JPH083116A - Production of methyl p-hydroxymethylzenzoate - Google Patents

Production of methyl p-hydroxymethylzenzoate

Info

Publication number
JPH083116A
JPH083116A JP6137221A JP13722194A JPH083116A JP H083116 A JPH083116 A JP H083116A JP 6137221 A JP6137221 A JP 6137221A JP 13722194 A JP13722194 A JP 13722194A JP H083116 A JPH083116 A JP H083116A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
pressure
methyl
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6137221A
Other languages
Japanese (ja)
Inventor
Kozo Toida
幸三 樋田
Kazuhiro Sato
和広 佐藤
Koji Sumitani
浩二 隅谷
Mitsuhito Aoyanagi
三仁 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP6137221A priority Critical patent/JPH083116A/en
Publication of JPH083116A publication Critical patent/JPH083116A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce the methyl p-hydroxymethylbenzoate by reducing methyl p-formylbenzoate under a mild condition. CONSTITUTION:Methyl p-formylbenzoate ester is reduced in the presence of a catalyst containing ruthenium in at least one kind of solvent selected from a group consisting of an alkyl alcohol, cyclohexane and a lower fatty acid ester at room temperature to 200 deg.C under a pressure of ordinary pressure to 30kg/cm<2> to produce the methyl p-hydroxymethylbenzoate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はp−ホルミル安息香酸メ
チルエステル(以後MFBと略する)を水素化し、p−
ヒドロキシメチル安息香酸メチルエステル(以後MHM
Bと略する)を穏和な条件で収率良く合成する方法に関
するものである。
BACKGROUND OF THE INVENTION The present invention hydrogenates p-formylbenzoic acid methyl ester (hereinafter abbreviated as MFB) to give p-formylbenzoic acid methyl ester.
Hydroxymethyl benzoic acid methyl ester (hereinafter MHM
(Abbreviated as B)) under mild conditions with good yield.

【0002】MHMBは重縮合生成物への出発原料とな
り得るため、合成繊維及び合成樹脂の原料として使用さ
れると共に、医薬品等の原料としても利用され得る。
Since MHMB can be used as a starting material for a polycondensation product, it can be used as a raw material for synthetic fibers and synthetic resins and also as a raw material for pharmaceuticals and the like.

【0003】[0003]

【従来の技術】従来からp−ヒドロキシメチル安息香酸
エステルはp−トルイル酸をハロゲン化、加水分解し、
引き続きエステル化する方法、テレフタル酸ジメチルエ
ステルを電気化学的還元する方法(西ドイツ国特許公開
公報第2428878号明細書)によって製造されうる
が、これらの方法は、前者の場合には収率が低いため
に、また、後者の場合には製造コストが高くなるために
効率的ではない。
2. Description of the Related Art Conventionally, p-hydroxymethylbenzoic acid ester has halogenated and hydrolyzed p-toluic acid,
It can be produced by a method of subsequent esterification, a method of electrochemical reduction of dimethyl terephthalate (West German Patent Publication No. 2428878), but these methods have a low yield in the former case. In addition, the latter case is not efficient because of high manufacturing cost.

【0004】接触水素化による合成法としては、テレフ
タル酸を、水溶媒中で酸化レニウムを触媒に用いて16
0℃で反応させる方法(米国特許4448987号明細
書)が報告されているが、これは反応圧力が100Kg
/cm2Gと高い上に、転化率が20%であり、選択率
も85%と低いことから、工業的には用いられない。
As the synthetic method by catalytic hydrogenation, terephthalic acid is used as a catalyst in a water solvent using rhenium oxide as a catalyst.
A method of reacting at 0 ° C. (US Pat. No. 4,448,987) has been reported, but the reaction pressure is 100 Kg.
It is not industrially used because it has a high conversion rate of 20% / cm 2 G, a conversion rate of 20% and a low selectivity rate of 85%.

