JP2006080039A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2006080039A
JP2006080039A JP2004265811A JP2004265811A JP2006080039A JP 2006080039 A JP2006080039 A JP 2006080039A JP 2004265811 A JP2004265811 A JP 2004265811A JP 2004265811 A JP2004265811 A JP 2004265811A JP 2006080039 A JP2006080039 A JP 2006080039A
Authority
JP
Japan
Prior art keywords
water
fuel cell
temperature
cell system
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004265811A
Other languages
Japanese (ja)
Other versions
JP4716212B2 (en
Inventor
Isamu Kikuchi
勇 菊池
Hiroshi Chisawa
洋 知沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Fuel Cell Power Systems Corp
Priority to JP2004265811A priority Critical patent/JP4716212B2/en
Publication of JP2006080039A publication Critical patent/JP2006080039A/en
Application granted granted Critical
Publication of JP4716212B2 publication Critical patent/JP4716212B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system where reduction in the running cost necessary for preventing freezing and the prevention of damage to a device are made possible. <P>SOLUTION: The fuel cell system is provided with a water cycle system which comprises a water supply means 2 communicating with a fuel cell 1 and including a pipe 2a and a pump 2b to supply the fuel cell 1 with water, a water collection means 3 communicating with the fuel cell 1 and including a pipe 3a to collect water from the fuel cell 1, and a water tank 4 communicating with the fuel cell 1, the water supply means 2 and the water collection means 3 to cause water to flow backward; and a water-moving means which comprises an underground water tank 5 buried in the ground, a draining means 6 including a pipe 6a and an on-off valve 6b to drain the water in the water cycle system into the underground water tank 5, and a pumping means 7 including a pipe 7a and a pump 7b to pump the water stored in the underground water tank 5 into the water cycle system. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池システムに係り、特に、水の凍結防止手段に改良を施した燃料電池システムに関するものである。   The present invention relates to a fuel cell system, and more particularly to a fuel cell system in which water freezing prevention means are improved.

燃料電池システムは、水素等の燃料と空気等の酸化剤を燃料電池本体に供給して、電気化学的に反応させることにより、燃料の持つ化学エネルギーを直接電気エネルギーに変換し外部へ取り出す発電装置であるが、この電気化学的な反応の過程において熱が発生するため、燃料電池システムでは貯留水タンクから給排水配管を通じて燃料電池本体に水を循環させて燃料電池本体を冷却している。   A fuel cell system supplies fuel such as hydrogen and an oxidant such as air to the fuel cell body and causes them to react electrochemically, thereby converting the chemical energy of the fuel directly into electrical energy and taking it out. However, since heat is generated in the process of this electrochemical reaction, the fuel cell system cools the fuel cell body by circulating water from the storage tank to the fuel cell body through the water supply / drainage pipe.

また、燃料電池本体の電気化学的な反応の結果として、水素と酸素が結合して水を生じるが、この水の一部は燃料電池システムの貯留水タンクに回収される。さらに、固体高分子形燃料電池の場合は、燃料電池本体の高分子イオン交換膜を湿潤させるためにも、燃料電池本体に水が供給あるいは循環されている。   Further, as a result of the electrochemical reaction of the fuel cell main body, hydrogen and oxygen are combined to produce water, and a part of this water is recovered in the storage water tank of the fuel cell system. Further, in the case of a polymer electrolyte fuel cell, water is supplied or circulated to the fuel cell body in order to wet the polymer ion exchange membrane of the fuel cell body.

しかしながら、このような構成の燃料電池システムが、氷点下の環境で一定時間運転を停止された場合、燃料電池システム内の水が凍結してしまい、凍結膨張によって機器が破損するという問題や、凍結した氷を溶かすのに多くの時間とエネルギーを要するという問題がある。   However, when the fuel cell system having such a configuration is stopped for a certain period of time in a sub-freezing environment, the water in the fuel cell system is frozen and the device is damaged due to freezing and expansion. There is a problem that it takes a lot of time and energy to melt ice.

これらの問題に対する解決策としては、燃料電池システムの筐体内に電気ヒーターやバーナー燃焼機等を設置して、筐体内部の温度が凍結温度以下にならないようにする方法や、停止中に燃料電池システム内の水を外部に排出して廃棄し、再起動の際に外部から新たに水を補給する方法が提案されている。   Solutions to these problems include installing an electric heater or burner combustor in the fuel cell system housing so that the temperature inside the housing does not drop below the freezing temperature, A method has been proposed in which water in the system is discharged to the outside and discarded, and water is newly supplied from the outside at the time of restart.

しかしながら、電気ヒーターやバーナー燃焼による保温では、電気代や燃料代等のランニングコストが増大してしまう。また、燃料電池システムで使用されている水は、一般に電気伝導性の低いイオン交換水であるため、凍結対策として水を外部に排出して廃棄する方法では、再起動の際に外部より新たに水を補給する必要があるので、水道代およびイオン交換水の生成コストが発生してしまい、燃料電池システムの維持コスト低減の観点から好ましくない。   However, heat retention by electric heater or burner combustion increases running costs such as electricity costs and fuel costs. In addition, since water used in fuel cell systems is generally ion-exchanged water with low electrical conductivity, the method of discharging water to the outside and disposing of it as a countermeasure against freezing requires a new one from the outside when restarting. Since it is necessary to replenish water, the cost of generating water bills and ion exchange water is generated, which is not preferable from the viewpoint of reducing the maintenance cost of the fuel cell system.

これらの問題を解決するために、特許文献1には、燃料電池システム内に水を回収するためのサブタンクを設け、運転終了後に燃料電池システム内の水をサブタンクに回収し、さらにそのサブタンクを取り外して、凍結の恐れの無い場所で保管するという方法が提案されている。
特許第3416512号
In order to solve these problems, Patent Document 1 provides a subtank for collecting water in the fuel cell system, collects water in the fuel cell system in the subtank after the operation is completed, and removes the subtank. Thus, a method of storing in a place where there is no risk of freezing has been proposed.
Japanese Patent No. 3416512

しかしながら、特許文献1による方法のように、水を凍結の恐れの無い場所に保管するためには、燃料電池システムの運転員がサブタンクを運搬移動する必要があるため、作業に手間がかかり、また、運転員が不在の場合には、水の凍結を回避できないという問題点があった。   However, as in the method according to Patent Document 1, in order to store water in a place where there is no risk of freezing, it is necessary for the operator of the fuel cell system to transport and move the sub-tank. In the absence of the operator, there was a problem that water freezing could not be avoided.

本発明は、上記のような従来技術の問題点を解決するために提案されたものであり、その目的は、煩雑な作業を必要とせずに、凍結対策に必要なランニングコストの低減と機器の破損防止が可能な燃料電池システムを提供することにある。   The present invention has been proposed in order to solve the above-described problems of the prior art, and the object thereof is to reduce the running cost necessary for the countermeasure against freezing and reduce the equipment cost without requiring complicated work. An object of the present invention is to provide a fuel cell system capable of preventing damage.

上記の目的を達成するため、請求項1に記載の発明は、燃料電池本体に水を供給する水供給手段と、前記燃料電池から水を回収する水回収手段と、前記水供給手段および前記水回収手段を通じて水が還流される水タンクを有する水循環系を備えた燃料電池システムにおいて、地中に設置された地中水タンクと、前記水循環系と前記地中水タンクとを連通して水を移動させる水移動手段とを有することを特徴とする。   In order to achieve the above object, the invention described in claim 1 includes a water supply means for supplying water to the fuel cell body, a water recovery means for recovering water from the fuel cell, the water supply means, and the water In a fuel cell system having a water circulation system having a water tank through which water is circulated through a recovery means, the underground water tank installed in the ground, and the water circulation system and the underground water tank communicate with each other. It has the water movement means to move, It is characterized by the above-mentioned.

以上のような構成を有する請求項1に記載の発明では、燃料電池システムの運転停止中に、水循環系の水を地中に設置された地中水タンクに移動させて貯留することができるので、地表の温度が氷点下の場合でも、凍結による機器の破損を防止することができる。また、運転再開時においても、解凍を行わずに地中水タンクから汲み上げて使用できるので、経済的な運用が可能となる。   In the invention according to claim 1 having the above-described configuration, the water in the water circulation system can be moved and stored in the underground water tank installed in the ground while the operation of the fuel cell system is stopped. Even when the surface temperature is below freezing, damage to the equipment due to freezing can be prevented. In addition, even when the operation is resumed, it can be used by being pumped from the underground water tank without being thawed.

請求項2に記載の発明は、請求項1に記載の燃料電池システムにおいて、前記水タンクが、地中に設置された地中水タンクであることを特徴とする。   According to a second aspect of the present invention, in the fuel cell system according to the first aspect, the water tank is an underground water tank installed in the ground.

