JP2006078502A - Method and apparatus for inspecting oil component on surface using electromagnetic waves - Google Patents

Method and apparatus for inspecting oil component on surface using electromagnetic waves Download PDF

Info

Publication number
JP2006078502A
JP2006078502A JP2005354990A JP2005354990A JP2006078502A JP 2006078502 A JP2006078502 A JP 2006078502A JP 2005354990 A JP2005354990 A JP 2005354990A JP 2005354990 A JP2005354990 A JP 2005354990A JP 2006078502 A JP2006078502 A JP 2006078502A
Authority
JP
Japan
Prior art keywords
oil
electromagnetic wave
fat
measurement
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005354990A
Other languages
Japanese (ja)
Inventor
Akira Matsushita
昭 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SYSTEM KENKYUSHO KK
Original Assignee
NIPPON SYSTEM KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SYSTEM KENKYUSHO KK filed Critical NIPPON SYSTEM KENKYUSHO KK
Priority to JP2005354990A priority Critical patent/JP2006078502A/en
Publication of JP2006078502A publication Critical patent/JP2006078502A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for inspecting oil components on a surface that can surely and quickly inspect the oil components on the surface, with superior reproducibility. <P>SOLUTION: Electromagnetic waves are radiated from the inside of a probe 1 to the surface 8 of an object to be inspected via a window 14 mounted on a measuring end surface 10 provided on the probe 1, the oil components are computed and detected from the electromagnetic waves that are transmitted or reflected. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電磁波を照射することによって表面部の油脂成分を検査する方法及び装置に関する。詳しくは、検査対象の生産物あるいは動植物の分泌物の湿潤、脂肪、色彩等の表面性状の電気的測定に活用することができ、生産工場等における製品表面の性状検査あるいは食品衛生管理者らが物性検査を迅速、簡便に実施しようとするときに用いて好適な、電磁波を用いた表面部の油脂成分の検査方法及び装置に関するものである。   The present invention relates to a method and an apparatus for inspecting a fat component of a surface portion by irradiating electromagnetic waves. Specifically, it can be used for the electrical measurement of surface properties such as wetting, fat, and color of the products to be inspected or animal and plant secretions. The present invention relates to a method and an apparatus for inspecting oil components on a surface portion using electromagnetic waves, which are suitable for conducting physical property inspections quickly and easily.

比較的最近までは衛生管理を必要とする表面部の性状の測定、例えば生産物に付着した異物とか油などによる汚れは殆ど外見や触診によって行なわれていた。   Until relatively recently, surface properties that require sanitary management, such as contamination by foreign matter or oil adhering to the product, were mostly performed by appearance or palpation.

例えば、加工品の物質表面に付着した油脂量を光照射により目視で行なう観測方法があるが、定量化と迅速性に問題がある。   For example, there is an observation method in which the amount of fats and oils adhering to the material surface of a processed product is visually observed by light irradiation, but there are problems with quantification and rapidity.

又、表面部に電極を押し当てて表皮の水分を導電度やインピーダンスの変化として定量的に測定する方法が開発されており、特許文献1に示されている。   Further, a method for quantitatively measuring the moisture in the epidermis as a change in conductivity or impedance by pressing an electrode on the surface portion has been developed, and is disclosed in Patent Document 1.

脂肪成分の測定については、スリガラス等のサンプリング板に皮脂を付着させ、その脂肪の赤外領域における吸収波長スペクトルに基づく透過量によって測定するものがある。   Regarding the measurement of the fat component, there is one in which sebum is attached to a sampling plate such as ground glass, and the fat component is measured by the transmission amount based on the absorption wavelength spectrum in the infrared region.

また、予め脂肪成分を採取した測定用プローブを計測本体の光学処理系に移して反射量を計測する方法があり、特許文献2に示されている。   Moreover, there is a method of measuring the amount of reflection by moving a measurement probe from which a fat component has been previously collected to an optical processing system of a measurement main body, which is disclosed in Patent Document 2.

特許第1981624号公報Japanese Patent No. 1981624 特許第2992595号公報Japanese Patent No. 2992595

しかしながら、油脂成分や水分などによる汚れの検査を目視とか転写した試料を介して測定する従来の手法では、測定者の個人差による人為的な誤差を解消することができなった。   However, in the conventional method of measuring through inspection of a stain or the like due to an oil or fat component or moisture, an artificial error due to individual differences of the measurer cannot be eliminated.

