JP2006075898A - Aluminum and aluminum alloy spiral tube, and its manufacturing method, friction stir welding method, and structure of friction stir-welded aluminum and aluminum alloy - Google Patents

Aluminum and aluminum alloy spiral tube, and its manufacturing method, friction stir welding method, and structure of friction stir-welded aluminum and aluminum alloy Download PDF

Info

Publication number
JP2006075898A
JP2006075898A JP2004295420A JP2004295420A JP2006075898A JP 2006075898 A JP2006075898 A JP 2006075898A JP 2004295420 A JP2004295420 A JP 2004295420A JP 2004295420 A JP2004295420 A JP 2004295420A JP 2006075898 A JP2006075898 A JP 2006075898A
Authority
JP
Japan
Prior art keywords
pin
friction stir
stir welding
shoulder
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004295420A
Other languages
Japanese (ja)
Inventor
Tsutomu Amao
勉 天尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004295420A priority Critical patent/JP2006075898A/en
Publication of JP2006075898A publication Critical patent/JP2006075898A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/12Making tubes or metal hoses with helically arranged seams
    • B21C37/122Making tubes or metal hoses with helically arranged seams with welded or soldered seams

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum and aluminum alloy spiral tube of high quality and highly efficient manufacture and to establish its manufacturing method, to prevent occurrence of an unjoined part on the rear face of a material to be joined in a friction stir welding method, and to make such rear face a decorative face to be externally viewed. <P>SOLUTION: The spiral tube is manufactured by continuous manufacturing process including: a forming means by which a belt-like material is formed into a circular spiral shape; and a friction stir welding means in which a rotary tool (7) comprising a pin (5) and a shoulder (6) with a recess (8) around the pin is arranged in the inner circumferential face in the butting part of the formed body (4), in which, while rotating the tool, the pin is inserted till the shoulder part bites the butting part with the sweepback angle (θ), and in which a back bead is formed, while producing a burr, by a rotary roller (10) having also a role of a backing material, on the outer circumferential face of the abutting part of the formed body. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、アルミニウム及びアルミニウム合金のスパイラル管及びその製造方法並びに摩擦攪拌接合方法及びその構造体に係るものである。  The present invention relates to a spiral tube of aluminum and aluminum alloy, a manufacturing method thereof, a friction stir welding method, and a structure thereof.

従来のアルミニウム及びアルミニウム合金の管に適用されている製造方法を管の直径サイズとの関連でまとめて表したのが表1である(例えば、非特許文献1及び非特許文献2参照)。継目無管には、引抜管と押出管とがある。引抜管の最大外径は約200mm,押出管の最大外径は約420mmである。継目有管には、高周波誘導加熱溶接管とア−ク溶接管とがある。高周波誘導加熱溶接管の最大外径は約100mmである。ア−ク溶接管の外径サイズは約200〜1,500mmとその製造範囲は最も広い。しかし、溶接性の観点から、2000系、6000系及び7000系のアルミニウム合金には、高周波誘導加熱溶接管及びア−ク溶接管は存在しない。また、かかるア−ク溶接管は、品質的には、融合不良、割れ及びブロ−ホ−ル等が発生し易いという欠点がある。さらには、径が異なる多種類の管を製造する場合には、かかる径に対応する多種類の幅の帯材を準備しなければならないという欠点がある。なお、溶接管の溶接方向は管の長手方向であり、管に内圧が作用した場合には、長手方向には最大の応力が作用し、管の円周に生じる応力の2倍である。  Table 1 shows the production methods applied to conventional aluminum and aluminum alloy pipes in relation to the diameter size of the pipes (see, for example, Non-Patent Document 1 and Non-Patent Document 2). The seamless pipe includes a drawn pipe and an extruded pipe. The maximum outer diameter of the drawn tube is about 200 mm, and the maximum outer diameter of the extruded tube is about 420 mm. The jointed pipe includes a high-frequency induction heating welded pipe and an arc welded pipe. The maximum outer diameter of the high frequency induction heating welded tube is about 100 mm. The outer diameter size of the arc welded pipe is about 200 to 1,500 mm, and its manufacturing range is the widest. However, from the viewpoint of weldability, the 2000 series, 6000 series and 7000 series aluminum alloys do not have a high-frequency induction heating welded arc or an arc welded pipe. In addition, such arc welded pipes have the disadvantage that in terms of quality, poor fusion, cracks, blow holes, etc. are likely to occur. Furthermore, when manufacturing many types of pipes having different diameters, there is a drawback in that strips having various types of widths corresponding to the diameters must be prepared. The welding direction of the welded pipe is the longitudinal direction of the pipe. When internal pressure is applied to the pipe, the maximum stress is applied in the longitudinal direction, which is twice the stress generated on the circumference of the pipe.

近年、摩擦攪拌接合方法が開発され、国内出願特許文献は200件にも及び、溶接学会誌においても多数の研究発表や解説が特集として掲載されている。摩擦攪拌接合法の特徴の一つとして、溶加材を加えないので接合部が健全であるためには、接合部の肉厚は、理論上、母材の原質部よりも薄くなって当然である。接合中に「ばり」としての材料ロスや突合精度に起因する材料の体積不足があるからである。例えば、特許文献1で述べているショルダ−面の食込み量(t)の“アンダ−カット”による肉厚減少のことである。したがって、かかる接合方法の適用は肉厚の許容差の規定の厳しいものには向かない。一方、かかる摩擦攪拌接合法の欠点を解決するために、突合箇所に凸状部分(14)を設けた方法が多く提案され、回転工具(7)のショルダ−部分(6)の直径に等しい幅の凸状部分が開示されている(例えば、非特許文献3)。しかし、図12の上図に示すように、回転工具(7)を被接合材(9)に垂直にショルダ−(6)の全面を食込ませた場合には、摩擦による加熱が生じる前に、かかる凸状部分(14)がショルダ−部分によって切削されて十分にその効果が生じない。また、図12の下図に示すように、後退角(θ)をもってショルダ−面を被接合材の面に食込ませた場合には、接合箇所の上面が円弧形状に形成されて、かかる凸状部分の取り残し部分(15)が生じ、接合後にかかる取り残し部分を削除する後工程が必要となる。  In recent years, friction stir welding methods have been developed, and there are 200 domestically applied patent documents, and numerous research announcements and explanations are featured in the Journal of the Japan Welding Society. One of the features of the friction stir welding method is that, since no filler material is added, the joint thickness is theoretically thinner than the base material of the base material so that the joint is sound. It is. This is because there is a material loss as a “burr” during joining and a lack of material volume due to butt accuracy. For example, the thickness reduction due to the “undercut” of the shoulder surface biting amount (t) described in Patent Document 1. Therefore, the application of such a joining method is not suitable for a strict regulation of wall thickness tolerance. On the other hand, in order to solve the disadvantages of the friction stir welding method, many methods have been proposed in which a convex portion (14) is provided at the abutting portion, and the width equal to the diameter of the shoulder portion (6) of the rotary tool (7). Is disclosed (for example, Non-Patent Document 3). However, as shown in the upper diagram of FIG. 12, when the rotary tool (7) is encroached on the entire surface of the shoulder (6) perpendicularly to the material to be joined (9), before heating by friction occurs. The convex portion (14) is cut by the shoulder portion and the effect is not sufficiently produced. In addition, as shown in the lower diagram of FIG. 12, when the shoulder surface is bitten into the surface of the material to be joined with a receding angle (θ), the upper surface of the joining portion is formed in an arc shape, and the convex shape The left part (15) of a part arises, and the post process which deletes this left part after joining is needed.