以上のような構成を有する請求項2に記載の発明では、水タンク自体を地中に設置して、地中水タンクの機能を兼有させることができるので、燃料電池システムの構成部材が削減される。また、燃料電池に循環供給される水は、常に地中水タンクに循環されるので、外気温度が高い夏季においても、地中において冷却することができるので、水循環系に設けられる熱交換器の負荷を軽減することができる。   In the invention according to claim 2 having the above-described configuration, the water tank itself can be installed in the ground so that the function of the underground water tank can be shared. Is done. In addition, since the water circulated and supplied to the fuel cell is always circulated to the underground water tank, it can be cooled in the ground even in the summer when the outside air temperature is high, so the heat exchanger provided in the water circulation system The load can be reduced.

請求項3に記載の発明は、請求項1又は請求項2に記載の燃料電池システムにおいて、前記地中水タンクが、地中において、水分が凍結しない深さに設置されていることを特徴とする。   The invention according to claim 3 is the fuel cell system according to claim 1 or 2, wherein the underground water tank is installed at a depth at which moisture does not freeze in the ground. To do.

以上のような構成を有する請求項3に記載の発明では、地中水タンクの水は年間を通して凍結しないため、燃料電池システムの運転を再開する際に、随時、地中水タンクから水を汲み上げて運転を再開することができるので、燃料電池システムのより経済的な運用が可能となる。   In the invention according to claim 3 having the above-described configuration, since the water in the underground water tank does not freeze throughout the year, when the operation of the fuel cell system is resumed, the water is pumped from the underground water tank at any time. Thus, the operation can be resumed, so that the fuel cell system can be operated more economically.

請求項4に記載の発明は、請求項1乃至請求項3のいずれか一に記載の燃料電池システムにおいて、前記水循環系における水温を検知する温度検知手段と、燃料電池システムの筐体内の温度を検知する温度検知手段と、外気の温度を検知する温度検知手段の少なくとも一つを有し、前記温度検知手段のいずれかにより検知された温度が、各温度検知手段について予め設定されたそれぞれの所定値よりも低い場合に、前記水循環系の水を前記地中水タンクに移動させるように構成したことを特徴とする。   According to a fourth aspect of the present invention, in the fuel cell system according to any one of the first to third aspects, the temperature detecting means for detecting the water temperature in the water circulation system, and the temperature in the housing of the fuel cell system are determined. And at least one of a temperature detecting means for detecting and a temperature detecting means for detecting the temperature of the outside air, and the temperature detected by any of the temperature detecting means is a predetermined value set in advance for each temperature detecting means. When the value is lower than the value, water in the water circulation system is moved to the underground water tank.

以上のような構成を有する請求項4に記載の発明では、水循環系の水を地中水タンクへ移動させることの可否を、所定の部位に設置された1又は2以上の温度検知手段による検知温度によって判断し、凍結の可能性がある場合にのみ水の排出を行うので、水の排出および汲み上げ回数を削減することができ、運転に必要なランニングコストを削減することができる。   In the invention according to claim 4 having the above-described configuration, whether or not the water in the water circulation system can be moved to the underground water tank is detected by one or more temperature detection means installed at a predetermined site. Since water is discharged only when there is a possibility of freezing as determined by temperature, the number of water discharges and pumping operations can be reduced, and the running cost required for operation can be reduced.

請求項5に記載の発明は、請求項1乃至請求項4のいずれか一に記載の燃料電池システムにおいて、前記水移動手段あるいは前記水循環系の少なくとも一方に、加熱手段が設けられていることを特徴とする。   According to a fifth aspect of the present invention, in the fuel cell system according to any one of the first to fourth aspects, a heating unit is provided in at least one of the water moving unit or the water circulation system. Features.

以上のような構成を有する請求項5に記載の発明では、水移動手段あるいは水循環系の少なくとも一方に設けられた加熱手段によって、水の凍結による不都合が防止されるので、より確実な凍結対策を実施することができる。   In the invention according to claim 5 having the above-described configuration, the heating means provided in at least one of the water moving means or the water circulation system prevents inconvenience due to freezing of the water, so a more reliable countermeasure against freezing is taken. Can be implemented.

請求項6に記載の発明は、請求項5に記載の燃料電池システムにおいて、前記水移動手段の配管温度を検知する温度検知手段と、前記水循環系の水温を検知する温度検知手段と、燃料電池システム筐体内の温度を検知する温度検知手段と、外気の温度を検知する温度検知手段の少なくとも一つを有し、前記温度検知手段のいずれかにより検知された温度が、各温度検知手段について予め設定されたそれぞれの所定値よりも低い場合に、前記加熱手段によって水を加熱するように構成したことを特徴とする。   According to a sixth aspect of the present invention, in the fuel cell system according to the fifth aspect, the temperature detecting means for detecting the pipe temperature of the water moving means, the temperature detecting means for detecting the water temperature of the water circulation system, and the fuel cell It has at least one of a temperature detection means for detecting the temperature inside the system casing and a temperature detection means for detecting the temperature of the outside air, and the temperature detected by any one of the temperature detection means is previously set for each temperature detection means. When the temperature is lower than each predetermined value, water is heated by the heating means.

以上のような構成を有する請求項6に記載の発明では、水移動手段あるいは水循環系の少なくとも一方に設けられた加熱手段の動作を、所定の部位に設置された1又は2以上の温度検知手段による検知温度によって判断し、凍結の可能性がある場合にのみ加熱手段を稼働させることができるので、より確実な凍結対策を実施することができる。   In the invention according to claim 6 having the above-described configuration, the operation of the heating means provided in at least one of the water moving means or the water circulation system is performed by one or more temperature detecting means installed at a predetermined site. Since the heating means can be operated only when there is a possibility of freezing as determined by the detected temperature, a more reliable measure against freezing can be implemented.

本発明によれば、煩雑な作業を必要とせずに、凍結対策に必要なランニングコストの低減と機器の破損防止が可能な燃料電池システムを提供することができる。   According to the present invention, it is possible to provide a fuel cell system capable of reducing running cost necessary for countermeasures against freezing and preventing damage to equipment without requiring complicated work.

次に、本発明を実施するための最良の形態(以下、「実施形態」と呼ぶ)について図面を参照して具体的に説明する。   Next, the best mode for carrying out the present invention (hereinafter referred to as “embodiment”) will be specifically described with reference to the drawings.

(1)第1実施形態
(1−1)構成
本実施形態の燃料電池システムは、図1に示したように、電解質を挟んで配置された燃料極および酸化剤極からなる燃料電池1と、燃料電池1に燃料ガスを供給する図示されない燃料供給手段と、燃料電池1に酸化剤ガスを供給する図示されない酸化剤ガス供給手段と、燃料電池1の燃料極および酸化剤極に燃料ガスおよび酸化剤ガスを供給して発生した起電力を制御して電気エネルギーを取り出す図示されない電気制御装置と、燃料電池1に連通され、燃料電池1に水を供給する配管2aとポンプ2bからなる水供給手段2と、燃料電池1に連通され、燃料電池1から水を回収する配管3aからなる水回収手段3と、燃料電池1、水供給手段2および水回収手段3に連通されて水が還流される水タンク4とを有する水循環系と、地中に埋設された地中水タンク5と、水循環系の水を地中水タンク5に排出させる配管6aと開閉弁6bとからなる排出手段6と地中水タンク5に貯留された水を水循環系へ汲み上げる配管7aとポンプ7bからなる汲み上げ手段7とを有する水移動手段とから構成されている。
(1) First Embodiment (1-1) Configuration As shown in FIG. 1, the fuel cell system of the present embodiment includes a fuel cell 1 including a fuel electrode and an oxidant electrode arranged with an electrolyte interposed therebetween, A fuel supply means (not shown) for supplying a fuel gas to the fuel cell 1, an oxidant gas supply means (not shown) for supplying an oxidant gas to the fuel cell 1, and a fuel gas and an oxidizer on the fuel electrode and the oxidant electrode of the fuel cell 1 A water supply means comprising an electric control device (not shown) for controlling the electromotive force generated by supplying the agent gas and taking out electric energy, and a pipe 2a connected to the fuel cell 1 and supplying water to the fuel cell 1 and a pump 2b. 2 is connected to the fuel cell 1, and is connected to the water recovery means 3 including a pipe 3 a for recovering water from the fuel cell 1, the fuel cell 1, the water supply means 2, and the water recovery means 3 to recirculate water. Water tank 4 And a ground water tank 5 buried in the ground, a drain 6 comprising a pipe 6a for discharging water from the water circulation system to the ground water tank 5 and an on-off valve 6b, and a ground water tank. 5 is constituted by a water moving means having a pipe 7a for pumping the water stored in the water circulation system and a pumping means 7 comprising a pump 7b.