本発明は、表面部の油脂成分を確実に再現性良く迅速に検査可能な表面部の油脂成分の検査方法及び装置を提供することを目的としている。   SUMMARY OF THE INVENTION An object of the present invention is to provide a method and an apparatus for inspecting a fat component on the surface portion that can quickly and reliably inspect the fat component on the surface portion with good reproducibility.

上記目的を達成するために、本発明の表面部の油脂成分の検査方法及び装置においては、検査対象の表面部に電磁界、電波、光スペクトルの領域にわたる電磁エネルギを放射し、その放射スペクトルと変化量などに基づいて油脂成分を検査可能としたものである。   In order to achieve the above object, in the method and apparatus for inspecting oil components on the surface portion of the present invention, electromagnetic energy over the electromagnetic field, radio wave, and optical spectrum regions is radiated to the surface portion to be inspected, and the radiation spectrum and The oil and fat component can be inspected based on the amount of change.

油脂成分測定手段は、脂肪に吸収波長領域を有する電磁波を検査対象の表面部に向けて放射する放射源と、その透過量又は反射量を測定する受信器(受波器とも呼ぶ)とを備え、測定値を演算することによって直ちに脂肪成分およびその存在を検出しようとするものである。   The fat and oil component measuring means includes a radiation source that radiates an electromagnetic wave having an absorption wavelength region in fat toward a surface portion to be inspected, and a receiver (also referred to as a receiver) that measures the amount of transmission or reflection. The fat component and its presence are immediately detected by calculating the measured value.

この場合、例えば反射量を測定する時において、測定端面に装着した平面ガラスのような透過体を脂肪表面に直接押し当てた接触状態で測定するように構成する場合と、端面に装着した透過体と脂肪表面とが空隙を介して互いに非接触の状態で測定するように構成する場合とがある。   In this case, for example, when measuring the amount of reflection, it is configured to measure in a contact state in which a transparent body such as a flat glass attached to the measurement end face is directly pressed against the fat surface, and a transmission body attached to the end face In some cases, the fat surface and the fat surface are measured without being in contact with each other through a gap.

前者の構成によれば透過体と表面部とが所定の押圧力で密着された間に脂肪を拡散させた状態を測定することができる。後者の構成では脂肪表面を在るがままの状態で測定でき、その表面部と放射源との間隔を大きくすることができると共に、放射源を有するプローブ又は表面部を高速で移動させながら検査できるという特長がある。   According to the former configuration, it is possible to measure a state in which fat is diffused while the permeator and the surface portion are brought into close contact with each other with a predetermined pressing force. In the latter configuration, measurement can be performed with the fat surface as it is, the distance between the surface portion and the radiation source can be increased, and the probe or surface portion having the radiation source can be inspected while moving at high speed. There is a feature.

又、脂肪成分測定手段に用いる電磁波の波長は、赤外放射から紫外放射までを含む各電磁又は光スペクトルが適用できる。   Moreover, each electromagnetic wave or light spectrum including infrared radiation to ultraviolet radiation can be applied to the wavelength of the electromagnetic wave used for the fat component measuring means.

殊に、380〜500nmの青色系可視放射の波長帯域に最大発光強度を有する小型発光ダイオードを選定して本発明を実施すれば、装置の小型化にも役立つ。   In particular, if a small light emitting diode having the maximum light emission intensity in the wavelength band of blue-based visible radiation of 380 to 500 nm is selected and the present invention is carried out, it is useful for miniaturization of the device.

本発明によって、電磁波を用いて表面部の油脂成分を検査する手法が確立されたため、測定者の技量の相違に係わらず再現性良く迅速に検出処理ができるようになった。   According to the present invention, since a technique for inspecting oil and fat components on the surface portion using electromagnetic waves has been established, it has become possible to perform detection processing quickly with good reproducibility regardless of the difference in skill of the measurer.

また、脂肪成分の測定手段に用いる電磁波の波長は、赤外放射から紫外放射までを含む各種の波長の電磁波又は光スペクトルを適用できるが、発光ダイオードを選定して用いれば、装備の小型化と省電力化を図りながら、本発明の検出処理を容易に達成できるという効果がある。   The wavelength of the electromagnetic wave used for the fat component measuring means can be an electromagnetic wave or light spectrum of various wavelengths including infrared radiation to ultraviolet radiation, but if a light emitting diode is selected and used, the equipment can be downsized. There is an effect that the detection process of the present invention can be easily achieved while saving power.