【0005】一方、p−ホルミル安息香酸エステルの選
択的水素化による方法では、アルデヒド基のメチル基へ
の還元が問題となっていた。この問題点に対し、低温低
圧にて、触媒にパラジウムを、あるいは、銅クロマイト
触媒を用いることによって解決しようとする方法(特公
昭55ー395号公報)が報告されているが、パラジウ
ムを用いた場合には実際上、十分な低温低圧下でもアル
デヒドからヒドロキシル基で止まらずにメチル基にまで
還元される反応が、かなりの割合で進行する。(比較例
1、2を参照) また、銅クロマイト触媒を用いた場合
には、逆にかなりの高温高圧を要し、さらに、高温によ
る副生成物の増加も見られる。
On the other hand, in the method by selective hydrogenation of p-formylbenzoic acid ester, reduction of aldehyde group to methyl group has been a problem. A method (Patent Publication No. 55-395) for solving this problem by using palladium as a catalyst or a copper chromite catalyst at low temperature and low pressure has been reported, but palladium was used. In some cases, in practice, even at a sufficiently low temperature and low pressure, a reaction in which an aldehyde is reduced to a methyl group without stopping at a hydroxyl group proceeds at a considerable rate. (Refer to Comparative Examples 1 and 2) When a copper chromite catalyst is used, on the contrary, a considerably high temperature and high pressure are required, and an increase in by-products due to the high temperature is also observed.

【0006】その他、いろいろと研究されているが、一
般に芳香族アルデヒドの水素還元においては副反応を抑
制するために銅やクロムを含む触媒、酸化ジルコニウム
を含む触媒を用いて高温、高圧で反応させる例が多い。
In addition, various studies have been conducted. Generally, in the hydrogen reduction of aromatic aldehydes, a catalyst containing copper or chromium or a catalyst containing zirconium oxide is used to react at high temperature and high pressure in order to suppress side reactions. There are many examples.

【0007】しかし、高温高圧での反応は、耐圧反応容
器、並びに高圧用水素ブースターが必要となるなど運転
費用、設備費用が大きくなり効率的な製造方法とは言え
ない。
However, the reaction at high temperature and high pressure cannot be said to be an efficient manufacturing method because a pressure resistant reactor and a hydrogen booster for high pressure are required, resulting in large operating costs and equipment costs.

【0008】[0008]

【発明が解決しようとする課題】接触水素化反応を用い
る場合、パラジウム触媒を用いた場合には反応温度、反
応圧力ともにかなり低い条件で反応を行うことが可能で
あるが、上記のようにアルデヒドのメチル基への還元も
併発してしまう。パラジウムの代わりにロジウムや、レ
ニウムを持ちいても、パラジウムを用いたときと同じよ
うにメチル基を持つ副生成物が存在すると同時に、反応
収率の低下が起こる。
When a catalytic hydrogenation reaction is used and a palladium catalyst is used, it is possible to carry out the reaction under conditions where the reaction temperature and the reaction pressure are considerably low. The reduction to the methyl group also occurs. Even if rhodium or rhenium is used instead of palladium, a reaction product having a methyl group is present at the same time as when palladium is used, and at the same time, the reaction yield is lowered.

【0009】[0009]

【課題を解決するための手段】本発明者らは、これらの
課題を解決するために鋭意検討を行い、ルテニウムを触
媒に用いることにより、副反応を抑制しながら接触水素
化反応によってアルデヒドのアルコールへの還元を行う
方法を見いだし、本発明を完成した。
[Means for Solving the Problems] The present inventors have conducted extensive studies to solve these problems, and by using ruthenium as a catalyst, alcohols of aldehydes can be obtained by catalytic hydrogenation reaction while suppressing side reactions. The present invention has been completed by finding out a method of reducing to.

【0010】本発明に於ける水素添加反応は、他の芳香
族アルデヒドの水素還元反応に関しても有効である。
The hydrogenation reaction in the present invention is also effective for the hydrogen reduction reaction of other aromatic aldehydes.

