JP2006076835A - Ferroelectric thin film and method of forming the same - Google Patents

Ferroelectric thin film and method of forming the same Download PDF

Info

Publication number
JP2006076835A
JP2006076835A JP2004263236A JP2004263236A JP2006076835A JP 2006076835 A JP2006076835 A JP 2006076835A JP 2004263236 A JP2004263236 A JP 2004263236A JP 2004263236 A JP2004263236 A JP 2004263236A JP 2006076835 A JP2006076835 A JP 2006076835A
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric thin
pzt
ferroelectric
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004263236A
Other languages
Japanese (ja)
Inventor
Ayano Yamada
綾乃 山田
Kenji Shibata
憲治 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004263236A priority Critical patent/JP2006076835A/en
Publication of JP2006076835A publication Critical patent/JP2006076835A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a ferroelectric thin film having an orientation property equal to that of one film-formed by a sputtering method, an MOCVD method or the like, by a coating method such as a spin coating method or an MOD method at a low cost. <P>SOLUTION: In the method of forming the ferroelectric thin film by the coating method including a process in which the ferroelectric thin film obtained by carrying out a step for applying an optional quantity of a raw material solution for the thin film on an electrode 2 on a substrate 1 and drying one or more times is fired to crystallize the thin film at a time, the film thickness of the ferroelectric thin film when crystallized at a time is controlled to ≤15 nm, and the coating and drying step and crystallizing step are repeated until the ferroelectric film having a desired thickness is obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、圧電特性を利用した圧電マイクロアクチュエータや圧電センサ、更に焦電特性を利用した焦電センサ、分極特性を利用した不揮発メモリなどに用いる強誘電体薄膜及びその製造方法に関するものである。   The present invention relates to a piezoelectric microactuator and a piezoelectric sensor using piezoelectric characteristics, a pyroelectric sensor using pyroelectric characteristics, a ferroelectric thin film used for a nonvolatile memory using polarization characteristics, and a manufacturing method thereof.

強誘電体材料は、優れた強誘電特性、焦電特性、圧電特性、電気光学特性、そして高い誘電率を備えており、強誘電体不揮発性メモリ(次世代メモリ)、圧電センサ、圧電アクチュエータ、表面弾性波デバイス、赤外線センサ、DRAMのキャパシタ、光偏光素子など、広い応用範囲を有している。そして、今日の電子デバイスなどの小型化、軽量化、省電力化が進む中、これらの機能をもった強誘電体薄膜材料の開発が活発に行われている。   Ferroelectric materials have excellent ferroelectric properties, pyroelectric properties, piezoelectric properties, electro-optic properties, and high dielectric constants. Ferroelectric nonvolatile memory (next-generation memory), piezoelectric sensors, piezoelectric actuators, It has a wide range of applications such as surface acoustic wave devices, infrared sensors, DRAM capacitors, and optical polarization elements. With the progress of miniaturization, weight reduction, and power saving of today's electronic devices, the development of ferroelectric thin film materials having these functions has been actively conducted.

強誘電体薄膜の成膜方法として、塗布法(スピンコート法、スプレー法)、スパッタリング法、有機金属気相成長法(MOCVD法)、レーザアブレーション法などがある。現在では、塗布法やスパッタリング法で実用化されつつあるが、特に塗布法は安価な膜を成膜する方法として利用されている。例えば、スピンコート法(ゾルゲル法、有機金属分解法(MOD法))を例に挙げると、以下に示すような特徴を持つ。   As a method for forming a ferroelectric thin film, there are a coating method (spin coating method, spray method), a sputtering method, a metal organic chemical vapor deposition method (MOCVD method), a laser ablation method and the like. At present, the coating method and the sputtering method are being put into practical use, but the coating method is particularly used as a method for forming an inexpensive film. For example, taking the spin coating method (sol-gel method, organometallic decomposition method (MOD method)) as an example, it has the following characteristics.

(1)多成分系であっても組成制御が再現性良くできる。
(2)大型の装置を使用しない極めて簡便な方法で、実験室レベルで成膜実験が可能である。
(3)組成検討や複数の金属イオンを検討する新材料の研究に向く。
(4)大面積で均一な膜が低コストで成膜できる。
(1) The composition control can be performed with good reproducibility even in a multi-component system.
(2) A film forming experiment can be performed at a laboratory level by a very simple method without using a large apparatus.
(3) It is suitable for the study of new materials that examine the composition and multiple metal ions.
(4) A large area and uniform film can be formed at low cost.

従来、スピンコート法において、実質的に低温で結晶化が促進されることを目的として、強誘電体結晶の超微粉末を絶縁体用液体原料に混合し、これを基板上にスピンコート(500rpmで10秒+2000rpmで20秒)で塗布し、450℃で仮焼きし、500℃〜700℃で本焼きし、基板上に強誘電体薄膜を成膜することが知られている(例えば、特許文献1参照)。
特開2001−53071号公報(段落番号0016〜0017、0019)
Conventionally, in a spin coating method, for the purpose of promoting crystallization at a substantially low temperature, an ultrafine powder of a ferroelectric crystal is mixed with a liquid material for an insulator, and this is spin-coated (500 rpm) on a substrate. For 10 seconds + 2000 rpm for 20 seconds), calcined at 450 ° C., and baked at 500 ° C. to 700 ° C. to form a ferroelectric thin film on the substrate (for example, patent) Reference 1).
JP 2001-53071 A (paragraph numbers 0016 to 0017, 0019)

しかしながら、より高配向な強誘電体薄膜を安価に得ることが望まれている。   However, it is desired to obtain a highly oriented ferroelectric thin film at low cost.

