gのシクロヘキサンと共
に入れた。次にオートクレーブ内の空気を窒素と置換
し、さらに窒素を水素と置き換えた後に撹拌機を起動
し、回転速度を1000rpmに調節し約1時間かけて
150℃まで昇温した後、オートクレーブ内の圧力を1
5Kg/cm2Gにまで上げ、水素の吸収に伴い水素圧
を補充しながらこの温度圧力を2時間保った。水素吸収
の終了後、オートクレーブを冷却し、残存する水素を放
出した。オートクレーブから取出した生成物をNo.5
Cの濾紙を用いて濾過し、約30gのシクロヘキサンを
用いて濾紙上の触媒を洗浄した。この生成物の分離濾液
と、洗浄濾液を合わせた後、溶媒のシクロヘキサンをエ
バポレーターを用いて留去し、約32.3gの粗生成物
を得た。その組成を分析した結果、残存原料はなく、テ
トラリン環で反応が停止している中間体も存在しなかっ
た。目的のDDCEは約95%の収率で得られた。
Example 1 In a Hastelloy autoclave with a stirrer having an internal volume of 500 cc, 30 g of a raw material NDCE was added 3 g of a catalyst (5% Rh-C) having commercially available rhodium supported on activated carbon together with 150 g of cyclohexane. I put it in. Next, the air in the autoclave was replaced with nitrogen, the nitrogen was replaced with hydrogen, the stirrer was started, the rotation speed was adjusted to 1000 rpm, the temperature was raised to 150 ° C over about 1 hour, and then the pressure in the autoclave was changed. 1
The temperature was raised to 5 Kg / cm 2 G, and the temperature pressure was maintained for 2 hours while supplementing the hydrogen pressure with the absorption of hydrogen. After the hydrogen absorption was completed, the autoclave was cooled and the residual hydrogen was released. The product taken out from the autoclave was No. 5
It was filtered using a filter paper of C and about 30 g of cyclohexane was used to wash the catalyst on the filter paper. The separated filtrate of this product and the washed filtrate were combined, and then the solvent cyclohexane was distilled off using an evaporator to obtain about 32.3 g of a crude product. As a result of analysis of the composition, there was no residual raw material, and there was no intermediate in which the reaction was stopped at the tetralin ring. The target DDCE was obtained in a yield of about 95%.

【0020】[実施例2]反応溶媒が、酢酸エチルであ
ること以外は実施例1の方法を繰返した。その結果を表
1に記載した。
Example 2 The method of Example 1 was repeated except that the reaction solvent was ethyl acetate. The results are shown in Table 1.

【0021】[実施例3]反応容器が3000mlのス
テンレス製オートクレーブであること、反応圧力が20
Kg/cm2Gであり、撹拌速度が700rpmである
こと以外は実施例1の方法を繰返した。その結果を表1
に記載した。
Example 3 The reaction vessel was a 3000 ml stainless steel autoclave, and the reaction pressure was 20.
The method of Example 1 was repeated except that it was Kg / cm 2 G and the stirring speed was 700 rpm. The results are shown in Table 1.
Described in.

【0022】[実施例4]反応溶媒がヘキサンであるこ
と以外は実施例1の方法を繰返した。その結果を表1に
記載した。
Example 4 The method of Example 1 was repeated except that the reaction solvent was hexane. The results are shown in Table 1.

【0023】[実施例5]触媒がパラジウムを活性炭に
担持せしめた触媒(5%Pd−C)であること以外は実
施例1の方法を繰返した。その結果を表1に記載した。
[Example 5] The method of Example 1 was repeated except that the catalyst was a catalyst in which palladium was supported on activated carbon (5% Pd-C). The results are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】[比較例1]反応溶媒がメタノールである
こと以外は実施例1の方法を繰返した。その結果を表2
に記載した。
Comparative Example 1 The method of Example 1 was repeated except that the reaction solvent was methanol. The results are shown in Table 2.
Described in.

【0026】[比較例2]触媒がパラジウムを活性炭に
担持せしめた触媒(5%Pd−C)であること、反応溶
媒がメタノールであること以外は実施例1の方法を繰返
した。その結果を表2に記載した。
[Comparative Example 2] The method of Example 1 was repeated except that the catalyst was a catalyst (5% Pd-C) in which palladium was supported on activated carbon, and the reaction solvent was methanol. The results are shown in Table 2.