【0011】即ち、本発明は、ルテニウムを含む触媒の
存在下に、p−ホルミル安息香酸メチルエステルに、C
1〜C4のアルコール、低級脂肪酸及びシクロヘキサン
のいずれかを溶媒に用いて、室温〜200℃、常圧〜3
0Kg/cm2Gの圧力下で水素を作用させることを特
徴とするp−ヒドロキシメチル安息香酸メチルエステル
の製造法である。
That is, according to the present invention, p-formyl benzoic acid methyl ester is converted into C-containing C in the presence of a catalyst containing ruthenium.
Any one of 1 to C4 alcohol, lower fatty acid and cyclohexane is used as a solvent, and room temperature to 200 ° C. and normal pressure to 3
A method for producing methyl ester of p-hydroxymethylbenzoic acid, which is characterized by reacting hydrogen under a pressure of 0 Kg / cm 2 G.

【0012】以下、本発明について詳細に説明する。The present invention will be described in detail below.

【0013】本発明に於いて用いる触媒ルテニウムを支
持する担体は一般的に用いられる活性炭、珪藻土、アル
ミナ、シリカ、チタニア、マグネシア及びゼオライト等
であり、担体としてはなんら限定されていないが、比較
的表面積の大きい活性炭が好ましい。
The carrier that supports the catalyst ruthenium used in the present invention is generally used activated carbon, diatomaceous earth, alumina, silica, titania, magnesia, zeolite, etc., and the carrier is not limited at all, Activated carbon with a large surface area is preferred.

【0014】本発明に於いて、MFBを水素化させる際
の反応温度は、MFB自身が分解する温度を超えなけれ
ば特に制限はないが、通常は室温〜200℃が好まし
く、30〜150℃が特に好ましい。
In the present invention, the reaction temperature for hydrogenating MFB is not particularly limited as long as it does not exceed the temperature at which MFB decomposes, but it is usually room temperature to 200 ° C., preferably 30 to 150 ° C. Particularly preferred.

【0015】本発明で用いる溶媒は重要であり、水素化
反応に不活性なものでなければならず、また、使用した
溶媒によって発生する副生成物が異なってくるため、注
意しなければならない。特に、溶媒にメタノールを用い
ると、アルデヒド基とメタノールが反応したジメチルア
セタールが生成し、温度によってその生成割合が著しく
異なってくる。第3ブタノールが、反応速度、転化率、
選択率が比較的高く好ましい。
The solvent used in the present invention is important, it must be inert to the hydrogenation reaction, and care must be exercised because the by-products generated differ depending on the solvent used. In particular, when methanol is used as the solvent, dimethyl acetal produced by the reaction of the aldehyde group and methanol is produced, and the production ratio thereof remarkably differs depending on the temperature. Tertiary butanol is the reaction rate, conversion rate,
The selectivity is relatively high and preferred.

【0016】本発明に於いてMFBを水素化させる際の
水素圧力はあまり重要ではなく、およそ60Kg/cm
2G以下であれば特に副生成物の増加や、不純物の増加
が起こることはないが、通常は常圧〜30Kg/cm2
Gで水素を作用させるのが好ましい。反応回収物の組成
は圧力によって左右されず、また反応速度は圧力が高い
ほど大きいため、工業的には10〜30Kg/cm2
が最適である。
In the present invention, the hydrogen pressure in hydrogenating MFB is not so important and is about 60 Kg / cm.
If it is 2 G or less, there is no particular increase in by-products or impurities, but normally atmospheric pressure to 30 Kg / cm 2
It is preferable that hydrogen acts on G. The composition of the recovered reaction product does not depend on the pressure, and the higher the pressure, the larger the reaction rate. Therefore, industrially, the composition is 10 to 30 Kg / cm 2 G.
Is the best.

【0017】本発明に於けるMFBと溶媒との重量比は
MFBが少なくとも部分的に可溶である状態がよく、 原料合計重量/溶媒合計重量比=0.01〜1.0 の範囲で実施するのが好ましい。
The weight ratio of MFB and solvent in the present invention is preferably such that MFB is at least partially soluble, and the total weight ratio of raw materials / total weight ratio of solvents = 0.01 to 1.0. Preferably.