なお、前記地中水タンク5の地中への設置深さは、年間を通して地中の水分が凍結しなくなる地表面からの深さより深い位置であることが望ましい。   In addition, it is desirable that the installation depth of the underground water tank 5 in the ground is deeper than the depth from the ground surface where moisture in the ground is not frozen throughout the year.

(1−2)作用
次に、上記のような構成を有する本実施形態の燃料電池システムについて、運転停止前後の水の流れを説明する。
(1-2) Operation Next, the flow of water before and after operation stop will be described for the fuel cell system of the present embodiment having the above-described configuration.

(1−2−1)燃料電池システムの運転中
燃料電池システムの運転中は、排出手段6の開閉弁6bが閉じられており、水タンク4に貯留された水が、水供給手段2のポンプ2bの作用により、配管2aを介して燃料電池1に供給され、燃料電池1からの水は、水回収手段3の配管3aを介して水タンク4に還流されている。
(1-2-1) During operation of the fuel cell system During the operation of the fuel cell system, the on-off valve 6b of the discharge means 6 is closed, and the water stored in the water tank 4 is supplied to the pump of the water supply means 2 2b is supplied to the fuel cell 1 through the pipe 2a, and the water from the fuel cell 1 is returned to the water tank 4 through the pipe 3a of the water recovery means 3.

(1−2−2)燃料電池システムの運転停止中
次に、燃料電池システムが運転を停止すると、水供給手段2のポンプ2bが停止し、排出手段6の開閉弁6bが開くことで、重力の作用により、燃料電池1、水タンク4および水供給手段2、水回収手段3に滞留していた水が、排出手段6の配管6aを介して地中水タンク5に排出される。
(1-2-2) During Stop of Operation of Fuel Cell System Next, when the fuel cell system stops operating, the pump 2b of the water supply means 2 is stopped, and the on-off valve 6b of the discharge means 6 is opened, so that gravity As a result, the water staying in the fuel cell 1, the water tank 4, the water supply means 2, and the water recovery means 3 is discharged to the underground water tank 5 through the pipe 6 a of the discharge means 6.

(1−2−3)燃料電池システムの運転再開時
運転を再開する場合は、排出手段6の開閉弁6bが閉じられ、汲み上げ手段7のポンプ7bが作動し、地中水タンク5に滞留していた水が汲み上げ手段7の配管7aを介して水タンク4に汲み上げられた後、水供給手段2のポンプ2bが作動し、燃料電池システムの運転中と同様な水の循環が再開される。
(1-2-3) When resuming operation of the fuel cell system When resuming operation, the on-off valve 6b of the discharging means 6 is closed, the pump 7b of the pumping means 7 is operated, and the fuel cell system stays in the underground water tank 5. After the water which has been pumped up to the water tank 4 through the pipe 7a of the pumping means 7, the pump 2b of the water supply means 2 is operated, and the water circulation similar to that during the operation of the fuel cell system is resumed.

(1−3)効果
以上の通り、本実施形態においては、燃料電池システムの運転停止中には、水循環系の水は地中に埋設された地中水タンク5に貯留されているので、地中水タンク5以外の機器には凍結する水が存在せず、ヒーター等による保温を行わなくとも、凍結による機器の破損が生じない。
(1-3) Effect As described above, in the present embodiment, since the water in the water circulation system is stored in the underground water tank 5 buried in the ground while the operation of the fuel cell system is stopped, There is no water to be frozen in equipment other than the middle water tank 5, and the equipment will not be damaged by freezing even if it is not kept warm by a heater or the like.

また、地表の温度が氷点下の場合でも、地中の温度は地表の温度より高温であるため、地中水タンク5の水は凍結しにくく、解凍を行わずに汲み上げて使用できるので、経済的な運用ができる。また、地中水タンク5を、年間を通して、地中の水分が凍結しなくなる地表面からの深さより深い位置に設置した場合は、地中水タンク5の水は年間を通して凍結しなくなり、燃料電池システムの運転を再開する際に、常に地中水タンク5から水を汲み上げて運転を再開できるので、燃料電池システムのより経済的な運用が可能となる。   Even when the surface temperature is below freezing, the underground temperature is higher than the surface temperature, so the water in the underground water tank 5 is difficult to freeze and can be used without being thawed. Operation is possible. When the underground water tank 5 is installed at a position deeper than the depth from the ground surface where the underground water does not freeze throughout the year, the water in the underground water tank 5 does not freeze throughout the year, and the fuel cell When resuming the operation of the system, water can always be pumped from the underground water tank 5 and the operation can be resumed, so that the fuel cell system can be operated more economically.

(2)第2実施形態
(2−1)構成
本実施形態の燃料電池システムは、上記第1実施形態の燃料電池システムにおける水タンク4を地中に埋設して、図1の地中水タンク5の機能を兼有させたものである。
(2) Configuration of the Second Embodiment (2-1) The fuel cell system of the present embodiment embeds the water tank 4 in the fuel cell system of the first embodiment in the ground, and the underground water tank of FIG. This is a combination of 5 functions.

すなわち、本実施形態の燃料電池システムは、図2に示したように、燃料電池1に水を供給する配管2aとポンプ2bからなる水供給手段2が、互いに並列に接続されたポンプ7bと開閉弁7cからなる汲み上げ手段7を介して、地中に埋設された地中水タンク5と連通され、また、燃料電池1から水を回収する水回収手段3の配管3aは、直接、地中水タンク5と連通されている。なお、地中水タンク5の地中への設置深さは、年間を通して地中の水分が凍結しなくなる地表面からの深さより深い位置であることが望ましい。   That is, in the fuel cell system of this embodiment, as shown in FIG. 2, the water supply means 2 including the pipe 2a for supplying water to the fuel cell 1 and the pump 2b is opened and closed with the pump 7b connected in parallel to each other. The pipe 3a of the water recovery means 3 that is connected to the underground water tank 5 buried in the ground through the pumping means 7 including the valve 7c and recovers water from the fuel cell 1 is directly connected to the underground water. It communicates with the tank 5. In addition, it is desirable that the installation depth of the underground water tank 5 in the ground is a position deeper than the depth from the ground surface where moisture in the ground is not frozen throughout the year.

(2−2)作用
次に、上記のような構成を有する本実施形態の燃料電池システムについて、運転停止前後の水の流れを説明する。
(2-2) Operation Next, the flow of water before and after operation stop will be described for the fuel cell system of the present embodiment having the above-described configuration.

(2−2−1)燃料電池システムの運転中
燃料電池システムの運転中は、地中水タンク5に貯留された水が、水供給手段2のポンプ2bの作用により、配管2aおよび汲み上げ手段7の開閉弁7cを介して燃料電池1に供給され、燃料電池1からの水は、水回収手段3の配管3aを介して地中水タンク5に還流されている。
(2-2-1) During operation of the fuel cell system During operation of the fuel cell system, the water stored in the underground water tank 5 is caused by the action of the pump 2b of the water supply means 2 to the piping 2a and the pumping means 7. Is supplied to the fuel cell 1 through the open / close valve 7 c, and the water from the fuel cell 1 is returned to the underground water tank 5 through the pipe 3 a of the water recovery means 3.

(2−2−2)燃料電池システムの運転停止中
次に、燃料電池システムが運転を停止すると、水供給手段2のポンプ2bが停止し、重力の作用により、燃料電池1、水供給手段2及び水回収手段3に滞留していた水が地中水タンク5に貯留される。
(2-2-2) During stoppage of operation of the fuel cell system Next, when the operation of the fuel cell system stops, the pump 2b of the water supply means 2 is stopped, and the fuel cell 1 and the water supply means 2 are caused by the action of gravity. The water staying in the water recovery means 3 is stored in the underground water tank 5.

(2−2−3)運転再開時
運転を開始する場合は、汲み上げ手段7の開閉弁7cが閉じられ、ポンプ7bが作動し、水供給手段2のポンプ2bまで水を汲み上げた後、水供給手段2のポンプ2bが作動し、汲み上げ手段7の開閉弁7cが開かれ、燃料電池1と水回収手段3の配管3aを介して水が地中水タンク5に還流され、燃料電池システムの運転中と同様な水の循環が再開される。
(2-2-3) When restarting operation When starting the operation, the on-off valve 7c of the pumping means 7 is closed, the pump 7b is operated, water is pumped up to the pump 2b of the water supply means 2, and then water is supplied. The pump 2b of the means 2 is operated, the on-off valve 7c of the pumping means 7 is opened, and water is returned to the underground water tank 5 through the pipe 3a of the fuel cell 1 and the water recovery means 3, so that the operation of the fuel cell system is performed. The circulation of water as in the inside resumes.

