JP2004163131A - Tooth caries detector using laser beam - Google Patents

Tooth caries detector using laser beam Download PDF

Info

Publication number
JP2004163131A
JP2004163131A JP2002326431A JP2002326431A JP2004163131A JP 2004163131 A JP2004163131 A JP 2004163131A JP 2002326431 A JP2002326431 A JP 2002326431A JP 2002326431 A JP2002326431 A JP 2002326431A JP 2004163131 A JP2004163131 A JP 2004163131A
Authority
JP
Japan
Prior art keywords
light
laser
scattered light
intensity
tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002326431A
Other languages
Japanese (ja)
Inventor
Akira Ozu
章 大図
Shigeru Goto
繁 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Osada Research Institute Ltd
Original Assignee
Japan Atomic Energy Research Institute
Osada Research Institute Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Osada Research Institute Ltd filed Critical Japan Atomic Energy Research Institute
Priority to JP2002326431A priority Critical patent/JP2004163131A/en
Publication of JP2004163131A publication Critical patent/JP2004163131A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems on measurement and evaluation of induced fluorescence in a method, etc. using laser that a device, especially an optical system, is complicated, that long wavelength interval of detected fluorescence complicates comparative beam evaluation work, and that the smaller a caries portion is, the more difficult its detection becomes difficult, although such a method is characterized by making it possible to simply and clearly detect a caries portion. <P>SOLUTION: This detector is structured so that laser light is irradiated to a tooth, thereby observing scattered light from a surface of the tooth of slight light included in the laser light but different from the irradiated laser light in wavelength or laser-induced scattered light caused by interaction between the laser light and tooth constituents, and that the caries portion developing on the tooth surface can be detected by detecting an intensity difference in scattered light caused by the degree of light absorption of the scattered light in enamel on the tooth surface. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、歯に形成される虫歯またはう蝕の検出方法に関するものであり、う蝕の早期検出、治療を行う歯科医療分野、または研究分野で利用できる。かつ、即時的にその場でう蝕の進行を観測する必要がある産業、医療分野で利用できる技術である。
【0002】
【従来の技術】
従来のう蝕の検出方法は、(1)視診によるもの、(2)X線を用いたものではラジオグラフィーを利用するもの、(3)レーザー光を用いたものではう蝕部分固有の誘起蛍光を利用するもの、(4)コヒーレントトモグラフィーイメージング技術を利用したもの、又は(5)赤外光線を用いたものではう蝕部分特有の水分量の差、バクテリア固有の誘起蛍光の測定、若しくは赤外線を照射してう蝕と健全部分の温度変化の差を利用したもの等がある。これらの技術には、一長一短がある。
【0003】
まず視診によるものでは、探針とデンタルミラーを用いて歯表面の実質的な欠損を視覚的に検出することから、特に初期う蝕の検出は主観に頼らざるを得ず判定が困難で、比較的小さなう蝕の場合には再現性の良い客観的な評価が困難となる。
【0004】
X線を用いる場合は、正確に精度良く画像として検出しようとすると何度もX線照射を繰り返して行わなければならないために、X線の人体への影響が懸念される。また、X線照射方向がある程度固定されているので、歯の隙間付近とか溝等では死角ができてしまう問題がある。
【0005】
レーザー光を用いたものでは、歯の組成の変化したう蝕部分から発生する特有の誘起蛍光を利用するもの(例えば、特許文献1及び2参照)は、紫外から可視域(350から600nm)のレーザー光を照射して健全な歯の部分とう蝕部分から発生する600nm以上誘起蛍光の強度の差からう蝕部分を検出するものである。このため長い波長域にわたる蛍光強度の複雑な比較、評価作業が必要となる。
【0006】
コヒーレントトモグラフィーを利用したもの(例えば、非特許文献1参照.)は、レーザー入射及び光検出の光学系の装置構成が他の方法よりも複雑で操作が難しくなる。
【0007】
一方、赤外線を利用したもの(例えば、特許文献3及び4参照)は、健全部分に対してう蝕部分特有の水分量の多さを検出するもの、または健全部分とう蝕部分の熱的挙動の差を利用するものがある。これらの方法の精度は、歯個々の表面状態のばらつき等、試験条件、歯の初期状態に大きく左右される。
【0008】
【特許文献1】
特願平5−5075号
【特許文献2】
特願平8−296262号
【非特許文献1】
The journal SPIE, Vol. 4610, Lasers in Dentistry VIII, 2002. B. T. Amaechi, et al., ”Optical Coherent Tomography fo Dental Caries Detection and Analysis” . pages 100 to 108
【特許文献3】
特願平7−61639号
【特許文献4】
特願2000−57828号
【0009】
【発明が解決しようとする課題】
レーザー光を用いないう蝕の検出方法は、視診の場合には客観的評価が困難であったり、X線では人体への影響が問題となる。また赤外光を用いる場合は、歯の初期状態や前処理等の成否が問題となる。
【0010】
一方、上記レーザーを用いる方法等は、これら以外の方法と比較して簡単かつ明確にう蝕部分を検出できるという特徴を有するが、装置、特に光学系が複雑になる等の問題がある。また、誘起蛍光の測定、評価に関しては、検出する蛍光の波長幅が長く、光の比較評価作業が複雑になり、う蝕部分が小さくなるほど検出が困難になるという問題がある。
【0011】
【課題を解決するための手段】
レーザー光を用いる方法は、他の方法に比して確実にう蝕部分を特定できるという特徴を有するが、複雑な評価比較作業が不可欠という問題がある。この問題を解決するために、レーザー光を歯に照射し、歯から放出される散乱光のエナメル質での吸収の差によって生じる散乱光の強度差を測定することによってう蝕の検出を行う。
【0012】
この方法を用いれば、これらの散乱光は照射したレーザー波長とは大きく異なる波長をもつため、検出において照射したレーザー散乱光の影響を除外することが可能となる。
【0013】
散乱光には、レーザー光に含まれる微弱な光が散乱されるものの他に、レーザー誘起蛍光、ラマン散乱光(ストークス及びアンチストークス光含む)、または非線形光学効果によって発生する光がある。レーザー誘起蛍光は、レーザー光を物質に照射したときに物質を構成する原子、分子等がレーザー光によって励起されて発生する物質特有の光である。レーザー光が物質によって散乱されるとき、その散乱光の波長が照射レーザー光の波長より長いものをストークス光、短いものをアンチストークス光という。非線形光学効果によって発生する光は、レーザー光のような強度の高い光を物質に照射すると物質の屈折率がその強度に応じて変化することによってレーザー光及び散乱光の波長を変化させる効果によって発生する光である。
【0014】
即ち、レーザー光を歯に照射すると、レーザー光と歯の構成物質との間の相互作用を介して例えば(1)式に示すような光強度を有するラマン散乱光等のレーザー誘起蛍光を発生する。
【0015】
【数1】

Figure 2004163131
【0016】
図1に示すように歯表面には健全な場合厚さ約1〜3mmの透明に近いエナメル質が存在し、その内部にほぼ白色の象牙質が存在する。この歯の表面にレーザー光(I、I、I)が均一に照射されると、レーザー光はほぼ透明のエナメル質をある程度減衰して通過し象牙質に到達する。このとき、到達したレーザー光は、象牙質を構成するハイドロキシアパタイト等の分子と相互作用を発生し、ラマン散乱光等のレーザー誘起光を発生する。このラマン散乱光(R、R、R)は入射したレーザー光と波長が異なるが、象牙質表面で散乱されたレーザー光(照射したレーザー散乱光)同様にエナメル質を通過し減衰して歯外部に出射、散乱される。
【0017】
このとき、う蝕によりエナメル質の厚さが周囲の健全部分よりも薄くなっているときや(R、Rの場合)、エナメル質内部またはエナメル質と象牙質の境界付近に初期う蝕の状態にある脱灰により空隙が増加すると、象牙質表面で相互作用を介して発生して歯外部に出て行くラマン散乱光Rのエナメル質での減衰はエナメル質が健全な場合よりも小さくなる。
【0018】
従って、う蝕の部分から観測される散乱光の強度は、健全なう蝕のない歯表面からの強い散乱光よりも強くなる(R<R<Rの関係になる)。このようにレーザー光によって誘起される光、例えばラマン散乱光の強弱を探知することによってはエナメル質部分のう蝕の存在を特定することができる。
【0019】
さらに、レーザー光発生の過程でレーザーとは波長の異なるレーザー光自身の中に含まれる微弱なレーザー光や指向性をもつ光がレーザー光の入射と同時に均一に歯表面に入射(I=I=I)されると、やはり入射散乱の過程でエナメル質の吸収を受けて歯の外部に散乱光として排出される。このとき、レーザー光に含まれる微弱な光はレーザー光強度に比べて極めて小さい強度のためエナメル質の吸収の効果が現れやすくなり、前記レーザー光によって誘起される光と同様にエナメル質の厚み(う蝕の有無)によって散乱光に強度差を生じる。これによってう蝕を検出することが可能となる。
【0020】
その基本的な検出手順は、図2に示されるように、(1)Nd:YAGレーザー装置で発生したレーザー光は、(2)集光レンズ及び(3)ピンホールを通して(4)歯サンプルに照射される。照射された箇所からレーザー誘起蛍光またはレーザー光自身に含まれる微弱光による散乱光が発生する。その散乱光等を(5)レンズまたは光ファイバーを通して波長選択素子である(6)分光器等に導き、波長分解して特定の波長の光強度を光検出器である(7)二次電子増倍管等で電気信号に変換し、オシロスコープ等の表示装置を用いて単一の信号または画像信号として観測するものである。試験では、う蝕部分とその周りの健全部分をレーザー光を照射してその強度を比較する。
【0021】
上記検出手順が行われた結果、歯表面からのレーザー光の散乱光強度が図4に示される。この図に表示されている波長の光強度は、レーザー光及びそれ自身に含まれていた微弱な光成分が歯の健全部分及びう蝕部分に照射され、散乱された光のものである。健全部分及びう蝕部分からの照射したレーザーの散乱光以外の散乱光強度を比較すると、う蝕部分からのものが高い値を示した。この散乱光の強度差を調べることによりう蝕歯のう蝕部分を特定できる。
【0022】
【発明の実施の形態】
レーザー光を歯に照射するとレーザー光と歯の構成物質との間の相互作用を介してレーザー誘起光、例えば(1)式に示すような光強度を有するラマン散乱光を発生する。図1に示すように歯表面には健全な場合厚さ約1〜3mmの透明に近いエナメル質が存在し、その内部にほぼ白色の象牙質が存在する。この歯の表面にレーザー光(I、I、I)が照射されるとレーザー光は、ほぼ透明のエナメル質をある程度減衰して通過し象牙質に到達する。このとき、到達したレーザー光は、象牙質を構成するハイドロキシアパタイト等の分子と相互作用を発生し、ラマン散乱光を発生する。このラマン散乱光(R、R、R)は照射したレーザー光と波長が異なるが、象牙質表面で散乱された照射したレーザー光同様に再びエナメル質を通過し減衰して歯外部に出射、散乱される。
【0023】
このとき、う蝕によりエナメル質の厚さが周囲の健全部分よりも薄くなっているときや(R、Rの場合)、エナメル質内部またはエナメル質と象牙質の境界付近に初期う蝕の状態にある脱灰により空隙が増加すると、象牙質表面で発生して歯外部に出て行くラマン散乱光Rのエナメル質での減衰がエナメル質が健全な場合よりも小さくなり(R<R<Rの関係になる)、観測されるラマン散乱光の強度が、健全なう蝕のない歯表面からの散乱光よりも強い散乱光が観測される。このラマン散乱光の強弱を探知することによってはエナメル質部分のう蝕の存在を特定することができる。
【0024】
また、レーザー光には、レーザー光発生の過程でレーザーとは波長の異なる微弱なレーザー光や指向性をもつ光(レーザー光の進行方向と同じ方向に進行する強い光)が含まれる。これも、同様に歯に照射され歯外部に散乱光として出る過程で、エナメル質の吸収を受ける。この微弱な光はレーザー光強度に比べて極めて小さい強度のためエナメル質の吸収の効果が現れやすくなる。この光がレーザー光の入射と同時に均一に歯表面に入射(I=I=I)されると、エナメル質の吸収を受けて象牙質で反射され歯の外部に散乱光として排出され、レーザー誘起の光と同様にエナメル質の厚み(う蝕の有無)によって散乱光に強度差を生じる。この光の散乱光強度を調べることによってもう蝕を検出することが可能となる。
【0025】
【実施例】
図2に実施例の実験装置配置図を示す。試験装置は、主に(1)パルスレーザー装置、(2), (5)光学集光レンズ、(3)ピンホール(直径〜0.6mmφ)、(4)人の歯サンプル、(6)波長選択素子(分光器)、(7)光検出器(二次電子増倍管、CCDカメラ)及び(8)オシロスコープ等から構成される。本実施例では(1)パルスレーザー装置にNd:YAGレーザー(2倍波:波長532nm、及び266nm、パルス幅:約20ns(ns:2x10−8秒))を、(7)光検出器に二次電子増倍管を使用した。 (4)歯のサンプルは、図3に示すように歯の中央(丸印)に直径約2〜3mmのう蝕が存在するものを使用した。
【0026】
試験の手順を以下に示す。(1)パルスレーザー装置から発せられたパルスレーザー光は、 (3)集光レンズ、(4)スリットを通して歯に直径約0.6mmのレーザー口径で照射される。照射された部分からは、照射したレーザー光と歯の構成物質との相互作用により生じる照射レーザー波長とは異なる波長をもつ、強い散乱光(誘起蛍光等を含む)及びレーザー光に含まれる微弱光成分が、照射レーザー光と同時に歯表面で散乱、放出される。この散乱光はレンズまたは光ファイバー等を通して(6)分光器に導いて波長によって振り分けられ、その強度が計測される。(6)分光器の(7)検出器には、二次電子増倍管が装備され、散乱光の強度は電気信号に変換されて(9)オシロスコープ上で観測される。
【0027】
(実施例1)
図4には、歯のう蝕部分とその周りの健全部分に同じ出力のパルスレーザー光(532nm)を照射したときに300 ̄1200nmの波長域に観測される図5のような波長幅が狭く(ほぼ単一スペクトル、レーザー光のスペクトル幅と同程度)、かつ比較的強度の高いパルス散乱光の強度の比較を示す。これらの散乱光は、レーザー光及びレーザー光自身に含まれる微弱光が歯表面に入射され、吸収を受けて散乱された光である。また、Nd:YAGレーザーの2倍波である532nmのパルスレーザー光の中にNd:YAGレーザーの基本波である1064nmのレーザー光が数%程度含まれているために1064nm近傍(それより波長の長い、または短い近傍にも)にも同様にパルス散乱光が計測された。
【0028】
図4には、比較的光強度の高い波長の散乱光を示したが、この他に400nmから900nmにわたって強度の低い散乱光が10数本観測された。さらに、 図4より、照射レーザー光(532nm、1064nm)以外の散乱光強度は、照射レーザー光よりも強度が著しく低いために吸収の効果を受けやすく、全体的にう蝕部分と正常部分の強度差がより顕著に観測され、う蝕部分からの散乱光強度は、1.3から2倍程度の高い値を示した。
【0029】
また、図4にはその強度を表示していないが、レーザー誘起蛍光の散乱光である中心波長約680nm付近に観測された非常にブロードなスペクトルを図6に示す。このレーザー誘起蛍光と推定される650から700nm付近でのブロードな散乱光でも図4の散乱光と同様の強度差を得ることができた。さらに、Nd:YAGレーザーの4倍波である波長266nmのパルスレーザー光を用いたところ、図7に示すような照射レーザースペクトルの長波長側に象牙質のコラーゲンからの誘起蛍光と推定されるブロードな散乱スペクトルが観測された。この散乱光においてもう蝕部分の散乱光強度は正常部分よりも数十%高い値を示した。
【0030】
これらのレーザー誘起蛍光及びレーザー光に含まれる微弱光からなる散乱光は、長い波長範囲にわたっていること、及びレーザー波長よりかなり離れているので光学的な分離が容易となって観測しやすくなるため、分光器を使用しなくてもこれら散乱光のどれか一つの波長に同調した干渉フィルター等の透過フィルターを用いれば、簡単にう蝕の場所を特定することができる。さらに、長い波長範囲にわたり多くの散乱光波長で簡単に比較することができるため、う蝕部分検出の確実性、信頼性が高まる。またCCD(光情報を電気信号に変換する半導体素子)等の2次元素子を検出器に用いて観測すれば、簡単にう蝕場所をより鮮明に画像で特定することが可能となる。即ち、CCDでとらえた光の2次元強度分布の強弱から歯表面の状態を推定することができる。
【0031】
【発明の効果】
本発明により、従来の方法に比して簡易的かつ安価に歯のう蝕部分を散乱光強度の差を利用してその場で計測することができる。主として散乱光強度を比較するため検出が容易で、かつ比較作業が簡単になり、従来の方法で必要とされるスペクトル幅が通常長い蛍光強度の複雑な比較評価作業を省略することができ、う蝕歯の検査作業の迅速化、効率化に効果を発揮する。
【図面の簡単な説明】
【図1】本発明の原理を説明する図である。
【図2】本発明の一実施例の装置を示す図である。
【符号の説明】
(1)Nd:YAGレーザー装置、(2)集光レンズ、(3)ピンホール(0.6mmφ)、(4)歯サンプル及び固定台、(5)集光レンズ、(6)分光器、(7)二次電子増倍管、(8)オシロスコープ
【図3】実施例に用いたう蝕部分が存在する人のサンプル歯を示す図である。
【図4】本発明の実施による検出結果を示す図である。
【図5】歯からの散乱光から観測されたスペクトル幅の短い散乱光スペクトル(波長412nm近傍)の代表例を示す図である。
【図6】歯からの散乱光から観測されたスペクトル幅の広いブロードな散乱光スペクトル(中心波長680nm近傍)の代表例を示す図である。
【図7】波長266nmのレーザー光照射時に観測されたスペクトル幅の広いブロードな散乱光スペクトル(中心波長285nm近傍)の代表例を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for detecting caries or dental caries formed in teeth, and can be used in the field of dental care for performing early detection and treatment of dental caries, or in the field of research. In addition, it is a technology that can be used in the industrial and medical fields that require immediate observation of the progress of dental caries on the spot.
[0002]
[Prior art]
Conventional caries detection methods include (1) visual inspection, (2) radiography in the case of X-rays, and (3) induced fluorescence unique to the carious part in the case of laser light. (4) those using coherent tomography imaging technology, or (5) those using infrared light, the measurement of the difference in water content specific to carious parts, the measurement of induced fluorescence specific to bacteria, or the use of infrared light. There is a method that uses a difference in temperature change between a carious part and a healthy part by irradiation. Each of these technologies has advantages and disadvantages.
[0003]
First, visual inspection uses a probe and a dental mirror to visually detect substantial defects on the tooth surface. In the case of very small caries, it is difficult to perform objective evaluation with good reproducibility.
[0004]
When X-rays are used, it is necessary to repeat the X-ray irradiation many times in order to accurately and accurately detect an image, and there is a concern that the X-rays may affect the human body. In addition, since the X-ray irradiation direction is fixed to some extent, there is a problem that blind spots are formed in the vicinity of a gap between teeth or in a groove.
[0005]
In the case of using laser light, the one utilizing specific induced fluorescence generated from a carious part in which tooth composition has changed (for example, see Patent Literatures 1 and 2) has a wavelength in the ultraviolet to visible range (350 to 600 nm). The carious part is detected from the difference in the intensity of the induced fluorescence of 600 nm or more generated from the healthy tooth part and the carious part by irradiating laser light. For this reason, complicated comparison and evaluation work of the fluorescence intensity over a long wavelength range is required.
[0006]
An apparatus using coherent tomography (for example, see Non-Patent Document 1) has a more complicated device configuration of an optical system for laser incidence and light detection than other methods, which makes operation difficult.
[0007]
On the other hand, those using infrared rays (for example, refer to Patent Documents 3 and 4) detect a large amount of moisture specific to a carious part relative to a healthy part, or detect the thermal behavior of a healthy part and a carious part. Some use the difference. The accuracy of these methods largely depends on the test conditions and the initial state of the teeth, such as variations in the surface condition of each tooth.
[0008]
[Patent Document 1]
Japanese Patent Application No. 5-5075 [Patent Document 2]
Japanese Patent Application No. 8-296262 [Non-Patent Document 1]
The journal SPIE, Vol. 4610, Lasers in Dentistry VIII, 2002. B. T. Amaechi, et al. , "Optical Coherent Tomography for Dental Cares Detection and Analysis". pages 100 to 108
[Patent Document 3]
Japanese Patent Application No. 7-61639 [Patent Document 4]
Japanese Patent Application No. 2000-57828 [0009]
[Problems to be solved by the invention]
In the method of detecting eclipse using laser light, it is difficult to perform objective evaluation in the case of visual inspection, and there is a problem that X-rays may affect the human body. Further, when infrared light is used, the initial state of teeth and the success or failure of pretreatment and the like become problems.
[0010]
On the other hand, the method using the laser or the like has a feature that the carious part can be detected easily and clearly as compared with other methods, but has a problem that the apparatus, particularly the optical system becomes complicated. Further, regarding the measurement and evaluation of the induced fluorescence, there is a problem that the wavelength width of the fluorescence to be detected is long, the work of comparing and evaluating the light becomes complicated, and the smaller the carious part, the more difficult the detection becomes.
[0011]
[Means for Solving the Problems]
The method using laser light has a feature that the carious part can be specified more reliably than other methods, but has a problem that complicated evaluation comparison work is indispensable. In order to solve this problem, caries are detected by irradiating a tooth with laser light and measuring the difference in the intensity of the scattered light caused by the difference in the absorption of the scattered light emitted from the tooth in the enamel.
[0012]
If this method is used, these scattered lights have wavelengths greatly different from the wavelength of the irradiated laser, so that it is possible to exclude the influence of the irradiated laser scattered light on detection.
[0013]
The scattered light includes, in addition to the scattered weak light included in the laser light, laser-induced fluorescence, Raman scattered light (including Stokes and anti-Stokes light), or light generated by a nonlinear optical effect. The laser-induced fluorescence is light peculiar to a substance that is generated by irradiating atoms, molecules, and the like constituting the substance when the substance is irradiated with the laser light. When laser light is scattered by a substance, the light whose scattering light wavelength is longer than the wavelength of the irradiation laser light is called Stokes light, and the light whose scattering light wavelength is shorter is called anti-Stokes light. The light generated by the nonlinear optical effect is generated by irradiating a material with high intensity light such as laser light, and the refractive index of the material changes according to the intensity, thereby changing the wavelength of laser light and scattered light. Light.
[0014]
That is, when a laser beam is applied to a tooth, laser-induced fluorescence such as Raman scattered light having a light intensity as shown in equation (1) is generated through an interaction between the laser beam and a constituent material of the tooth. .
[0015]
(Equation 1)
Figure 2004163131
[0016]
As shown in FIG. 1, in a healthy state, a nearly transparent enamel having a thickness of about 1 to 3 mm exists on the tooth surface, and a substantially white dentin exists inside the enamel. When the laser light (I 1 , I 2 , I 3 ) is uniformly applied to the tooth surface, the laser light attenuates the almost transparent enamel to a certain extent and reaches the dentin. At this time, the arrived laser light interacts with molecules such as hydroxyapatite constituting dentin to generate laser-induced light such as Raman scattered light. The Raman scattered light (R 1 , R 2 , R 3 ) has a different wavelength from the incident laser light, but passes through the enamel like the laser light scattered on the dentin surface (irradiated laser scattered light) and attenuates. Emitted and scattered outside the tooth.
[0017]
At this time, when the thickness of the enamel is thinner than the surrounding healthy part due to caries (in the case of R 2 and R 3 ), the initial caries are found inside the enamel or near the boundary between the enamel and dentin. If the void is increased by demineralization in the state, the attenuation of the enamel of the Raman scattered light R 3 exiting the Haggai portion generated via interaction with dentin surfaces than enamel healthy Become smaller.
[0018]
Therefore, the intensity of the scattered light observed from the carious part is stronger than the strong scattered light from the healthy tooth surface without caries (the relationship is R 1 <R 2 <R 3 ). By detecting the intensity of the light induced by the laser light, for example, the intensity of the Raman scattered light, the presence of dental caries in the enamel portion can be specified.
[0019]
Further, in the process of laser light generation, weak laser light or light having directivity included in the laser light itself having a different wavelength from the laser is uniformly incident on the tooth surface at the same time as the laser light is incident (I 1 = I 2 = I 3 ), the enamel is also absorbed in the process of incident scattering, and is emitted as scattered light outside the tooth. At this time, since the weak light contained in the laser light is extremely small in intensity as compared with the laser light intensity, the effect of enamel absorption is likely to appear, and the thickness of the enamel is similar to the light induced by the laser light ( (The presence or absence of caries) causes a difference in the intensity of the scattered light. This makes it possible to detect caries.
[0020]
As shown in FIG. 2, the basic detection procedure is as follows. (1) Laser light generated by an Nd: YAG laser device is passed through (2) a condenser lens and (3) a pinhole and (4) onto a tooth sample. Irradiated. Scattered light due to laser-induced fluorescence or weak light contained in the laser light itself is generated from the irradiated portion. The scattered light and the like are guided to (5) a spectroscope or the like which is a wavelength selecting element through a lens or an optical fiber, and the wavelength is decomposed and the light intensity of a specific wavelength is a photodetector. (7) Secondary electron multiplication This is converted into an electric signal by a tube or the like, and observed as a single signal or an image signal using a display device such as an oscilloscope. In the test, a carious part and a healthy part around the carious part are irradiated with laser light to compare their intensities.
[0021]
FIG. 4 shows the scattered light intensity of the laser light from the tooth surface as a result of performing the above detection procedure. The light intensity of the wavelength shown in this figure is that of the laser light and the weak light components contained in the laser light that are radiated to healthy and carious parts of the teeth and scattered. Comparing the scattered light intensity other than the scattered light of the laser irradiated from the healthy part and the carious part, the value from the carious part showed a higher value. By examining the difference in the intensity of the scattered light, the carious portion of the carious tooth can be specified.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
When a laser beam is applied to a tooth, laser-induced light, for example, Raman scattered light having a light intensity as shown in the equation (1) is generated through an interaction between the laser beam and a constituent material of the tooth. As shown in FIG. 1, in a healthy state, a nearly transparent enamel having a thickness of about 1 to 3 mm exists on the tooth surface, and a substantially white dentin exists inside the enamel. When the laser light (I 1 , I 2 , I 3 ) is applied to the tooth surface, the laser light passes through the substantially transparent enamel with some attenuation and reaches the dentin. At this time, the arrived laser light interacts with molecules such as hydroxyapatite constituting dentin to generate Raman scattered light. The Raman scattered light (R 1 , R 2 , R 3 ) has a different wavelength from the irradiated laser light, but passes through the enamel again and attenuates like the irradiated laser light scattered on the dentin surface to the outside of the tooth. Emitted and scattered.
[0023]
At this time, when the thickness of the enamel is thinner than the surrounding healthy part due to caries (in the case of R 2 and R 3 ), the initial caries are found inside the enamel or near the boundary between the enamel and dentin. If the void by demineralization in the state increases, the attenuation at enamel of the Raman scattered light R 3 exiting the Haggai portion occurring on dentin surface is smaller than when enamel is healthy (R 1 <R 2 <R 3 ), the intensity of the observed Raman scattered light is higher than the scattered light from the healthy tooth surface without caries. By detecting the intensity of the Raman scattered light, the presence of dental caries in the enamel portion can be specified.
[0024]
Further, the laser light includes a weak laser light having a different wavelength from the laser or a light having directivity (strong light traveling in the same direction as the traveling direction of the laser light) in the process of generating the laser light. Similarly, enamel is absorbed during the process of irradiating the tooth and emitting it as scattered light outside the tooth. Since the intensity of the weak light is extremely small as compared with the intensity of the laser light, the effect of enamel absorption is likely to appear. When this light is uniformly incident on the tooth surface (I 1 = I 2 = I 3 ) simultaneously with the incidence of the laser light, the light is absorbed by the enamel, reflected by the dentin, and emitted as scattered light outside the tooth. As in the case of laser-induced light, the intensity of scattered light varies depending on the thickness of the enamel (the presence or absence of caries). By examining the scattered light intensity of this light, it is possible to detect the eclipse.
[0025]
【Example】
FIG. 2 shows a layout of the experimental apparatus of the embodiment. The test equipment is mainly (1) pulse laser equipment, (2), (5) optical condensing lens, (3) pinhole (diameter ~ 0.6mmφ), (4) human tooth sample, (6) wavelength It comprises a selection element (spectroscope), (7) a photodetector (secondary electron multiplier, CCD camera), and (8) an oscilloscope. In this embodiment, (1) an Nd: YAG laser (second harmonic: wavelengths 532 nm and 266 nm, pulse width: about 20 ns (ns: 2 × 10 −8 seconds)) is used for the pulse laser device, and (7) a photodetector is used for the Nd: YAG laser. A secondary electron multiplier was used. (4) As shown in FIG. 3, a tooth sample having a dental caries having a diameter of about 2 to 3 mm at the center (circle) of the tooth was used.
[0026]
The test procedure is shown below. (1) The pulsed laser beam emitted from the pulsed laser device is applied to the teeth through a (3) condensing lens and (4) a slit with a laser diameter of about 0.6 mm. From the irradiated part, strong scattered light (including induced fluorescence, etc.) and weak light contained in the laser light having a wavelength different from the irradiation laser wavelength generated by the interaction between the irradiated laser light and the constituent materials of the teeth The components are scattered and emitted on the tooth surface simultaneously with the irradiation laser light. The scattered light is guided to a spectroscope (6) through a lens or an optical fiber, and is sorted by wavelength, and the intensity is measured. (6) A secondary electron multiplier is provided in the (7) detector of the spectroscope, and the intensity of the scattered light is converted into an electric signal and (9) observed on an oscilloscope.
[0027]
(Example 1)
In FIG. 4, when a carious part of a tooth and a healthy part around the tooth are irradiated with pulse laser light (532 nm) of the same output, the wavelength width as shown in FIG. 5, which is observed in a wavelength range of 300 to 1200 nm, is narrow. 7 shows a comparison of the intensity of pulse scattered light (almost a single spectrum, approximately the same as the spectrum width of laser light) and relatively high intensity. These scattered lights are laser light and light that is included in the laser light itself, is incident on the tooth surface, is absorbed, and is scattered. In addition, since the laser beam of 1064 nm, which is the fundamental wave of the Nd: YAG laser, is contained in the pulsed laser beam of 532 nm, which is the second harmonic of the Nd: YAG laser, by about several percent, it is in the vicinity of 1064 nm (the wavelength of 1064 nm or more). Pulse scattered light was measured in the same way (in the long or short neighborhood).
[0028]
FIG. 4 shows scattered light having a wavelength having a relatively high light intensity. In addition, several dozen scattered lights having a low intensity were observed from 400 nm to 900 nm. Further, from FIG. 4, the scattered light intensity other than the irradiation laser light (532 nm, 1064 nm) is significantly lower than the irradiation laser light, so that it is easily affected by the absorption effect. The difference was more remarkably observed, and the scattered light intensity from the carious portion showed a high value of about 1.3 to 2 times.
[0029]
Although the intensity is not shown in FIG. 4, a very broad spectrum observed around a center wavelength of about 680 nm, which is scattered light of laser-induced fluorescence, is shown in FIG. Broad intensity scattered light in the vicinity of 650 to 700 nm estimated as the laser-induced fluorescence was able to obtain the same intensity difference as the scattered light in FIG. Furthermore, when pulsed laser light having a wavelength of 266 nm, which is the fourth harmonic of the Nd: YAG laser, was used, broad light, which is presumed to be induced fluorescence from dentin collagen on the long wavelength side of the irradiation laser spectrum as shown in FIG. A strong scattering spectrum was observed. In this scattered light, the scattered light intensity of the carious portion showed a value several tens of percent higher than that of the normal portion.
[0030]
The scattered light consisting of these laser-induced fluorescence and the weak light contained in the laser light is over a long wavelength range, and because it is far away from the laser wavelength, optical separation is easy and observation is easy. Even if a spectroscope is not used, the location of the caries can be easily specified by using a transmission filter such as an interference filter tuned to any one of these scattered lights. Further, since the comparison can be easily performed at many scattered light wavelengths over a long wavelength range, the reliability and reliability of the detection of the carious portion are improved. Also, if a two-dimensional element such as a CCD (semiconductor element that converts light information into an electric signal) or the like is used as a detector, it is possible to easily and clearly identify a carious place with an image. That is, the state of the tooth surface can be estimated from the intensity of the two-dimensional intensity distribution of light captured by the CCD.
[0031]
【The invention's effect】
According to the present invention, a carious portion of a tooth can be measured on the spot by using the difference in scattered light intensity simply and at low cost as compared with the conventional method. Primarily comparing the scattered light intensity, the detection is easy and the comparison operation is simple, and the complicated comparison and evaluation work of the fluorescence intensity having a long spectrum width required by the conventional method can be omitted. It is effective for speeding up and improving the efficiency of dental caries inspection work.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the principle of the present invention.
FIG. 2 is a diagram showing an apparatus according to an embodiment of the present invention.
[Explanation of symbols]
(1) Nd: YAG laser device, (2) condenser lens, (3) pinhole (0.6 mmφ), (4) tooth sample and fixing base, (5) condenser lens, (6) spectroscope, ( 7) Secondary electron multiplier, (8) Oscilloscope FIG. 3 is a view showing a sample tooth of a person having a carious part used in the embodiment.
FIG. 4 is a diagram showing detection results obtained by implementing the present invention.
FIG. 5 is a diagram showing a representative example of a scattered light spectrum (with a wavelength of about 412 nm) having a short spectrum width observed from scattered light from a tooth.
FIG. 6 is a diagram showing a representative example of a broad scattered light spectrum (center wavelength around 680 nm) having a wide spectrum width observed from scattered light from teeth.
FIG. 7 is a diagram showing a representative example of a broad scattered light spectrum (with a center wavelength of about 285 nm) having a wide spectrum width observed during irradiation of a laser beam having a wavelength of 266 nm.

Claims (9)

レーザー光を歯に照射して、歯表面のエナメル質での光吸収の度合いにより生ずる散乱光の強度差を測定することによって歯表面に発生したう蝕部分の検出を可能とする、レーザー光を用いた歯のう蝕の検出装置。By irradiating laser light to the teeth and measuring the intensity difference of scattered light caused by the degree of light absorption in the enamel on the tooth surface, it is possible to detect carious parts generated on the tooth surface, Used dental caries detection device. 上記散乱光は、レーザー光がその発生過程で生ずる波長の違ったそのレーザー光に含まれる微弱なレーザー光成分または指向性をもった光成分が歯表面で散乱されるもの、及びレーザー光が歯表面と相互作用を生じて発生する散乱光からなる請求項1記載のう蝕の検出装置。The scattered light is such that a weak laser light component or a directional light component contained in the laser light having a different wavelength generated in the generation process of the laser light is scattered on the tooth surface, and 2. The dental caries detecting device according to claim 1, comprising scattered light generated by interacting with the surface. 照射したレーザー光によって歯表面から発生する散乱光とは、レーザー誘起蛍光、ラマン散乱光(ストークス及びアンチストークス光含む)、または非線形光学効果によって発生する光を特徴とする請求項1記載のう蝕の検出装置。2. The dental caries according to claim 1, wherein the scattered light generated from the tooth surface by the irradiated laser light is laser-induced fluorescence, Raman scattered light (including Stokes and anti-Stokes light), or light generated by a nonlinear optical effect. Detection device. レーザー光と歯の物質との相互作用により発生する散乱光の波長は、ラマン散乱光のストークス光及アンチストークス光のように照射レーザー波長よりも波長が長いか、または波長が短いことを特長とする請求項1記載のう蝕の検出装置。The wavelength of the scattered light generated by the interaction between the laser light and the tooth material is longer or shorter than the irradiation laser wavelength, such as Stokes light and anti-Stokes light of Raman scattered light. The dental caries detection device according to claim 1, wherein レーザー光が歯に照射される場合、歯の象牙質において発生する散乱光及びレーザー光に含まれる微弱なレーザー又は光成分等は、象牙質表面を覆う厚さ1〜3mmのエナメル質層を通過するとき吸収を受け、このとき、歯表面のエナメル質近傍にう蝕が存在すると、エナメル質部分の厚さが少ないため、或いは脱灰のためにこの吸収量は小さくなり、う蝕まわりの歯の健全部分と比較するとう蝕部分からの散乱光強度は健全部分よりも高い値を示し、それらを測定してう蝕部分を検出することを特徴とする請求項1記載のう蝕の検出装置。When laser light is applied to the tooth, the scattered light generated in the dentin of the tooth and the weak laser or light component included in the laser light pass through the enamel layer having a thickness of 1 to 3 mm covering the dentin surface. When caries are present near the enamel on the tooth surface, the amount of absorption is reduced due to the small thickness of the enamel part or due to decalcification, and the tooth around the caries 2. The caries detecting device according to claim 1, wherein the scattered light intensity from the carious part shows a higher value than the sound part, and the carious part is detected by measuring them. . 散乱光等の検出方法は、分光器または干渉フィルター等の波長選択素子と結合した二次電子増倍管等を用いてう蝕部分と正常部分からの散乱光強度を比較してう蝕部分を探すもの、またはCCDカメラに代表される二次元イメージセンサーに同様に波長選択素子を結合させ、画面上で散乱光強度の強弱を検出してう蝕部分を検出することを可能とする請求項1記載のう蝕の検出装置。The method for detecting scattered light, etc. is to compare the intensity of scattered light from the carious part with the scattered light intensity from the normal part using a secondary electron multiplier tube or the like coupled to a wavelength selection element such as a spectroscope or an interference filter to determine the carious part. 2. A carousel part is detected by detecting the intensity of the scattered light intensity on a screen by similarly coupling a wavelength selection element to a search object or a two-dimensional image sensor represented by a CCD camera. An apparatus for detecting caries according to the above. レーザー光照射により発生する散乱光の2次元強度分布の強弱から、歯表面のエナメル質の状態、例えば厚み、粗さ、う蝕の有無等を推定することが可能となる請求項1記載のう蝕検出装置。2. The method according to claim 1, wherein the state of the enamel on the tooth surface, for example, the thickness, the roughness, the presence or absence of caries, and the like can be estimated from the intensity of the two-dimensional intensity distribution of the scattered light generated by the laser light irradiation. Eclipse detection device. 照射されるレーザー光は、歯の構成物質と相互作用しレーザー誘起蛍光を発生させるに十分なレーザー光強度、偏光、波長及びパルス時間幅を有することを特徴とする請求項1記載ののう蝕検出装置。2. The dental caries of claim 1, wherein the irradiated laser beam has a laser beam intensity, polarization, wavelength and pulse time width sufficient to interact with tooth constituents to generate laser-induced fluorescence. Detection device. 被検査歯にレーザー光を照射するためのレーザー照射装置及び集光レンズ等の照射機構、歯からの散乱光の取り出し分光機構、並びに光検出器及びオシロスコープ或いは画像表示装置により構成された散乱光強度検出表示機構を備えたレーザー光を用いた歯のう蝕の検出装置であって、レーザー装置から発せられたレーザー光を集光レンズ等を通して歯に照射し、照射された部分からレーザー波長とは異なる波長をもつ散乱光を、波長選択素子等の分光器により振り分け、その強度を光検出器で測定し、その強度差からう蝕部分を特定することからなる、前記検出装置。An irradiation mechanism such as a laser irradiation device and a condenser lens for irradiating a laser beam to a tooth to be inspected, a scattered light extraction mechanism for extracting scattered light from the teeth, and a scattered light intensity constituted by a photodetector and an oscilloscope or an image display device This is a dental caries detection device using a laser beam equipped with a detection display mechanism.The laser beam emitted from the laser device is radiated to the teeth through a condenser lens and the like. The detection device, comprising: scattered lights having different wavelengths are sorted by a spectroscope such as a wavelength selection element, the intensity of the scattered light is measured by a photodetector, and a carious portion is identified from the difference in the intensity.
JP2002326431A 2002-11-11 2002-11-11 Tooth caries detector using laser beam Pending JP2004163131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002326431A JP2004163131A (en) 2002-11-11 2002-11-11 Tooth caries detector using laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002326431A JP2004163131A (en) 2002-11-11 2002-11-11 Tooth caries detector using laser beam

Publications (1)

Publication Number Publication Date
JP2004163131A true JP2004163131A (en) 2004-06-10

Family

ID=32805343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002326431A Pending JP2004163131A (en) 2002-11-11 2002-11-11 Tooth caries detector using laser beam

Country Status (1)

Country Link
JP (1) JP2004163131A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7270543B2 (en) 2004-06-29 2007-09-18 Therametric Technologies, Inc. Handpiece for caries detection
US8360771B2 (en) 2006-12-28 2013-01-29 Therametric Technologies, Inc. Handpiece for detection of dental demineralization
RU2526961C1 (en) * 2013-03-06 2014-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новгородский государственный университет имени Ярослава Мудрого" Method of treating patients with dental pulp and periodontal diseases
JP2018521701A (en) * 2015-04-27 2018-08-09 ウニベルシダド デ ビーゴUniversidade De Vigo A method for diagnosing the demineralization process of teeth
WO2019106819A1 (en) * 2017-11-30 2019-06-06 株式会社Shinsei Health condition management system, method for controlling health condition management system, and program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7270543B2 (en) 2004-06-29 2007-09-18 Therametric Technologies, Inc. Handpiece for caries detection
US8360771B2 (en) 2006-12-28 2013-01-29 Therametric Technologies, Inc. Handpiece for detection of dental demineralization
RU2526961C1 (en) * 2013-03-06 2014-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новгородский государственный университет имени Ярослава Мудрого" Method of treating patients with dental pulp and periodontal diseases
JP2018521701A (en) * 2015-04-27 2018-08-09 ウニベルシダド デ ビーゴUniversidade De Vigo A method for diagnosing the demineralization process of teeth
WO2019106819A1 (en) * 2017-11-30 2019-06-06 株式会社Shinsei Health condition management system, method for controlling health condition management system, and program
CN111433863A (en) * 2017-11-30 2020-07-17 株式会社新世 Health state management system, method for controlling health state management system, and program
JPWO2019106819A1 (en) * 2017-11-30 2020-11-19 株式会社Shinsei Health condition management system, control method and program of health condition management system
JP7128481B2 (en) 2017-11-30 2022-08-31 株式会社Shinsei HEALTH CONDITION MANAGEMENT SYSTEM, CONTROL METHOD AND PROGRAM OF HEALTH CONDITION MANAGEMENT SYSTEM
CN111433863B (en) * 2017-11-30 2024-03-29 株式会社新世 Health state management system, control method for health state management system, and storage medium

Similar Documents

Publication Publication Date Title
US5306144A (en) Device for detecting dental caries
Mohanraj et al. Diagnostic methods for early detection of dental caries-A review
AU769370B2 (en) Method and apparatus for spectrometric analysis of turbid, pharmaceutical samples
Tabatabaei et al. Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth
NL8004712A (en) METHOD AND APPARATUS FOR EXAMINING THE PRESENCE OF CARIES
WO2007025377A1 (en) Interproximal tooth defects detection
Jeon et al. Detection of interproximal demineralized lesions on human teeth in vitro using frequency-domain infrared photothermal radiometry and modulated luminescence
Karlsson et al. Near-infrared transillumination of teeth: measurement of a system performance
Sasazawa et al. Optical-fiber-based laser-induced breakdown spectroscopy for detection of early caries
JP4868879B2 (en) Cell state detector
Hibst et al. New approach on fluorescence spectroscopy for caries detection
Qin et al. Real-time detection of dental calculus by blue-LED-induced fluorescence spectroscopy
Ribeiro et al. A preliminary investigation of a spectroscopic technique for the diagnosis of natural caries lesions
Zezell et al. Characterization of natural carious lesions by fluorescence spectroscopy at 405-nm excitation<? xpp qa?> wavelength
JP2004163131A (en) Tooth caries detector using laser beam
Tetschke et al. Application of optical and spectroscopic technologies for the characterization of carious lesions in vitro
JP2004163405A (en) Method for measuring capability for diffusing and/or absorbing light of cosmetic
JP2008197080A (en) Tooth decay detection method and device
Abdel Gawad et al. Classification of human teeth caries using custom non-invasive optical imaging system
US11408825B2 (en) Forensic detector and the system thereof
Kishen et al. Fiber optic backscatter spectroscopic sensor to monitor enamel demineralization and remineralization in vitro
Gomes et al. Optical coherence tomography in Dentistry: scientific developments to clinical applications
JP2006527018A (en) Apparatus and method for blood pH identification
KR101790988B1 (en) Label-free Imaging System for Specific Detection of Peripheral Nerve
Liang et al. Multimodal imaging system for dental caries detection