JP2006228447A - Manufacturing method for ferroelectric thin film - Google Patents

Manufacturing method for ferroelectric thin film Download PDF

Info

Publication number
JP2006228447A
JP2006228447A JP2005037357A JP2005037357A JP2006228447A JP 2006228447 A JP2006228447 A JP 2006228447A JP 2005037357 A JP2005037357 A JP 2005037357A JP 2005037357 A JP2005037357 A JP 2005037357A JP 2006228447 A JP2006228447 A JP 2006228447A
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric
ferroelectric thin
drying
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005037357A
Other languages
Japanese (ja)
Inventor
Ayano Yamada
綾乃 山田
Kenji Shibata
憲治 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005037357A priority Critical patent/JP2006228447A/en
Publication of JP2006228447A publication Critical patent/JP2006228447A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a ferroelectric thin film with film thickness of 1 μm or more without generating a crack by optimizing a temperature rising rate in a baking process in an application method such as the spin coat method or the MOD method. <P>SOLUTION: In a manufacturing method for the ferroelectric thin film by the application method baking the thin film obtained by performing one or more times of a process applying an arbitrary quantity of a ferroelectric raw material solution a substrate 1 and drying it by heat-treatment at 600°C or more to crystallize the thin film at once, the average temperature rising rate from heating start to reach 600°C in baking by heat-treatment at 600°C or more is set 2.0°C/min or lower, and the applying/drying process and the baking process for crystallization are repeated until the ferroelectric thin film 3 of desired thickness is obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、圧電特性を利用した圧電マイクロアクチュエータや圧電センサ、更に、焦電特性を利用した焦電センサ、分極特性を利用した不揮発メモリなどに用いる強誘電体薄膜の製造方法に関するものである。   The present invention relates to a method of manufacturing a ferroelectric thin film used for a piezoelectric microactuator or a piezoelectric sensor using piezoelectric characteristics, a pyroelectric sensor using pyroelectric characteristics, a nonvolatile memory using polarization characteristics, or the like.

強誘電体材料は、優れた強誘電特性、焦電特性、圧電特性、電気光学特性、そして高い誘電率を備えており、強誘電体不揮発性メモリ(次世代メモリ)、圧電センサ、圧電アクチュエータ、表面弾性波デバイス、赤外線センサ、DRAMのキャパシタ、光偏光素子、など広い応用範囲を有している。そして、今日の電子デバイスなどの小型化、軽量化、省電力化が進む中、これらの機能をもった強誘電体薄膜材料の開発が活発に行われている。   Ferroelectric materials have excellent ferroelectric properties, pyroelectric properties, piezoelectric properties, electro-optic properties, and high dielectric constants. Ferroelectric nonvolatile memory (next-generation memory), piezoelectric sensors, piezoelectric actuators, It has a wide range of applications such as surface acoustic wave devices, infrared sensors, DRAM capacitors, and optical polarization elements. With the progress of miniaturization, weight reduction, and power saving of today's electronic devices, the development of ferroelectric thin film materials having these functions has been actively conducted.

強誘電体薄膜の成膜方法として、塗布法(スピンコート法、スプレー法)、スパッタリング法、有機金属化学気相堆積法(MOCVD法;Metal Organic Chemical Vapor Depositionmethod)、レーザーアブレーション法などがある。現在では、塗布法やスパッタリング法で実用化されつつあるが、特に塗布法は安価な膜を成膜する方法として利用されている。例えば、スピンコート法(ゾルゲル法、MOD法(Metal−Organic Depositionmethod;有機金属分解法))を例に挙げると、以下に示すような特徴を持つ。
(1)多成分系であっても組成制御が再現性良くできる。
(2)大型の装置を使用しない極めて簡便な方法で、実験室レベルで成膜実験が可能である。
(3)組成検討や複数の金属イオンを検討する新材料の研究に向く。
(4)大面積で均一な膜が低コストで成膜できる。
As a method for forming a ferroelectric thin film, there are a coating method (spin coating method, spraying method), a sputtering method, a metal organic chemical vapor deposition method (MOCVD method), a laser ablation method, and the like. At present, the coating method and the sputtering method are being put into practical use, but the coating method is particularly used as a method for forming an inexpensive film. For example, when the spin coating method (sol-gel method, MOD method (Metal-Organic Deposition method)) is taken as an example, it has the following characteristics.
(1) The composition control can be performed with good reproducibility even in a multi-component system.
(2) A film forming experiment can be performed at a laboratory level by a very simple method without using a large apparatus.
(3) It is suitable for the study of new materials that examine the composition and multiple metal ions.
(4) A large area and uniform film can be formed at low cost.