(2−3)効果
以上の通り、本実施形態では、水タンク自体を地中に設置して、地中水タンクの機能を兼有させることができるので、燃料電池システムの構成部材を削減することができる。また、燃料電池システムの運転停止中には、水循環系の水は地中に埋設された地中水タンク5に貯留されているので、地中水タンク5以外の機器には凍結する水が存在せず、ヒーター等による保温を行わなくとも凍結による機器の破損が生じない。
(2-3) Effects As described above, in the present embodiment, the water tank itself can be installed in the ground, and the functions of the underground water tank can be combined, so the number of components of the fuel cell system is reduced. be able to. In addition, during the shutdown of the fuel cell system, water in the water circulation system is stored in the underground water tank 5 buried in the ground, so that there is water to be frozen in devices other than the underground water tank 5. No equipment breakage due to freezing even without heat insulation with a heater or the like.

また、地表の温度が氷点下の場合でも地中の温度は地表の温度より高温であるので、地中水タンク5の水は凍結しにくく、解凍を行わずに汲み上げて使用できるので、経済的な運用ができる。また、地中水タンク5を、年間を通して地中の水分が凍結しなくなる地表面からの深さより深い位置に設置した場合は、地中水タンク5の水は年間を通して凍結しなくなり、燃料電池システムの運転を再開する際に、常に地中水タンク5から水を汲み上げて運転を再開できるので、より経済的な運用が可能となる。   Also, even when the surface temperature is below freezing, the underground temperature is higher than the surface temperature, so the water in the underground water tank 5 is difficult to freeze and can be used without being thawed. Operation is possible. Further, when the underground water tank 5 is installed at a position deeper than the depth from the ground surface where the underground water does not freeze throughout the year, the water in the underground water tank 5 does not freeze throughout the year, and the fuel cell system When the operation is resumed, the operation can be resumed by always pumping water from the underground water tank 5, so that more economical operation is possible.

さらに、本実施形態においては、以下のような効果が得られる。すなわち、通常、燃料電池システムにおいては、上記の水循環系に、水を冷却するための熱交換器(図示せず)が設けられ、燃料電池1から排出された加温された水を冷却するように構成されているが、本実施形態においては、燃料電池1に循環供給される水は、常に地中水タンク5に循環されているので、外気温度が高い夏季においても、地中において冷却することができるので、熱交換器の負荷を軽減することができる。   Further, in the present embodiment, the following effects can be obtained. That is, in a fuel cell system, a heat exchanger (not shown) for cooling water is usually provided in the water circulation system so as to cool the heated water discharged from the fuel cell 1. However, in this embodiment, since the water circulated and supplied to the fuel cell 1 is always circulated to the underground water tank 5, it is cooled in the ground even in the summer when the outside air temperature is high. Therefore, the load on the heat exchanger can be reduced.

(3)第3実施形態
(3−1)構成
本実施形態の燃料電池システムは、上記第1実施形態の燃料電池システムにさらに改良を加えたものである。
(3) Configuration of Third Embodiment (3-1) The fuel cell system of the present embodiment is obtained by further improving the fuel cell system of the first embodiment.

すなわち、本実施形態の燃料電池システムは、図3に示したように、水タンク4には、第1の温度検知手段8と水位検知手段14が設けられ、排出手段6の配管6aには、ポンプ6cと、第2の温度検知手段10aと、水の加熱手段である第1の凍結防止ヒーター9aとが設けられ、汲み上げ手段7の配管7aには、第3の温度検知手段10bと、水の加熱手段である第2の凍結防止ヒーター9bとが設けられ、地中水タンク5には、配管12aと開閉弁12bからなる第1の排気手段12が連通され、水タンク4には、配管13aと開閉弁13bからなる第2の排気手段13が連通されている。その他の構成は、上記第1実施形態と同様であるので、説明は省略する。   That is, in the fuel cell system of the present embodiment, as shown in FIG. 3, the water tank 4 is provided with the first temperature detection means 8 and the water level detection means 14, and the piping 6 a of the discharge means 6 is provided with A pump 6c, a second temperature detection means 10a, and a first antifreeze heater 9a which is a water heating means are provided. A pipe 7a of the pumping means 7 has a third temperature detection means 10b and water A second anti-freezing heater 9b, which is a heating means, and a first exhaust means 12 comprising a pipe 12a and an on-off valve 12b communicated with the underground water tank 5, and a pipe connected to the water tank 4 The 2nd exhaust means 13 which consists of 13a and the on-off valve 13b is connected. Since other configurations are the same as those of the first embodiment, description thereof will be omitted.

(3−2)作用
次に、上記のような構成を有する本実施形態の燃料電池システムについて、運転停止前後の水の流れを説明する。
(3-2) Operation Next, the flow of water before and after operation stop will be described for the fuel cell system of the present embodiment having the above-described configuration.

(3−2−1)燃料電池システムの運転中
燃料電池システムの運転中は、水タンク4に貯留された水が、水供給手段2のポンプ2bの作用により、配管2aを介して燃料電池1に供給され、燃料電池1からの水は、水回収手段3の配管3aを介して、水タンク4に還流されている。
(3-2-1) During operation of the fuel cell system During operation of the fuel cell system, the water stored in the water tank 4 is supplied to the fuel cell 1 via the pipe 2a by the action of the pump 2b of the water supply means 2. The water from the fuel cell 1 is returned to the water tank 4 through the pipe 3 a of the water recovery means 3.

(3−2−2)燃料電池システムの運転停止中
次に、燃料電池システムが運転を停止すると、水供給手段2のポンプ2bが停止し、燃料電池システムは水タンク4に設けられた第1の温度検知手段8による温度監視モードになる。この温度監視モードにおいて、第1の温度検知手段8により検知された温度が、水タンク4の水が凍結しないように予め設定された所定の温度よりも低くなった場合には、燃料電池システムは水排出モードになる。
(3-2-2) During Stop of Operation of Fuel Cell System Next, when the fuel cell system stops operating, the pump 2b of the water supply means 2 is stopped, and the fuel cell system is a first provided in the water tank 4. The temperature monitoring mode by the temperature detecting means 8 is set. In this temperature monitoring mode, when the temperature detected by the first temperature detecting means 8 becomes lower than a predetermined temperature set in advance so that the water in the water tank 4 does not freeze, the fuel cell system It becomes water discharge mode.

水排出モードでは、まず、排出手段6の配管6aに設置された第2の温度検知手段10aの温度が検知され、検知された温度が、排出中の水が凍結しないように予め設定された所定の温度よりも低い場合には、排出手段6に設置された第1の凍結防止ヒーター9aが動作し、排出手段6の配管6aは所定の温度よりも高い温度に保持される。   In the water discharge mode, first, the temperature of the second temperature detection means 10a installed in the pipe 6a of the discharge means 6 is detected, and the detected temperature is set in advance so that the water being discharged does not freeze. When the temperature is lower than the first temperature, the first antifreeze heater 9a installed in the discharge means 6 operates, and the pipe 6a of the discharge means 6 is maintained at a temperature higher than a predetermined temperature.

次に、水タンク4に設置された第2の排気手段13の開閉弁13bと、地中水タンク5に設置された第1の排気手段12の開閉弁12bと、排出手段6の開閉弁6bが開き、排出手段6のポンプ6cが動作することで、燃料電池1と水タンク4および水供給手段2と水回収手段3に滞留していた水が、排出手段6の配管6aを介して地中水タンク5に排出されるとともに、水タンク4には排気配管13aを介して外部から空気が導入され、地中水タンク5の内部に滞留していた空気は排気手段12の配管12aを介して外部に排出される。   Next, the open / close valve 13b of the second exhaust means 13 installed in the water tank 4, the open / close valve 12b of the first exhaust means 12 installed in the underground water tank 5, and the open / close valve 6b of the discharge means 6 Is opened and the pump 6c of the discharge means 6 is operated, so that the water retained in the fuel cell 1, the water tank 4, the water supply means 2 and the water recovery means 3 is grounded through the pipe 6a of the discharge means 6. While being discharged into the middle water tank 5, air is introduced into the water tank 4 from the outside via the exhaust pipe 13 a, and the air remaining inside the underground water tank 5 is routed through the pipe 12 a of the exhaust means 12. Discharged outside.