【0018】本発明で触媒とMFBとの重量比は特に制
限されないが、例えば活性炭にルテニウムを5重量%含
む触媒を用いる場合には、 担体を含めた触媒合計重量(ドライ)/原料合計重量比
=0.005〜0.1 の範囲で実施するのが好ましい。
In the present invention, the weight ratio of the catalyst to MFB is not particularly limited. For example, when a catalyst containing ruthenium in an amount of 5% by weight of activated carbon is used, the total catalyst weight (dry) including the carrier / total raw material weight ratio is It is preferable to carry out in the range of 0.005 to 0.1.

【0019】本発明の水素化方法としては、水素化触媒
を溶液中に懸濁させて行う所謂懸濁床による方法、ある
いは、水素化触媒を固定してこれに溶液を流す所謂固定
床による通常の方法が採用できる。さらに例えば懸濁床
に於いては、耐圧容器に水素化触媒、原料及び溶媒を仕
込み、空間を水素で置換した後、所定の温度で所定の時
間撹拌する方法、又は水素ガスを反応溶液中に吹き込む
方法がある。また、例えば、固定床に於いては水素化触
媒を充填した層(例えば充填塔)に、原料のMFBを完
全に溶解した溶液と水素ガスとを並流で通じる方法など
があり、本発明方法に於いてはこれらの如何なる方法を
用いても結果に差異は殆ど生じない。
The hydrogenation method of the present invention is usually a so-called suspension bed method in which a hydrogenation catalyst is suspended in a solution, or a so-called fixed bed in which a hydrogenation catalyst is fixed and a solution is flown through it. The method of can be adopted. Further, for example, in a suspension bed, a method of charging a hydrogenation catalyst, a raw material and a solvent into a pressure vessel, replacing the space with hydrogen, and then stirring at a predetermined temperature for a predetermined time, or by introducing hydrogen gas into a reaction solution. There is a way to blow. Further, for example, in a fixed bed, there is a method in which a solution in which MFB as a raw material is completely dissolved and hydrogen gas are allowed to flow in parallel with each other in a bed filled with a hydrogenation catalyst (for example, a packed tower). In the case of using any of these methods, there is almost no difference in the result.

【0020】本発明方法で水素化して得られたMHMB
の組成物は、触媒を濾過により除去した後、蒸留を経て
完全に触媒、溶媒を除去し、さらに蒸留、再結晶によっ
て精製することができる。
MHMB obtained by hydrogenation by the method of the present invention
The composition can be purified by removing the catalyst by filtration, completely removing the catalyst and the solvent through distillation, and further distilled and recrystallized.

【0021】[0021]

【実施例】次に、本発明を実施例を用いてさらに詳しく
説明する。尚、以下の実施例の転化率、選択率は下記の
式に基づいて算出したものである。
EXAMPLES Next, the present invention will be described in more detail by way of examples. The conversion rate and selectivity in the following examples are calculated based on the following formulas.

【0022】[0022]

【数1】 [Equation 1]