一方、摩擦攪拌接合法には、接合後に取り外しができる裏当て材方式が適用され、当該裏当て材が接する被接合材の裏面に接合不良の欠陥が発生し、多くの解決方法が提案されている(例えば、特許文献2)。しかし、かかる提案では、裏面の接合不良は減少するものの皆無とすることは難しい。その理由は、摩擦熱による加熱と裏当て材による冷却との相反する現象を同時進行させることに無理があると解するからである。なお、特許文献3には、スパイラル管のスパイラル状の突合箇所に管の内面から接合する摩擦攪拌接合法を適用した技術が開示されている。内面から接合する理由として、外周面の外観がきれいであること、回転工具(7)の加圧の反力を管の内周面で受けることができるとしている。しかし、管の外周面の外観をきれいに見せるための手段や外周面の接合不良防止のための手段(どのような裏当て方式を採用するのか、等)については、一切開示していない。また、かかるスパイラル管は、管の長さに比較して帯材の巻き数が多く、接合箇所の長さも長くなり、管の成形工程と接合工程とを独立した工程にしたのでは、製造能率が著しく低くなるという欠点がある。  On the other hand, in the friction stir welding method, a backing material method that can be removed after joining is applied, and a defect of joining failure occurs on the back surface of the material to be joined that the backing material contacts, and many solutions have been proposed. (For example, Patent Document 2). However, with such a proposal, it is difficult to eliminate the bonding failure on the back surface although it decreases. The reason is that it is understood that it is impossible to simultaneously proceed the opposite phenomena of heating by frictional heat and cooling by the backing material. Patent Document 3 discloses a technique in which a friction stir welding method in which a spiral tube is joined from the inner surface of a spiral tube to a spiral butt portion is disclosed. The reason for joining from the inner surface is that the outer peripheral surface is clean and the pressure reaction force of the rotary tool (7) can be received by the inner peripheral surface of the tube. However, there is no disclosure of any means for making the appearance of the outer peripheral surface of the pipe clean and means for preventing the bonding failure of the outer peripheral surface (what kind of backing method is adopted, etc.). In addition, the spiral tube has a larger number of windings of the strip material than the length of the tube, and the length of the joining portion becomes longer. If the forming process and the joining process of the pipe are made independent, the production efficiency Has a disadvantage that it becomes extremely low.

特許番号第2792233号特許公報    Patent No. 2792233 Patent Publication 特開2001−71155号公報    JP 2001-71155 A 特開平11−226756号公報    JP 11-226756 A JIS H 4080,アルミニウム及びアルミニウム合金継目無管    JIS H 4080, aluminum and aluminum alloy seamless pipe JIS H 4090,アルミニウム及びアルミニウム合金溶接管    JIS H 4090, aluminum and aluminum alloy welded pipe 岡村久宣著、摩擦攪拌接合(FSW)の特徴と日本における適用状況、溶接学会誌、69(2000)、14ペ−ジ、図8    Okamura Hisanobu, Characteristics of Friction Stir Welding (FSW) and Application in Japan, Journal of the Japan Welding Society, 69 (2000), page 14, Fig. 8

発明が解決しようとする課題は、上述の問題点を解決することにあり、次の記載のとおりである。ア−ク溶接管と同じ外径サイズを有する2000系、6000系及び7000系を含むアルミニウム及びアルミニウム合金の高品質・高能率製造管の提供及びその製造方法の確立にある。そして、スパイラル管の場合には、管内の内圧の作用によって生じる最大応力は管の長手方向であり、スパイラル状の接合箇所ではないために、接合部の品質が高い摩擦攪拌接合方法の適用によって、かかる接合箇所の肉厚が上述したように減少しても支障が少ないことに着目した。アルミニウム及びアルミニウム合金のア−ク溶接管(非特許文献2)の肉厚の許容差の規定(呼び径450A以下の場合:+15%、−12.5%、呼び径450Aを超える場合:+15%、−10%)を適用したとしても、摩擦攪拌接合による肉厚の減少は10%以下であり、かかる許容差を十分に満足すべきものと考える。また、かかるスパイラル管の製造能率を高める方法として、管の成形手段と管の接合工程とを連続工程にすれば良いことにも着目した。  The problem to be solved by the invention is to solve the above-mentioned problems, as described below. The present invention is to provide high-quality and high-efficiency production pipes for aluminum and aluminum alloys including 2000 series, 6000 series and 7000 series having the same outer diameter size as arc welded pipes and to establish a production method therefor. And in the case of a spiral tube, the maximum stress generated by the action of the internal pressure in the tube is the longitudinal direction of the tube, and since it is not a spiral joint location, by applying a friction stir welding method with high joint quality, It has been noted that there is little trouble even if the thickness of the joint portion is reduced as described above. Specification of tolerance of thickness of arc welded pipe of aluminum and aluminum alloy (Non-patent document 2) (Nominal diameter 450A or less: + 15%, -12.5%, Nominal diameter 450A exceeding: + 15% -10%), the thickness reduction due to friction stir welding is 10% or less, and this tolerance is considered to be sufficiently satisfied. In addition, as a method for increasing the manufacturing efficiency of such a spiral tube, attention was paid to the fact that the tube forming means and the tube joining step may be made continuous.