ここで、前記温度監視モードから前記水排出モードへの移行条件としては、水タンク4に設置された第1の温度検知手段8により検知された温度が、予め設定された所定値よりも低くなった場合とする他にも、図示されない水循環系の温度検知手段と、図示されない外気温検知手段と、図示されない燃料電池システムの筐体内温度検知手段の少なくとも一つにより検知された温度が、水循環系の水が凍結しないように予め設定されたそれぞれの所定値より低い場合に、水排出モードに移行するようにしても良い。   Here, as a transition condition from the temperature monitoring mode to the water discharge mode, the temperature detected by the first temperature detecting means 8 installed in the water tank 4 is lower than a predetermined value set in advance. In addition to this, the temperature detected by at least one of a water circulation system temperature detection means (not shown), an outside air temperature detection means (not shown), and a temperature detection means in the casing of the fuel cell system (not shown) is the water circulation system. If the water is lower than each predetermined value set in advance so as not to freeze, the water discharge mode may be shifted.

あるいは、水循環系の温度検知手段により検知された温度が、予め設定された所定値よりも低いと同時に、外気温検知手段と燃料電池システムの筐体内温度検知手段の少なくとも1つにより検知された温度が、水循環系の水が凍結しないように予め設定された所定値よりも低い場合に限り、水排出モードに移行するようにしてもよい。   Alternatively, the temperature detected by the temperature detecting means of the water circulation system is lower than a predetermined value set in advance, and at the same time, the temperature detected by at least one of the outside air temperature detecting means and the temperature detecting means in the housing of the fuel cell system However, the water discharge mode may be shifted only when the water in the water circulation system is lower than a predetermined value set in advance so as not to freeze.

また、水排出モードで排出手段6に設置された第1の凍結防止ヒーター9aを動作させる場合、排出手段6の配管6aに設置された第2の温度検知手段10aを使用せずに、図示されない水循環系の温度検知手段と、図示されない外気温検知手段と、図示されない燃料電池システムの筐体内温度検知手段の少なくとも一つにより検知された温度が、排出中の水が凍結しないように予め設定された所定値より低い場合に、排出手段6に設置された第1の凍結防止ヒーター9aを一定時間動作させるようにしてもよい。   Further, when operating the first antifreeze heater 9a installed on the discharge means 6 in the water discharge mode, the second temperature detection means 10a installed on the pipe 6a of the discharge means 6 is not used and is not shown. The temperature detected by at least one of the temperature detection means of the water circulation system, the outside air temperature detection means (not shown), and the temperature detection means in the casing of the fuel cell system (not shown) is set in advance so that the water being discharged does not freeze. If the value is lower than the predetermined value, the first antifreeze heater 9a installed in the discharge means 6 may be operated for a certain period of time.

(3−2−3)燃料電池システムの運転再開時
次に、燃料電池システムが運転を再開する場合は、まず、汲み上げ手段7の配管7aに設置された第3の温度検知手段10bの温度が検知され、検知された温度が、汲み上げた水が凍結しないように予め設定された所定の温度よりも低い場合には、汲み上げ手段7に設置された第2の凍結防止ヒーター9bが動作し、汲み上げ手段7の配管7aは所定の温度よりも高い温度に保持される。
(3-2-3) When resuming operation of the fuel cell system Next, when the fuel cell system resumes operation, first, the temperature of the third temperature detecting means 10b installed in the pipe 7a of the pumping means 7 is increased. When the detected temperature is lower than a predetermined temperature set in advance so that the pumped water does not freeze, the second antifreeze heater 9b installed in the pumping means 7 operates and pumps up the pumped water. The pipe 7a of the means 7 is maintained at a temperature higher than a predetermined temperature.

次に、排出手段6の開閉弁6bが閉じられ、水タンク4に設置された第2の排気手段13の開閉弁13bと、地中水タンク5に設置された第1の排気手段12の開閉弁12bが開き、汲み上げ手段7のポンプ7bが作動することで、地中水タンク5に滞留していた水が、汲み上げ手段7の配管7aを介して水タンク4に汲み上げられるとともに、地中水タンク5には配管12aを介して外部から空気が導入され、水タンク4の内部に滞留していた空気は、第2の排気手段13の配管13aを介して外部に排出される。   Next, the opening / closing valve 6b of the discharging means 6 is closed, and the opening / closing valve 13b of the second exhausting means 13 installed in the water tank 4 and the opening / closing of the first exhausting means 12 installed in the underground water tank 5 are opened. When the valve 12b is opened and the pump 7b of the pumping means 7 is operated, the water staying in the underground water tank 5 is pumped to the water tank 4 via the pipe 7a of the pumping means 7, and the underground water Air is introduced into the tank 5 from the outside through the pipe 12 a, and the air staying inside the water tank 4 is discharged to the outside through the pipe 13 a of the second exhaust means 13.

次に、汲み上げ手段7のポンプ7bは一定時間動作した後に停止され、排気手段12、13に設置された開閉弁12b,13bも閉じられる。次に、水タンク4に設置された水位検知手段14により検知された水位が所定値よりも低い場合は、図示されない給水手段にて外部から水タンク4に水が補給された後、水供給手段2のポンプ2bが作動し、燃料電池システムの運転中と同様な水の循環が再開される。   Next, the pump 7b of the pumping means 7 is stopped after operating for a predetermined time, and the on-off valves 12b and 13b installed in the exhaust means 12 and 13 are also closed. Next, when the water level detected by the water level detection means 14 installed in the water tank 4 is lower than a predetermined value, the water supply means is supplied from the outside by a water supply means (not shown), and then the water supply means The pump 2b of No. 2 operates, and the water circulation similar to that during the operation of the fuel cell system is resumed.

ここで、汲み上げ手段7に設置された第2の凍結防止ヒーター9bを動作させる場合、汲み上げ手段7の配管7aに設置された第3の温度検知手段10bを使用せずに、図示されない地中水タンク5の温度検知手段と、図示されない外気温検知手段と、図示されない燃料電池システムの筐体内温度検知手段の少なくとも一つにより検知された温度が、汲み上げた水が凍結しないように予め設定された所定値より低い場合に、汲み上げ手段7に設置された第2の凍結防止ヒーター9bを一定時間動作させるようにしてもよい。   Here, when operating the second antifreeze heater 9b installed in the pumping means 7, the ground temperature not shown is not used without using the third temperature detecting means 10b installed in the pipe 7a of the pumping means 7. The temperature detected by at least one of the temperature detecting means of the tank 5, the outside air temperature detecting means (not shown), and the temperature detecting means in the casing of the fuel cell system (not shown) is set in advance so that the pumped water does not freeze. When it is lower than the predetermined value, the second antifreezing heater 9b installed in the pumping means 7 may be operated for a certain period of time.

(3−3)効果
以上の通り、本実施形態では第1実施形態と同等の効果が得られるとともに、水排出モードへの移行の可否を温度検知手段による検知温度によって判断し、凍結の可能性がある場合のみ水の排出を行うので、水の排出および汲み上げ回数を削減でき、運転に必要なランニングコストを削減できる。
(3-3) Effect As described above, in the present embodiment, an effect equivalent to that of the first embodiment can be obtained, and whether or not it is possible to shift to the water discharge mode is determined based on the temperature detected by the temperature detection means, and the possibility of freezing Since water is discharged only when there is water, the number of water discharge and pumping can be reduced, and the running cost required for operation can be reduced.

また、第1・第2の排気手段12、13を設けたことにより、水循環系の水を地中水タンクに排水する際に、水タンク4のタンク内圧力の減少と地中水タンク5のタンク内圧力の上昇が防止されるので、水の排出が確実に実施されるとともに、排出手段6のポンプ6cの作用により、水の排出が迅速かつ確実に実施され、水循環系内への水の残留による機器の破損が防止される。   Further, by providing the first and second exhaust means 12, 13, when the water in the water circulation system is drained to the underground water tank, the pressure in the tank of the water tank 4 decreases and the underground water tank 5 Since the increase in the pressure in the tank is prevented, the water is surely discharged, and the action of the pump 6c of the discharging means 6 allows the water to be discharged quickly and reliably, so that the water into the water circulation system can be discharged. Damage to equipment due to residue is prevented.

また、排出手段6に設置された第1の凍結防止ヒーター9aの作用により、排出中の水の凍結による不都合が防止されるので、確実に凍結対策が実施される。また、汲み上げ手段7に設置された第2の凍結防止ヒーター9bの作用により、汲み上げ中の水の凍結による不都合が防止されるので、確実に運転が再開される。このように、本実施形態の構成によれば、燃料電池システムの経済的な運用を確実に実施することができる。   In addition, the first freeze prevention heater 9a installed in the discharge means 6 prevents inconvenience due to freezing of the water being discharged, so that the countermeasure against freezing is surely implemented. Further, the operation of the second antifreeze heater 9b installed in the pumping means 7 prevents inconvenience due to freezing of the water being pumped, so that the operation is reliably restarted. Thus, according to the configuration of the present embodiment, the economical operation of the fuel cell system can be reliably performed.