以下、本発明の実施の形態を図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

脂肪成分が電磁波の性質を変化させる幾つかの現象について、これを測定手段に用いる方法を検討した。   Regarding several phenomena in which the fat component changes the properties of electromagnetic waves, a method of using it as a measuring means was examined.

例えば、脂肪膜を塗布した透明石英板に250〜800nmの電磁波を照射したときの透過率の測定(純水膜と比較)を公的研究機関で実験したところ、波長380nm(透過率88%)以下における紫外放射領域で透過率が低下する現象が観測された。即ち、270nmで60%、250nmで20%減少するという顕著な性状変化が明らかにされた。   For example, when measuring a transmittance (compared to a pure water film) when irradiating a transparent quartz plate coated with a fat film with an electromagnetic wave of 250 to 800 nm in a public research institution, a wavelength of 380 nm (transmittance 88%) A phenomenon in which the transmittance decreases in the ultraviolet radiation region below was observed. That is, a remarkable change in properties was clarified that it decreased 60% at 270 nm and 20% at 250 nm.

そこで図1に図示したように平面状金属、プラスチック、生体等の表面部8の一部すなわち規定の大きさの面積のスポットに対して脂肪成分8aを塗布し、これに放射源15から300nm〜4.0μmの波長領域の電磁スペクトルを選択し、それぞれを照射する実験を行った。   Therefore, as shown in FIG. 1, a fat component 8a is applied to a part of the surface portion 8 of a planar metal, plastic, living body, or the like, that is, a spot having an area of a predetermined size. An experiment was conducted in which an electromagnetic spectrum in the wavelength region of 4.0 μm was selected and each was irradiated.

380〜500nmにおけるバイオレット−ブルー系波長の電磁波を所定の入射角θで照射した場合、脂肪成分に応じて濃厚色のダークブルーに変色する傾向が目視で確認された。その照射点からの反射光量が減衰して変色する現象を、受信器16(受波器とも呼ぶ)にCCDカメラを用い撮像しながらマトリクス分布割合の実験的検討を行った結果、脂肪成分を認識できることが判った。   When an electromagnetic wave having a violet-blue wavelength in the range of 380 to 500 nm was irradiated at a predetermined incident angle θ, the tendency to change to dark dark blue according to the fat component was visually confirmed. As a result of an experimental study of the matrix distribution ratio while imaging the phenomenon in which the amount of reflected light from the irradiation point attenuates and changes color using a CCD camera for the receiver 16 (also called a receiver), fat components are recognized. I found that I can do it.

この場合、脂肪成分が塗布されていない個所、又は基準の脂肪成分を付着した箇所をダミー33と設定して、その反射光量と前記脂肪成分8aからの反射光量との信号出力差を演算することにより脂肪成分の測定値を安定に算出することができる。   In this case, a portion where a fat component is not applied or a portion where a reference fat component is attached is set as a dummy 33, and a signal output difference between the reflected light amount and the reflected light amount from the fat component 8a is calculated. Thus, the measured value of the fat component can be calculated stably.

放射源15はハロゲン光源に所定の光学フィルタをかけて電磁スペクトルを形成し実験に供した。また青色発光ダイオードと称する試供品を購入して放射源15とし、反射光の減衰割合を受信器16の受光素子によって測定する方法は、測定装置の簡易化小型化に役立つ手段となる。   The radiation source 15 was subjected to an experiment by forming an electromagnetic spectrum by applying a predetermined optical filter to a halogen light source. A method of purchasing a sample called a blue light emitting diode to be used as the radiation source 15 and measuring the attenuation ratio of the reflected light by the light receiving element of the receiver 16 is a useful means for simplifying and downsizing the measuring apparatus.

図2は、本発明の第1実施形態において、プローブ1の測定端面10に備えた透過体14を、表面部8の脂肪成分8aに押し当てた様子であって、透過体14と表面部8とが所定の押圧力で密着された間に脂肪が拡散される形態が示されている。従って放射源15からの電磁波が脂肪拡散部35に照射される状態で測定する方式になる。図において、3はスプリング、31はケーシング、32はスリーブである。   FIG. 2 shows a state in which the transmission body 14 provided on the measurement end face 10 of the probe 1 is pressed against the fat component 8a of the surface portion 8 in the first embodiment of the present invention. A form in which fat is diffused while and are closely attached with a predetermined pressing force is shown. Therefore, the measurement is performed in a state in which the electromagnetic wave from the radiation source 15 is irradiated on the fat diffusion unit 35. In the figure, 3 is a spring, 31 is a casing, and 32 is a sleeve.