また、後退角(θ)を適用した回転工具(7)を管の内周面に配備し、内周面からの接合をした場合には、接合箇所を円弧形状にすることができ、管の内周面を倣わせることができる点にも着目した。さらには、スパイラル管と言えども、接合箇所の肉厚の許容差がより小さくなるように要求される場合に対処して、予め設けられる突合箇所の凸状部分を接合のために有効に利用し、取り残し部分が生じない方法にも着目した。  In addition, when the rotary tool (7) to which the receding angle (θ) is applied is arranged on the inner peripheral surface of the pipe and joined from the inner peripheral face, the joining portion can be formed into an arc shape. We also paid attention to the fact that the inner peripheral surface can be imitated. Furthermore, even in the case of a spiral tube, it is necessary to effectively use the convex portion of the butt portion provided in advance for joining in response to a case where the tolerance of the thickness of the joint portion is required to be smaller. We also focused on the method that left no part left.

他の課題は、接合後に取り外しができる裏当て材を適用した摩擦攪拌接合法の欠点である裏側の接合不良を防止し、しかもかかる裏面を外観視できる化粧面にすることにある。突合箇所の裏面における摩擦加熱による塑性流動帯の攪拌化に対し、裏当て材による当該塑性流動帯の冷却固化との間にタイムラグ(時間の遅れ)を設ければ、裏側の接合不良を防止できることに気付いた。そして、裏当て材として回転ロ−ラ−(10)の適用に着目した。また、かかる回転ロ−ラ−(10)の零時よりも前の時点で塑性流動帯を適性に膨らませ、当該回転ロ−ラ−の零時の時点でかかる塑性流動帯を冷却固化すれば、ばりを生じさせながら目的とする裏ビ−ド形状(やや膨らませる、ややへこませる、平らにする)に成形することもでき、外観視できる化粧面に仕上げることができる点にも着目した。ここで、「裏ビ−ド」とは、突合箇所の裏面(管の場合には外周面)が塑性流動・攪拌化し、かかる塑性流動帯部分が回転ロ−ラ−によって成形されながら冷却固化した部分をいう。すなわち、裏ビ−ド形状に成形されるためには、「ばり」の発生が必須であり、当該ばりの大部分は、回転ロ−ラ−によって薄く圧延され千切れ除去される。かかるロ−ラ−と被接合材との間に小さい隙間がある場合には、当該ばりが残る場合もあるが薄く圧延されているために簡単に除去することができ、何ら支障をきたすものではない。なお、多くの実験結果から、裏面に「ばり」の発生が確認できた場合、裏面の接合不良が皆無であることが判明し、後述するように接合工程における品質管理面にも大きく寄与する。  Another problem is to prevent a back side joining failure, which is a disadvantage of the friction stir welding method using a backing material that can be removed after joining, and to make the back side a cosmetic surface that can be visually seen. By providing a time lag (time delay) between the plastic flow zone agitated by frictional heating at the back of the butt location and cooling and solidification of the plastic flow zone by the backing material, it is possible to prevent poor bonding on the back side. I noticed. Then, attention was paid to the application of the rotary roller (10) as a backing material. Further, if the plastic flow zone is appropriately expanded at a time point before midnight of the rotary roller (10), and the plastic flow zone is cooled and solidified at the time point of time of the rotary roller, We also paid attention to the fact that it can be molded into the desired back bead shape (slightly inflated, slightly dented, flattened) while producing a flash, and it can be finished into a cosmetic surface that can be visually seen. Here, the “back bead” means that the back surface of the abutting portion (the outer peripheral surface in the case of a tube) is plastically flowed and stirred, and the plastic flow zone portion is cooled and solidified while being formed by a rotating roller. Say part. That is, in order to be formed into a back bead shape, the occurrence of “burrs” is indispensable, and most of the flashes are thinly rolled and removed by a rotating roller. If there is a small gap between the roller and the material to be joined, the flash may remain, but since it is rolled thinly, it can be easily removed and does not cause any trouble. Absent. From the results of many experiments, when the occurrence of “burrs” on the back surface can be confirmed, it has been found that there is no bonding failure on the back surface, which greatly contributes to quality control in the bonding process as will be described later.

本発明に係る  According to the present invention

請求項1Claim 1

及びas well as

請求項2Claim 2

に記載のアルミニウム及びアルミニウム合金のスパイラル管及びその製造方法は、次のとおりである。帯材(3)の両側面(a,b)が突合うように円形のスパイラル状に成形するロ−ル成形手段(1、2)と、当該成形体(4)の突合箇所(a,b)の内周面にピン(5)とピンの周囲に凹面(8)を有するショルダ−(6)からなる回転工具(7)を配備し、当該工具を回転させながらピンを後退角(θ)をもってショルダ−の部分が当該突合箇所に食込むまで挿入し、当該成形体の突合箇所の外周面に裏当て材の役割を兼ね備えた回転ロ−ラ−(10)によってばりを生じさせながら裏ビ−ドを成形する摩擦攪拌接合手段と、の連続工程によって製造されることを特徴とする(図1、図2、図3、図4)。The aluminum and aluminum alloy spiral tubes described in 1) and the production method thereof are as follows. Roll forming means (1, 2) for forming a circular spiral so that both side surfaces (a, b) of the strip (3) abut each other, and the abutting locations (a, b) of the molded body (4) ) Is provided with a rotating tool (7) comprising a pin (5) on the inner peripheral surface and a shoulder (6) having a concave surface (8) around the pin, and the pin is moved backward (θ) while rotating the tool. Until the shoulder portion bites into the abutting portion, and the outer peripheral surface of the shaped portion is joined to the outer peripheral surface of the abutting portion by a rotating roller (10) that also serves as a backing material. -It is manufactured by the continuous process of the friction stir welding means which shape | molds a door (FIG.1, FIG.2, FIG.3, FIG.4).