(4)第4実施形態
(4−1)構成
本実施形態の燃料電池システムは、上記第2実施形態の燃料電池システムにさらに改良を加えたものである。
(4) Fourth Embodiment (4-1) Configuration The fuel cell system of this embodiment is obtained by further improving the fuel cell system of the second embodiment.

すなわち、本実施形態の燃料電池システムは、図4に示したように、
水供給手段2の配管2aに、第4の温度検知手段10cと、水の加熱手段である第3の凍結防止ヒーター9cを設置したものである。その他の構成は、上記第2実施形態と同様であるので、説明は省略する。
That is, the fuel cell system of this embodiment, as shown in FIG.
In the pipe 2a of the water supply means 2, a fourth temperature detecting means 10c and a third antifreeze heater 9c which is a water heating means are installed. Since other configurations are the same as those of the second embodiment, description thereof is omitted.

(4−2)作用
次に、上記のような構成を有する本実施形態の燃料電池システムについて、運転停止前後の水の流れを説明する。
(4-2) Operation Next, the flow of water before and after operation stop will be described for the fuel cell system of the present embodiment having the above-described configuration.

(4−2−1)燃料電池システムの運転中及び停止中
燃料電池システムの運転中および燃料電池システムが運転を停止した後の水の流れは、上記第2実施形態と同じである。
(4-2-1) During Operation and Stop of Fuel Cell System The flow of water during operation of the fuel cell system and after the fuel cell system has stopped operating is the same as in the second embodiment.

(4−2−2)燃料電池システムの運転再開時
次に、運転を開始する場合は、まず、水供給手段2の配管2aに設置された第4の温度検知手段10cの温度が検知され、検知された温度が、汲み上げた水が凍結しないように予め設定された所定の温度よりも低い場合には、水供給手段2の配管2aに設置された第3の凍結防止ヒーター9cが動作し、水供給手段2の配管2aは所定の温度よりも高い温度に保持される。
(4-2-2) When restarting the operation of the fuel cell system Next, when starting the operation, first, the temperature of the fourth temperature detection means 10c installed in the pipe 2a of the water supply means 2 is detected, When the detected temperature is lower than a predetermined temperature set in advance so that the pumped water does not freeze, the third antifreeze heater 9c installed in the pipe 2a of the water supply means 2 operates, The pipe 2a of the water supply means 2 is maintained at a temperature higher than a predetermined temperature.

その後、汲み上げ手段7の開閉弁7cが閉じられ、ポンプ7bが作動し、水供給手段2のポンプ2bまで水を汲み上げた後、水供給手段2のポンプ2bが作動し、汲み上げ手段7の開閉弁7cが開かれ、水供給手段2の配管2aと燃料電池1と水回収手段3の配管3aを介して、水が地中水タンク5に還流され、燃料電池システムの運転中と同様な水の循環が再開される。   Thereafter, the opening / closing valve 7c of the pumping means 7 is closed, the pump 7b is operated, and after pumping water to the pump 2b of the water supply means 2, the pump 2b of the water supply means 2 is operated, and the opening / closing valve of the pumping means 7 is operated. 7c is opened, and water is returned to the underground water tank 5 through the pipe 2a of the water supply means 2, the fuel cell 1 and the pipe 3a of the water recovery means 3, and the same water as during the operation of the fuel cell system Circulation resumes.

ここで、水供給手段2の配管2aに設置された第3の凍結防止ヒーター9cを動作させる場合、水供給手段2の配管2aに設置された第4の温度検知手段10cを使用せずに、図示されない地中水タンク5の温度検知手段と、図示されない外気温検知手段と、図示されない燃料電池システムの筐体内温度検知手段の少なくとも一つにより検知された温度が、汲み上げた水が凍結しないように予め設定された所定値より低い場合に、水供給手段2の配管2aに設置された凍結防止ヒーター9cを一定時間動作させるようにしてもよい。   Here, when operating the third antifreeze heater 9c installed in the pipe 2a of the water supply means 2, without using the fourth temperature detection means 10c installed in the pipe 2a of the water supply means 2, The temperature detected by at least one of the temperature detection means of the underground water tank 5 (not shown), the outside air temperature detection means (not shown), and the temperature detection means in the casing of the fuel cell system (not shown) prevents the pumped water from freezing. When the temperature is lower than a predetermined value set in advance, the antifreezing heater 9c installed in the pipe 2a of the water supply means 2 may be operated for a certain period of time.

(4−3)効果
以上の通り、本実施形態では第2実施形態と同等の効果が得られるとともに、水供給手段2に設けられた第3の凍結防止ヒーター9cの作用により、汲み上げ中の水の凍結による不都合が防止されるので、確実に運転が再開される。
このように、本実施形態の構成によれば、燃料電池システムの経済的な運用を確実に実施することができる。
(4-3) Effect As described above, in this embodiment, an effect equivalent to that of the second embodiment is obtained, and the water being pumped up by the action of the third antifreeze heater 9c provided in the water supply means 2 is obtained. Inconvenience due to freezing is prevented, so that the operation is surely resumed.
Thus, according to the configuration of the present embodiment, the economical operation of the fuel cell system can be reliably performed.

(5)第5実施形態
(5−1)構成
本実施形態の燃料電池システムは、上記第1実施形態の燃料電池システムにおける水供給手段2のポンプ2bを、自吸式ポンプ2cに置き換えたものである。
(5) Configuration of the Fifth Embodiment (5-1) The fuel cell system of this embodiment is obtained by replacing the pump 2b of the water supply means 2 in the fuel cell system of the first embodiment with a self-priming pump 2c. It is.

すなわち、本実施形態の燃料電池システムは、図5に示したように、燃料電池1に連通され、燃料電池1に水を供給する配管2aと、自吸式ポンプ2cおよび開閉弁2dからなる水供給手段2と、燃料電池1に連通され、燃料電池1から水を回収する配管3aからなる水回収手段3と、燃料電池1、水供給手段2および水回収手段3に連通されて、水が還流される水タンク4を有する水循環系と、地中に埋設された地中水タンク5と、水循環系の水を地中水タンク5に排出させる配管6aと開閉弁6bとからなる排出手段6と、地中水タンク5に貯留された水を水循環系へ汲み上げる配管7aと開閉弁7dからなる汲み上げ手段7とを有する水移動手段とを備えている。   That is, as shown in FIG. 5, the fuel cell system of the present embodiment is connected to the fuel cell 1 and includes a pipe 2a that supplies water to the fuel cell 1, a self-priming pump 2c, and an on-off valve 2d. Water is connected to the supply means 2 and the fuel cell 1, and is connected to the water recovery means 3 including a pipe 3 a for recovering water from the fuel cell 1, and the fuel cell 1, the water supply means 2 and the water recovery means 3. Discharge means 6 comprising a water circulation system having a water tank 4 to be recirculated, an underground water tank 5 buried in the ground, a pipe 6a for discharging water from the water circulation system to the underground water tank 5, and an on-off valve 6b. And a water moving means having a pipe 7a for pumping water stored in the underground water tank 5 to the water circulation system and a pumping means 7 comprising an on-off valve 7d.

(5−2)作用
次に、上記のような構成を有する本実施形態の燃料電池システムについて、運転停止前後の水の流れを説明する。
(5-2) Operation Next, the flow of water before and after operation stop will be described for the fuel cell system of the present embodiment having the above-described configuration.

(5−2−1)燃料電池システムの運転中
燃料電池システムの運転中は、排出手段6の開閉弁6bと汲み上げ手段7の開閉弁7dが閉じられており、水供給手段2の開閉弁2dは開かれており、水タンク4に貯留された水が、水供給手段2の自吸式ポンプ2cの作用により、配管2aを介して燃料電池1に供給され、燃料電池1からの水は水回収手段3の配管3aを介して水タンク4に還流されている。
(5-2-1) During the operation of the fuel cell system During the operation of the fuel cell system, the on-off valve 6b of the discharge means 6 and the on-off valve 7d of the pumping means 7 are closed, and the on-off valve 2d of the water supply means 2 is closed. The water stored in the water tank 4 is supplied to the fuel cell 1 via the pipe 2a by the action of the self-priming pump 2c of the water supply means 2, and the water from the fuel cell 1 is water. The water is returned to the water tank 4 through the pipe 3 a of the recovery means 3.