高配向な強誘電体薄膜は、圧電特性、焦電特性などに優れていると言われている。高配向な強誘電体薄膜を成膜するには、下地(具体的には下部電極)の配向を引き継がせることが必要である。   A highly oriented ferroelectric thin film is said to be excellent in piezoelectric characteristics, pyroelectric characteristics and the like. In order to form a highly oriented ferroelectric thin film, it is necessary to inherit the orientation of the base (specifically, the lower electrode).

スパッタリング法、MOCVD法、レーザアブレーション法では、下地の配向をほぼ引き継いだエピタキシャルに近い高配向な薄膜を成膜することができる。しかし、成膜装置が非常に高価であるため、薄膜自体も高価になってしまうという問題がある。   In the sputtering method, the MOCVD method, and the laser ablation method, it is possible to form a highly oriented thin film that is close to the epitaxial layer that substantially inherits the orientation of the base. However, since the film forming apparatus is very expensive, there is a problem that the thin film itself is also expensive.

一方、塗布法は簡便で安価な装置を用いて、ある程度高配向な薄膜の成膜は行うことができる。しかし、前記のような高配向な薄膜を得ることは難しい。例えば特許文献1の方法では、スピンコート(500rpmで10秒+2000rpmで20秒)で塗布するため、塗布する膜厚が厚く、下地の配向を引き継がせることができない。   On the other hand, the coating method can form a thin film with high degree of orientation using a simple and inexpensive apparatus. However, it is difficult to obtain a highly oriented thin film as described above. For example, in the method of Patent Document 1, since coating is performed by spin coating (10 seconds at 500 rpm + 20 seconds at 2000 rpm), the applied film thickness is large and the orientation of the base cannot be inherited.

そこで、本発明の目的は、上記課題を解決し、スパッタリング法やMOCVD法などで成膜したPZT、PLZT、SBT、BIT、BST、LiNbO3、SrBi2Nb29などの強誘電体薄膜と同等の配向性を有した強誘電体薄膜を、スピンコート法、MOD法などの塗布法で安価に成膜する方法を提供することにある。 Accordingly, an object of the present invention is to solve the above-mentioned problems and to form a ferroelectric thin film such as PZT, PLZT, SBT, BIT, BST, LiNbO 3 , SrBi 2 Nb 2 O 9 formed by sputtering or MOCVD. An object of the present invention is to provide a method for forming a ferroelectric thin film having the same orientation at a low cost by a coating method such as a spin coating method or a MOD method.

上記目的を達成するため、本発明は、次のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

請求項1の発明に係る強誘電体薄膜の製造方法は、基板上の電極上に任意量の強誘電体薄膜の原料溶液を塗布し乾燥する工程を1回又は複数回行い、得られた薄膜を焼成して薄膜を一度に結晶化する工程を含む塗布法による強誘電体薄膜の製造方法において、上記一度に結晶化したときの強誘電体薄膜の膜厚を15nm以下とすることを特徴とする。   The manufacturing method of a ferroelectric thin film according to the invention of claim 1 is a thin film obtained by performing a process of applying an arbitrary amount of a raw material solution of a ferroelectric thin film on an electrode on a substrate and drying it once or a plurality of times. In the method of manufacturing a ferroelectric thin film by a coating method including the step of crystallizing the thin film at once by baking the film, the thickness of the ferroelectric thin film when crystallized at one time is 15 nm or less. To do.

本発明では、一度に結晶化する薄膜を15nm以下と薄くしているので、これによって下地(具体的には下部電極)の配向を引き継がせることができ、高配向な強誘電体薄膜を成膜することができる。   In the present invention, the thin film to be crystallized at a time is made as thin as 15 nm or less, so that the orientation of the base (specifically, the lower electrode) can be taken over, and a highly oriented ferroelectric thin film is formed. can do.

請求項2の発明に係る強誘電体薄膜の製造方法は、基板上の電極上に任意量の強誘電体薄膜の原料溶液を塗布し乾燥する工程を1回又は複数回行い、得られた薄膜を焼成して薄膜を一度に結晶化する工程を含む塗布法による強誘電体薄膜の製造方法において、上記一度に結晶化したときの強誘電体薄膜の膜厚を15nm以下として、所望の厚さの強誘電体薄膜が得られるまで、上記塗布・乾燥工程と結晶化工程を繰り返すことを特徴とする。   According to a second aspect of the present invention, there is provided a method for producing a ferroelectric thin film, wherein the step of applying an arbitrary amount of a raw material solution of a ferroelectric thin film on an electrode on a substrate and drying is performed once or a plurality of times. In the method of manufacturing a ferroelectric thin film by a coating method including a step of crystallizing the thin film at once by baking, the film thickness of the ferroelectric thin film when crystallized at one time is set to 15 nm or less, and a desired thickness is obtained. The coating / drying step and the crystallization step are repeated until a ferroelectric thin film is obtained.