本発明に係る  According to the present invention

請求項3Claim 3

及びas well as

請求項7Claim 7

に記載のアルミニウム及びアルミニウム合金の摩擦攪拌接合方法及びその構造体は、次のとうりである。両被接合材(9)の突合箇所の一方の面にピン(5)とピンの周囲に凹面(8)を有するショルダ−(6)からなる回転工具(7)を配備し、当該工具を回転させながらピンを後退角(θ)をもってショルダ−の部分が当該突合箇所に食込むまで挿入し、両被接合材の突合箇所の他方の面に裏当て材の役割を兼ね備えた回転ロ−ラ−(10)によってばりを生じさせながら裏ビ−ドを成形する手段を有して接合されることを特徴とする(図5)。The friction stir welding method for aluminum and aluminum alloy and the structure thereof described in 1) are as follows. A rotating tool (7) comprising a pin (5) and a shoulder (6) having a concave surface (8) around the pin is provided on one surface of the abutting portion of both the workpieces (9), and the tool is rotated. Rotating roller with a receding angle (θ) while the shoulder is inserted until the shoulder part bites into the abutting location, and also serves as a backing material on the other side of the abutting location of both materials to be joined It is characterized by having a means for forming a back bead while producing a burr according to (10) (FIG. 5).

本発明に係る  According to the present invention

請求項4Claim 4

に記載の摩擦攪拌接合方法は、請求項3の従属請求項として、ピン(5)を先細りの螺旋形状とし、当該ピンのねじ込み方向と逆方向に回転工具(7)を回転させながら接合することを特徴とする。
本発明に係る
In the friction stir welding method described in claim 3, as a dependent claim of claim 3, the pin (5) has a tapered spiral shape and is joined while rotating the rotary tool (7) in the direction opposite to the screwing direction of the pin. It is characterized by.
According to the present invention

請求項5Claim 5

に記載の摩擦攪拌接合方法は、請求項3又は請求項4の従属請求項として、回転工具(7)がピン(5)とショルダ−(6)の組立構造からなり、かつ、ピンの長さの微調整ができる精密ねじ構造を有することを特徴とする。
本発明に係る
According to the friction stir welding method described in claim 3, as a dependent claim of claim 3 or claim 4, the rotary tool (7) comprises an assembly structure of a pin (5) and a shoulder (6), and the length of the pin It has a precision screw structure that can be finely adjusted.
According to the present invention

請求項6Claim 6

に記載の摩擦攪拌接合方法は、請求項3、請求項4又は請求項5の従属請求項として、両被接合材の突合箇所にピン(5)の最小直径よりも小さい幅の凸部(14)を設けて接合することを特徴とする。In the friction stir welding method described in claim 3, as a subordinate claim of claim 3, claim 4 or claim 5, the protrusions (14) having a width smaller than the minimum diameter of the pin (5) at the abutting locations of the two materials to be joined. ) To be joined.

発明の効果The invention's effect

本発明の完成によって、2000系、6000系及び7000系を含むアルミニウム及びアルミニウム合金の直径200mm以上のスパイラル管の高能率製造が達成され、製造コスト低減に寄与する。  With the completion of the present invention, high-efficiency production of spiral tubes having a diameter of 200 mm or more of aluminum and aluminum alloys including 2000 series, 6000 series and 7000 series is achieved, which contributes to a reduction in production cost.

また、摩擦攪拌接合方法の裏面の接合不良を防止することによって、一層高品質の接合を提供することができ、しかも、スパイラル管の外周面のみならず、その他の摩擦攪拌接合構造体の裏面に特別の仕上げ工程を導入することなく外観視できる化粧面に仕上げることができ、工数低減及びコスト低減に寄与する。なお、裏面のばりの発生の有無のみの確認によって裏面の接合不良の有無が分かり、接合工程における品質管理が著しく容易となる。  Further, by preventing poor bonding on the back surface of the friction stir welding method, it is possible to provide higher quality bonding, and not only on the outer peripheral surface of the spiral tube but also on the back surface of other friction stir welding structures. A cosmetic surface that can be visually seen without introducing a special finishing process can be finished, which contributes to man-hour reduction and cost reduction. It should be noted that the presence or absence of backside bonding failure can be determined by checking only the presence or absence of backside flash, and the quality control in the joining process is significantly facilitated.

本発明に係るアルミニウム及びアルミニウム合金のスパイラル管及びその製造方法の実施のための最良の形態について、以下に詳述する。  BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the aluminum and aluminum alloy spiral tube and the manufacturing method thereof according to the present invention will be described in detail below.

一定の所定幅のアルミニウム又はアルミニウム合金の帯材(3)を用意し、図6に示すようにαの角度の部分を切り落としても良い。当該切り落としの長さ(c)が成形体(4)の周の長さになるからである。そして、図1に示すような成形機に当該帯材(3)を供給角度(β)で供給し、当該帯材の両側面(aとb)が突合うように円形のスパイラル状に巻いた成形体(4)とするロ−ル成形手段としても良い。図1には、2個の駆動ロ−ル(1)と1個の加圧ロ−ルを示しているが、駆動ロ−ル同士の間隔と加圧ロ−ルとの位置関係によって成形体の曲率半径を調節する。  A strip (3) of aluminum or aluminum alloy having a predetermined width may be prepared, and the α angle portion may be cut off as shown in FIG. This is because the length (c) of the cut-off is the circumferential length of the molded body (4). Then, the strip (3) is supplied to a molding machine as shown in FIG. 1 at a supply angle (β) and wound in a circular spiral shape so that both side surfaces (a and b) of the strip collide. It is good also as a roll shaping | molding means used as a molded object (4). FIG. 1 shows two drive rolls (1) and one pressurization roll, but the molded body depends on the positional relationship between the drive rolls and the pressurization roll. Adjust the radius of curvature.

図7に、所定幅(w)の帯幅の切断角度(α)と成形体(4)のピッチ長さ(p)、成形体(4)の直径(d)との関係を  FIG. 7 shows the relationship between the cutting angle (α) of the band width of the predetermined width (w), the pitch length (p) of the molded body (4), and the diameter (d) of the molded body (4).

数1Number 1

及びas well as

数2Number 2

から求め、示す。ここで、dはFind and show from. Where d is

数1Number 1

p=w/sinα      p = w / sin α

数2Number 2

d=w/3.14cosα
、実質的には、上述のとおり駆動ロ−ル同士の間隔と加圧ロ−ルの位置関係によって定まるものである。
d = w / 3.14 cos α
Substantially, it is determined by the distance between the drive rollers and the positional relationship between the pressure rollers as described above.

本発明が対象とする直径200〜1,500mmを1種類の帯材で達成しても良い。そのために、αとして45以上を適用する場合、60度以上を適用する場合及び75度以上を適用する場合のそれぞれについて、帯幅を  The diameter of 200 to 1,500 mm targeted by the present invention may be achieved with one type of band material. For that reason, when applying 45 or more as α, when applying 60 degrees or more and when applying 75 degrees or more, the bandwidth is set.

数2Number 2

を変形して求めた。すなわち、dにWas obtained by transforming. That is, to d

数2Number 2

の変形式 w=d×3.14cosα
200の値を代入し、αには45度、60度及び75度のそれぞれの値を代入して求めた。併せて、それぞれの直径に対する帯材の供給角度(β)とピッチ長さ(p)を
The deformation formula of w = d × 3.14 cos α
The value of 200 was substituted, and the values of 45 degrees, 60 degrees, and 75 degrees were substituted for α. In addition, the supply angle (β) and the pitch length (p) of the strip for each diameter

数3Number 3

When

数1Number 1

から求めた。これらを図8に示す。これより、適用するαの角度が45度以上I asked for it. These are shown in FIG. From this, the angle of α to apply is 45 degrees or more

数3Number 3

β=90−α
の場合、特にdが500mm以下の小径の場合にピッチ長さの変化が大きく、帯材の供給角度βの厳格な管理が重要となる。これに対して、αとして75度以上を適用する場合には、dに対するpの変動幅が著しく小さくなりβの管理がし易いが、帯材の幅(w)が著しく小さくなり、接合の長さが著しく長くなる。したがって、αとして、60度以上の適用が妥当であると考える。
一方、管の直径が特定のサイズのものに限定されている場合には、それぞれの直径ごとに帯幅を変えても良い。図9は、αとして75度の一定値を適用した場合のdとwとの関係を
β = 90−α
In this case, especially when d is a small diameter of 500 mm or less, the change in the pitch length is large, and strict management of the supply angle β of the strip is important. On the other hand, when α is 75 ° or more, the fluctuation range of p with respect to d is remarkably small and β can be easily managed. Is significantly longer. Therefore, application of 60 degrees or more as α is considered appropriate.
On the other hand, when the diameter of the tube is limited to a specific size, the band width may be changed for each diameter. FIG. 9 shows the relationship between d and w when a constant value of 75 degrees is applied as α.

数2Number 2

の変形式から求め示したものである。このようにすることにより、直径(d)に比例して帯幅(w)の広いものを適用することができ、より一層の高能率製造が達成されるからである。また、所定の範囲ごとにグル−プ化し、かかる範囲ごとに1種類の帯材を準備しても良い。It is obtained from the deformation formula of By doing so, it is possible to apply a material having a wide band width (w) in proportion to the diameter (d), thereby achieving further high-efficiency production. Further, a predetermined range may be grouped, and one type of band material may be prepared for each range.

本発明が適用する摩擦攪拌接合手段においては、成形体(4)の内面から接合する。成形体の外面から接合した場合には、ばりの発生が著しく多くなるからである。そのために、ピン(5)とピンの周囲に凹面(8)を有するショルダ−(6)からなる回転工具(7)を成形体の内面に配備する(図2)。ピン(5)の周囲に凹面を有するのは、摩擦加熱帯を挿入ピンの近傍に限定し、ピンの挿入による周囲の被接合材の膨出部分を当該凹部分に逃がし、かかる部分での摩擦熱の発生を著しくし、塑性流動化した部分が、回転工具(7)の進行によるピンの抜け跡の体積を順次充填・補給する役目を果たすからである。  In the friction stir welding means to which the present invention is applied, bonding is performed from the inner surface of the molded body (4). This is because the number of flashes is remarkably increased when joined from the outer surface of the molded body. For this purpose, a rotary tool (7) comprising a pin (5) and a shoulder (6) having a concave surface (8) around the pin is arranged on the inner surface of the molded body (FIG. 2). The concave surface around the pin (5) is that the friction heating zone is limited to the vicinity of the insertion pin, and the bulging portion of the surrounding material to be joined by the insertion of the pin escapes to the concave portion, and the friction at this portion This is because the portion where the heat generation is remarkably generated and plastically fluidized serves to fill and replenish the volume of the pin traces due to the progress of the rotary tool (7).

本発明が適用する摩擦攪拌接合手段においては、回転工具(7)を回転させながらピン(5)を後退角(θ)をもってショルダ−(6)の部分が当該突合箇所に食込むまで挿入する。当該θの角度を大きくすれば当該接合箇所の円弧形状の曲率半径が小さくなる関係にあり、当該θの角度調整によって内周面を倣わせることが可能だからである。また、かかる後退角の適用は、図10に示すように接合部の肉厚減少防止のために採用する突合箇所を予め厚肉化しておく効果を高めることができるからでもある。  In the friction stir welding means to which the present invention is applied, the pin (5) is inserted with the receding angle (θ) while rotating the rotary tool (7) until the portion of the shoulder (6) bites into the abutting position. This is because if the angle of θ is increased, the radius of curvature of the arc shape at the joint is reduced, and the inner peripheral surface can be made to follow by adjusting the angle of θ. Moreover, the application of such a receding angle can also enhance the effect of pre-thickening the abutting portion used for preventing the thickness reduction of the joint as shown in FIG.

本発明が適用する摩擦攪拌接合手段においては、成形体(4)の突合箇所の外周面に裏当て材の役割を兼ね備えた回転ロ−ラ−(10)によってばりを生じさせながら裏ビ−ドを成形する(図2、図3及び図4)。摩擦加熱による塑性流動帯の攪拌による裏側の膨らみに対する裏当て材の回転ロ−ラ−(10)による裏ビ−ドの成形・冷却固化との間にタイムラグ(時間の遅れ)を設けて、裏側の接合不良を防止し、かかる部分を望ましい形状に成形するためである。そのために、回転ロ−ラ−(10)の形状を成形体(4)の外周面を倣う形状にしても良いし、成形体(4)の接合箇所の裏面をやや膨らませ又はややへこませる形状になるように、当該ロ−ラ−(10)の接する箇所をややへこませ又はやや膨らませて望ましい形状にしても良い。成形体の長手方向でみた接合位置は、図2に示すすように、成形体の下面において巻き数1ピッチ目が望ましい。回転工具(7)を取りつるア−ム(11)が長過ぎないようにするためである。かかる回転ロ−ラ−(10)の取り付け軸は、成形体(4)の突合面(a,b)に垂直とする。後述するように成形体の長手方向の送り(19)をスム−スに与えるためである。  In the friction stir welding means to which the present invention is applied, the back bead is generated while the flash is generated by the rotating roller (10) having the role of a backing material on the outer peripheral surface of the butted portion of the molded body (4). Is formed (FIGS. 2, 3 and 4). Provide a time lag (time delay) between the back bead molding and cooling solidification by the rotating roller (10) of the backing material against the back side bulge by stirring of the plastic flow zone by friction heating, and the back side This is to prevent the bonding failure and to form such a portion into a desired shape. Therefore, the shape of the rotary roller (10) may be a shape that follows the outer peripheral surface of the molded body (4), or the back surface of the joint portion of the molded body (4) is slightly swollen or slightly dented. In this way, the portion in contact with the roller (10) may be slightly dented or slightly inflated to have a desired shape. As shown in FIG. 2, the joining position as viewed in the longitudinal direction of the molded body is desirably the 1st winding number on the lower surface of the molded body. This is because the arm (11) for the rotary tool (7) is not too long. The mounting shaft of the rotating roller (10) is perpendicular to the abutting surfaces (a, b) of the molded body (4). This is because the feeding (19) in the longitudinal direction of the molded body is given to the smooth as will be described later.