従来、スピンコート法において、実質的に低温で結晶化が促進されることを目的として、強誘電体結晶の超微粉末を絶縁体用液体原料に混合し、これを基板上にスピンコート(500rpmで10秒+2000rpmで20秒)で塗布し、450℃で仮焼きし、500℃〜700℃で本焼きし、基板上に強誘電体薄膜を成膜することが知られている(例えば、特許文献1参照)。   Conventionally, in a spin coating method, for the purpose of promoting crystallization at a substantially low temperature, an ultrafine powder of a ferroelectric crystal is mixed with a liquid material for an insulator, and this is spin-coated (500 rpm) on a substrate. For 10 seconds + 2000 rpm for 20 seconds), calcined at 450 ° C., and baked at 500 ° C. to 700 ° C. to form a ferroelectric thin film on the substrate (for example, patent) Reference 1).

また、ゾルゲル法によってPZT強誘電体膜7を形成するに際し、その膜厚を1000Åとなるように制御すること、或いは、原料溶液の乾燥温度を130〜200℃の範囲に特定し、特に、ゾルーゲル原料に含まれる安定剤の沸点よりも低くかつゾルーゲル原料に含まれる溶媒の沸点よりも高く設定する方法が知られている(例えば、特許文献2参照)。
特開2001−53071号公報(段落番号0016〜0017、0019) 特開平6−305714号公報
Further, when the PZT ferroelectric film 7 is formed by the sol-gel method, the film thickness is controlled to be 1000 mm, or the drying temperature of the raw material solution is specified in the range of 130 to 200 ° C. There is known a method in which the boiling point is set lower than the boiling point of the stabilizer contained in the raw material and higher than the boiling point of the solvent contained in the sol-gel raw material (see, for example, Patent Document 2).
JP 2001-53071 A (paragraph numbers 0016 to 0017, 0019) JP-A-6-305714

しかしながら、上記特許文献1、2には焼成工程における昇温速度についての記載はない。   However, Patent Documents 1 and 2 do not describe the rate of temperature increase in the firing step.

強誘電体薄膜の圧電特性を利用して、インクジェット記録ヘッドなどの圧電素子への応用を考えた場合、1〜10μm程度の薄膜が一般的に必要と言われている。しかし、塗布法である程度の膜厚、例えば1μm以上の強誘電体膜を成膜する場合、原料溶液の塗布と乾燥交互に1回、または複数回繰り返して40〜150nmの薄膜を得、その薄膜を結晶化するという工程を、強誘電体薄膜の膜厚が1μm以上になるまで複数回繰り返すので、非常に時間がかかる。成膜時間を短縮しようとして、原料溶液の塗布と乾燥を交互に1回ずつ行って得られた薄膜の膜厚を厚くすると、その後の結晶化の過程で膜内にクラックが発生してしまう。現状では、塗布法でクラックレスの薄膜を厚膜化することは困難である。   When considering application to piezoelectric elements such as ink jet recording heads by utilizing the piezoelectric characteristics of ferroelectric thin films, it is generally said that a thin film of about 1 to 10 μm is necessary. However, when a ferroelectric film having a film thickness of, for example, 1 μm or more is formed by a coating method, a thin film having a thickness of 40 to 150 nm is obtained by repeating application of the raw material solution and drying alternately or a plurality of times. Since the process of crystallizing is repeated a plurality of times until the film thickness of the ferroelectric thin film reaches 1 μm or more, it takes a very long time. If the thickness of the thin film obtained by alternately applying and drying the raw material solution is increased once in an attempt to shorten the film formation time, cracks will occur in the film during the subsequent crystallization process. At present, it is difficult to thicken a crackless thin film by a coating method.

そこで、本発明の目的は、上記課題を解決し、スピンコート法、MOD法などの塗布法において、焼成工程における昇温速度を適切にして、クラックを発生させずに強誘電体薄膜を膜厚1μm以上成膜することができる強誘電体薄膜の製造方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems, and in a coating method such as a spin coating method or a MOD method, the temperature rise rate in the firing step is appropriate, and the ferroelectric thin film is formed without causing cracks. An object of the present invention is to provide a method for manufacturing a ferroelectric thin film capable of forming a film of 1 μm or more.

上記目的を達成するため、本発明は、次のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

請求項1の発明に係る強誘電体薄膜の製造方法は、基板上に任意量の強誘電体原料溶液を塗布し乾燥する工程を1回又は複数回行い、得られた薄膜を600℃以上の加熱処理により焼成して薄膜を一度に結晶化する工程を含む塗布法による強誘電体薄膜の製造方法において、上記600℃以上の加熱処理により焼成するときの加熱開始から600℃に到達する間の昇温速度の平均を2.0℃/分以下に設定し、所望の厚さの強誘電体薄膜が得られるまで、上記塗布・乾燥工程と結晶化の焼成工程を繰り返すことを特徴とする。   In the method of manufacturing a ferroelectric thin film according to the first aspect of the present invention, the step of applying an arbitrary amount of the ferroelectric raw material solution on the substrate and drying it is performed once or a plurality of times, and the obtained thin film is heated to 600 ° C. or more. In the method of manufacturing a ferroelectric thin film by a coating method including a step of crystallizing a thin film at a time by baking by heat treatment, while the temperature reaches 600 ° C. from the start of heating when baking is performed by heat treatment at 600 ° C. or higher. The average heating rate is set to 2.0 ° C./min or less, and the coating / drying step and the crystallization firing step are repeated until a ferroelectric thin film having a desired thickness is obtained.

