JP2014070036A - Method of producing 1,8-tetralin dicarboxylic anhydride - Google Patents

Method of producing 1,8-tetralin dicarboxylic anhydride Download PDF

Info

Publication number
JP2014070036A
JP2014070036A JP2012216370A JP2012216370A JP2014070036A JP 2014070036 A JP2014070036 A JP 2014070036A JP 2012216370 A JP2012216370 A JP 2012216370A JP 2012216370 A JP2012216370 A JP 2012216370A JP 2014070036 A JP2014070036 A JP 2014070036A
Authority
JP
Japan
Prior art keywords
reaction
catalyst
tdcan
less
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012216370A
Other languages
Japanese (ja)
Inventor
Araka Ito
阿良加 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2012216370A priority Critical patent/JP2014070036A/en
Publication of JP2014070036A publication Critical patent/JP2014070036A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pyrane Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a one-step and high yield method of producing 1,8-tetralin dicarboxylic anhydride from 1,8-naphthalenedicarboxylic acid with catalyst of only one kind of noble metal.SOLUTION: There is provided a method of producing of 1,8-tetralin dicarboxylic anhydride by reacting 1,8-tetralin dicarboxylic anhydride with hydrogen using a palladium catalyst under a condition of water concentration in a reaction system of less than 0.2 wt.%.

Description

本発明は1,8−テトラリンジカルボン酸無水物の製造方法に関するものである。   The present invention relates to a method for producing 1,8-tetralin dicarboxylic acid anhydride.

下記式(1)で表される1,8−テトラリンジカルボン酸無水物(以下1,8−TDCAn)は、下記式(2)で表される1,8-ナフタレンジカルボン酸無水物(以下1,8−NDCAn)と比較して、立体的な安定性の差から反応性に富み、ポリエステルやポリカーボネート、ポリイミド、ポリアミドとして、液晶組成物、高分子改質剤、医薬中間体などとしての利用が考えられるため、その工業的な意義は大きい。   1,8-tetralin dicarboxylic acid anhydride (hereinafter, 1,8-TDCan) represented by the following formula (1) is 1,8-naphthalenedicarboxylic acid anhydride (hereinafter, 1,1) represented by the following formula (2). Compared with 8-NDCann), it is rich in reactivity due to the difference in steric stability, and it can be used as a liquid crystal composition, polymer modifier, pharmaceutical intermediate, etc. as polyester, polycarbonate, polyimide, polyamide. Therefore, its industrial significance is great.

Figure 2014070036
<1,8−テトラリンジカルボン酸無水物(1,8−TDCAn)>
Figure 2014070036
<1,8-tetralin dicarboxylic acid anhydride (1,8-TDCan)>

Figure 2014070036
<1,8-ナフタレンジカルボン酸無水物(1,8−NDCAn)>
Figure 2014070036
<1,8-Naphthalenedicarboxylic anhydride (1,8-NDCan)>

1,8−TDCAnの製造法として、特許文献1には、ナフタレン誘導体をパラジウム/銀触媒の存在下で水素添加し、テトラリン誘導体を合成する方法が示され、ナフタレン誘導体として1,8−NDCAnが、テトラリン誘導体として1,8−TDCAnが例示されている。 As a method for producing 1,8-TDCan, Patent Document 1 discloses a method of synthesizing a tetralin derivative by hydrogenating a naphthalene derivative in the presence of a palladium / silver catalyst. 1,8-NDCan is used as a naphthalene derivative. 1,8-TDCAn is exemplified as the tetralin derivative.

非特許文献1には、1,8−NDCAnを苛性ソーダ水溶液中でラネー触媒により水素添加し、下記式(3)で表される1,8−テトラリンジカルボン酸(以下、1,8−TDCA)を合成する方法が開示されている。また、非特許文献2には、1,8−TDCAを加熱により脱水閉環し、1,8−TDCAnとする方法が記載されている。 In Non-Patent Document 1, 1,8-NDCan is hydrogenated with a Raney catalyst in an aqueous caustic soda solution, and 1,8-tetralindicarboxylic acid (hereinafter, 1,8-TDCA) represented by the following formula (3) is obtained. A method of synthesis is disclosed. Non-Patent Document 2 describes a method in which 1,8-TDCA is dehydrated and closed by heating to obtain 1,8-TDCan.