図3に示す第2実施形態は、測定端面10に備えた透過体14の表面の位置が図示のように表面部8との間に空隙を設ける構造にしてあるので、脂肪成分8aに直接押し当てられることがなく表面性状を在るがままの状態で測定する方式である。   The second embodiment shown in FIG. 3 has a structure in which a gap is provided between the surface portion 8 and the surface portion 8 of the transmission body 14 provided on the measurement end face 10, so that it directly pushes against the fat component 8a. This is a method of measuring the surface texture as it is without being applied.

電磁波の透過体14としては光領域の放射波長なら透明ガラス、石英などの透明体あるいは空洞であってもよい。   The electromagnetic wave transmission body 14 may be a transparent body such as transparent glass or quartz, or a cavity as long as it has an emission wavelength in the light region.

表面部の状態が平面、凹凸、縞状あるいは硬質、可塑的または弾性的軟質などの性状に応じて、図2と図3との構成を適宜選択または組み合わせればよい。又、図3の場合には、放射源15又は透過体14と表面部8との間隔が大きい時にも測定が可能である。   The structure of FIG. 2 and FIG. 3 may be appropriately selected or combined depending on the state of the surface portion such as flat, uneven, striped, hard, plastic or elastic soft. Further, in the case of FIG. 3, measurement is possible even when the distance between the radiation source 15 or the transmission body 14 and the surface portion 8 is large.

何れにしても電磁波が放射された時の表面状態の測定基準となるダミーを放射源15の近傍に設定する。そして検査対象の脂肪により測定された反射量と、ダミーによる反射量とを受信器16の受光素子により検出し、その信号出力差を演算して測定値を定める。あるいは受信器16としてCCDカメラ等のイメージセンサを用い前述のように脂肪成分を認識する手段を適用してもよい。   In any case, a dummy serving as a measurement standard for the surface state when electromagnetic waves are radiated is set in the vicinity of the radiation source 15. Then, the reflection amount measured by the fat to be inspected and the reflection amount by the dummy are detected by the light receiving element of the receiver 16, and the signal output difference is calculated to determine the measurement value. Alternatively, a means for recognizing a fat component as described above using an image sensor such as a CCD camera as the receiver 16 may be applied.

このような測定手段は、検査対象に応じた選択波長と、入射角、放射強度、複合光などにより脂肪、水分その他の分泌物のみならず、基材色、塗装色などの彩色測定にも適用できるものである。   Such measuring means can be applied not only to fat, moisture and other secretions, but also to color measurement of substrate color, paint color, etc. by selecting wavelength and incident angle, radiation intensity, composite light etc. according to the test object It can be done.

本発明の脂肪成分測定手段において、電磁波透過体に用いる電磁波の波長は、赤外放射から紫外放射までを含む電磁(又は光)スペクトルを適用することが可能である。   In the fat component measuring means of the present invention, an electromagnetic wave (or light) spectrum including infrared radiation to ultraviolet radiation can be applied as the wavelength of the electromagnetic wave used for the electromagnetic wave transmitting body.

ハロゲンランプを放射源(発光源)15として所定の入射角(例えば45度)で入射し、受信器(受光器)16の前に光学フィルタを設置して、反射量を測定することにより、脂肪成分8aの検出を良好に行うことができる。   A halogen lamp is used as a radiation source (light emission source) 15 and is incident at a predetermined incident angle (for example, 45 degrees). An optical filter is installed in front of a receiver (light receiver) 16 and the amount of reflection is measured. The component 8a can be detected satisfactorily.

また、可視放射の380〜500nmの青色系可視放射帯域に最大発光強度を有する発光ダイオードを放射源(発光源)15として用いた場合には、約60度の入射角に選定すれば良好な結果が得られることなどが実験で示されている。このような機能は、検査装置の小型化を図りながら脂肪成分の検出を容易に達成することができる。   Further, when a light emitting diode having the maximum emission intensity in the blue-based visible radiation band of 380 to 500 nm of visible radiation is used as the radiation source (light emission source) 15, a good result can be obtained by selecting an incident angle of about 60 degrees. Experiments have shown that Such a function can easily achieve detection of fat components while reducing the size of the inspection apparatus.