請求項2の発明に係る強誘電体薄膜の製造方法は、基板上に任意量の強誘電体原料溶液を塗布し500℃以下の熱処理により乾燥する工程を1回又は複数回行い、得られた薄膜を600℃以上700℃以下の加熱処理により焼成して薄膜を一度に結晶化する工程を含む塗布法による強誘電体薄膜の製造方法において、上記600℃以上700℃以下の加熱処理により焼成するときの加熱開始から少なくとも600℃に到達する間の昇温速度の平均を2.0℃/分以下に設定し、所望の厚さの強誘電体薄膜が得られるまで、上記塗布・乾燥工程と結晶化の焼成工程を繰り返すことを特徴とする。   The method for producing a ferroelectric thin film according to the invention of claim 2 was obtained by performing a step of applying an arbitrary amount of a ferroelectric raw material solution on a substrate and drying it by heat treatment at 500 ° C. or less once or a plurality of times. In the method of manufacturing a ferroelectric thin film by a coating method including a step of crystallizing the thin film at a time by baking the thin film by heat treatment at 600 ° C. or higher and 700 ° C. or lower, baking is performed by the heat treatment at 600 ° C. or higher and 700 ° C. or lower. When the average heating rate during reaching at least 600 ° C. from the start of heating is set to 2.0 ° C./min or less, until the ferroelectric thin film having a desired thickness is obtained, The firing step of crystallization is repeated.

この請求項2によれば、500℃以下の熱処理温度で乾燥するため、結晶化を生じさせずに短時間で乾燥することができる。すなわち、乾燥時間の短縮ができる。また、焼成の温度としては、600℃以上であれば結晶化が可能であり、また700℃より高くなると、膜が荒れたり、基板上の電極が痛んだりするため、700℃以下とすることが好ましい。よって本発明の請求項2の特徴に従い、600℃以上700℃以下の温度で加熱処理して焼成することにより、薄膜を一度に結晶化することができる。本発明の典型例は、強誘電体原料溶液の塗布と500℃未満の熱処理(第一熱処理工程)を交互に1回、または複数回それぞれ行うことで得られる薄膜を、600℃以上の温度、例えば700℃で熱処理(第二熱処理工程)して結晶化する工程を繰り返し、強誘電体薄膜の膜厚が所望の厚さとなるようにするものである。   According to the second aspect, since the drying is performed at a heat treatment temperature of 500 ° C. or less, the drying can be performed in a short time without causing crystallization. That is, the drying time can be shortened. The firing temperature can be crystallized at 600 ° C. or higher. If the temperature is higher than 700 ° C., the film is roughened or the electrodes on the substrate are damaged. preferable. Therefore, according to the feature of claim 2 of the present invention, the thin film can be crystallized at a time by performing heat treatment and baking at a temperature of 600 ° C. or higher and 700 ° C. or lower. A typical example of the present invention is that a thin film obtained by alternately applying a ferroelectric raw material solution and a heat treatment (first heat treatment step) less than 500 ° C. once or a plurality of times, a temperature of 600 ° C. or higher, For example, a crystallization process by repeating heat treatment at 700 ° C. (second heat treatment process) is repeated so that the film thickness of the ferroelectric thin film becomes a desired thickness.

請求項3の発明は、請求項1又は2に記載の強誘電体薄膜の製造方法において、上記所望の厚さとして1μm以上の膜厚の強誘電体薄膜が得られるまで、上記塗布・乾燥工程と結晶化の焼成工程を繰り返すことを特徴とする。   According to a third aspect of the present invention, in the method of manufacturing a ferroelectric thin film according to the first or second aspect, the coating / drying step is performed until a ferroelectric thin film having a thickness of 1 μm or more is obtained as the desired thickness. And repeating the crystallization firing step.

すなわち、この強誘電体薄膜の所望の厚さの代表例は、強誘電体原料溶液の塗布と500℃以下の熱処理(第一熱処理工程)を交互に1回、もしくは複数回繰り返した後に、結晶化のための熱処理(第二熱処理工程)を600℃以上で行って焼成する工程を繰り返し、成膜された強誘電体薄膜の膜厚が1μm以上になるようにするものである。   That is, a representative example of the desired thickness of the ferroelectric thin film is that after applying the ferroelectric raw material solution and heat treatment (first heat treatment step) at 500 ° C. or less alternately once or a plurality of times, The heat treatment (second heat treatment step) for forming the film is repeated at a temperature of 600 ° C. or higher, and the firing step is repeated so that the film thickness of the formed ferroelectric thin film becomes 1 μm or more.

請求項4の発明は、請求項1〜3のいずれかに記載の強誘電体薄膜の製造方法において、上記強誘電体原料溶液として、PZT、PLZT、SBT、BIT、BST、LiNbO3、SrBi2Nb29のいずれかを用いることを特徴とする。 According to a fourth aspect of the present invention, in the method for manufacturing a ferroelectric thin film according to any one of the first to third aspects, the ferroelectric raw material solution is PZT, PLZT, SBT, BIT, BST, LiNbO 3 , SrBi 2. Any one of Nb 2 O 9 is used.

<発明の要点>
塗布法は、任意量の原料溶液の塗布と乾燥を繰り返し行い、得られた薄膜の膜厚160〜600nmを一気に結晶化する工程を繰り返す成膜方法である。そのため、塗布と乾燥を1回ずつ行って得られた薄膜の膜厚を厚くすると膜内にひずみが生じてクラックが発生しやすい。
<Key points of the invention>
The coating method is a film forming method in which an arbitrary amount of a raw material solution is repeatedly applied and dried, and a step of crystallizing the obtained thin film with a thickness of 160 to 600 nm at once is repeated. Therefore, when the thickness of the thin film obtained by performing coating and drying once is increased, distortion occurs in the film and cracks are likely to occur.

そこで本発明では、結晶化するときの昇温速度を遅くすることによって膜内のひずみを低減し、クラックフリーの強誘電体薄膜の膜厚1μm以上の厚膜を実現した。具体的には、原料溶液の塗布と乾燥を交互に一回、もしくは複数回繰り返して得られた薄膜を結晶化するときの昇温速度の平均を2.0℃/分以下にした。これを実現する方法として、RTA(Rapid Thermal Annealing)法などで昇温開始から600℃に到達するまでの膜厚レートを2.0℃/分に設定して薄膜の結晶化を行った。   Accordingly, in the present invention, the strain in the film is reduced by slowing the temperature rising rate during crystallization, and a crack-free ferroelectric thin film having a thickness of 1 μm or more is realized. Specifically, the average of the heating rate when the thin film obtained by alternately applying the raw material solution and drying once or plural times was crystallized was set to 2.0 ° C./min or less. As a method for realizing this, the thin film was crystallized by setting the film thickness rate from the start of the temperature rise to 600 ° C. to 2.0 ° C./min by RTA (Rapid Thermal Annealing) method or the like.

本発明によれば、次のような優れた効果が得られる。   According to the present invention, the following excellent effects can be obtained.

本発明による強誘電体薄膜の製造方法では、600℃以上の加熱処理、例えば600℃〜700℃の加熱処理により焼成するときの加熱開始から少なくとも600℃に到達する間の昇温速度を、平均2.0℃/分以下に設定する。このため、所望の厚さ例えば1μm以上の膜厚の強誘電体薄膜が得られるまで、上記塗布・乾燥工程と結晶化の焼成工程を繰り返した場合でも、クラックを発生させない。   In the method for producing a ferroelectric thin film according to the present invention, the temperature rising rate during at least 600 ° C. from the start of heating when baking is performed by heat treatment at 600 ° C. or higher, for example, 600 ° C. to 700 ° C., is averaged. Set to 2.0 ° C./min or less. For this reason, even when the coating / drying step and the crystallization firing step are repeated until a ferroelectric thin film having a desired thickness of, for example, 1 μm or more is obtained, no cracks are generated.

従って本発明によれば、スピンコート法、MOD法などの塗布法において成膜した厚さ1μm以上の強誘電体薄膜の成膜時間を短縮し、クラックフリーの強誘電体薄膜を安価に成膜することができる。また、この強誘電体薄膜からデバイスを作製すると、塗布法を用いる為に大面積で均一な膜が安価に製造することができる。   Therefore, according to the present invention, the time required for forming a ferroelectric thin film having a thickness of 1 μm or more formed by a coating method such as spin coating or MOD is shortened, and a crack-free ferroelectric thin film is formed at low cost. can do. Further, when a device is produced from this ferroelectric thin film, a uniform film having a large area can be produced at low cost because the coating method is used.

以下、本発明の実施の形態を実施例に基づいて説明する。   Hereinafter, embodiments of the present invention will be described based on examples.

ここではチタン酸ジルコン酸鉛Pb(Zr、Ti)O3(通常PZTと言われている)の製造例について説明する。 Here, a production example of lead zirconate titanate Pb (Zr, Ti) O 3 (usually referred to as PZT) will be described.

この実施例のPb(Zr、Ti)O3の製造に際しては、強誘電体原料溶液として以下に示す成分及び含有量のものを用いた。
・PbOが11.5wt%
・ZrO2が5.2wt%
・TiO2が4.8wt%
・1−プロパノールが34.5wt%
・プロピレングリコールが44.0wt%
In the production of Pb (Zr, Ti) O 3 of this example, the following components and contents were used as the ferroelectric raw material solution.
・ PbO is 11.5wt%
· ZrO 2 is 5.2wt%
・ TiO 2 is 4.8wt%
・ 1-4.5% by weight of 1-propanol
・ Propylene glycol is 44.0 wt%

PZT圧電薄膜原料溶液(強誘電体原料溶液)を用いたスピンコート法によって、図2に示すようにPt下部電極2付MgO基板1上にPZT圧電薄膜3を成膜した。以下に実験の詳細を示す。   A PZT piezoelectric thin film 3 was formed on the MgO substrate 1 with the Pt lower electrode 2 by spin coating using a PZT piezoelectric thin film raw material solution (ferroelectric raw material solution) as shown in FIG. Details of the experiment are shown below.

スパッタリング法によって下部電極(白金、200nm)2を成膜した基板1上に、原料溶液を0.1ml滴下し、スピンコーター(500rpm×3秒、3000rpm×15秒)により均一に塗布(図1の塗布工程(ステップS1))した後、乾燥のために空気中で400℃、5分間加熱した(図1の乾燥工程(ステップS2))。   0.1 ml of the raw material solution is dropped on the substrate 1 on which the lower electrode (platinum, 200 nm) 2 is formed by sputtering, and is uniformly applied by a spin coater (500 rpm × 3 seconds, 3000 rpm × 15 seconds) (FIG. 1). After the coating step (step S1)), the substrate was heated in air at 400 ° C. for 5 minutes for drying (drying step (step S2) in FIG. 1).

この塗布と乾燥を計4回繰り返して得られた薄膜を、結晶化のために加熱開始から昇温速度平均2.0℃/minで700℃まで温度を上げ(図1の昇温工程(ステップS3))、空気中で1分間焼成して結晶化し(図1の焼成工程(ステップS4))、膜厚が160nmのPZT圧電薄膜を得た。   The temperature of the thin film obtained by repeating this coating and drying four times in total was increased from the start of heating to 700 ° C. at an average temperature increase rate of 2.0 ° C./min for crystallization (the temperature increasing step (step of FIG. 1)). S3)), and fired in air for 1 minute to crystallize (firing step in FIG. 1 (step S4)) to obtain a PZT piezoelectric thin film having a film thickness of 160 nm.

この塗布と乾燥を繰り返して得られた薄膜を結晶化するまでの工程(ステップS1〜S4)を7回繰り返し、所望の厚さとして膜厚1.1μmのPZT圧電薄膜3を得た。その上に、スパッタリング法によって上部電極(白金、200nm)4を成膜した。   The steps (steps S1 to S4) until the thin film obtained by repeating this coating and drying was crystallized 7 times to obtain a PZT piezoelectric thin film 3 having a desired thickness of 1.1 μm. An upper electrode (platinum, 200 nm) 4 was formed thereon by sputtering.

また、比較例として、従来技術を用いてPZT圧電薄膜を成膜した。原料溶液を0.1ml滴下し、スピンコーター(500rpm×3秒、3000rpm×15秒)で均一に塗布した後、乾燥のために空気中で400b、5分間加熱した。この塗布と乾燥を計4回繰り返して得た薄膜を、結晶化のために空気中で700℃、1分間焼成して、膜厚160mのPZT圧電薄膜を得た。   As a comparative example, a PZT piezoelectric thin film was formed using a conventional technique. 0.1 ml of the raw material solution was dropped and applied uniformly with a spin coater (500 rpm × 3 seconds, 3000 rpm × 15 seconds), and then heated in air for 400 b for 5 minutes for drying. A thin film obtained by repeating this coating and drying four times in total was baked in air at 700 ° C. for 1 minute for crystallization to obtain a 160-m thick PZT piezoelectric thin film.

この塗布と乾燥を繰り返して得られた薄膜を結晶化する工程を7回繰り返し、膜厚1.1μmのPZT圧電薄膜を得た。   The process of crystallizing the thin film obtained by repeating this coating and drying was repeated seven times to obtain a PZT piezoelectric thin film having a thickness of 1.1 μm.

従来技術を用いて成膜したPZT圧電薄膜(以下、比較例PZT−1とする)と本発明における製造方法で成膜したPZT圧電薄膜(以下、実施例PZT−2とする)のクラック有無の確認、X線回折測定、分極特性測定を行った。   The presence or absence of cracks in the PZT piezoelectric thin film (hereinafter referred to as Comparative Example PZT-1) formed using the conventional technique and the PZT piezoelectric thin film (hereinafter referred to as Example PZT-2) formed by the manufacturing method of the present invention. Confirmation, X-ray diffraction measurement, and polarization characteristic measurement were performed.

比較例PZT−1ではクラックの発生が確認できたのに対し、実施例PZT−2ではクラック発生は確認できなかった。   In Comparative Example PZT-1, the occurrence of cracks could be confirmed, whereas in Example PZT-2, the occurrence of cracks could not be confirmed.

X線回折測定結果は、比較例PZT−1がPZT(001)方位やPZT(002)方位の他にPZT(111)方位やPZT(110)方位などを示すピークが存在したのに対し、実施例PZT−2ではPZT(001)方位とPZT(002)方位を示すピークしか存在しなかった。また、分膜特性測定結果は、比較例PZT−1の分極値(2Pr)が75μC/cm2を示したのに対し、実施例PZT−2は110μC/cm2であった。 The X-ray diffraction measurement result shows that Comparative Example PZT-1 had peaks indicating the PZT (111) orientation and the PZT (110) orientation in addition to the PZT (001) orientation and the PZT (002) orientation. In Example PZT-2, only peaks indicating PZT (001) orientation and PZT (002) orientation were present. In addition, as a result of measuring the membrane properties, the polarization value (2Pr) of Comparative Example PZT-1 showed 75 μC / cm 2 , whereas Example PZT-2 was 110 μC / cm 2 .

次に最適条件について吟味した。   Next, the optimum conditions were examined.

表1に、加熱開始から600℃まで温度を上げ、空気中で1分間結晶化を行う焼成工程において、その加熱開始から600℃まで温度を上げる昇温速度の平均値を変えて成膜を行ったときの、PZT圧電薄膜のクラックの発生の有無についてまとめた結果を示す。   In Table 1, in the firing step in which the temperature is increased from the start of heating to 600 ° C. and crystallization is performed in the air for 1 minute, film formation is performed by changing the average value of the temperature increase rate at which the temperature is increased from the start of heating to 600 ° C. The result of having put together about the presence or absence of generation | occurrence | production of the crack of a PZT piezoelectric thin film at the time is shown.

Figure 2006228447
Figure 2006228447

表1から分かるように、昇温速度の平均値を0.5、1、2、4、8、16℃/minと変えたとき、昇温速度の平均値が0.5、1、2℃/minの場合はクラックの発生が見られなかった。昇温速度の平均値が4℃/minの場合にはクラックの発生が一部見られた。また、昇温速度の平均値が8、16℃/minと高い場合にはいずれもクラックが発生した。   As can be seen from Table 1, when the average value of the heating rate is changed to 0.5, 1, 2, 4, 8, 16 ° C./min, the average value of the heating rate is 0.5, 1, 2 ° C. In the case of / min, no crack was observed. When the average value of the heating rate was 4 ° C./min, some cracks were observed. Further, cracks occurred in all cases where the average value of the heating rate was as high as 8 and 16 ° C./min.

よって、本発明の効果として、塗布と乾燥を交互に複数回繰り返して得られた薄膜を結晶化する工程を膜厚が1μm以上になるまで繰り返したとき、加熱開始から600℃で結晶化したときの昇温速度の平均値が2.0℃/min以下ではクラックが発生しないことが確認された。   Therefore, as an effect of the present invention, when the process of crystallizing a thin film obtained by alternately repeating coating and drying a plurality of times is repeated until the film thickness becomes 1 μm or more, when crystallizing at 600 ° C. from the start of heating It was confirmed that cracks did not occur at an average value of the heating rate of 2.0 ° C./min or less.

<他の実施例、変形例>
上記実施例1、2においては、そのPZT圧電薄膜の成膜方法において基板としてMgO基板を使用したが、本発明はそれに限定されるものではなく、ガラス基板、SiO2/Si基板などでも応用できるものである。
<Other embodiments and modifications>
In the above first and second embodiments have been using MgO as the substrate in the film forming method of the PZT piezoelectric thin film, the present invention is not limited thereto, the glass substrate can also be applied in such SiO 2 / Si substrate Is.

また、下部・上部両電極においても、その成膜方法はスパッタリング法に限定されるものではなく、EB蒸着法などでも応用できるものである。また、電極に使用した材料は白金(Pt)であったが、本発明はそれに限定されるものではなく、イリジウム(Ir)、ルテニウム(Ru)、タンタル(Ta)、チタン(Ti)、アルミニウム(Al)、ニッケル(Ni)、金(Au)などの金属及び金属酸化物などでも応用できるものである。   Further, the film formation method for both the lower and upper electrodes is not limited to the sputtering method, but can also be applied by the EB vapor deposition method or the like. Moreover, although the material used for the electrode was platinum (Pt), the present invention is not limited thereto, and iridium (Ir), ruthenium (Ru), tantalum (Ta), titanium (Ti), aluminum ( The present invention can also be applied to metals such as Al), nickel (Ni), gold (Au), and metal oxides.

なお、本発明は強誘電体薄膜だけではなく、超伝導薄膜、磁性体薄膜、その他金属酸化物薄膜、等にも応用できるものである。   The present invention can be applied not only to a ferroelectric thin film but also to a superconducting thin film, a magnetic thin film, and other metal oxide thin films.

本発明における強誘電体薄膜の製造方法を示した図である。It is the figure which showed the manufacturing method of the ferroelectric thin film in this invention. 本発明の実施形態に係る圧電薄膜素子の断面図である。1 is a cross-sectional view of a piezoelectric thin film element according to an embodiment of the present invention.

符号の説明Explanation of symbols

1 MgO基板
2 Pt下部電極
3 PZT圧電薄膜
4 Pt上部電極
1 MgO substrate 2 Pt lower electrode 3 PZT piezoelectric thin film 4 Pt upper electrode

Claims (4)

基板上に任意量の強誘電体原料溶液を塗布し乾燥する工程を1回又は複数回行い、得られた薄膜を600℃以上の加熱処理により焼成して薄膜を一度に結晶化する工程を含む塗布法による強誘電体薄膜の製造方法において、
上記600℃以上の加熱処理により焼成するときの加熱開始から600℃に到達する間の昇温速度の平均を2.0℃/分以下に設定し、所望の厚さの強誘電体薄膜が得られるまで、上記塗布・乾燥工程と結晶化の焼成工程を繰り返すことを特徴とする強誘電体薄膜の製造方法。
Including a step of applying an arbitrary amount of a ferroelectric raw material solution on a substrate and drying it once or a plurality of times, and baking the obtained thin film by heat treatment at 600 ° C. or more to crystallize the thin film at a time. In the manufacturing method of the ferroelectric thin film by the coating method,
The average rate of temperature rise from the start of heating to 600 ° C. when firing by the heat treatment at 600 ° C. or higher is set to 2.0 ° C./min or less to obtain a ferroelectric thin film having a desired thickness. The method for producing a ferroelectric thin film characterized in that the coating / drying step and the crystallization firing step are repeated until it is completed.
基板上に任意量の強誘電体原料溶液を塗布し500℃以下の熱処理により乾燥する工程を1回又は複数回行い、得られた薄膜を600℃以上700℃以下の加熱処理により焼成して薄膜を一度に結晶化する工程を含む塗布法による強誘電体薄膜の製造方法において、
上記600℃以上700℃以下の加熱処理により焼成するときの加熱開始から少なくとも600℃に到達する間の昇温速度の平均を2.0℃/分以下に設定し、所望の厚さの強誘電体薄膜が得られるまで、上記塗布・乾燥工程と結晶化の焼成工程を繰り返すことを特徴とする強誘電体薄膜の製造方法。
A process of applying an arbitrary amount of a ferroelectric material solution on a substrate and drying it by heat treatment at 500 ° C. or less is performed once or a plurality of times, and the obtained thin film is baked by heat treatment at 600 ° C. or more and 700 ° C. or less. In a method for manufacturing a ferroelectric thin film by a coating method including a step of crystallizing at a time,
The average of the heating rate during the time of reaching 600 ° C. from the start of heating when firing by the heat treatment of 600 ° C. or more and 700 ° C. or less is set to 2.0 ° C./min or less, and a ferroelectric having a desired thickness A method for producing a ferroelectric thin film, comprising repeating the coating / drying step and the crystallization firing step until a thin body film is obtained.
請求項1又は2に記載の強誘電体薄膜の製造方法において、
上記所望の厚さとして1μm以上の膜厚の強誘電体薄膜が得られるまで、上記塗布・乾燥工程と結晶化の焼成工程を繰り返すことを特徴とする強誘電体薄膜の製造方法。
In the manufacturing method of the ferroelectric thin film according to claim 1 or 2,
A method for producing a ferroelectric thin film, characterized in that the coating / drying step and the crystallization firing step are repeated until a ferroelectric thin film having a thickness of 1 μm or more is obtained as the desired thickness.
請求項1〜3のいずれかに記載の強誘電体薄膜の製造方法において、
上記強誘電体原料溶液として、PZT、PLZT、SBT、BIT、BST、LiNbO3、SrBi2Nb29のいずれかを用いることを特徴とする強誘電体薄膜の製造方法。
In the manufacturing method of the ferroelectric thin film in any one of Claims 1-3,
One of PZT, PLZT, SBT, BIT, BST, LiNbO 3 , and SrBi 2 Nb 2 O 9 is used as the ferroelectric raw material solution.
JP2005037357A 2005-02-15 2005-02-15 Manufacturing method for ferroelectric thin film Pending JP2006228447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005037357A JP2006228447A (en) 2005-02-15 2005-02-15 Manufacturing method for ferroelectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005037357A JP2006228447A (en) 2005-02-15 2005-02-15 Manufacturing method for ferroelectric thin film

Publications (1)

Publication Number Publication Date
JP2006228447A true JP2006228447A (en) 2006-08-31

Family

ID=36989657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037357A Pending JP2006228447A (en) 2005-02-15 2005-02-15 Manufacturing method for ferroelectric thin film

Country Status (1)

Country Link
JP (1) JP2006228447A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329188A (en) * 2006-06-06 2007-12-20 Tdk Corp Thin-film dielectric element, and forming method of laminate therefor
JP2009177171A (en) * 2007-12-28 2009-08-06 Mitsubishi Materials Corp Dielectric film, its manufacturing method and use
JP2011253768A (en) * 2010-06-03 2011-12-15 National Institute Of Advanced Industrial & Technology Method of manufacturing oxide superconductor thin film
JP2014154610A (en) * 2013-02-06 2014-08-25 Ricoh Co Ltd Thin film manufacturing method, electromechanical conversion element, liquid discharge head, and ink jet recording device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329188A (en) * 2006-06-06 2007-12-20 Tdk Corp Thin-film dielectric element, and forming method of laminate therefor
JP2009177171A (en) * 2007-12-28 2009-08-06 Mitsubishi Materials Corp Dielectric film, its manufacturing method and use
JP2013153179A (en) * 2007-12-28 2013-08-08 Mitsubishi Materials Corp Dielectric thin film without crack on surface thereof
JP2011253768A (en) * 2010-06-03 2011-12-15 National Institute Of Advanced Industrial & Technology Method of manufacturing oxide superconductor thin film
JP2014154610A (en) * 2013-02-06 2014-08-25 Ricoh Co Ltd Thin film manufacturing method, electromechanical conversion element, liquid discharge head, and ink jet recording device

Similar Documents

Publication Publication Date Title
WO2009157189A1 (en) Piezoelectric element and method for manufacturing the same
JP6967008B2 (en) Piezoelectric thin film element
JP2008042069A (en) Piezoelectric element, and its manufacturing method
TW200539428A (en) Precursor composition, method for manufacturing precursor composition, method for manufacturing ferroelectric film, piezoelectric element, semiconductor device, piezoelectric actuator, ink jet recording head, and ink jet printer
KR100932573B1 (en) Ferroelectric Capacitors, Method of Making Ferroelectric Capacitors, and Ferroelectric Memory
US6639340B1 (en) Method for manufacturing piezoelectric element, and piezoelectric element, ink-jet recording head and printer
JP5861278B2 (en) Thin film capacitor manufacturing method and thin film capacitor obtained by the method
JP2004107179A (en) Precursor sol of piezoelectric material, method of manufacturing piezoelectric film, piezoelectric element, and inkjet recording head
JP2004107181A (en) Composition for forming piezoelectric element, method of manufacturing piezoelectric film, piezoelectric element and inkjet recording head
CN105190848B (en) The silicon substrate of subsidiary ferroelectric film
JP2006228447A (en) Manufacturing method for ferroelectric thin film
JP3944917B2 (en) Method for forming oxide ceramic thin film
JP5461951B2 (en) Manufacturing method of ceramic film
JP4766299B2 (en) (111) Oriented PZT Dielectric Film Forming Substrate, (111) Oriented PZT Dielectric Film Formed Using This Substrate
JP2012169400A (en) Manufacturing method of ferroelectric film and ferroelectric element using the same
EP3220431A1 (en) A piezoelectric thin film element
JP4433214B2 (en) Method for manufacturing piezoelectric element and piezoelectric element
GB2548377A (en) A piezoelectric thin film element
JP2001213624A (en) Process of preparing ferroelectric thin film and raw material solution therefor
JP2006076835A (en) Ferroelectric thin film and method of forming the same
JP2005217219A (en) Ferroelectric thin film and manufacturing method thereof
JPH11330389A (en) Manufacture of dielectric memory
JP5531853B2 (en) Thin film capacitor manufacturing method and thin film capacitor obtained by the method
JP2017228760A (en) Piezoelectric substrate and method of manufacturing the same, and liquid ejection head
JP2006278986A (en) Process for forming dielectric thin film and piezoelectric device employing dielectric film formed by that method