Figure 2014070036
<1,8−テトラリンジカルボン酸(1,8−TDCA)>
Figure 2014070036
<1,8-tetralindicarboxylic acid (1,8-TDCA)>

特開2001−278836号公報JP 2001-278836 A

Jornal of Organic Chemistry, 1949, 14, p.366−374Journal of Organic Chemistry, 1949, 14, p. 366-374. Chemische Berichte, 1894, 27, p.2694−2695Chemische Berichte, 1894, 27, p. 2694-2695.

しかしながら、特許文献1では触媒として高価な銀を必須としており又、パラジウムと銀の2種類の金属を使用していることから、触媒としてのリサイクルコストも高い。さらに、1,8−NDCAnの無水環の開環を防いで水素添加し1,8−TDCAnを製造する方法について具体的な記載は認められない。
また、非特許文献1及び2の手法を組み合わせることにより、1,8−TDCAnを製造することが出来るが、水添反応時に原料である1,8−NDCAnの無水環を一度開環してから再び脱水により閉環を行うという多段工程の反応となる。
However, in Patent Document 1, expensive silver is essential as a catalyst, and since two kinds of metals of palladium and silver are used, the recycling cost as a catalyst is high. Furthermore, there is no specific description of a method for producing 1,8-TDCan by preventing the ring opening of 1,8-NDCann from opening and hydrogenating.
In addition, 1,8-TDCan can be produced by combining the methods of Non-Patent Documents 1 and 2, but once the anhydrous ring of 1,8-NDCan as a raw material is opened once during the hydrogenation reaction. The reaction is a multistage process in which ring closure is performed again by dehydration.

本発明の課題は、1,8−NDCAnから貴金属として1種の金属のみを使用した触媒にて1工程かつ、高収率で1,8−TDCAnを合成することである。 An object of the present invention is to synthesize 1,8-TDCAn from 1,8-NDCan in one step with a catalyst using only one kind of metal as a noble metal in a high yield.

本発明者は、1,8−NDCAnを反応系内の水分濃度が0.2重量%未満になるように抑えた条件においてパラジウム触媒を用いて水素と反応させることにより、1,8−TDCAnが高い収率で合成できることを見出し本発明に至った。   The present inventor made 1,8-TDCan be reacted with hydrogen using a palladium catalyst under the condition that the water concentration in the reaction system was controlled to be less than 0.2% by weight. The inventors have found that it can be synthesized in a high yield, and have reached the present invention.

すなわち、本発明は、1,8−NDCAnを反応系内の水分濃度が0.2重量%未満の条件下においてパラジウム触媒を用い水素添加反応させることによる1,8−TDCAnの製造方法に関するものである。   That is, the present invention relates to a method for producing 1,8-TDCan by reacting 1,8-NDCan with a hydrogenation reaction using a palladium catalyst under conditions where the water concentration in the reaction system is less than 0.2% by weight. is there.

本発明によれば、1,8−NDCAnより貴金属としてパラジウムのみを触媒として用いて水素添加反応の一工程で1,8−TDCAnを工業的に作り出すことができる。
1,8−TDCMnは1,8−NDCAnと比較して、立体的な安定性の差から反応性に富み、ポリエステルやポリカーボネート、ポリイミド、ポリアミドとして、液晶組成物、高分子改質剤、医薬中間体などとしての利用が考えられるため、その工業的な意義は大きい。
According to the present invention, 1,8-TDCan can be industrially produced in one step of hydrogenation reaction using only palladium as a noble metal as a catalyst from 1,8-NDCan.
Compared with 1,8-NDCann, 1,8-TDConn is rich in reactivity due to the difference in steric stability. As polyester, polycarbonate, polyimide, polyamide, liquid crystal composition, polymer modifier, pharmaceutical intermediate Since it can be used as a body, its industrial significance is great.

[1.反応に用いられるパラジウム触媒]
本反応に使われる触媒はパラジウム触媒であり、パラジウムが担体に担持された触媒を用いることが好ましい。
[1. Palladium catalyst used for reaction]
The catalyst used in this reaction is a palladium catalyst, and it is preferable to use a catalyst in which palladium is supported on a carrier.