【0023】[実施例1]15gの原料MFBを内容積
500ccの撹拌機つきハステロイ製オートクレーブの
中に、市販のルテニウムを活性炭に担持せしめた触媒
(5%Ru−C)1g、140gの第3ブタノールと共
に入れた。次にオートクレーブ内の空気を窒素と置換
し、さらに窒素を水素に置き換えた後に撹拌機を起動
し、回転速度を1000rpmに調節し約40分かけて
80℃まで温度を上げた後、オートクレーブ内圧を20
Kg/cm2Gにまで上げ水素の吸収に伴い水素圧を補
充しながらその状態を0.5時間保った。そこで水素の
吸収がなくなったが、さらに0.5時間その状態を保っ
た後、オートクレーブを冷却し水素を放出した。オート
クレーブから取り出した生成物をNo.5Cの濾紙を用
いて濾過し、約30gの第3ブタノールで濾紙上の触媒
を洗浄した。この生成物の分離濾液と洗浄濾液を合わせ
た後、溶媒の第3ブタノールをエバポレーターを用いて
除去し、約15.1gの組成生物を得た。その組成を分
析した結果、残存原料及び、テレフタル酸モノメチルエ
ステルなどを含む不純物を全て合わせた量で約6.0重
量%含まれている以外は目的物MHMBのみであった。
このMHMB選択率は94.4%であった。
Example 1 15 g of raw material MFB was placed in a Hastelloy autoclave with an internal volume of 500 cc and equipped with a stirrer, and commercially available ruthenium was supported on activated carbon (5% Ru-C) 1 g, 140 g of a third catalyst It was added with butanol. Next, the air in the autoclave was replaced with nitrogen, the nitrogen was replaced with hydrogen, and then the stirrer was started, the rotation speed was adjusted to 1000 rpm, and the temperature was raised to 80 ° C over about 40 minutes. 20
The state was maintained for 0.5 hours while raising the pressure to Kg / cm 2 G and supplementing the hydrogen pressure with the absorption of hydrogen. Then, although the absorption of hydrogen was stopped, the state was maintained for another 0.5 hour, and then the autoclave was cooled to release hydrogen. The product taken out from the autoclave was No. It was filtered using a 5C filter paper, and the catalyst on the filter paper was washed with about 30 g of tert-butanol. After the separated filtrate and the washed filtrate of this product were combined, the solvent tert-butanol was removed using an evaporator to obtain about 15.1 g of a composition organism. As a result of analyzing the composition, only the target MHMB was contained except that the residual raw material and impurities including terephthalic acid monomethyl ester were all contained in an amount of about 6.0% by weight.
The MHMB selectivity was 94.4%.

【0024】[実施例2]反応温度が110℃であるこ
と以外は実施例1の方法を繰り返した。その結果を表1
に示した。
Example 2 The method of Example 1 was repeated except that the reaction temperature was 110 ° C. The results are shown in Table 1.
It was shown to.

【0025】[実施例3]反応圧力が40Kg/cm2
Gであること以外は実施例1の方法を繰り返した。その
結果を表1に記載した。
[Example 3] The reaction pressure was 40 kg / cm 2.
The method of Example 1 was repeated except that it was G. The results are shown in Table 1.

【0026】[実施例4]反応溶媒が酢酸エチルである
こと以外は実施例1の方法を繰り返した。その結果を表
1に記載した。
Example 4 The method of Example 1 was repeated except that the reaction solvent was ethyl acetate. The results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】[実施例5〜8]反応溶媒がメタノールで
あること及び反応温度以外は実施例1の方法を繰り返し
た。その結果を表2に記載した。
Examples 5 to 8 The method of Example 1 was repeated except that the reaction solvent was methanol and the reaction temperature. The results are shown in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】[比較例1]触媒がパラジウムを活性炭に
担持せしめた触媒(5%Pd−C)であること以外は実
施例1の方法を繰り返した。その結果を表3に記載し
た。
Comparative Example 1 The method of Example 1 was repeated except that the catalyst was a catalyst in which palladium was supported on activated carbon (5% Pd-C). The results are shown in Table 3.

【0031】[比較例2]触媒がパラジウムを活性炭に
担持せしめた触媒(5%Pd−C)であること及び反応
温度が45℃であること以外は実施例1の方法を繰り返
した。その結果を表3に記載した。
[Comparative Example 2] The method of Example 1 was repeated except that the catalyst was a catalyst in which palladium was supported on activated carbon (5% Pd-C) and the reaction temperature was 45 ° C. The results are shown in Table 3.

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【発明の効果】本発明によれば、従来の方法に対して、
目的とするMHMBをより選択的に製造することを可能
とすると共に、水素化反応圧力を低下させることがで
き、製造する際の効率、安全性が格段に向上する。ま
た、反応条件がかなり広いことから製造する際の運転の
非常に容易となると共に、不純物量が少ないために容易
に精製ができる。
According to the present invention, as compared with the conventional method,
The target MHMB can be produced more selectively, the hydrogenation reaction pressure can be lowered, and the efficiency and safety in production are significantly improved. In addition, since the reaction conditions are fairly wide, the operation during production is extremely easy, and the amount of impurities is small, so that purification can be easily performed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青柳 三仁 愛媛県松山市北吉田町77番地 帝人株式会 社松山事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuhito Aoyagi 77, Kitayoshida-cho, Matsuyama-shi, Ehime Teijin Limited Matsuyama Office