(5−2−2)燃料電池システムの運転停止中
次に、燃料電池システムが運転を停止すると、水供給手段2の自吸式ポンプ2cが停止し、水供給手段2の開閉弁2dと排出手段6の開閉弁6bが開くことで、重力の作用により、燃料電池1、水タンク4および水供給手段2、水回収手段3に滞留していた水が、排出手段6の配管6aを介して、地中水タンク5に排出される。
(5-2-2) Stopping operation of fuel cell system Next, when the fuel cell system stops operation, the self-priming pump 2c of the water supply means 2 is stopped, and the on-off valve 2d of the water supply means 2 and the discharge are discharged. By opening the on-off valve 6b of the means 6, the water retained in the fuel cell 1, the water tank 4, the water supply means 2, and the water recovery means 3 due to the action of gravity is passed through the pipe 6a of the discharge means 6. , Discharged into the underground water tank 5.

(5−2−3)燃料電池システムの運転再開時
運転を再開する場合は、水供給手段2の開閉弁2dと排出手段6の開閉弁6bが閉じ、汲み上げ手段7の開閉弁7dが開き、水供給手段2の自吸式ポンプ2cが作動し、地中水タンク5に滞留していた水が、汲み上げ手段7の配管7aを介して水循環系に汲み上げられる。その後、水供給手段2の開閉弁2dが開き、汲み上げ手段7の開閉弁7dが閉じ、水供給手段2の自吸式ポンプ2cが動作し、水供給手段2の自吸式ポンプ2cの作用により、燃料電池システムの運転中と同様な水の循環が再開される。
(5-2-3) When resuming operation of the fuel cell system When resuming operation, the on-off valve 2d of the water supply means 2 and the on-off valve 6b of the discharge means 6 are closed, and the on-off valve 7d of the pumping means 7 is opened, The self-priming pump 2c of the water supply means 2 is operated, and the water staying in the underground water tank 5 is pumped to the water circulation system via the pipe 7a of the pumping means 7. Thereafter, the open / close valve 2d of the water supply means 2 is opened, the open / close valve 7d of the pumping means 7 is closed, the self-priming pump 2c of the water supply means 2 is operated, and the self-priming pump 2c of the water supply means 2 is activated. The water circulation similar to that during the operation of the fuel cell system is resumed.

(5−3)効果
以上の通り、本実施形態では、水供給手段のポンプを自吸式ポンプとすることにより、図1における汲み上げ手段7のポンプ7bを用いずに、第1実施形態と同等の効果が得られるので、製造コストおよびポンプのメンテナンスコストが削減できる上に、凍結による機器の破損が生じずに、経済的な運用ができる燃料電池システムを提供できる。
(5-3) Effects As described above, in this embodiment, the pump of the water supply means is a self-priming pump, so that the pump 7b of the pumping means 7 in FIG. 1 is not used and is equivalent to the first embodiment. Therefore, the manufacturing cost and the maintenance cost of the pump can be reduced, and the fuel cell system can be provided that can be economically operated without causing damage to the equipment due to freezing.

(6)第6実施形態
(6−1)構成
本実施形態の燃料電池システムは、上記第2実施形態の燃料電池システムにおける水供給手段2のポンプ2bを、自吸式ポンプ2cに置き換えたものである。
(6) Sixth Embodiment (6-1) Configuration The fuel cell system of this embodiment is obtained by replacing the pump 2b of the water supply means 2 in the fuel cell system of the second embodiment with a self-priming pump 2c. It is.

すなわち、本実施形態の燃料電池システムは、図6に示したように、
燃料電池1に連通され、燃料電池1に水を供給する配管2aと自吸式ポンプ2cからなる水供給手段2が、地中に埋設された地中水タンク5に連通されると共に、燃料電池1に連通され、燃料電池1から水を回収する配管3aからなる水回収手段3が、地中水タンク5と連通されている。
That is, the fuel cell system of this embodiment, as shown in FIG.
A water supply means 2, which is connected to the fuel cell 1 and includes a pipe 2 a for supplying water to the fuel cell 1 and a self-priming pump 2 c, communicates with the underground water tank 5 buried in the ground, and also the fuel cell. 1, a water recovery means 3 including a pipe 3 a for recovering water from the fuel cell 1 is connected to the underground water tank 5.

(6−2)作用
次に、上記のような構成を有する本実施形態の燃料電池システムについて、運転停止前後の水の流れを説明する。
(6-2) Operation Next, the flow of water before and after operation stop will be described for the fuel cell system of the present embodiment having the above-described configuration.

(6−2−1)燃料電池システムの運転中
燃料電池システムの運転中は、地中水タンク5に貯留された水が、水供給手段2の自吸式ポンプ2cの作用により、配管2aを介して燃料電池1に供給され、燃料電池1からの水は、水回収手段3の配管3aを介して、地中水タンク5に還流されている。
(6-2-1) During operation of the fuel cell system During operation of the fuel cell system, the water stored in the underground water tank 5 passes through the pipe 2a by the action of the self-priming pump 2c of the water supply means 2. The water from the fuel cell 1 is returned to the underground water tank 5 via the pipe 3 a of the water recovery means 3.

(6−2−2)燃料電池システムの運転停止中
次に、燃料電池システムが運転を停止すると、水供給手段2の自吸式ポンプ2cが停止し、重力の作用により、燃料電池1、および水供給手段2、水回収手段3に滞留していた水が、水供給手段2の配管2aおよび水回収手段3の配管3aを介して、地中水タンク5に貯留される。
(6-2-2) Stopping the operation of the fuel cell system Next, when the fuel cell system stops operating, the self-priming pump 2c of the water supply means 2 stops, and by the action of gravity, the fuel cell 1 and The water staying in the water supply means 2 and the water recovery means 3 is stored in the underground water tank 5 through the pipe 2a of the water supply means 2 and the pipe 3a of the water recovery means 3.

(6−2−3)燃料電池システムの運転再開時
運転を開始する場合は、水供給手段2の自吸式ポンプ2cが作動し、地中水タンク5に貯留された水が吸い上げられ、水供給手段2の配管2aと燃料電池1と水回収手段3の配管3aを介して地中水タンク5に還流され、燃料電池システムの運転中と同様な水の循環が再開される。
(6-2-3) When resuming the operation of the fuel cell system When the operation is started, the self-priming pump 2c of the water supply means 2 is operated, the water stored in the underground water tank 5 is sucked up, The water is returned to the underground water tank 5 through the pipe 2a of the supply means 2, the fuel cell 1 and the pipe 3a of the water recovery means 3, and the water circulation similar to that during the operation of the fuel cell system is resumed.

(6−3)効果
以上の通り、本実施形態では、水供給手段のポンプを自吸式ポンプとすることにより、図2における汲み上げ手段7のポンプ7bを用いずに、第2実施形態と同等の効果が得られるので、製造コストおよびポンプのメンテナンスコストが削減できる上に、凍結による機器の破損が生じずに、経済的な運用ができる燃料電池システムを提供できる。
(6-3) Effects As described above, in this embodiment, the pump of the water supply means is a self-priming pump, so that the pump 7b of the pumping means 7 in FIG. 2 is not used and is equivalent to the second embodiment. Therefore, the manufacturing cost and the maintenance cost of the pump can be reduced, and the fuel cell system can be provided that can be economically operated without causing damage to the equipment due to freezing.

(7)他の実施形態
なお、本発明は上記の実施形態に限定されるものではなく、固体高分子形燃料電池システムにも適用することができることは言うまでもない。
(7) Other Embodiments The present invention is not limited to the above-described embodiments, and it goes without saying that the present invention can also be applied to a polymer electrolyte fuel cell system.

本発明に係る燃料電池システムの第1実施形態の構成を示す図The figure which shows the structure of 1st Embodiment of the fuel cell system which concerns on this invention. 本発明に係る燃料電池システムの第2実施形態の構成を示す図The figure which shows the structure of 2nd Embodiment of the fuel cell system which concerns on this invention. 本発明に係る燃料電池システムの第3実施形態の構成を示す図The figure which shows the structure of 3rd Embodiment of the fuel cell system which concerns on this invention. 本発明に係る燃料電池システムの第4実施形態の構成を示す図The figure which shows the structure of 4th Embodiment of the fuel cell system which concerns on this invention. 本発明に係る燃料電池システムの第5実施形態の構成を示す図The figure which shows the structure of 5th Embodiment of the fuel cell system which concerns on this invention. 本発明に係る燃料電池システムの第6実施形態の構成を示す図The figure which shows the structure of 6th Embodiment of the fuel cell system which concerns on this invention.