担体としては、活性炭、アルミナ、シリカ、ゼオライト等が例示されるが、特に入手容易性、価格から活性炭が好ましい。 Examples of the carrier include activated carbon, alumina, silica, zeolite and the like, and activated carbon is particularly preferable from the viewpoint of availability and price.

担持触媒中パラジウムの含有量は0.1〜50重量%、特に1.0〜10重量%が好ましい。触媒の使用量は、原料の1,8−NDCAnに対するパラジウムの重量比で好ましくは0.1〜10%、より好ましくは0.3〜5%である。   The palladium content in the supported catalyst is preferably 0.1 to 50% by weight, particularly preferably 1.0 to 10% by weight. The amount of the catalyst used is preferably 0.1 to 10%, more preferably 0.3 to 5% by weight ratio of palladium to 1,8-NDCan of the raw material.

触媒は、市販のものを用いてもよいし、含浸担持法等の公知の方法に従い調整したものを用いてもよい。   A commercially available catalyst may be used, or a catalyst prepared according to a known method such as an impregnation support method may be used.

本発明では、カルボン酸無水物が有水化されるのを防ぐために、触媒中の水分含有量は低いほど好ましい。触媒中の水分含有量は、好ましくは0.5重量%以下、より好ましくは0.1重量%以下とする。含水触媒を使用する場合は、反応前に減圧乾燥など通常の方法で乾燥させて使用すれば良い。   In the present invention, in order to prevent the carboxylic anhydride from being hydrated, the lower the water content in the catalyst, the better. The water content in the catalyst is preferably 0.5% by weight or less, more preferably 0.1% by weight or less. When a hydrous catalyst is used, it may be used after drying by a conventional method such as drying under reduced pressure before the reaction.

[2.反応に用いられる溶媒]
反応に用いられる溶媒としては、カルボン酸無水物の無水環を開環するような反応を起こさないもの、及び水素添加反応を阻害しないものであれば特に限定されず、例えば、ヘプタン、デカン等の脂肪族炭化水素系溶媒、酢酸エチル、酢酸−n−ブチル等のエステル系溶媒、及びジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒が挙げられる。
[2. Solvent used for reaction]
The solvent used for the reaction is not particularly limited as long as it does not cause a reaction that opens the anhydrous ring of the carboxylic acid anhydride, and does not inhibit the hydrogenation reaction. For example, heptane, decane, etc. Examples thereof include aliphatic hydrocarbon solvents, ester solvents such as ethyl acetate and n-butyl acetate, and ether solvents such as diethyl ether and tetrahydrofuran.

本発明の反応において、カルボン酸無水物が有水化されるのを防ぐために、溶媒中の水分濃度は低いほど良い。溶媒中の水分濃度は、好ましくは0.2重量%以下、より好ましくは0.1重量%以下、特に好ましくは0.05重量%以下である。
溶媒の水分濃度が上記範囲よりも高い場合には、溶媒中の水分を蒸留や吸着等の操作によって除去する操作を行なってから反応に使用すれば良い。
In the reaction of the present invention, in order to prevent the carboxylic anhydride from being hydrated, the lower the water concentration in the solvent, the better. The water concentration in the solvent is preferably 0.2% by weight or less, more preferably 0.1% by weight or less, and particularly preferably 0.05% by weight or less.
When the water concentration of the solvent is higher than the above range, the water content in the solvent may be used for the reaction after performing an operation of removing the water by an operation such as distillation or adsorption.

溶媒の使用量は、1,8−NDCAnに対する溶媒の重量比(SR)が好ましくは0.5〜20、より好ましくはSR=1〜10である。SRが上記範囲にあれば、適度な反応器容積で反応を実施出来るとともに、溶媒の分離、回収が容易になり好ましい。 As for the usage-amount of a solvent, the weight ratio (SR) of the solvent with respect to 1,8-NDCanan becomes like this. Preferably it is 0.5-20, More preferably, SR = 1-10. If SR is in the above range, the reaction can be carried out in an appropriate reactor volume, and the solvent can be easily separated and recovered, which is preferable.

[3.反応条件]
本反応は、通常オートクレーブ等の加圧容器中で実施され、水素圧力は特に限定されないが、好ましくは1〜10 MPa、より好ましくは3〜8MPaである。上記の水素圧力範囲で反応を行なうことで、反応の選択性が高くなり、効率良く1,8−TDCAnを製造できる。
[3. Reaction conditions]
This reaction is usually carried out in a pressure vessel such as an autoclave, and the hydrogen pressure is not particularly limited, but is preferably 1 to 10 MPa, more preferably 3 to 8 MPa. By performing the reaction in the above hydrogen pressure range, the selectivity of the reaction is increased and 1,8-TDCAn can be produced efficiently.

反応温度は、通常0〜200℃、好ましくは50〜100℃である。上記範囲の水素圧、反応温度で水素添加を行なうことで、高い選択率と良好な反応速度で1,8−TDCAnを製造できる。 The reaction temperature is usually 0 to 200 ° C., preferably 50 to 100 ° C. By performing hydrogenation at a hydrogen pressure and a reaction temperature within the above ranges, 1,8-TDCan can be produced with a high selectivity and a good reaction rate.

本発明では、反応系内の水分濃度が0.2重量%未満の条件で水添反応をおこなう。より好ましい水分濃度は0.1重量%未満、さらに好ましくは0.05重量%未満である。通常の場合、水添反応における水分の生成は無視しうるので、反応系内の水分濃度は、反応系に供給される全物質重量に対する全供給物質中に含有される水分重量の合計で定義される。バッチ反応の場合は、反応器に仕込まれる1,8−NDCAn、水素、触媒、溶媒等に含有される水分量合計から求められる。連続反応の場合は、反応器に連続的に供給される各成分に含有される水分量合計から求められる。なお、固定床触媒を使用して連続反応を行う場合は、触媒中の水分量は濃度計算から除外してよい。 In the present invention, the hydrogenation reaction is carried out under the condition that the water concentration in the reaction system is less than 0.2% by weight. A more preferred water concentration is less than 0.1% by weight, and even more preferably less than 0.05% by weight. In the normal case, water generation in the hydrogenation reaction is negligible, so the water concentration in the reaction system is defined by the sum of the weights of water contained in all the substances supplied relative to the total substance weight supplied to the reaction system. The In the case of batch reaction, it is determined from the total amount of water contained in 1,8-NDCan, hydrogen, catalyst, solvent, etc. charged in the reactor. In the case of continuous reaction, it is determined from the total amount of water contained in each component continuously supplied to the reactor. In addition, when performing a continuous reaction using a fixed bed catalyst, you may exclude the moisture content in a catalyst from concentration calculation.

反応系内の水分濃度を上記の範囲に抑えるために、触媒及び溶媒中の水分濃度を前記の濃度以下とするのが好ましい。原料の1,8−NDCAn及び水素に含まれる水分の影響は比較的小さいが、必要に応じて乾燥処理を行なって水分濃度を低減してから反応器に供給してもよい。   In order to keep the water concentration in the reaction system within the above range, the water concentration in the catalyst and the solvent is preferably set to the above concentration or less. Although the influence of moisture contained in the raw materials 1,8-NDCan and hydrogen is relatively small, the moisture concentration may be reduced by supplying it to the reactor after drying if necessary.

[4.精製]
反応終了後、例えば反応混合物から触媒を濾別し、必要に応じて触媒を前記で例示した溶媒で洗浄して得た液を母液と合わせた後、溶媒を留去することにより、1,8−TDCAnを取り出すことができる。更に、再結晶、蒸留やカラムクロマトグラフィー等の手段により精製を行ってもよい。
[4. Purification]
After completion of the reaction, for example, the catalyst is filtered off from the reaction mixture, and if necessary, the liquid obtained by washing the catalyst with the solvent exemplified above is combined with the mother liquor. -TDCAn can be removed. Further, purification may be performed by means such as recrystallization, distillation or column chromatography.

実施例により本発明の方法を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。以下の実施例および比較例において、組成はガスクロマトグラフィー分析により得られた面積百分率値を示す。 The method of the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. In the following examples and comparative examples, the composition indicates an area percentage value obtained by gas chromatography analysis.

<実施例1>
500mLオートクレーブ(SUS316L製)に、1,8−NDCAn50g、5重量%パラジウムが活性炭に担持された触媒(乾燥品、含水率0.1%未満)7.5g、酢酸エチル(水分濃度430ppm)200gを仕込んだ。仕込み液をサンプリングして水分濃度を測定したところ480ppmであった。室温で、オートクレーブ内を窒素1MPaで2回置換し、次いで水素1MPaで2回置換した。その後常圧まで落圧した後、内温80℃に昇温し、水素で5MPaまで加圧し、同温度、同圧力で2時間攪拌した(500rpm)。
反応後、室温まで冷却し、水素を放出し、窒素1MPaで2回置換した後、触媒を濾別し、触媒をアセトン20gで3回洗浄した。得られた母液から溶媒を除去して、粗1,8−TDCAn49.8gを得た。ガスクロマトグラフィー分析を行ったところ、組成は、1,8−NDCAn:0.1%、1,8−TDCAn:92.8%であった。
<Example 1>
In a 500 mL autoclave (manufactured by SUS316L), 7.5 g of 1,8-NDCan 50 g, 5 wt% palladium supported on activated carbon (dry product, moisture content less than 0.1%), 200 g of ethyl acetate (water concentration 430 ppm) Prepared. It was 480 ppm when the preparation liquid was sampled and the water concentration was measured. At room temperature, the inside of the autoclave was replaced twice with 1 MPa of nitrogen, and then replaced twice with 1 MPa of hydrogen. Thereafter, the pressure was reduced to normal pressure, the temperature was raised to 80 ° C., the pressure was increased to 5 MPa with hydrogen, and the mixture was stirred at the same temperature and the same pressure for 2 hours (500 rpm).
After the reaction, the reaction mixture was cooled to room temperature, released hydrogen, and replaced with 1 MPa of nitrogen twice. Then, the catalyst was filtered off, and the catalyst was washed with 20 g of acetone three times. The solvent was removed from the obtained mother liquor to obtain 49.8 g of crude 1,8-TDCan. As a result of gas chromatography analysis, the compositions were 1,8-NDCan: 0.1% and 1,8-TDCan: 92.8%.

<実施例2>
500mLオートクレーブ(SUS316L製)に、1,8−NDCAn10g、5重量%パラジウムが活性炭に担持された触媒(乾燥品、含水率0.1%未満)5.0g、テトラヒドロフラン(水分濃度710ppm)200gを仕込んだ。仕込み液をサンプリングして水分濃度を測定したところ730ppmであった。室温で、オートクレーブ内を窒素1MPaで2回置換し、次いで水素1MPaで2回置換した。その後常圧まで落圧した後、内温80℃に昇温し、水素で5MPaまで加圧し、同温度、同圧力で10分攪拌した(500rpm)。
反応後、室温まで冷却し、水素を放出し、窒素1MPaで2回置換した後、触媒を濾別し、触媒をアセトン20gで3回洗浄した。得られた母液から溶媒を除去して、粗結晶9.8gを得た。ガスクロマトグラフィー分析を行ったところ、組成は、1,8−NDCAn:0.0%、1,8−TDCAn:78.9%であった。
<Example 2>
A 500 mL autoclave (manufactured by SUS316L) is charged with 10 g of 1,8-NDCan, 5 g of a catalyst in which 5 wt% palladium is supported on activated carbon (dry product, moisture content of less than 0.1%), and 200 g of tetrahydrofuran (moisture concentration of 710 ppm). It is. The charged liquid was sampled and the water concentration was measured and found to be 730 ppm. At room temperature, the inside of the autoclave was replaced twice with 1 MPa of nitrogen, and then replaced twice with 1 MPa of hydrogen. Thereafter, the pressure was reduced to normal pressure, the temperature was raised to 80 ° C., the pressure was increased to 5 MPa with hydrogen, and the mixture was stirred at the same temperature and the same pressure for 10 minutes (500 rpm).
After the reaction, the reaction mixture was cooled to room temperature, released hydrogen, and replaced with 1 MPa of nitrogen twice. Then, the catalyst was filtered off, and the catalyst was washed with 20 g of acetone three times. The solvent was removed from the resulting mother liquor to obtain 9.8 g of crude crystals. As a result of gas chromatography analysis, the compositions were 1,8-NDCan: 0.0% and 1,8-TDCan: 78.9%.

<比較例1>
500mLオートクレーブ(SUS316L製)に、1,8−NDCAn20g、5重量%パラジウムが活性炭に担持された触媒(含水率52重量%)5g、酢酸エチル(水分濃度450ppm)100gを仕込んだ。仕込み液をサンプリングして水分濃度を測定したところ2.5重量%であった。室温で、オートクレーブ内を窒素1MPaで2回置換し、次いで水素1MPaで2回置換した。その後常圧まで落圧した後、内温80℃に昇温し、水素で5MPaまで加圧し、同温度、同圧力で30分攪拌した(500rpm)。
反応後、室温まで冷却し、水素を放出し、窒素1MPaで2回置換した後、触媒を濾別し、触媒をアセトン20gで3回洗浄した。得られた母液から溶媒を除去して、粗結晶20.2gを得た。ガスクロマトグラフィー分析を行ったところ、組成は、1,8−NDCAn:0.0%、1,8−TDCA:90.6%、1,8−TDCAn:0.0%であった。
<Comparative Example 1>
A 500 mL autoclave (manufactured by SUS316L) was charged with 20 g of 1,8-NDCan, 5 g of a catalyst in which 5 wt% palladium was supported on activated carbon (water content 52 wt%), and 100 g of ethyl acetate (water concentration 450 ppm). The charged liquid was sampled and the water concentration was measured and found to be 2.5% by weight. At room temperature, the inside of the autoclave was replaced twice with 1 MPa of nitrogen, and then replaced twice with 1 MPa of hydrogen. Thereafter, the pressure was reduced to normal pressure, the temperature was raised to 80 ° C., the pressure was increased to 5 MPa with hydrogen, and the mixture was stirred at the same temperature and the same pressure for 30 minutes (500 rpm).
After the reaction, the reaction mixture was cooled to room temperature, released hydrogen, and replaced with 1 MPa of nitrogen twice. Then, the catalyst was filtered off, and the catalyst was washed with 20 g of acetone three times. The solvent was removed from the obtained mother liquor to obtain 20.2 g of crude crystals. As a result of gas chromatography analysis, the composition was 1,8-NDCan: 0.0%, 1,8-TDCA: 90.6%, and 1,8-TDCan: 0.0%.

本発明によれば、1,8−TDCAnを貴金属としてパラジウムのみを触媒として用いて1,8−NDCAnより一工程で工業的に作り出すことができる。一般的には、無水環を有するナフタレン環は水素添加反応への反応性は小さくなるため、無水環を開環させた後に水素添加反応を行い、後に閉環するという手法がとられるが、本発明により反応経路を簡略化することができる。
1,8−TDCAnは1,8−NDCAnと比較して、立体的な安定性の差から反応性に富み、ポリエステルやポリカーボネート、ポリイミド、ポリアミドとして、液晶組成物、高分子改質剤、医薬中間体などとしての利用が考えられるため、その工業的な意義は大きい。
According to the present invention, 1,8-TDCan can be industrially produced from 1,8-NDCan by using 1,8-TDCan as a noble metal and only palladium as a catalyst. In general, since a naphthalene ring having an anhydrous ring is less reactive to a hydrogenation reaction, the hydrogenation reaction is performed after the anhydrous ring is opened, and then the ring is closed. Can simplify the reaction route.
1,8-TDCan is rich in reactivity due to the difference in steric stability compared to 1,8-NDCan, and as polyester, polycarbonate, polyimide, polyamide, liquid crystal composition, polymer modifier, pharmaceutical intermediate Since it can be used as a body, its industrial significance is great.

Claims (2)

1,8−ナフタレンジカルボン酸無水物を反応系内の水分濃度が0.2重量%未満の条件下においてパラジウム触媒を用いて水素添加反応を行うことを特徴とする1,8−テトラリンジカルボン酸無水物の製造方法。 1,8-tetralindicarboxylic acid anhydride is obtained by subjecting 1,8-naphthalenedicarboxylic acid anhydride to a hydrogenation reaction using a palladium catalyst under the condition that the water concentration in the reaction system is less than 0.2% by weight. Manufacturing method. 水分含有量0.5重量%以下のパラジウム触媒を使用し、水分濃度0.2重量%以下の溶媒中で水素添加反応を行うことを特徴とする請求項1に記載の1,8−テトラリンジカルボン酸無水物の製造方法。 The 1,8-tetralin dicarboxylic acid according to claim 1, wherein a hydrogenation reaction is performed in a solvent having a water concentration of 0.2 wt% or less using a palladium catalyst having a water content of 0.5 wt% or less. Method for producing acid anhydride.
JP2012216370A 2012-09-28 2012-09-28 Method of producing 1,8-tetralin dicarboxylic anhydride Pending JP2014070036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012216370A JP2014070036A (en) 2012-09-28 2012-09-28 Method of producing 1,8-tetralin dicarboxylic anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012216370A JP2014070036A (en) 2012-09-28 2012-09-28 Method of producing 1,8-tetralin dicarboxylic anhydride

Publications (1)

Publication Number Publication Date
JP2014070036A true JP2014070036A (en) 2014-04-21

Family

ID=50745575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012216370A Pending JP2014070036A (en) 2012-09-28 2012-09-28 Method of producing 1,8-tetralin dicarboxylic anhydride

Country Status (1)

Country Link
JP (1) JP2014070036A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09508645A (en) * 1994-07-08 1997-09-02 エフ・ホフマン−ラ ロシュ アーゲー 2- (1-Azabicyclo [2.2.2] -oct-3-yl) -2,4,5,6-tetrahydro-1H-benz [de] isoquinolin-1-one and process for producing intermediate products

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09508645A (en) * 1994-07-08 1997-09-02 エフ・ホフマン−ラ ロシュ アーゲー 2- (1-Azabicyclo [2.2.2] -oct-3-yl) -2,4,5,6-tetrahydro-1H-benz [de] isoquinolin-1-one and process for producing intermediate products

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6016011175; Journal of the Chemica Society, Perkin Transactions 2 No.12, 2001, pp.2342-2350 *
JPN6016011176; Organic & Biomolecular Chemistry Vol.4, No.1, 2006, pp.71-82 *

Similar Documents

Publication Publication Date Title
JP2004534737A (en) Organometallic skeletal material and method for producing the same
EP3204366B1 (en) A process for the preparation of gamma-valerolactone by catalytic hydrogenation of levulinic acid using ru-based catalysts
TW201404464A (en) Method of producing pyruvate
US10597344B2 (en) Method for preparing 1,3-cyclohexanedimethanol
US9475786B2 (en) Method for synthesising 2,5-di(hydroxymethyl)furan and 2,5-di(hydroxymethyl)tetrahydrofuran by selective hydrogenation of furan-2,5-dialdehyde
JP4622406B2 (en) Process for producing hydrogenated aromatic polycarboxylic acid
EP3381911A1 (en) Method for producing -valerolactone
CN107935971B (en) Preparation method of (S) -3-hydroxytetrahydrofuran
CN109593029A (en) A kind of method preparing high-purity L- menthones and the catalyst system for this method
CN113717132B (en) Key intermediate of antiepileptic drug and preparation method thereof
JP2014070036A (en) Method of producing 1,8-tetralin dicarboxylic anhydride
JPWO2007063974A1 (en) Method for adding hydrogen to aromatic ring of aromatic ring compound
JPH01193246A (en) Production of 2,3-dichloropyridine
CN108026048A (en) The manufacture method of epsilon-caprolactams
EP3656766A1 (en) 2,5-bis(aminomethyl)furan production method
JP2022000446A (en) Method for producing furan derivative
JP6420673B2 (en) Method for producing bis [4- (6-acryloyloxyhexyl) phenyl] cyclohexane-1,4-dicarboxylate
JP7149424B2 (en) Method for recovering and reusing selective homogeneous hydrogenation catalyst
JPWO2013153957A1 (en) Method for producing hydrogenated biphenol
JP4275498B2 (en) Method for producing high-purity tricyclo [5.2.1.02,6] decane-2-carboxylic acid ester
JP4429673B2 (en) Method for producing high-purity tricyclo [5.2.1.02,6] decane-2-carboxylic acid ester
CN110002930B (en) Method for hydrogenation reduction of alkenyl aromatic halogenated derivatives
EP2055379A1 (en) Raney-nickel-iron catalyst, its preparation and a method to produce L-norephedrine by hydrogenating L-phenylacetylcarbinol-oxime with said catalyst
JP4264512B2 (en) Method for producing 3,3,5-trimethylcyclohexanone
JP4359679B2 (en) Method for producing 3,3,5-trimethylcyclohexanone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161004