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 p−ホルミル安息香酸メチルエステルを
ルテニウムを含む触媒の存在下にアルキルアルコール、
シクロヘキサン及び低級脂肪酸エステルからなる群から
選ばれる少なくとも1種の溶媒を用いて室温〜200
℃、常圧〜30Kg/cm2Gの圧力下で水素を作用さ
せることによるp−ヒドロキシメチル安息香酸メチルエ
ステルの製造法。
1. A p-formylbenzoic acid methyl ester in the presence of a catalyst containing ruthenium, an alkyl alcohol,
Room temperature to 200 using at least one solvent selected from the group consisting of cyclohexane and lower fatty acid ester.
A method for producing p-hydroxymethylbenzoic acid methyl ester by reacting hydrogen under a pressure of 30 ° C. and atmospheric pressure to 30 Kg / cm 2 G.
【請求項2】 アルキルアルコールの炭素数が1〜4で
ある請求項1に記載の製造法。
2. The method according to claim 1, wherein the alkyl alcohol has 1 to 4 carbon atoms.
JP6137221A 1994-06-20 1994-06-20 Production of methyl p-hydroxymethylzenzoate Pending JPH083116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6137221A JPH083116A (en) 1994-06-20 1994-06-20 Production of methyl p-hydroxymethylzenzoate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6137221A JPH083116A (en) 1994-06-20 1994-06-20 Production of methyl p-hydroxymethylzenzoate

Publications (1)

Publication Number Publication Date
JPH083116A true JPH083116A (en) 1996-01-09

Family

ID=15193620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6137221A Pending JPH083116A (en) 1994-06-20 1994-06-20 Production of methyl p-hydroxymethylzenzoate

Country Status (1)

Country Link
JP (1) JPH083116A (en)

Similar Documents

Publication Publication Date Title
KR101218414B1 (en) co-production of vinyl acetate and ethyl acetate
JPH10306047A (en) Production of 1,6-hexanediol
US4260817A (en) Process for the purification of terephthalic acid
WO2000000457A1 (en) Method of purifying aromatic dicarboxylic acids
EP2412696A1 (en) Process for production of 3-methyl-cyclopentadecenone, process for production of r/s-muscone, and process for production of optically active muscone
JPH04225836A (en) Worganic body carried catalyst for producing ethylidenediacetate, its manufacture and manufacture of ethylidenediacetate using the same
JP3210148B2 (en) Method for hydrogenating dialkyl naphthalenedicarboxylate
JPH08500360A (en) Method for producing phenyl terephthalic acid
JPH083116A (en) Production of methyl p-hydroxymethylzenzoate
JP2002186854A (en) Selective hydrogenation catalyst and method for selective hydrogenation using the same
JPH07149694A (en) Production of 1,4-cyclohexanedicarboxylic dimethyl ester
KR101359230B1 (en) Process for preparing 4-aminomethylcyclohexane carbocylic acid
JPH10508008A (en) Method for producing 3-phenylpropionaldehyde
JPH0753458A (en) Hydrogenation of naphthalenedicarboxylic acid
JPH1045645A (en) Production of 1,4-cyclohexanedimethanol
EP0170520B1 (en) Process for the production of cinnamic acid
JPS628113B2 (en)
EP1043304B1 (en) Method for producing (hydroxyalkyl)alicyclic carboxylic acids and intermediates therefor
EP0696566B1 (en) Process for production of phenyllactic acid derivative
JP3995313B2 (en) Process for producing 1,2-butanediol and 1,4-butanediol
JP4104228B2 (en) Method for producing a mixture of dimethyl terephthalate and dimethyl isophthalate
JPH1036320A (en) Production of 4,4&#39;-dicyclohexanedicarboxylic acid dimethyl ester
US4812594A (en) Process for purification of crude p-hydroxymethylbenzoic acid
JPS6123781B2 (en)
JP3191333B2 (en) Method for producing 3,4-dihydrocoumarin