符号の説明Explanation of symbols

1…燃料電池
2…水供給手段
2a…配管
2b…ポンプ
2c…自吸式ポンプ
2d…開閉弁
3…水回収手段
3a…配管
4…水タンク
5…地中水タンク
6…排出手段
6a…配管
6b…開閉弁
6c…ポンプ
7…汲み上げ手段
7a…配管
7b…ポンプ
7c…開閉弁
7d…開閉弁
8…第1の温度検知手段
9a…第1の凍結防止ヒーター
9b…第2の凍結防止ヒーター
9c…第3の凍結防止ヒーター
10a…第2の温度検知手段
10b…第3の温度検知手段
10c…第4の温度検知手段
12…第1の排気手段
12a…配管
12b…開閉弁
13…第2の排気手段
13a…配管
13b…開閉弁
14…水位検知手段
DESCRIPTION OF SYMBOLS 1 ... Fuel cell 2 ... Water supply means 2a ... Pipe 2b ... Pump 2c ... Self-priming pump 2d ... On-off valve 3 ... Water recovery means 3a ... Pipe 4 ... Water tank 5 ... Underground water tank 6 ... Discharge means 6a ... Pipe 6b ... Open / close valve 6c ... Pump 7 ... Pumping means 7a ... Pipe 7b ... Pump 7c ... Open / close valve 7d ... Open / close valve 8 ... First temperature detecting means 9a ... First antifreeze heater 9b ... Second antifreeze heater 9c ... third antifreezing heater 10a ... second temperature detecting means 10b ... third temperature detecting means 10c ... fourth temperature detecting means 12 ... first exhaust means 12a ... pipe 12b ... open / close valve 13 ... second Exhaust means 13a ... pipe 13b ... open / close valve 14 ... water level detection means

Claims (6)

燃料電池本体に水を供給する水供給手段と、前記燃料電池から水を回収する水回収手段と、前記水供給手段および前記水回収手段を通じて水が還流される水タンクを有する水循環系を備えた燃料電池システムにおいて、
地中に設置された地中水タンクと、前記水循環系と前記地中水タンクとを連通して水を移動させる水移動手段とを有することを特徴とする燃料電池システム。
Water supply means for supplying water to the fuel cell main body, water recovery means for recovering water from the fuel cell, and a water circulation system having a water tank in which water is circulated through the water supply means and the water recovery means. In the fuel cell system,
A fuel cell system comprising: an underground water tank installed in the ground; and water moving means for moving water by communicating the water circulation system and the underground water tank.
前記水タンクが、地中に設置された地中水タンクであることを特徴とする請求項1に記載の燃料電池システム。   The fuel cell system according to claim 1, wherein the water tank is an underground water tank installed in the ground. 前記地中水タンクが、地中において、水分が凍結しない深さに設置されていることを特徴とする請求項1又は請求項2に記載の燃料電池システム。   The fuel cell system according to claim 1 or 2, wherein the underground water tank is installed at a depth at which moisture does not freeze in the ground. 前記水循環系における水温を検知する温度検知手段と、燃料電池システムの筐体内の温度を検知する温度検知手段と、外気の温度を検知する温度検知手段の少なくとも一つを有し、
前記温度検知手段のいずれかにより検知された温度が、各温度検知手段について予め設定されたそれぞれの所定値よりも低い場合に、前記水循環系の水を前記地中水タンクに移動させるように構成したことを特徴とする請求項1乃至請求項3のいずれか一に記載の燃料電池システム。
At least one of temperature detecting means for detecting the water temperature in the water circulation system, temperature detecting means for detecting the temperature in the housing of the fuel cell system, and temperature detecting means for detecting the temperature of the outside air;
When the temperature detected by any of the temperature detection means is lower than a predetermined value preset for each temperature detection means, the water in the water circulation system is moved to the underground water tank The fuel cell system according to any one of claims 1 to 3, wherein the fuel cell system is provided.
前記水移動手段あるいは前記水循環系の少なくとも一方に、加熱手段が設けられていることを特徴とする請求項1乃至請求項4のいずれか一に記載の燃料電池システム。   The fuel cell system according to any one of claims 1 to 4, wherein a heating unit is provided in at least one of the water transfer unit or the water circulation system. 前記水移動手段の配管温度を検知する温度検知手段と、前記水循環系の水温を検知する温度検知手段と、燃料電池システム筐体内の温度を検知する温度検知手段と、外気の温度を検知する温度検知手段の少なくとも一つを有し、
前記温度検知手段のいずれかにより検知された温度が、各温度検知手段について予め設定されたそれぞれの所定値よりも低い場合に、前記加熱手段によって水を加熱するように構成したことを特徴とする請求項5に記載の燃料電池システム。
Temperature detecting means for detecting the pipe temperature of the water moving means, temperature detecting means for detecting the water temperature of the water circulation system, temperature detecting means for detecting the temperature in the fuel cell system housing, and temperature for detecting the temperature of the outside air Having at least one detection means;
When the temperature detected by any one of the temperature detection means is lower than a predetermined value set in advance for each temperature detection means, water is heated by the heating means. The fuel cell system according to claim 5.
JP2004265811A 2004-09-13 2004-09-13 Fuel cell system Expired - Fee Related JP4716212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004265811A JP4716212B2 (en) 2004-09-13 2004-09-13 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004265811A JP4716212B2 (en) 2004-09-13 2004-09-13 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2006080039A true JP2006080039A (en) 2006-03-23
JP4716212B2 JP4716212B2 (en) 2011-07-06

Family

ID=36159302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004265811A Expired - Fee Related JP4716212B2 (en) 2004-09-13 2004-09-13 Fuel cell system

Country Status (1)

Country Link
JP (1) JP4716212B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294186A (en) * 2006-04-24 2007-11-08 Aisin Seiki Co Ltd Freeze preventing device of fuel cell system
JP2020194665A (en) * 2019-05-27 2020-12-03 ダイニチ工業株式会社 Fuel cell device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338648A (en) * 1995-06-14 1996-12-24 Toshiba Eng & Constr Co Ltd Cooling water supplying system
JPH09264498A (en) * 1996-03-26 1997-10-07 Sanyo Electric Co Ltd Device for storing and utilizing hydrogen
JPH11273705A (en) * 1998-03-20 1999-10-08 Sanyo Electric Co Ltd Fuel cell system
JP2002042841A (en) * 2000-07-24 2002-02-08 Matsushita Electric Ind Co Ltd Polymer electrolyte type fuel cell cogeneration system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338648A (en) * 1995-06-14 1996-12-24 Toshiba Eng & Constr Co Ltd Cooling water supplying system
JPH09264498A (en) * 1996-03-26 1997-10-07 Sanyo Electric Co Ltd Device for storing and utilizing hydrogen
JPH11273705A (en) * 1998-03-20 1999-10-08 Sanyo Electric Co Ltd Fuel cell system
JP2002042841A (en) * 2000-07-24 2002-02-08 Matsushita Electric Ind Co Ltd Polymer electrolyte type fuel cell cogeneration system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294186A (en) * 2006-04-24 2007-11-08 Aisin Seiki Co Ltd Freeze preventing device of fuel cell system
JP2020194665A (en) * 2019-05-27 2020-12-03 ダイニチ工業株式会社 Fuel cell device
JP7341726B2 (en) 2019-05-27 2023-09-11 ダイニチ工業株式会社 fuel cell device

Also Published As

Publication number Publication date
JP4716212B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
US6432568B1 (en) Water management system for electrochemical engine
KR100709972B1 (en) Fuel cell system
JP4296227B2 (en) Fuel cell system
JP2009087954A (en) Fuel cell system
JP2004039526A (en) Fuel cell system
JP5410833B2 (en) Power generation system and auxiliary unit
JP4661063B2 (en) Fuel cell cogeneration system
JP2012164457A (en) Fuel cell system
JP5410832B2 (en) Power generation system and auxiliary unit
JP2007305334A (en) Fuel cell system
JP4716212B2 (en) Fuel cell system
JP2001256989A (en) Humidifier for fuel cell
JP2008522367A (en) Water removal by a reactive air pump powered by a fuel cell system operable during the shutdown process
JP4929734B2 (en) Fuel cell system
WO2013129493A1 (en) Method for controlling and device for controlling cogeneration system
JP2008202887A (en) Heat recovery system and its operation method
JP5410831B2 (en) Power generation system and auxiliary unit
JP4200729B2 (en) Fuel cell system
JP5802479B2 (en) Fuel cell system and control method thereof
JP2009170313A (en) Fuel cell system and operation method of fuel cell
JP2005135673A (en) Humidifier for fuel cell
JP2005327501A (en) Fuel cell system
JP2006040804A (en) Fuel cell system
JP2007012564A (en) Low temperature starting method of fuel cell
JP2024027818A (en) fuel cell device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees