JP2006228447A - Manufacturing method for ferroelectric thin film - Google Patents
Manufacturing method for ferroelectric thin film Download PDFInfo
- Publication number
- JP2006228447A JP2006228447A JP2005037357A JP2005037357A JP2006228447A JP 2006228447 A JP2006228447 A JP 2006228447A JP 2005037357 A JP2005037357 A JP 2005037357A JP 2005037357 A JP2005037357 A JP 2005037357A JP 2006228447 A JP2006228447 A JP 2006228447A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- ferroelectric
- ferroelectric thin
- drying
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 81
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 238000010438 heat treatment Methods 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 35
- 238000001035 drying Methods 0.000 claims abstract description 28
- 239000010408 film Substances 0.000 claims abstract description 27
- 239000002994 raw material Substances 0.000 claims abstract description 20
- 238000002425 crystallisation Methods 0.000 claims abstract description 16
- 230000008025 crystallization Effects 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 238000000576 coating method Methods 0.000 claims description 26
- 238000010304 firing Methods 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 5
- 229910013641 LiNbO 3 Inorganic materials 0.000 claims description 2
- 230000000630 rising effect Effects 0.000 abstract description 4
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 22
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 238000004528 spin coating Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 230000010287 polarization Effects 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000004151 rapid thermal annealing Methods 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- -1 Al) Chemical class 0.000 description 1
- 206010011376 Crepitations Diseases 0.000 description 1
- 208000037656 Respiratory Sounds Diseases 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Landscapes
- Semiconductor Memories (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Description
本発明は、圧電特性を利用した圧電マイクロアクチュエータや圧電センサ、更に、焦電特性を利用した焦電センサ、分極特性を利用した不揮発メモリなどに用いる強誘電体薄膜の製造方法に関するものである。 The present invention relates to a method of manufacturing a ferroelectric thin film used for a piezoelectric microactuator or a piezoelectric sensor using piezoelectric characteristics, a pyroelectric sensor using pyroelectric characteristics, a nonvolatile memory using polarization characteristics, or the like.
強誘電体材料は、優れた強誘電特性、焦電特性、圧電特性、電気光学特性、そして高い誘電率を備えており、強誘電体不揮発性メモリ(次世代メモリ)、圧電センサ、圧電アクチュエータ、表面弾性波デバイス、赤外線センサ、DRAMのキャパシタ、光偏光素子、など広い応用範囲を有している。そして、今日の電子デバイスなどの小型化、軽量化、省電力化が進む中、これらの機能をもった強誘電体薄膜材料の開発が活発に行われている。 Ferroelectric materials have excellent ferroelectric properties, pyroelectric properties, piezoelectric properties, electro-optic properties, and high dielectric constants. Ferroelectric nonvolatile memory (next-generation memory), piezoelectric sensors, piezoelectric actuators, It has a wide range of applications such as surface acoustic wave devices, infrared sensors, DRAM capacitors, and optical polarization elements. With the progress of miniaturization, weight reduction, and power saving of today's electronic devices, the development of ferroelectric thin film materials having these functions has been actively conducted.
強誘電体薄膜の成膜方法として、塗布法(スピンコート法、スプレー法)、スパッタリング法、有機金属化学気相堆積法(MOCVD法;Metal Organic Chemical Vapor Depositionmethod)、レーザーアブレーション法などがある。現在では、塗布法やスパッタリング法で実用化されつつあるが、特に塗布法は安価な膜を成膜する方法として利用されている。例えば、スピンコート法(ゾルゲル法、MOD法(Metal−Organic Depositionmethod;有機金属分解法))を例に挙げると、以下に示すような特徴を持つ。
(1)多成分系であっても組成制御が再現性良くできる。
(2)大型の装置を使用しない極めて簡便な方法で、実験室レベルで成膜実験が可能である。
(3)組成検討や複数の金属イオンを検討する新材料の研究に向く。
(4)大面積で均一な膜が低コストで成膜できる。
As a method for forming a ferroelectric thin film, there are a coating method (spin coating method, spraying method), a sputtering method, a metal organic chemical vapor deposition method (MOCVD method), a laser ablation method, and the like. At present, the coating method and the sputtering method are being put into practical use, but the coating method is particularly used as a method for forming an inexpensive film. For example, when the spin coating method (sol-gel method, MOD method (Metal-Organic Deposition method)) is taken as an example, it has the following characteristics.
(1) The composition control can be performed with good reproducibility even in a multi-component system.
(2) A film forming experiment can be performed at a laboratory level by a very simple method without using a large apparatus.
(3) It is suitable for the study of new materials that examine the composition and multiple metal ions.