請求項3の発明は、請求項1又は2記載の強誘電体薄膜の製造方法において、上記乾燥工程を500℃未満の熱処理により行い、上記薄膜を一度に結晶化する焼成工程を600℃以上、700℃以下の加熱処理により行うことを特徴とする。   The invention of claim 3 is the method of manufacturing a ferroelectric thin film according to claim 1 or 2, wherein the drying step is performed by a heat treatment of less than 500 ° C., and the baking step of crystallizing the thin film at a time is 600 ° C. or more. The heat treatment is performed at 700 ° C. or lower.

この請求項3によれば、500℃未満の熱処理温度で乾燥するため、結晶化を生じさせずに短時間で乾燥することができる。すなわち、乾燥時間の短縮ができる。また焼成の温度としては、600℃以上であれば結晶化が可能であり、また700℃より高くなると、膜が荒れたり、基板上の電極が痛んだりするため、700℃以下とすることが好ましい。よって本発明の請求項3の特徴に従い、600℃以上、700℃以下の温度で加熱処理して焼成することにより、薄膜を一度に結晶化することができる。本発明の典型例は、強誘電体薄膜の原料溶液の塗布と500℃未満の熱処理を交互に1回、または複数回行ったときに成膜される薄膜を、600℃以上で熱処理して結晶化したときの強誘電体薄膜の膜厚が15nm以下となるようにするものである。   According to the third aspect, since the drying is performed at a heat treatment temperature of less than 500 ° C., the drying can be performed in a short time without causing crystallization. That is, the drying time can be shortened. In addition, the calcination temperature is preferably 600 ° C. or higher, and crystallization is possible. If the temperature is higher than 700 ° C., the film is roughened or the electrodes on the substrate are damaged. . Therefore, according to the third aspect of the present invention, the thin film can be crystallized at a time by performing heat treatment at a temperature of 600 ° C. or higher and 700 ° C. or lower and baking. In a typical example of the present invention, a thin film formed when a raw material solution of a ferroelectric thin film and a heat treatment of less than 500 ° C. are alternately performed once or a plurality of times is heat-treated at 600 ° C. or more to form a crystal. In this case, the thickness of the ferroelectric thin film becomes 15 nm or less.

請求項4の発明は、請求項1〜3のいずれかに記載の強誘電体薄膜の製造方法において、上記結晶化したときの強誘電体薄膜の膜厚を15nm以下にするため、原料溶液を塗布する際のスピンコータの回転数を上げて塗布するか、又は原料溶液の濃度を薄くして塗布することを特徴とする。   According to a fourth aspect of the present invention, in the method for manufacturing a ferroelectric thin film according to any one of the first to third aspects, a raw material solution is used to reduce the film thickness of the ferroelectric thin film when crystallized to 15 nm or less. It is characterized in that the coating is performed by increasing the rotation speed of the spin coater during coating, or by reducing the concentration of the raw material solution.

請求項5の発明は、請求項1〜4のいずれかに記載の強誘電体薄膜の製造方法において、PZT、PLZT、SBT、BIT、BST、LiNbO3、SrBi2Nb29のいずれかの原料溶液を用いることを特徴とする。 The invention of claim 5 is the method for producing a ferroelectric thin film according to any one of claims 1 to 4, wherein any one of PZT, PLZT, SBT, BIT, BST, LiNbO 3 , SrBi 2 Nb 2 O 9 is used. A raw material solution is used.

請求項6の発明に係る強誘電体薄膜は、1層以上の結晶膜の積層体からなり各層の膜厚が15nm以下であることを特徴とする。   The ferroelectric thin film according to the invention of claim 6 is formed of a laminate of one or more crystal films, and the thickness of each layer is 15 nm or less.

<発明の要点>
既に述べたように、高配向な強誘電体薄膜を成膜するには、下地(具体的には下部電極)の配向を引き継がせることが必要である。スパッタリング法、MOCVD法、レーザアブレーション法では、連続的に強誘電体薄膜を成膜していくため、エピタキシャル成膜のように下地の配向を引き継いだ高配向な薄膜を成膜することができる。
<Key points of the invention>
As described above, in order to form a highly oriented ferroelectric thin film, it is necessary to inherit the orientation of the base (specifically, the lower electrode). In the sputtering method, the MOCVD method, and the laser ablation method, since the ferroelectric thin film is continuously formed, it is possible to form a highly oriented thin film that inherits the orientation of the base as in the case of epitaxial film formation.

これに対し、塗布法では、一般に任意量の原料溶液を塗布して乾燥する工程を繰り返し行い、その後に膜厚160〜600nmの薄膜を一気に結晶化するので薄膜の上層部まで下地の配向を引き継がせることが難しい。そのため、スパッタリング法などで成膜したような高配向な薄膜を得ることができない。   In contrast, in the coating method, generally, a process of coating and drying an arbitrary amount of a raw material solution is repeatedly performed, and then a thin film having a film thickness of 160 to 600 nm is crystallized at once, so that the orientation of the base is inherited to the upper layer part of the thin film. It is difficult to let Therefore, a highly oriented thin film formed by sputtering or the like cannot be obtained.

そこで本発明では、一度に結晶化する薄膜を15nm以下に薄くすることによって、下地の配向を引き継ぎやすくして高配向な薄膜を実現した。具体的には、塗布と乾燥を1回、または複数回行って得られる薄膜を600℃以上で結晶化したときの強誘電体薄膜の膜厚を15nm以下にした。   Therefore, in the present invention, a thin film that is crystallized at a time is thinned to 15 nm or less, thereby making it easy to take over the orientation of the base and realizing a highly oriented thin film. Specifically, the thickness of the ferroelectric thin film when the thin film obtained by applying and drying once or a plurality of times was crystallized at 600 ° C. or more was set to 15 nm or less.

上記のように一度に結晶化する薄膜を15nm以下に薄くすることを実現する手段としては、原料溶液を塗布する際のスピンコータの回転数を上げて塗布する方法、原料溶液の濃度を薄くして塗布する方法がある。   As means for realizing thinning of a thin film that is crystallized at a time to 15 nm or less as described above, the method of applying the spin coater at the time of applying the raw material solution is increased, the concentration of the raw material solution is reduced. There is a method of applying.

本発明によれば、スピンコート法、MOD法、スプレー法などの塗布法において、塗布及び乾燥を繰り返した後の薄膜を焼結する際、その一度に結晶化する薄膜を15nm以下と薄くしているので、これによって下地である下部電極の配向を引き継がせることができ、高配向な強誘電体薄膜を成膜することができる。すなわち、本発明によれば、スパッタリング法やMOCVD法などと同等の高配向な強誘電体薄膜を、スピンコート法、MOD法などの塗布法により成膜することができる。従って、この強誘電体薄膜からデバイスを作製すると、塗布法を用いる為に大面積で均一な膜が安価に製造することができる。   According to the present invention, when a thin film after repeated coating and drying is sintered in a coating method such as a spin coating method, a MOD method, or a spray method, the thin film that is crystallized at a time is thinned to 15 nm or less. As a result, the orientation of the lower electrode, which is the base, can be inherited, and a highly oriented ferroelectric thin film can be formed. That is, according to the present invention, a highly oriented ferroelectric thin film equivalent to a sputtering method, an MOCVD method, or the like can be formed by a coating method such as a spin coating method or an MOD method. Therefore, when a device is manufactured from this ferroelectric thin film, a uniform film having a large area can be manufactured at low cost because the coating method is used.

以下、本発明の実施の形態を実施例に基づいて説明する。   Hereinafter, embodiments of the present invention will be described based on examples.

ここではチタン酸ジルコン酸鉛Pb(Zr、Ti)O3(通常、PZTといわれている)の製造例について説明する。 Here, a production example of lead zirconate titanate Pb (Zr, Ti) O 3 (usually referred to as PZT) will be described.

この実施例のPb(Zr、Ti)O3の製造に際しては、強誘電体薄膜材料液として以下に示す成分及び含有量のものを用いた。 In the production of Pb (Zr, Ti) O 3 of this example, the following components and contents were used as the ferroelectric thin film material solution.

・PbOが11.5wt%
・ZrO2が5.2wt%
・TiO2が4.8wt%
・1−プロパノールが34.5wt%
・プロピレングリコールが44.0wt%
・ PbO is 11.5wt%
· ZrO 2 is 5.2wt%
・ TiO 2 is 4.8wt%
・ 1-4.5% by weight of 1-propanol
・ Propylene glycol is 44.0 wt%

PZTからなる強誘電体薄膜の原料溶液を用いたスピンコート法によって、図1に示すように、下部電極2が形成されたMgOからなる基板1上に、PZTからなる強誘電体薄膜3を成膜した。以下に実験の詳細を示す。   As shown in FIG. 1, a ferroelectric thin film 3 made of PZT is formed on a substrate 1 made of MgO on which a lower electrode 2 is formed by spin coating using a raw material solution of a ferroelectric thin film made of PZT. Filmed. Details of the experiment are shown below.

スパッタリング法によって下部電極(材料:白金、厚さ:200nm)2を成膜した基板1上に、原料溶液を0.1ml滴下し、スピンコータ(500rpm×3秒、9000rpm×15秒)で均一に塗布した後、乾燥のために空気中で400℃、5分間加熱した。この塗布と乾燥を交互に2回ずつ繰り返して得た薄膜を、結晶化のために空気中で700℃、1分間焼成して、膜厚15nmのPZTからなる強誘電体薄膜を得た。   0.1 ml of a raw material solution is dropped on a substrate 1 on which a lower electrode (material: platinum, thickness: 200 nm) 2 is formed by sputtering, and uniformly applied by a spin coater (500 rpm × 3 seconds, 9000 rpm × 15 seconds). And then heated in air at 400 ° C. for 5 minutes for drying. A thin film obtained by alternately repeating this coating and drying twice was fired in air at 700 ° C. for 1 minute for crystallization to obtain a ferroelectric thin film made of PZT having a thickness of 15 nm.

この塗布と乾燥を交互に2回ずつ繰り返して得た薄膜を結晶化するという工程を6回繰り返し、膜厚300nmのPZTからなる強誘電体薄膜を得た。   The process of crystallizing the thin film obtained by alternately repeating this coating and drying twice was repeated six times to obtain a ferroelectric thin film made of PZT having a thickness of 300 nm.

膜特性評価のため、PZTからなる強誘電体薄膜の上にスパッタリング法によって上部電極(材料:白金、厚さ:200nm)4を成膜した。   For film property evaluation, an upper electrode (material: platinum, thickness: 200 nm) 4 was formed on a ferroelectric thin film made of PZT by sputtering.

また、比較例として、従来技術を用いてPZTからなる強誘電体薄膜を成膜した。原料溶液を0.1ml滴下し、スピンコータ(500rpm×3秒、3000rpm×15秒)で均一に塗布した後、乾燥のために空気中で400b、5分間加熱した。この塗布と乾燥を交互に4回ずつ繰り返して得た薄膜を、結晶化のために空気中で700℃、1分間焼成して、膜厚160mのPZTからなる強誘電体薄膜を得た。   As a comparative example, a ferroelectric thin film made of PZT was formed using a conventional technique. 0.1 ml of the raw material solution was dropped and applied uniformly with a spin coater (500 rpm × 3 seconds, 3000 rpm × 15 seconds), and then heated in air for 400 b for 5 minutes for drying. A thin film obtained by alternately repeating this coating and drying four times was fired in air at 700 ° C. for 1 minute for crystallization to obtain a ferroelectric thin film made of PZT having a thickness of 160 m.

この塗布と乾燥を交互に4回ずつ繰り返して得た薄膜を結晶化するという工程を2回繰り返し、薄膜300nmのPZTからなる強誘電体薄膜を得た。   The process of crystallizing the thin film obtained by alternately repeating the coating and drying four times was repeated twice to obtain a ferroelectric thin film made of PZT having a thin film thickness of 300 nm.

膜特性評価のため、PZTからなる強誘電体薄膜の上にスパッタリング法によって上部電極(材料:白金、厚さ:200nm)を成膜した。   For film property evaluation, an upper electrode (material: platinum, thickness: 200 nm) was formed on a ferroelectric thin film made of PZT by sputtering.

前記の従来技術を用いて成膜したPZTからなる強誘電体薄膜(以下、比較例PZT−1とする)と、前記の実施例1における本発明の成膜方法で成膜したPZTからなる強誘電体薄膜(以下、実施例PZT−2とする)のX線回折測定と分膜特性測定を行った。X線回折測定結果は、比較例PZT−1がPZT(001)面、(002)面の他にPZT(110)面やPZT(111)面などの回折ピークが存在したのに対し、実施例PZT−2はPZT(001)面、(002)面の回折ピークのみであった。また、分極特性測定結果は、比較例PZT−1の分極値(2Pr)が75[μC/cm2]であったのに対し、実施例PZT−2は110[μ/cm2]であった。 A ferroelectric thin film made of PZT (hereinafter referred to as Comparative Example PZT-1) formed using the above-described conventional technique and a strong film made of PZT formed by the film forming method of the present invention in Example 1 described above. X-ray diffraction measurement and film separation characteristic measurement of a dielectric thin film (hereinafter referred to as Example PZT-2) were performed. The X-ray diffraction measurement result shows that Comparative Example PZT-1 had diffraction peaks such as PZT (110) plane and PZT (111) plane in addition to PZT (001) plane and (002) plane. PZT-2 had only diffraction peaks on the PZT (001) plane and the (002) plane. In addition, as a result of measuring the polarization characteristics, the polarization value (2Pr) of Comparative Example PZT-1 was 75 [μC / cm 2 ], whereas Example PZT-2 was 110 [μ / cm 2 ]. .

強誘電体薄膜の原料溶液として、PZTからなる強誘電体薄膜の原料溶液は以下に示す成分及び含有量のものを用いた。   As the raw material solution for the ferroelectric thin film, the raw material solution for the ferroelectric thin film made of PZT was used with the following components and contents.

・PbOが3.2wt%
・ZrO2が1.5wt%
・TiO2が1.1wt%
・1−プロパノールが41.4wt%
・プロピレングリコールが52.8wt%
・ PbO is 3.2wt%
・ ZrO 2 is 1.5wt%
· TiO 2 is 1.1wt%
1-propanol is 41.4 wt%
・ Propylene glycol 52.8wt%

PZTからなる強誘電体薄膜の原料溶液を用いてスピンコート法によって下部電極2付MgO基板1上にPZTからなる強誘電体薄膜3を成膜した。以下に実験の詳細を示す。   A ferroelectric thin film 3 made of PZT was formed on the MgO substrate 1 with the lower electrode 2 by spin coating using a raw material solution of the ferroelectric thin film made of PZT. Details of the experiment are shown below.

スパッタリング法によって下部電極(材料:白金、厚さ:200nm)2を成膜した基板(材料:MgO)1上に、原料溶液を0.1ml滴下し、スピンコータ(500rpm×3秒、3000rpm×15秒)で均一に塗布した後、乾燥のために空気中で400℃、5分間加熱した。この塗布と乾燥を交互に2回ずつ繰り返して得られた薄膜を、結晶化のために空気中で700℃、1分間焼成して、膜厚が15nmのPZTからなる強誘電体薄膜を得た。この塗布と乾燥を交互に4回ずつ繰り返して得られた薄膜を結晶化するという工程を4回繰り返し、膜厚300nmのPZTからなる強誘電体薄膜3を得た。その上に、スパッタリング法によって上部電極(材料:白金、厚さ:200nm)4を成膜した。   0.1 ml of a raw material solution is dropped on a substrate (material: MgO) 1 on which a lower electrode (material: platinum, thickness: 200 nm) 2 is formed by sputtering, and a spin coater (500 rpm × 3 seconds, 3000 rpm × 15 seconds). ) And then heated in air at 400 ° C. for 5 minutes for drying. A thin film obtained by alternately repeating this coating and drying twice was baked in air at 700 ° C. for 1 minute for crystallization to obtain a ferroelectric thin film made of PZT having a thickness of 15 nm. . The process of crystallizing the thin film obtained by alternately repeating this coating and drying four times was repeated four times to obtain a ferroelectric thin film 3 made of PZT having a thickness of 300 nm. An upper electrode (material: platinum, thickness: 200 nm) 4 was formed thereon by sputtering.

従来例PZT−1と上記の本発明における成膜方法で成膜したPZTからなる強誘電体薄膜(以下、実施例PZT−3とする)のX線回折測定と分極特性測定を行った。X線回折測定結果は、実施例PZT−3はPZT(001)面、(002)面にのみの回折ピークのみであった。また、分極特性測定結果は、実施例PZT−3の分極値(2Pr)は110[μC/cm2]であった。 X-ray diffraction measurement and polarization characteristic measurement were performed on a ferroelectric thin film (hereinafter referred to as Example PZT-3) made of the conventional example PZT-1 and PZT formed by the film forming method of the present invention. As a result of X-ray diffraction measurement, Example PZT-3 had only diffraction peaks only on the PZT (001) plane and the (002) plane. As a result of measuring the polarization characteristics, the polarization value (2Pr) of Example PZT-3 was 110 [μC / cm 2 ].

次に最適条件について吟味した。   Next, the optimum conditions were examined.

図2に、塗布と乾燥を交互に1回ずつ行って行られた薄膜を結晶化して得られたPZTからなる強誘電体薄膜の膜厚と、そのPZTからなる強誘電体薄膜のPZT(001)面の配向率の関係を示す。図2より、塗布と乾燥を交互に1回ずつ行って得られた薄膜についても、これを結晶化して得られたPZTからなる強誘電体薄膜の膜厚を15nm以下にしたときには、PZT(001)面の配向率が顕著に向上することが分かる。また本発明の顕著な効果として、塗布と乾燥を交互に1回ずつ行って得られた薄膜について、これを結晶化して得られたPZTからなる強誘電体薄膜の膜厚を特に15nmにしたときには、PZT(001)面の配向率が100%近くに達する、ということが分かる。   FIG. 2 shows the film thickness of a ferroelectric thin film made of PZT obtained by crystallizing a thin film formed by alternately applying and drying once, and PZT (001 of the ferroelectric thin film made of PZT. ) Shows the relationship of the orientation ratio of the plane. As shown in FIG. 2, when the film thickness of the ferroelectric thin film made of PZT obtained by crystallization of the thin film obtained by alternately applying and drying once is changed to 15 nm or less, PZT (001 It can be seen that the orientation ratio of the surface is significantly improved. In addition, as a remarkable effect of the present invention, when the film thickness of the ferroelectric thin film made of PZT obtained by crystallizing the thin film obtained by alternately applying and drying the coating once is particularly set to 15 nm. It can be seen that the orientation ratio of the PZT (001) plane reaches nearly 100%.

なお、ここで示した配向率はIPZT(001)/ΣIPZT(hkl)から算出した。ΣIPZT(hkl)はX線回折法の高角反射法で波長にCuKα線を用いたときの2θが20度〜80度のPZTからなる強誘電体薄膜の全回折強度の総和である。具体的には、(001)、(110)、(111)、(002)、(210)、(211)、(221)、(310)の結晶面反射強度の総和である。IPZT(001)は同じPZTからなる強誘電体薄膜の(001)結晶面反射強度を表す。 The orientation ratio shown here was calculated from I PZT (001) / ΣI PZT (hkl) . ΣI PZT (hkl) is the sum of all diffraction intensities of a ferroelectric thin film made of PZT having 2θ of 20 degrees to 80 degrees when CuKα rays are used for the wavelength in the high angle reflection method of the X-ray diffraction method. Specifically, it is the total sum of crystal plane reflection intensities of (001), (110), (111), (002), (210), (211), (221), and (310). I PZT (001) represents the (001) crystal plane reflection intensity of a ferroelectric thin film made of the same PZT.

<他の実施例、変形例>
上記実施例1、2においては、そのPZTからなる強誘電体薄膜の成膜方法において基板としてMgOからなる基板を使用したが、本発明はそれに限定されるものではなく、ガラスからなる基板、SiO2/Siからなる基板などでも応用できるものである。
<Other embodiments and modifications>
In the first and second embodiments, the substrate made of MgO was used as the substrate in the method of forming the ferroelectric thin film made of PZT. However, the present invention is not limited to this, and the substrate made of glass, SiO 2 It can also be applied to substrates made of 2 / Si.

また、下部・上部両電極においても、その成膜方法はスパッタリング法に限定されるものではなく、EB蒸着法などでも応用できるものである。また、電極に使用した材料は白金(Pt)であったが、本発明はそれに限定されるものではなく、イリジウム(Ir)、ルテニウム(Ru)、タンタル(Ta)、チタン(Ti)、アルミニウム(Al)、ニッケル(Ni)、金(Au)などの金属及び金属酸化物などでも応用できるものである。   Further, the film formation method for both the lower and upper electrodes is not limited to the sputtering method, but can also be applied by the EB vapor deposition method or the like. Moreover, although the material used for the electrode was platinum (Pt), the present invention is not limited thereto, and iridium (Ir), ruthenium (Ru), tantalum (Ta), titanium (Ti), aluminum ( The present invention can also be applied to metals such as Al), nickel (Ni), gold (Au), and metal oxides.

なお、本発明は強誘電体薄膜に限定されるものではなく、超伝導薄膜、磁性体薄膜、その他金属酸化物薄膜、等にも応用できるものである。   The present invention is not limited to a ferroelectric thin film, but can be applied to a superconducting thin film, a magnetic thin film, and other metal oxide thin films.

本発明の実施形態に係る強誘電体薄膜素子の断面図である。1 is a cross-sectional view of a ferroelectric thin film element according to an embodiment of the present invention. 本発明における、塗布と乾燥を交互に複数回行って得られた薄膜を結晶化して得られたPZTからなる強誘電体薄膜の膜厚とPZT(001)面の配向率の関係示した図である。The figure which showed the relationship between the film thickness of the ferroelectric thin film which consists of PZT obtained by crystallizing the thin film obtained by performing application | coating and drying several times alternately in this invention, and the orientation rate of a PZT (001) plane. is there.

符号の説明Explanation of symbols

1 基板
2 下部電極
3 強誘電体薄膜
4 上部電極
1 Substrate 2 Lower electrode 3 Ferroelectric thin film 4 Upper electrode

Claims (6)

基板上の電極上に任意量の強誘電体薄膜の原料溶液を塗布し乾燥する工程を1回又は複数回行い、得られた薄膜を焼成して薄膜を一度に結晶化する工程を含む塗布法による強誘電体薄膜の製造方法において、
上記一度に結晶化したときの強誘電体薄膜の膜厚を15nm以下とすることを特徴とする強誘電体薄膜の製造方法。
A coating method comprising a step of applying an arbitrary amount of a ferroelectric thin film raw material solution on an electrode on a substrate and drying it one or more times, firing the obtained thin film, and crystallizing the thin film at a time In the method of manufacturing a ferroelectric thin film by
A method for producing a ferroelectric thin film, characterized in that the thickness of the ferroelectric thin film when crystallized at one time is 15 nm or less.
基板上の電極上に任意量の強誘電体薄膜の原料溶液を塗布し乾燥する工程を1回又は複数回行い、得られた薄膜を焼成して薄膜を一度に結晶化する工程を含む塗布法による強誘電体薄膜の製造方法において、
上記一度に結晶化したときの強誘電体薄膜の膜厚を15nm以下として、所望の厚さの強誘電体薄膜が得られるまで、上記塗布・乾燥工程と結晶化工程を繰り返すことを特徴とする強誘電体薄膜の製造方法。
A coating method comprising a step of applying an arbitrary amount of a ferroelectric thin film raw material solution on an electrode on a substrate and drying it one or more times, firing the obtained thin film, and crystallizing the thin film at a time In the method of manufacturing a ferroelectric thin film by
The thickness of the ferroelectric thin film when crystallized at a time is set to 15 nm or less, and the coating / drying step and the crystallization step are repeated until a ferroelectric thin film having a desired thickness is obtained. A method of manufacturing a ferroelectric thin film.
請求項1又は2記載の強誘電体薄膜の製造方法において、
上記乾燥工程を500℃未満の熱処理により行い、上記薄膜を一度に結晶化する焼成工程を600℃以上、700℃以下の加熱処理により行うことを特徴とする強誘電体薄膜の製造方法。
In the manufacturing method of the ferroelectric thin film of Claim 1 or 2,
A method for producing a ferroelectric thin film, wherein the drying step is performed by a heat treatment at less than 500 ° C., and the firing step for crystallizing the thin film at a time is performed by a heat treatment at 600 ° C. or more and 700 ° C. or less.
請求項1〜3のいずれかに記載の強誘電体薄膜の製造方法において、
上記結晶化したときの強誘電体薄膜の膜厚を15nm以下にするため、原料溶液を塗布する際のスピンコータの回転数を上げて塗布するか、又は原料溶液の濃度を薄くして塗布することを特徴とする強誘電体薄膜の製造方法。
In the manufacturing method of the ferroelectric thin film in any one of Claims 1-3,
In order to reduce the film thickness of the ferroelectric thin film when crystallized to 15 nm or less, the spin coater is applied at a higher rotational speed when applying the raw material solution, or the raw material solution is applied at a reduced concentration. A method of manufacturing a ferroelectric thin film characterized by the following.
請求項1〜4のいずれかに記載の強誘電体薄膜の製造方法において、
PZT、PLZT、SBT、BIT、BST、LiNbO3、SrBi2Nb29のいずれかの原料溶液を用いることを特徴とする強誘電体薄膜の製造方法。
In the manufacturing method of the ferroelectric thin film in any one of Claims 1-4,
A method for producing a ferroelectric thin film, comprising using a raw material solution of any of PZT, PLZT, SBT, BIT, BST, LiNbO 3 , and SrBi 2 Nb 2 O 9 .
1層以上の結晶膜の積層体からなり各層の膜厚が15nm以下であることを特徴とする強誘電体薄膜。   A ferroelectric thin film comprising a laminate of one or more crystal films, wherein each layer has a thickness of 15 nm or less.
JP2004263236A 2004-09-10 2004-09-10 Ferroelectric thin film and method of forming the same Pending JP2006076835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004263236A JP2006076835A (en) 2004-09-10 2004-09-10 Ferroelectric thin film and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004263236A JP2006076835A (en) 2004-09-10 2004-09-10 Ferroelectric thin film and method of forming the same

Publications (1)

Publication Number Publication Date
JP2006076835A true JP2006076835A (en) 2006-03-23

Family

ID=36156606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004263236A Pending JP2006076835A (en) 2004-09-10 2004-09-10 Ferroelectric thin film and method of forming the same

Country Status (1)

Country Link
JP (1) JP2006076835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335437A (en) * 2006-06-12 2007-12-27 Seiko Epson Corp Method of manufacturing dielectric film
JP2007335438A (en) * 2006-06-12 2007-12-27 Seiko Epson Corp Method of manufacturing dielectric film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335437A (en) * 2006-06-12 2007-12-27 Seiko Epson Corp Method of manufacturing dielectric film
JP2007335438A (en) * 2006-06-12 2007-12-27 Seiko Epson Corp Method of manufacturing dielectric film

Similar Documents

Publication Publication Date Title
JP3188179B2 (en) Method of manufacturing ferroelectric thin film element and method of manufacturing ferroelectric memory element
JP3929513B2 (en) Dielectric capacitor and manufacturing method thereof
JP3341357B2 (en) Piezoelectric thin film element
JP3476932B2 (en) Ferroelectric thin film, substrate coated with ferroelectric thin film, and method of manufacturing ferroelectric thin film
JP2007287745A (en) Piezoelectric material and piezoelectric element
JPH0369512A (en) Improved thin membrane of perovskite
JP2010239132A (en) Piezoelectric material, piezoelectric device, and method of producing the piezoelectric device
JP2008042069A (en) Piezoelectric element, and its manufacturing method
JP6967008B2 (en) Piezoelectric thin film element
JP3891603B2 (en) Ferroelectric thin film coated substrate, capacitor structure element, and method for manufacturing ferroelectric thin film coated substrate
JP3182909B2 (en) Method of manufacturing ferroelectric capacitor and method of manufacturing ferroelectric memory device
JP2000169297A (en) Production of thin ferroelectric oxide film, thin ferroelectric oxide film and thin ferroelectric oxide film element
JP3944917B2 (en) Method for forming oxide ceramic thin film
JP4122430B2 (en) Ferroelectric film
JP2006228447A (en) Manufacturing method for ferroelectric thin film
JP2006076835A (en) Ferroelectric thin film and method of forming the same
JP3363091B2 (en) Manufacturing method of dielectric memory
JPH0969614A (en) Manufacturing method for ferroelectric thin film, dielectric thin film and integrated circuit containing ferroelectric thin film
JP3294214B2 (en) Thin film capacitors
JP4528950B2 (en) Method for manufacturing ferroelectric film structure
JPH08340084A (en) Manufacture of dielectric thin film and dielectric thin film manufactured by it
JPH088403A (en) Substrate covered with ferroelectric crystal thin film ferroelectric thin film element including the same, and method of manufacturing the ferroelectric thin film element
JP3267278B2 (en) Method for manufacturing semiconductor device
JP2000164818A (en) Oxide ferroelectric thin film coating substrate and manufacture therefor
JPH10223847A (en) Manufacture of ferroelectric thin film element, ferroelectric thin film element and ferroelectric memory device