本発明の原理を示す、測定端面と表面部の概要図Schematic diagram of measurement end face and surface, showing the principle of the present invention 本発明の第1実施形態を示す縦断面の概要図1 is a schematic diagram of a longitudinal section showing a first embodiment of the present invention. 本発明の第2実施形態を示す縦断面の概要図Schematic diagram of a longitudinal section showing a second embodiment of the present invention

符号の説明Explanation of symbols

1…プローブ
8…表面部
8a…脂肪成分
10…測定端面
14…透過体
15…放射源
16…受信器
33…ダミー
DESCRIPTION OF SYMBOLS 1 ... Probe 8 ... Surface part 8a ... Fat component 10 ... Measurement end surface 14 ... Transmission body 15 ... Radiation source 16 ... Receiver 33 ... Dummy

Claims (6)

プローブに備えた測定端面の内部から検査対象の表面部に電磁波を放射し、
その透過または反射された前記電磁波の受信器による測定値から油脂成分を演算して検出することを特徴とする電磁波を用いた表面部の油脂成分の検査方法。
An electromagnetic wave is radiated from the inside of the measurement end face provided on the probe to the surface of the inspection object,
A method for inspecting a fat and oil component on a surface portion using an electromagnetic wave, wherein the fat and oil component is calculated and detected from a measured value of the transmitted or reflected electromagnetic wave by a receiver.
請求項1において、前記測定端面の内部から前記電磁波を放射して油脂成分を測定する時に、透過体面に検査対象の油脂成分を有する表面部を直接押し当てて検出する手段と、前記透過体面に接触させないで検出する手段との、何れの測定手段で実施する場合においても、前記電磁波が放射された時の表面状態の測定基準となるダミーを設定しておき、検査対象の油脂により測定された透過量または反射量と前記ダミー部分における透過量または反射量とを前記受信器の受光素子又はイメージセンサにより検出し、その信号出力差を演算して測定値を定めることを特徴とする電磁波を用いた表面部の油脂成分の検査方法。   In Claim 1, when measuring the oil and fat component by radiating the electromagnetic wave from the inside of the measurement end face, means for directly pressing and detecting the surface portion having the oil and fat component to be inspected on the transmission surface, In the case of carrying out with any of the measuring means with the means for detecting without contact, a dummy was set as a measurement standard for the surface condition when the electromagnetic wave was radiated, and measured with the oil to be inspected. An electromagnetic wave characterized in that a transmission amount or reflection amount and a transmission amount or reflection amount in the dummy portion are detected by a light receiving element or an image sensor of the receiver, and a signal output difference is calculated to determine a measurement value. Inspection method for oil and fat components on the surface. 請求項1又は2において、前記電磁波の放射源に380〜500nmの波長領域において所要の測定波長に最大発光強度を有する可視放射領域を含む電磁スペクトルを選択して用いることを特徴とする電磁波を用いた表面部の油脂成分の検査方法。   3. The electromagnetic wave according to claim 1, wherein an electromagnetic spectrum including a visible radiation region having a maximum emission intensity at a required measurement wavelength in a wavelength range of 380 to 500 nm is selected and used as the radiation source of the electromagnetic wave. Inspection method for oil and fat components on the surface. 測定端面を備えたプローブと、
前記測定端面の内部から、検査対象の表面部に電磁波を放射し、その透過又は反射された前記電磁波から油脂成分を演算して検出する油脂成分測定手段を備えたことを特徴とする電磁波を用いた表面部の油脂成分の検査装置。
A probe with a measuring end face;
An electromagnetic wave characterized by comprising an oil and fat component measuring means for radiating an electromagnetic wave from the inside of the measurement end surface to the surface portion to be inspected and calculating and detecting the fat and oil component from the transmitted or reflected electromagnetic wave. Inspection device for oil and fat components on the surface.
請求項4において、前記油脂成分測定手段は、前記測定端面の内部から前記電磁波を放射して油脂成分を測定する時に、前記透過体面に検査対象の油脂成分を有する表面部を直接押し当てて検出する手段と、前記透過体面に接触させないで検出する手段との、何れの測定手段で実施する場合においても、前記電磁波が放射された時の表面状態の測定基準となるダミーを設定しておき、検査対象の油脂により測定された透過量又は反射量と前記ダミー部分における透過量又は反射量とを前記受信器の受光素子又はイメージセンサにより検出し、その信号出力差を演算して測定値を定めることを特徴とする電磁波を用いた表面部の油脂成分の検査装置。   5. The oil / fat component measuring means according to claim 4, wherein when measuring the oil / fat component by radiating the electromagnetic wave from the inside of the measurement end face, the surface part having the oil / fat component to be inspected is directly pressed against the surface of the transmission body. In the case of carrying out with any of the measuring means of the means to detect and the means to detect without contacting the surface of the transmission body, a dummy serving as a measurement standard of the surface state when the electromagnetic wave is emitted is set, The amount of transmission or reflection measured by the oil or fat to be inspected and the amount of transmission or reflection at the dummy portion are detected by the light receiving element or image sensor of the receiver, and the signal output difference is calculated to determine the measurement value. An inspection apparatus for oil and fat components on the surface portion using electromagnetic waves. 請求項4又は5において、前記電磁波の放射源に380〜500nmの波長領域において所要の測定波長に最大発光強度を有する可視放射領域を含む電磁スペクトルを選択して用いることを特徴とする電磁波を用いた表面部の油脂成分の検査装置。   6. The electromagnetic wave according to claim 4, wherein an electromagnetic spectrum including a visible radiation region having a maximum emission intensity at a required measurement wavelength in a wavelength region of 380 to 500 nm is selected and used as the radiation source of the electromagnetic wave. Inspection device for oil and fat components on the surface.
JP2005354990A 2004-04-01 2005-12-08 Method and apparatus for inspecting oil component on surface using electromagnetic waves Pending JP2006078502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005354990A JP2006078502A (en) 2004-04-01 2005-12-08 Method and apparatus for inspecting oil component on surface using electromagnetic waves

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004109369 2004-04-01
JP2005354990A JP2006078502A (en) 2004-04-01 2005-12-08 Method and apparatus for inspecting oil component on surface using electromagnetic waves

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005045889A Division JP4157873B2 (en) 2004-04-01 2005-02-22 Surface texture measuring probe, and surface texture measuring method and apparatus using the probe

Publications (1)

Publication Number Publication Date
JP2006078502A true JP2006078502A (en) 2006-03-23

Family

ID=36158059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005354990A Pending JP2006078502A (en) 2004-04-01 2005-12-08 Method and apparatus for inspecting oil component on surface using electromagnetic waves

Country Status (1)

Country Link
JP (1) JP2006078502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105086A1 (en) * 2007-02-28 2008-09-04 Pioneer Corporation Gum removing device and gum removing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105086A1 (en) * 2007-02-28 2008-09-04 Pioneer Corporation Gum removing device and gum removing method

Similar Documents

Publication Publication Date Title
US6495833B1 (en) Sub-surface imaging under paints and coatings using early light spectroscopy
JP4157873B2 (en) Surface texture measuring probe, and surface texture measuring method and apparatus using the probe
US20150148630A1 (en) Method and device for detecting fluorescence radiation
Hankus et al. Surface enhanced Raman scattering (SERS)-based next generation commercially available substrate: physical characterization and biological application
CN106030285A (en) Apparatus and method for testing conductivity of graphene
Ahmed et al. Separation of fluorescence and elastic scattering from algae in seawater using polarization discrimination
CN204855406U (en) Fused quartz sublayer microdefect detecting device
US10718709B2 (en) Device for measuring radiation backscattered by a sample and measurement method using such a device
US10107745B2 (en) Method and device for estimating optical properties of a sample
US9594024B2 (en) Method for correcting a signal backscattered by a sample and associated device
US9931072B2 (en) Method for characterizing a sample by measurement of a backscattered optical signal
JP2006078502A (en) Method and apparatus for inspecting oil component on surface using electromagnetic waves
TW201447266A (en) Method and device for detecting fibrous materials such as hair
US20090279097A1 (en) Optical measurement device
KR101764704B1 (en) Apparatus for Measuring Toxin
Chernomordik et al. Depth dependence of the analytical expression for the width of the point spread function (spatial resolution) in time-resolved transillumination
US11408825B2 (en) Forensic detector and the system thereof
CN105044051B (en) A kind of multi-parameter portable water quality detection system based on LIBS
CN112683817A (en) Spectrum analyzer
US6954560B2 (en) Attenuated total reflection spectroscopic analysis of organic additives in metal plating solutions
KR101721395B1 (en) Device for inspecting conductivity of graphene and method thereof
JP2009128252A (en) End face inspection method and end face inspection apparatus
JP2004163131A (en) Tooth caries detector using laser beam
JP4517800B2 (en) Measuring device for optical properties of skin
CN213813344U (en) Film absorptivity testing device and system for ultraviolet ray tracing simulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051214

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080910

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080916

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090203

Free format text: JAPANESE INTERMEDIATE CODE: A02