(4) A large area and uniform film can be formed at low cost.
従来、スピンコート法において、実質的に低温で結晶化が促進されることを目的として、強誘電体結晶の超微粉末を絶縁体用液体原料に混合し、これを基板上にスピンコート(500rpmで10秒+2000rpmで20秒)で塗布し、450℃で仮焼きし、500℃〜700℃で本焼きし、基板上に強誘電体薄膜を成膜することが知られている(例えば、特許文献1参照)。 Conventionally, in a spin coating method, for the purpose of promoting crystallization at a substantially low temperature, an ultrafine powder of a ferroelectric crystal is mixed with a liquid material for an insulator, and this is spin-coated (500 rpm) on a substrate. For 10 seconds + 2000 rpm for 20 seconds), calcined at 450 ° C., and baked at 500 ° C. to 700 ° C. to form a ferroelectric thin film on the substrate (for example, patent) Reference 1).
また、ゾルゲル法によってPZT強誘電体膜7を形成するに際し、その膜厚を1000Åとなるように制御すること、或いは、原料溶液の乾燥温度を130〜200℃の範囲に特定し、特に、ゾルーゲル原料に含まれる安定剤の沸点よりも低くかつゾルーゲル原料に含まれる溶媒の沸点よりも高く設定する方法が知られている(例えば、特許文献2参照)。
しかしながら、上記特許文献1、2には焼成工程における昇温速度についての記載はない。 However, Patent Documents 1 and 2 do not describe the rate of temperature increase in the firing step.
強誘電体薄膜の圧電特性を利用して、インクジェット記録ヘッドなどの圧電素子への応用を考えた場合、1〜10μm程度の薄膜が一般的に必要と言われている。しかし、塗布法である程度の膜厚、例えば1μm以上の強誘電体膜を成膜する場合、原料溶液の塗布と乾燥交互に1回、または複数回繰り返して40〜150nmの薄膜を得、その薄膜を結晶化するという工程を、強誘電体薄膜の膜厚が1μm以上になるまで複数回繰り返すので、非常に時間がかかる。成膜時間を短縮しようとして、原料溶液の塗布と乾燥を交互に1回ずつ行って得られた薄膜の膜厚を厚くすると、その後の結晶化の過程で膜内にクラックが発生してしまう。現状では、塗布法でクラックレスの薄膜を厚膜化することは困難である。 When considering application to piezoelectric elements such as ink jet recording heads by utilizing the piezoelectric characteristics of ferroelectric thin films, it is generally said that a thin film of about 1 to 10 μm is necessary. However, when a ferroelectric film having a film thickness of, for example, 1 μm or more is formed by a coating method, a thin film having a thickness of 40 to 150 nm is obtained by repeating application of the raw material solution and drying alternately or a plurality of times. Since the process of crystallizing is repeated a plurality of times until the film thickness of the ferroelectric thin film reaches 1 μm or more, it takes a very long time. If the thickness of the thin film obtained by alternately applying and drying the raw material solution is increased once in an attempt to shorten the film formation time, cracks will occur in the film during the subsequent crystallization process. At present, it is difficult to thicken a crackless thin film by a coating method.
そこで、本発明の目的は、上記課題を解決し、スピンコート法、MOD法などの塗布法において、焼成工程における昇温速度を適切にして、クラックを発生させずに強誘電体薄膜を膜厚1μm以上成膜することができる強誘電体薄膜の製造方法を提供することにある。 Accordingly, an object of the present invention is to solve the above-mentioned problems, and in a coating method such as a spin coating method or a MOD method, the temperature rise rate in the firing step is appropriate, and the ferroelectric thin film is formed without causing cracks. An object of the present invention is to provide a method for manufacturing a ferroelectric thin film capable of forming a film of 1 μm or more.
上記目的を達成するため、本発明は、次のように構成したものである。 In order to achieve the above object, the present invention is configured as follows.
請求項1の発明に係る強誘電体薄膜の製造方法は、基板上に任意量の強誘電体原料溶液を塗布し乾燥する工程を1回又は複数回行い、得られた薄膜を600℃以上の加熱処理により焼成して薄膜を一度に結晶化する工程を含む塗布法による強誘電体薄膜の製造方法において、上記600℃以上の加熱処理により焼成するときの加熱開始から600℃に到達する間の昇温速度の平均を2.0℃/分以下に設定し、所望の厚さの強誘電体薄膜が得られるまで、上記塗布・乾燥工程と結晶化の焼成工程を繰り返すことを特徴とする。 In the method of manufacturing a ferroelectric thin film according to the first aspect of the present invention, the step of applying an arbitrary amount of the ferroelectric raw material solution on the substrate and drying it is performed once or a plurality of times, and the obtained thin film is heated to 600 ° C. or more. In the method of manufacturing a ferroelectric thin film by a coating method including a step of crystallizing a thin film at a time by baking by heat treatment, while the temperature reaches 600 ° C. from the start of heating when baking is performed by heat treatment at 600 ° C. or higher. The average heating rate is set to 2.0 ° C./min or less, and the coating / drying step and the crystallization firing step are repeated until a ferroelectric thin film having a desired thickness is obtained.
請求項2の発明に係る強誘電体薄膜の製造方法は、基板上に任意量の強誘電体原料溶液を塗布し500℃以下の熱処理により乾燥する工程を1回又は複数回行い、得られた薄膜を600℃以上700℃以下の加熱処理により焼成して薄膜を一度に結晶化する工程を含む塗布法による強誘電体薄膜の製造方法において、上記600℃以上700℃以下の加熱処理により焼成するときの加熱開始から少なくとも600℃に到達する間の昇温速度の平均を2.0℃/分以下に設定し、所望の厚さの強誘電体薄膜が得られるまで、上記塗布・乾燥工程と結晶化の焼成工程を繰り返すことを特徴とする。 The method for producing a ferroelectric thin film according to the invention of claim 2 was obtained by performing a step of applying an arbitrary amount of a ferroelectric raw material solution on a substrate and drying it by heat treatment at 500 ° C. or less once or a plurality of times. In the method of manufacturing a ferroelectric thin film by a coating method including a step of crystallizing the thin film at a time by baking the thin film by heat treatment at 600 ° C. or higher and 700 ° C. or lower, baking is performed by the heat treatment at 600 ° C. or higher and 700 ° C. or lower. When the average heating rate during reaching at least 600 ° C. from the start of heating is set to 2.0 ° C./min or less, until the ferroelectric thin film having a desired thickness is obtained, The firing step of crystallization is repeated.
この請求項2によれば、500℃以下の熱処理温度で乾燥するため、結晶化を生じさせずに短時間で乾燥することができる。すなわち、乾燥時間の短縮ができる。また、焼成の温度としては、600℃以上であれば結晶化が可能であり、また700℃より高くなると、膜が荒れたり、基板上の電極が痛んだりするため、700℃以下とすることが好ましい。よって本発明の請求項2の特徴に従い、600℃以上700℃以下の温度で加熱処理して焼成することにより、薄膜を一度に結晶化することができる。本発明の典型例は、強誘電体原料溶液の塗布と500℃未満の熱処理(第一熱処理工程)を交互に1回、または複数回それぞれ行うことで得られる薄膜を、600℃以上の温度、例えば700℃で熱処理(第二熱処理工程)して結晶化する工程を繰り返し、強誘電体薄膜の膜厚が所望の厚さとなるようにするものである。 According to the second aspect, since the drying is performed at a heat treatment temperature of 500 ° C. or less, the drying can be performed in a short time without causing crystallization. That is, the drying time can be shortened. The firing temperature can be crystallized at 600 ° C. or higher. If the temperature is higher than 700 ° C., the film is roughened or the electrodes on the substrate are damaged. preferable. Therefore, according to the feature of claim 2 of the present invention, the thin film can be crystallized at a time by performing heat treatment and baking at a temperature of 600 ° C. or higher and 700 ° C. or lower. A typical example of the present invention is that a thin film obtained by alternately applying a ferroelectric raw material solution and a heat treatment (first heat treatment step) less than 500 ° C. once or a plurality of times, a temperature of 600 ° C. or higher, For example, a crystallization process by repeating heat treatment at 700 ° C. (second heat treatment process) is repeated so that the film thickness of the ferroelectric thin film becomes a desired thickness.
請求項3の発明は、請求項1又は2に記載の強誘電体薄膜の製造方法において、上記所望の厚さとして1μm以上の膜厚の強誘電体薄膜が得られるまで、上記塗布・乾燥工程と結晶化の焼成工程を繰り返すことを特徴とする。 According to a third aspect of the present invention, in the method of manufacturing a ferroelectric thin film according to the first or second aspect, the coating / drying step is performed until a ferroelectric thin film having a thickness of 1 μm or more is obtained as the desired thickness. And repeating the crystallization firing step.
すなわち、この強誘電体薄膜の所望の厚さの代表例は、強誘電体原料溶液の塗布と500℃以下の熱処理(第一熱処理工程)を交互に1回、もしくは複数回繰り返した後に、結晶化のための熱処理(第二熱処理工程)を600℃以上で行って焼成する工程を繰り返し、成膜された強誘電体薄膜の膜厚が1μm以上になるようにするものである。 That is, a representative example of the desired thickness of the ferroelectric thin film is that after applying the ferroelectric raw material solution and heat treatment (first heat treatment step) at 500 ° C. or less alternately once or a plurality of times, The heat treatment (second heat treatment step) for forming the film is repeated at a temperature of 600 ° C. or higher, and the firing step is repeated so that the film thickness of the formed ferroelectric thin film becomes 1 μm or more.
請求項4の発明は、請求項1〜3のいずれかに記載の強誘電体薄膜の製造方法において、上記強誘電体原料溶液として、PZT、PLZT、SBT、BIT、BST、LiNbO3、SrBi2Nb2O9のいずれかを用いることを特徴とする。 According to a fourth aspect of the present invention, in the method for manufacturing a ferroelectric thin film according to any one of the first to third aspects, the ferroelectric raw material solution is PZT, PLZT, SBT, BIT, BST, LiNbO 3 , SrBi 2. Any one of Nb 2 O 9 is used.
<発明の要点>
塗布法は、任意量の原料溶液の塗布と乾燥を繰り返し行い、得られた薄膜の膜厚160〜600nmを一気に結晶化する工程を繰り返す成膜方法である。そのため、塗布と乾燥を1回ずつ行って得られた薄膜の膜厚を厚くすると膜内にひずみが生じてクラックが発生しやすい。
<Key points of the invention>
The coating method is a film forming method in which an arbitrary amount of a raw material solution is repeatedly applied and dried, and a step of crystallizing the obtained thin film with a thickness of 160 to 600 nm at once is repeated. Therefore, when the thickness of the thin film obtained by performing coating and drying once is increased, distortion occurs in the film and cracks are likely to occur.
そこで本発明では、結晶化するときの昇温速度を遅くすることによって膜内のひずみを低減し、クラックフリーの強誘電体薄膜の膜厚1μm以上の厚膜を実現した。具体的には、原料溶液の塗布と乾燥を交互に一回、もしくは複数回繰り返して得られた薄膜を結晶化するときの昇温速度の平均を2.0℃/分以下にした。これを実現する方法として、RTA(Rapid Thermal Annealing)法などで昇温開始から600℃に到達するまでの膜厚レートを2.0℃/分に設定して薄膜の結晶化を行った。 Accordingly, in the present invention, the strain in the film is reduced by slowing the temperature rising rate during crystallization, and a crack-free ferroelectric thin film having a thickness of 1 μm or more is realized. Specifically, the average of the heating rate when the thin film obtained by alternately applying the raw material solution and drying once or plural times was crystallized was set to 2.0 ° C./min or less. As a method for realizing this, the thin film was crystallized by setting the film thickness rate from the start of the temperature rise to 600 ° C. to 2.0 ° C./min by RTA (Rapid Thermal Annealing) method or the like.
本発明によれば、次のような優れた効果が得られる。 According to the present invention, the following excellent effects can be obtained.
本発明による強誘電体薄膜の製造方法では、600℃以上の加熱処理、例えば600℃〜700℃の加熱処理により焼成するときの加熱開始から少なくとも600℃に到達する間の昇温速度を、平均2.0℃/分以下に設定する。このため、所望の厚さ例えば1μm以上の膜厚の強誘電体薄膜が得られるまで、上記塗布・乾燥工程と結晶化の焼成工程を繰り返した場合でも、クラックを発生させない。 In the method for producing a ferroelectric thin film according to the present invention, the temperature rising rate during at least 600 ° C. from the start of heating when baking is performed by heat treatment at 600 ° C. or higher, for example, 600 ° C. to 700 ° C., is averaged. Set to 2.0 ° C./min or less. For this reason, even when the coating / drying step and the crystallization firing step are repeated until a ferroelectric thin film having a desired thickness of, for example, 1 μm or more is obtained, no cracks are generated.
従って本発明によれば、スピンコート法、MOD法などの塗布法において成膜した厚さ1μm以上の強誘電体薄膜の成膜時間を短縮し、クラックフリーの強誘電体薄膜を安価に成膜することができる。また、この強誘電体薄膜からデバイスを作製すると、塗布法を用いる為に大面積で均一な膜が安価に製造することができる。 Therefore, according to the present invention, the time required for forming a ferroelectric thin film having a thickness of 1 μm or more formed by a coating method such as spin coating or MOD is shortened, and a crack-free ferroelectric thin film is formed at low cost. can do. Further, when a device is produced from this ferroelectric thin film, a uniform film having a large area can be produced at low cost because the coating method is used.
以下、本発明の実施の形態を実施例に基づいて説明する。 Hereinafter, embodiments of the present invention will be described based on examples.
ここではチタン酸ジルコン酸鉛Pb(Zr、Ti)O3(通常PZTと言われている)の製造例について説明する。 Here, a production example of lead zirconate titanate Pb (Zr, Ti) O 3 (usually referred to as PZT) will be described.
この実施例のPb(Zr、Ti)O3の製造に際しては、強誘電体原料溶液として以下に示す成分及び含有量のものを用いた。
・PbOが11.5wt%
・ZrO2が5.2wt%
・TiO2が4.8wt%
・1−プロパノールが34.5wt%
・プロピレングリコールが44.0wt%
In the production of Pb (Zr, Ti) O 3 of this example, the following components and contents were used as the ferroelectric raw material solution.
・ PbO is 11.5wt%
· ZrO 2 is 5.2wt%
・ TiO 2 is 4.8wt%
・ 1-4.5% by weight of 1-propanol
・ Propylene glycol is 44.0 wt%
PZT圧電薄膜原料溶液(強誘電体原料溶液)を用いたスピンコート法によって、図2に示すようにPt下部電極2付MgO基板1上にPZT圧電薄膜3を成膜した。以下に実験の詳細を示す。 A PZT piezoelectric thin film 3 was formed on the MgO substrate 1 with the Pt lower electrode 2 by spin coating using a PZT piezoelectric thin film raw material solution (ferroelectric raw material solution) as shown in FIG. Details of the experiment are shown below.
スパッタリング法によって下部電極(白金、200nm)2を成膜した基板1上に、原料溶液を0.1ml滴下し、スピンコーター(500rpm×3秒、3000rpm×15秒)により均一に塗布(図1の塗布工程(ステップS1))した後、乾燥のために空気中で400℃、5分間加熱した(図1の乾燥工程(ステップS2))。 0.1 ml of the raw material solution is dropped on the substrate 1 on which the lower electrode (platinum, 200 nm) 2 is formed by sputtering, and is uniformly applied by a spin coater (500 rpm × 3 seconds, 3000 rpm × 15 seconds) (FIG. 1). After the coating step (step S1)), the substrate was heated in air at 400 ° C. for 5 minutes for drying (drying step (step S2) in FIG. 1).
この塗布と乾燥を計4回繰り返して得られた薄膜を、結晶化のために加熱開始から昇温速度平均2.0℃/minで700℃まで温度を上げ(図1の昇温工程(ステップS3))、空気中で1分間焼成して結晶化し(図1の焼成工程(ステップS4))、膜厚が160nmのPZT圧電薄膜を得た。 The temperature of the thin film obtained by repeating this coating and drying four times in total was increased from the start of heating to 700 ° C. at an average temperature increase rate of 2.0 ° C./min for crystallization (the temperature increasing step (step of FIG. 1)). S3)), and fired in air for 1 minute to crystallize (firing step in FIG. 1 (step S4)) to obtain a PZT piezoelectric thin film having a film thickness of 160 nm.
この塗布と乾燥を繰り返して得られた薄膜を結晶化するまでの工程(ステップS1〜S4)を7回繰り返し、所望の厚さとして膜厚1.1μmのPZT圧電薄膜3を得た。その上に、スパッタリング法によって上部電極(白金、200nm)4を成膜した。 The steps (steps S1 to S4) until the thin film obtained by repeating this coating and drying was crystallized 7 times to obtain a PZT piezoelectric thin film 3 having a desired thickness of 1.1 μm. An upper electrode (platinum, 200 nm) 4 was formed thereon by sputtering.
また、比較例として、従来技術を用いてPZT圧電薄膜を成膜した。原料溶液を0.1ml滴下し、スピンコーター(500rpm×3秒、3000rpm×15秒)で均一に塗布した後、乾燥のために空気中で400b、5分間加熱した。この塗布と乾燥を計4回繰り返して得た薄膜を、結晶化のために空気中で700℃、1分間焼成して、膜厚160mのPZT圧電薄膜を得た。 As a comparative example, a PZT piezoelectric thin film was formed using a conventional technique. 0.1 ml of the raw material solution was dropped and applied uniformly with a spin coater (500 rpm × 3 seconds, 3000 rpm × 15 seconds), and then heated in air for 400 b for 5 minutes for drying. A thin film obtained by repeating this coating and drying four times in total was baked in air at 700 ° C. for 1 minute for crystallization to obtain a 160-m thick PZT piezoelectric thin film.
この塗布と乾燥を繰り返して得られた薄膜を結晶化する工程を7回繰り返し、膜厚1.1μmのPZT圧電薄膜を得た。 The process of crystallizing the thin film obtained by repeating this coating and drying was repeated seven times to obtain a PZT piezoelectric thin film having a thickness of 1.1 μm.
従来技術を用いて成膜したPZT圧電薄膜(以下、比較例PZT−1とする)と本発明における製造方法で成膜したPZT圧電薄膜(以下、実施例PZT−2とする)のクラック有無の確認、X線回折測定、分極特性測定を行った。 The presence or absence of cracks in the PZT piezoelectric thin film (hereinafter referred to as Comparative Example PZT-1) formed using the conventional technique and the PZT piezoelectric thin film (hereinafter referred to as Example PZT-2) formed by the manufacturing method of the present invention. Confirmation, X-ray diffraction measurement, and polarization characteristic measurement were performed.
比較例PZT−1ではクラックの発生が確認できたのに対し、実施例PZT−2ではクラック発生は確認できなかった。 In Comparative Example PZT-1, the occurrence of cracks could be confirmed, whereas in Example PZT-2, the occurrence of cracks could not be confirmed.
X線回折測定結果は、比較例PZT−1がPZT(001)方位やPZT(002)方位の他にPZT(111)方位やPZT(110)方位などを示すピークが存在したのに対し、実施例PZT−2ではPZT(001)方位とPZT(002)方位を示すピークしか存在しなかった。また、分膜特性測定結果は、比較例PZT−1の分極値(2Pr)が75μC/cm2を示したのに対し、実施例PZT−2は110μC/cm2であった。 The X-ray diffraction measurement result shows that Comparative Example PZT-1 had peaks indicating the PZT (111) orientation and the PZT (110) orientation in addition to the PZT (001) orientation and the PZT (002) orientation. In Example PZT-2, only peaks indicating PZT (001) orientation and PZT (002) orientation were present. In addition, as a result of measuring the membrane properties, the polarization value (2Pr) of Comparative Example PZT-1 showed 75 μC / cm 2 , whereas Example PZT-2 was 110 μC / cm 2 .
次に最適条件について吟味した。 Next, the optimum conditions were examined.
表1に、加熱開始から600℃まで温度を上げ、空気中で1分間結晶化を行う焼成工程において、その加熱開始から600℃まで温度を上げる昇温速度の平均値を変えて成膜を行ったときの、PZT圧電薄膜のクラックの発生の有無についてまとめた結果を示す。 In Table 1, in the firing step in which the temperature is increased from the start of heating to 600 ° C. and crystallization is performed in the air for 1 minute, film formation is performed by changing the average value of the temperature increase rate at which the temperature is increased from the start of heating to 600 ° C. The result of having put together about the presence or absence of generation | occurrence | production of the crack of a PZT piezoelectric thin film at the time is shown.
表1から分かるように、昇温速度の平均値を0.5、1、2、4、8、16℃/minと変えたとき、昇温速度の平均値が0.5、1、2℃/minの場合はクラックの発生が見られなかった。昇温速度の平均値が4℃/minの場合にはクラックの発生が一部見られた。また、昇温速度の平均値が8、16℃/minと高い場合にはいずれもクラックが発生した。 As can be seen from Table 1, when the average value of the heating rate is changed to 0.5, 1, 2, 4, 8, 16 ° C./min, the average value of the heating rate is 0.5, 1, 2 ° C. In the case of / min, no crack was observed. When the average value of the heating rate was 4 ° C./min, some cracks were observed. Further, cracks occurred in all cases where the average value of the heating rate was as high as 8 and 16 ° C./min.
よって、本発明の効果として、塗布と乾燥を交互に複数回繰り返して得られた薄膜を結晶化する工程を膜厚が1μm以上になるまで繰り返したとき、加熱開始から600℃で結晶化したときの昇温速度の平均値が2.0℃/min以下ではクラックが発生しないことが確認された。 Therefore, as an effect of the present invention, when the process of crystallizing a thin film obtained by alternately repeating coating and drying a plurality of times is repeated until the film thickness becomes 1 μm or more, when crystallizing at 600 ° C. from the start of heating It was confirmed that cracks did not occur at an average value of the heating rate of 2.0 ° C./min or less.
<他の実施例、変形例>
上記実施例1、2においては、そのPZT圧電薄膜の成膜方法において基板としてMgO基板を使用したが、本発明はそれに限定されるものではなく、ガラス基板、SiO2/Si基板などでも応用できるものである。
<Other embodiments and modifications>
In the above first and second embodiments have been using MgO as the substrate in the film forming method of the PZT piezoelectric thin film, the present invention is not limited thereto, the glass substrate can also be applied in such SiO 2 / Si substrate Is.
また、下部・上部両電極においても、その成膜方法はスパッタリング法に限定されるものではなく、EB蒸着法などでも応用できるものである。また、電極に使用した材料は白金(Pt)であったが、本発明はそれに限定されるものではなく、イリジウム(Ir)、ルテニウム(Ru)、タンタル(Ta)、チタン(Ti)、アルミニウム(Al)、ニッケル(Ni)、金(Au)などの金属及び金属酸化物などでも応用できるものである。 Further, the film formation method for both the lower and upper electrodes is not limited to the sputtering method, but can also be applied by the EB vapor deposition method or the like. Moreover, although the material used for the electrode was platinum (Pt), the present invention is not limited thereto, and iridium (Ir), ruthenium (Ru), tantalum (Ta), titanium (Ti), aluminum ( The present invention can also be applied to metals such as Al), nickel (Ni), gold (Au), and metal oxides.
なお、本発明は強誘電体薄膜だけではなく、超伝導薄膜、磁性体薄膜、その他金属酸化物薄膜、等にも応用できるものである。 The present invention can be applied not only to a ferroelectric thin film but also to a superconducting thin film, a magnetic thin film, and other metal oxide thin films.
1 MgO基板
2 Pt下部電極
3 PZT圧電薄膜
4 Pt上部電極
1 MgO substrate 2 Pt lower electrode 3 PZT piezoelectric thin film 4 Pt upper electrode
Claims (4)
上記600℃以上の加熱処理により焼成するときの加熱開始から600℃に到達する間の昇温速度の平均を2.0℃/分以下に設定し、所望の厚さの強誘電体薄膜が得られるまで、上記塗布・乾燥工程と結晶化の焼成工程を繰り返すことを特徴とする強誘電体薄膜の製造方法。 Including a step of applying an arbitrary amount of a ferroelectric raw material solution on a substrate and drying it once or a plurality of times, and baking the obtained thin film by heat treatment at 600 ° C. or more to crystallize the thin film at a time. In the manufacturing method of the ferroelectric thin film by the coating method,
The average rate of temperature rise from the start of heating to 600 ° C. when firing by the heat treatment at 600 ° C. or higher is set to 2.0 ° C./min or less to obtain a ferroelectric thin film having a desired thickness. The method for producing a ferroelectric thin film characterized in that the coating / drying step and the crystallization firing step are repeated until it is completed.
上記600℃以上700℃以下の加熱処理により焼成するときの加熱開始から少なくとも600℃に到達する間の昇温速度の平均を2.0℃/分以下に設定し、所望の厚さの強誘電体薄膜が得られるまで、上記塗布・乾燥工程と結晶化の焼成工程を繰り返すことを特徴とする強誘電体薄膜の製造方法。 A process of applying an arbitrary amount of a ferroelectric material solution on a substrate and drying it by heat treatment at 500 ° C. or less is performed once or a plurality of times, and the obtained thin film is baked by heat treatment at 600 ° C. or more and 700 ° C. or less. In a method for manufacturing a ferroelectric thin film by a coating method including a step of crystallizing at a time,
The average of the heating rate during the time of reaching 600 ° C. from the start of heating when firing by the heat treatment of 600 ° C. or more and 700 ° C. or less is set to 2.0 ° C./min or less, and a ferroelectric having a desired thickness A method for producing a ferroelectric thin film, comprising repeating the coating / drying step and the crystallization firing step until a thin body film is obtained.
上記所望の厚さとして1μm以上の膜厚の強誘電体薄膜が得られるまで、上記塗布・乾燥工程と結晶化の焼成工程を繰り返すことを特徴とする強誘電体薄膜の製造方法。 In the manufacturing method of the ferroelectric thin film according to claim 1 or 2,
A method for producing a ferroelectric thin film, characterized in that the coating / drying step and the crystallization firing step are repeated until a ferroelectric thin film having a thickness of 1 μm or more is obtained as the desired thickness.
上記強誘電体原料溶液として、PZT、PLZT、SBT、BIT、BST、LiNbO3、SrBi2Nb2O9のいずれかを用いることを特徴とする強誘電体薄膜の製造方法。 In the manufacturing method of the ferroelectric thin film in any one of Claims 1-3,
One of PZT, PLZT, SBT, BIT, BST, LiNbO 3 , and SrBi 2 Nb 2 O 9 is used as the ferroelectric raw material solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005037357A JP2006228447A (en) | 2005-02-15 | 2005-02-15 | Manufacturing method for ferroelectric thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005037357A JP2006228447A (en) | 2005-02-15 | 2005-02-15 | Manufacturing method for ferroelectric thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006228447A true JP2006228447A (en) | 2006-08-31 |
Family
ID=36989657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005037357A Pending JP2006228447A (en) | 2005-02-15 | 2005-02-15 | Manufacturing method for ferroelectric thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006228447A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007329188A (en) * | 2006-06-06 | 2007-12-20 | Tdk Corp | Thin-film dielectric element, and forming method of laminate therefor |
JP2009177171A (en) * | 2007-12-28 | 2009-08-06 | Mitsubishi Materials Corp | Dielectric film, its manufacturing method and use |
JP2011253768A (en) * | 2010-06-03 | 2011-12-15 | National Institute Of Advanced Industrial & Technology | Method of manufacturing oxide superconductor thin film |
JP2014154610A (en) * | 2013-02-06 | 2014-08-25 | Ricoh Co Ltd | Thin film manufacturing method, electromechanical conversion element, liquid discharge head, and ink jet recording device |
-
2005
- 2005-02-15 JP JP2005037357A patent/JP2006228447A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007329188A (en) * | 2006-06-06 | 2007-12-20 | Tdk Corp | Thin-film dielectric element, and forming method of laminate therefor |
JP2009177171A (en) * | 2007-12-28 | 2009-08-06 | Mitsubishi Materials Corp | Dielectric film, its manufacturing method and use |
JP2013153179A (en) * | 2007-12-28 | 2013-08-08 | Mitsubishi Materials Corp | Dielectric thin film without crack on surface thereof |
JP2011253768A (en) * | 2010-06-03 | 2011-12-15 | National Institute Of Advanced Industrial & Technology | Method of manufacturing oxide superconductor thin film |
JP2014154610A (en) * | 2013-02-06 | 2014-08-25 | Ricoh Co Ltd | Thin film manufacturing method, electromechanical conversion element, liquid discharge head, and ink jet recording device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009157189A1 (en) | Piezoelectric element and method for manufacturing the same | |
JP6967008B2 (en) | Piezoelectric thin film element | |
JP2008042069A (en) | Piezoelectric element, and its manufacturing method | |
TW200539428A (en) | Precursor composition, method for manufacturing precursor composition, method for manufacturing ferroelectric film, piezoelectric element, semiconductor device, piezoelectric actuator, ink jet recording head, and ink jet printer | |
KR100932573B1 (en) | Ferroelectric Capacitors, Method of Making Ferroelectric Capacitors, and Ferroelectric Memory | |
US6639340B1 (en) | Method for manufacturing piezoelectric element, and piezoelectric element, ink-jet recording head and printer | |
JP5861278B2 (en) | Thin film capacitor manufacturing method and thin film capacitor obtained by the method | |
JP2004107179A (en) | Precursor sol of piezoelectric material, method of manufacturing piezoelectric film, piezoelectric element, and inkjet recording head | |
JP2004107181A (en) | Composition for forming piezoelectric element, method of manufacturing piezoelectric film, piezoelectric element and inkjet recording head | |
CN105190848B (en) | The silicon substrate of subsidiary ferroelectric film | |
JP2006228447A (en) | Manufacturing method for ferroelectric thin film | |
JP3944917B2 (en) | Method for forming oxide ceramic thin film | |
JP5461951B2 (en) | Manufacturing method of ceramic film | |
JP4766299B2 (en) | (111) Oriented PZT Dielectric Film Forming Substrate, (111) Oriented PZT Dielectric Film Formed Using This Substrate | |
JP2012169400A (en) | Manufacturing method of ferroelectric film and ferroelectric element using the same | |
EP3220431A1 (en) | A piezoelectric thin film element | |
JP4433214B2 (en) | Method for manufacturing piezoelectric element and piezoelectric element | |
GB2548377A (en) | A piezoelectric thin film element | |
JP2001213624A (en) | Process of preparing ferroelectric thin film and raw material solution therefor | |
JP2006076835A (en) | Ferroelectric thin film and method of forming the same | |
JP2005217219A (en) | Ferroelectric thin film and manufacturing method thereof | |
JPH11330389A (en) | Manufacture of dielectric memory | |
JP5531853B2 (en) | Thin film capacitor manufacturing method and thin film capacitor obtained by the method | |
JP2017228760A (en) | Piezoelectric substrate and method of manufacturing the same, and liquid ejection head | |
JP2006278986A (en) | Process for forming dielectric thin film and piezoelectric device employing dielectric film formed by that method |