本発明に係るスパイラル管の製造方法は、ロ−ル成形手段と摩擦攪拌接合手段との連続工程の適用である。高能率製造のためである。それを達成するには、成形体(4)の接合速度に帯材(3)の供給速度を合わせる必要がある。ここで、駆動ロ−ル(1)の直径をD、回転ロ−ラ−(10)の直径をD、適正な接合速度を与えるために設定された回転ロ−ラ−の回転数をNとした場合、駆動ロ−ルの回転数Nは、The spiral tube manufacturing method according to the present invention is an application of a continuous process of roll forming means and friction stir welding means. This is for high-efficiency manufacturing. In order to achieve this, it is necessary to match the feeding speed of the strip (3) with the joining speed of the molded body (4). Here, the diameter of the driving roller (1) is D 1 , the diameter of the rotating roller (10) is D 2 , and the rotational speed of the rotating roller set to give an appropriate joining speed is set. When N 2 , the rotational speed N 1 of the drive roll is

数4Number 4

から求めた値にTo the value obtained from

数4Number 4

=(D/D)N×sinα
設定する必要がある。図2に図示を省略した2本の駆動ロ−ル(1)が成形体(4)の接合箇所の位置以上にまで接するように長く伸ばし、かつ、回転ロ−ラ−(10)をも駆動源とすることが望ましい。成形体(4)の外周面の上部と下部とを挟み込み、3箇所を駆動源として、摩擦攪拌接合に打ち勝つ回転(18)・送り(19)を当該成形体にスム−スに与えるためである。この場合、駆動ロ−ル(1)の先端が上側に逃げないように、成形体(4)の両側に梁で連結された門型の支柱を建て、当該梁の部分に駆動ロ−ルの先端を支持し、駆動ロ−ルを両端支持構造としても良い。
N 1 = (D 2 / D 1 ) N 2 × sin α
Must be set. The two drive rollers (1) (not shown in FIG. 2) are extended so as to be in contact with the position where the molded body (4) is joined, and the rotary roller (10) is also driven. It is desirable to be a source. This is because the upper part and the lower part of the outer peripheral surface of the molded body (4) are sandwiched, and the rotation (18) and feed (19) that overcome the friction stir welding are applied to the molded body smoothly by using three places as driving sources. . In this case, gate-shaped columns connected by beams are built on both sides of the molded body (4) so that the tip of the drive roll (1) does not escape upward, and the drive roll is placed on the beam. The front end may be supported, and the drive roll may have a both end support structure.

ピン(5)の挿入による突合せ目の開き防止手段として、摩擦攪拌接合に先立って仮止め溶接を行なっても良い。仮止め溶接は、図1に示す17の箇所で自動テイグ溶接による小入熱の断続溶接が望ましい。この場合、2000系、6000系及び7000系のアルミニウム合金はミクロ割れを生じ易いが、かかる部分は摩擦攪拌接合によって塑性流動・攪拌化し、当該ミクロ割れは消失してしまう。
また、図10に示すような圧延装置(12、13)を帯材(3)の成形工程の前に連続工程の一環として設置し、軽微な圧延によって帯材の両端に凸部(14)を設け、かかる凸部分を図11に示すように摩擦攪拌接合に先行して、回転工具(7)を取り付けるためのア−ム(11)に連結した回転ロ−ラ−(16)で挟む手段で行なっても良い。かかる回転ロ−ラ−を2個以上設けても良い。この場合、かかる凸部(14)が加圧ロ−ル(2)によって押し潰されないように、成形体(4)のピッチ長さ(p)よりも短いリングを加圧ロ−ル(2)にはめ込み、当該凸部(14)の逃がし部分を設けることが望ましい。
また、図1に示すように、ガイドロ−ラ−(21)と正常な造管速度にマッチングして移動(19)する回転フリ−のストッパ−(22)と、によって行なっても良い。異状な造管速度の上昇が生じないようにして、ピン(5)の挿入等による突合面の開きを防止するためである。正常な造管速度にマッチングした回転フリ−のストッパ−の移動速度は、
As means for preventing the opening of the butt due to the insertion of the pin (5), temporary fixing welding may be performed prior to the friction stir welding. Temporary fastening welding is desirably intermittent heat welding with small heat input by automatic tag welding at 17 points shown in FIG. In this case, although the 2000 series, 6000 series and 7000 series aluminum alloys are liable to cause microcracking, such a portion is plastically flowed and stirred by friction stir welding, and the microcrack disappears.
In addition, a rolling device (12, 13) as shown in FIG. 10 is installed as a part of the continuous process before the forming process of the strip (3), and convex portions (14) are formed at both ends of the strip by slight rolling. As shown in FIG. 11, the convex portion is provided by means of sandwiching the rotary roller (16) connected to the arm (11) for attaching the rotary tool (7) prior to the friction stir welding as shown in FIG. You can do it. Two or more such rotation rollers may be provided. In this case, a ring shorter than the pitch length (p) of the molded body (4) is connected to the pressure roll (2) so that the convex portion (14) is not crushed by the pressure roll (2). It is desirable to fit and provide a relief part of the convex part (14).
Further, as shown in FIG. 1, a guide roller (21) and a rotation-free stopper (22) that moves (19) to match the normal pipe forming speed may be used. This is to prevent the abutment surface from opening due to the insertion of the pin (5) or the like so as not to cause an abnormal increase in the pipe making speed. The moving speed of the rotation-free stopper matched to the normal pipe making speed is

数5Number 5

から求める。かかるストッパ−(22)の移動速度は電気的に制御しても良い。Ask from. The moving speed of the stopper (22) may be electrically controlled.

数5Number 5

回転フリ−のストッパ−の移動速度=接合速度×cosα    Rotation free stopper moving speed = joining speed × cos α

次に、本発明に係るアルミニウム及びアルミニウム合金の摩擦攪拌接合方法及びその構造体の実施のための最良の形態について、以下に詳述する。なお、本発明に係る摩擦攪拌接合方法及びその構造体の摩擦攪拌接合手段は、上述のスパイラル管及びその製造方法の摩擦攪拌接合手段と本質的には共通するので、重複する部分の記載は省略する。  Next, the best mode for carrying out the friction stir welding method for aluminum and aluminum alloy and the structure thereof according to the present invention will be described in detail below. The friction stir welding method and the friction stir welding means for the structure according to the present invention are essentially the same as the above-described spiral tube and the friction stir welding means for the manufacturing method thereof, so the description of the overlapping parts is omitted. To do.

本発明が適用する摩擦攪拌接合手段においては、ピン(5)を先細りの螺旋形状とし、当該ピンのねじ込み方向と逆方向に回転工具(7)を回転させながら接合しても良い。前述の回転ロ−ラ−(10)の適用と相俟って、塑性流動帯を裏面へ供給し、裏ビ−ドの成形を助長する効果が著しく大きくなるからである。  In the friction stir welding means to which the present invention is applied, the pin (5) may have a tapered spiral shape and may be joined while rotating the rotary tool (7) in the direction opposite to the screwing direction of the pin. This is because, in combination with the application of the rotary roller (10), the effect of supplying the plastic flow zone to the back surface and promoting the forming of the back bead is remarkably increased.

本発明の摩擦攪拌接合手段において適用される回転工具(7)は、ピン(5)とショルダ−(6)からの組立構造からなり、かつ、ピンの長さの微調整ができる精密ねじ構造としても良い。前述の回転ロ−ラ−(10)の適用と相俟って、裏ビ−ドの成形直前の塑性流動化した箇所を適正な膨らみ量に調整し、ばりの発生をなるべく少なく押さえる効果があるからである。  The rotary tool (7) applied in the friction stir welding means of the present invention has an assembly structure composed of a pin (5) and a shoulder (6), and has a precision screw structure capable of finely adjusting the length of the pin. Also good. Combined with the application of the rotary roller (10) described above, the plastic fluidized portion immediately before the molding of the back bead is adjusted to an appropriate bulge amount, and there is an effect of suppressing the generation of flash as much as possible. Because.

本発明が適用する摩擦攪拌接合手段においては、両被接合材(9)の突合箇所にピン(9)の最小直径よりも小さい幅の凸部(14)を設けても良い。スパイラル管以外の接合構造体においては、接合部の肉厚の許容差が、より小さくなるように要求される場合もあるからである。また、図5に示すように、回転ロ−ラ−(10)に窪みを設け、裏ビ−ドを滑らかな余盛り形状(ηが120度以上)に成形することもでき、化粧盛りとしての効果もあるからである。かかる凸部(14)は、突合箇所の一方の面又は両方の面に設けても良い。また、突合箇所に、被接合材と同じ合金のI型形状を有するものを挟み込んでも良い。なお、かかる凸部(14)の幅をピン(5)の最小直径よりも小さくするのは、かかる凸部の大部分が接合のために有効に使用され、図10の下図に示すような取り残し部分(15)が殆ど生じないからである。  In the friction stir welding means to which the present invention is applied, a convex portion (14) having a width smaller than the minimum diameter of the pin (9) may be provided at the abutting portion of both the workpieces (9). This is because, in a joined structure other than the spiral tube, the thickness tolerance of the joined portion may be required to be smaller. Further, as shown in FIG. 5, the rotary roller (10) can be provided with a recess, and the back bead can be molded into a smooth extra shape (η is 120 degrees or more). This is because there is an effect. You may provide this convex part (14) in the one surface of a butt | matching location, or both surfaces. Moreover, you may insert | pinch what has I shape of the same alloy as a to-be-joined material in a butt | matching location. The reason why the width of the convex portion (14) is made smaller than the minimum diameter of the pin (5) is that most of the convex portion is effectively used for joining, and is left behind as shown in the lower diagram of FIG. This is because the portion (15) hardly occurs.

アルミニウム合金6061、O質、帯材(3)の幅407mm、帯材の厚さ5mmを準備し、図1に示すロ−ルにて直径(d)500mmのスパイラル状の成形体(4)を帯材の供給角度(β)15度(αとしては75度)にて成形した。この場合の当該成形体のピッチ長さ(p)は421mmである。当該成形行程に連動する摩擦攪拌接合として、次の接合条件を採用した。回転工具(7)は図4に示す形状のものを使用し、回転数は2,000回/分、接合速度は1,300mm/分、同図に示す回転ロ−ラ−(10)によって裏ビ−ド形状を平らに成形し、内面におけるショルダ−(6)の食い込み量0.3mmである。かかる接合速度と帯材の供給速度が等しくなるように駆動ロ−ル(1)の回転数(N)を2回/分に設定した(D,D共に200mm,Nが2.07回/分)。なお、ピン(5)の挿入による突合面の開き防止として、図1に示す17の箇所でテイグ溶接による仮止めを行い、成形体(4)の90度の回転毎に長さ約30mmの断続溶接を自動的に行なった。そして、かかるスパイラル管の成形行程と摩擦攪拌接合行程とを連動させて、5mの長さのスパイラル管に仕上げた。An aluminum alloy 6061, an O material, a width of 407 mm of the strip (3), and a thickness of 5 mm of the strip are prepared, and a spiral shaped body (4) having a diameter (d) of 500 mm is prepared using the roll shown in FIG. The strip was formed at a supply angle (β) of 15 degrees (α is 75 degrees). In this case, the pitch length (p) of the molded body is 421 mm. The following joining conditions were adopted as friction stir welding linked to the molding process. A rotary tool (7) having the shape shown in FIG. 4 is used, the rotational speed is 2,000 times / minute, the joining speed is 1,300 mm / minute, and the rotary tool (10) shown in FIG. The bead shape is formed flat, and the shoulder (6) bites on the inner surface is 0.3 mm. The rotational speed (N 1 ) of the drive roll ( 1 ) was set to 2 times / minute so that the joining speed and the supply speed of the strip were equal (D 1 and D 2 were both 200 mm, N 2 was 2. 07 times / min). In addition, in order to prevent the opening of the abutting surface by inserting the pin (5), temporary fixing by TIG welding is performed at 17 points shown in FIG. 1, and the length of about 30 mm is intermittent for every 90 ° rotation of the molded body (4). Welding was performed automatically. Then, the forming process of the spiral tube and the friction stir welding process were interlocked to finish the spiral tube having a length of 5 m.