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】本発明によれば、従来の方法に対して、
溶媒を選択限定することにより水素化反応圧力を低下で
き、製造する際の効率、安全性が格段向上する。さら
に、NDCEの選択性も向上する。
According to the present invention, as compared with the conventional method,
By selectively limiting the solvent, the hydrogenation reaction pressure can be lowered, and the efficiency and safety in production can be significantly improved. Further, the selectivity of NDCE is also improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 隅谷 浩二 愛媛県松山市北吉田町77番地 帝人株式会 社松山事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Sumitani 77, Kitayoshida-cho, Matsuyama-shi, Ehime Teijin Limited Matsuyama Office

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 パラジウム及びロジウムからなる群から
選ばれる少なくとも1種の触媒の存在下に、2,6−ナ
フタレンジカルボン酸ジメチルエステルに対して、低級
脂肪酸エステル及び飽和炭化水素を溶媒に用いて、80
〜200℃、常圧〜30Kg/cm2Gの圧力下で水素
を作用させることによる2,6−デカヒドロナフタレン
ジカルボン酸ジメチルエステルの製造法。
1. A lower fatty acid ester and a saturated hydrocarbon are used as a solvent for 2,6-naphthalenedicarboxylic acid dimethyl ester in the presence of at least one catalyst selected from the group consisting of palladium and rhodium, 80
A method for producing 2,6-decahydronaphthalenedicarboxylic acid dimethyl ester by reacting hydrogen under a pressure of ˜200 ° C. and a normal pressure ˜30 Kg / cm 2 G.
JP6165125A 1994-07-18 1994-07-18 Production of dimethyl 2,6-decahydronaphthalenedicarboxylate Pending JPH0827067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6165125A JPH0827067A (en) 1994-07-18 1994-07-18 Production of dimethyl 2,6-decahydronaphthalenedicarboxylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6165125A JPH0827067A (en) 1994-07-18 1994-07-18 Production of dimethyl 2,6-decahydronaphthalenedicarboxylate

Publications (1)

Publication Number Publication Date
JPH0827067A true JPH0827067A (en) 1996-01-30

Family

ID=15806391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6165125A Pending JPH0827067A (en) 1994-07-18 1994-07-18 Production of dimethyl 2,6-decahydronaphthalenedicarboxylate

Country Status (1)

Country Link
JP (1) JPH0827067A (en)

Similar Documents

Publication Publication Date Title
US3755423A (en) Process for preparing an unsaturated glycol diester
JP4217877B2 (en) Method for producing hydrogenated aromatic polycarboxylic acid and method for producing hydrogenated aromatic polycarboxylic acid anhydride
US7547803B2 (en) Process for producing a high purity aromatic polycarboxylic acid
EP2316811B1 (en) Process for producing hydrogenated aromatic polycarboxylic acid
EP1252130B1 (en) Low temperature purification of naphthalene dicarboxylic acids
JP4622406B2 (en) Process for producing hydrogenated aromatic polycarboxylic acid
JP3210148B2 (en) Method for hydrogenating dialkyl naphthalenedicarboxylate
US4345089A (en) Recovery of aromatic carboxylic acid or ester thereof from residue fraction of oxidation or esterification reaction mixture
JPH0827067A (en) Production of dimethyl 2,6-decahydronaphthalenedicarboxylate
JPH0753458A (en) Hydrogenation of naphthalenedicarboxylic acid
JPH09151162A (en) Purification of naphthalenedicarboxylic acid
JP5239140B2 (en) Process for producing hydrogenated aromatic carboxylic acid
JPH07149694A (en) Production of 1,4-cyclohexanedicarboxylic dimethyl ester
CN110002930B (en) Method for hydrogenation reduction of alkenyl aromatic halogenated derivatives
JP3826960B2 (en) Method for producing high purity naphthalenedicarboxylic acid
JP4720112B2 (en) Method for producing high purity aromatic polycarboxylic acid
CN113845414B (en) Method for synthesizing 2, 6-naphthalene dicarboxylic acid
JP3891454B2 (en) Method for purifying aromatic dicarboxylic acid ester
JPH1036320A (en) Production of 4,4&#39;-dicyclohexanedicarboxylic acid dimethyl ester
JPH04279537A (en) Production of bicyclohexyldiol
JP6372765B2 (en) Process for producing bis (2-hydroxyethyl) 1,4-cyclohexanedicarboxylate
JP3191333B2 (en) Method for producing 3,4-dihydrocoumarin
JPS6123781B2 (en)
JPH083116A (en) Production of methyl p-hydroxymethylzenzoate
JP2000226356A (en) Method for production of dialkyl decahydronaphthalenedicarboxylate