かかる5mの長さのスパイラル管の摩擦攪拌接合箇所の裏ビ−ドの全線にわたって、染色浸透探傷試験(JIS Z 2343)を行い、接合不良を含む接合欠陥の有無を調べたが、結果は無欠陥であった。さらに任意の10箇所の位置における断面の試験片を切り取り、100倍及び400倍の顕微鏡観察を行なったが接合不良等の接合欠陥は観察されなかった。なお、かかるスパイラル管をT6の熱処理を行い、接合部を中心に機械的性質を調べたが、押出管の機械的性質の規定値(JIS H 4080)を十分満足することを確認した。  A dye penetration test (JIS Z 2343) was conducted over the entire back bead line of the friction stir welded portion of the 5 m long spiral tube, and the presence or absence of a joining defect including a joining failure was examined. It was a defect. Furthermore, the test piece of the cross section in arbitrary 10 positions was cut out, and the microscope observation of 100 times and 400 times was performed, but joining defects, such as a joining defect, were not observed. The spiral tube was subjected to a T6 heat treatment, and the mechanical properties were examined centering on the joint, and it was confirmed that the specified value (JIS H 4080) of the mechanical properties of the extruded tube was sufficiently satisfied.

アルミニウム合金5052、O質、板厚10mm、長さ2mの板材をI型のインサ−ト(同一の合金)を挟んで突合せ、摩擦攪拌接合をした。摩擦攪拌接合として、次の接合条件を採用した。回転工具(7)はピン(5)とショルダ−(6)との組立構造であり、かつ、ピン(5)の長さの微調整ができる精密ねじ構造とし、ショルダ−(6)には凹面を有し、ピン(5)は先細りの左ねじ込みの螺旋形状とし、右回転の回転数800回/分、後退角(θ)3度、溶接速度300mm/分、を設定し、図5に示す裏当てロ−ラ−(10)によって、ばりを生じさせながら裏ビ−ド形状を滑らかな凸形状に成形した。I型のインサ−トの幅はピン(5)の最小直径と同一とし、裏側に1mm、表側に2mm、被接合材(9)の面よりも突出し当該インサ−トを被接合材にテイグ溶接により仮止めをし、本発明の例とした。なお、比較例として、I型のインサ−トを使用しないで、被接合材(9)同士を直接突合せ、接合後に取り外しができる通常の裏当て材を用いた。なお、本発明、比較例ともに、ピン(5)の先端を被接合材(9)の底面から1mmの位置に設定し、回転工具(7)を固定し、被接合材を移動させながら接合した。ショルダ−(6)の食い込み量は、比較例が0.3mm、本発明が被接合材表面に接するまでとした。  An aluminum alloy 5052, O material, a plate thickness of 10 mm, and a length of 2 m were butted together with an I-type insert (same alloy) interposed therebetween, and friction stir welding was performed. The following joining conditions were adopted as friction stir welding. The rotary tool (7) has an assembly structure of a pin (5) and a shoulder (6), and has a precision screw structure that can finely adjust the length of the pin (5). The shoulder (6) has a concave surface. The pin (5) has a tapered left-handed spiral shape, and is set with a right rotation speed of 800 rotations / minute, a receding angle (θ) of 3 degrees, and a welding speed of 300 mm / minute, as shown in FIG. With the backing roller (10), the back bead shape was formed into a smooth convex shape while generating flash. The width of the I-type insert is the same as the minimum diameter of the pin (5), 1 mm on the back side, 2 mm on the front side, protrudes from the surface of the material to be joined (9), and the insert is Teg welded to the material to be joined Was temporarily fixed to obtain an example of the present invention. As a comparative example, an ordinary backing material that can be directly butted together and removed after joining without using an I-type insert was used. In both the present invention and the comparative example, the tip of the pin (5) is set to a position 1 mm from the bottom surface of the material to be joined (9), the rotary tool (7) is fixed, and the material to be joined is joined while moving. . The amount of biting of shoulder (6) was 0.3 mm in the comparative example, and until the present invention was in contact with the surface of the material to be joined.

両接合体の裏面の全線を染色浸透探傷試験を行なったが、比較例の突合面に相当する箇所に接合欠陥が認めらわたが、本発明のものは、約0.5mmの余盛り高さであり、トウ部の角度(η)が約160度の滑らかな形状が得られ、接合欠陥も認められず、良好であった。また、顕微鏡観察においても、比較例には明らかな接合不良が認められ、本発明には認められなかった。  Dye penetrant flaw detection was performed on the entire back surface of both joined bodies, but a joining defect was found in a portion corresponding to the abutting surface of the comparative example. In the present invention, the surplus height was about 0.5 mm. A smooth shape with a toe angle (η) of about 160 degrees was obtained, and no bonding defects were observed. In addition, in the microscopic observation, a clear bonding failure was recognized in the comparative example and was not recognized in the present invention.

は、スパイラル状の成形を概念的に示す正面図と平面図である。These are a front view and a plan view conceptually showing spiral molding. は、摩擦攪拌接合を概念的に示す側面図である。FIG. 3 is a side view conceptually showing friction stir welding. は、摩擦攪拌接合において、裏当て材の役割を兼ね備えた裏ビ−ド成形のための回転ロ−ラ−(10)の配置を示す正面図と平面図である。These are the front view and top view which show arrangement | positioning of the rotation roller (10) for back bead shaping | molding which has the role of a backing material in friction stir welding. は、左側が図3に示す回転ロ−ラ−と接する突合面の縦断面図、右側がかかる突合面の横断面図、である。These are the longitudinal cross-sectional view of the abutting surface which contact | connects the rotation roller shown in FIG. 3 on the left side, and the cross-sectional view of the abutting surface on the right side. は、左側が平板同士の突合面の縦断面図、右側がかかる突合面の横断面図である。These are the longitudinal cross-sectional view of the abutting surface of flat plates on the left side, and the cross-sectional view of the abutting surface on the right side. は、スパイラル管の原理を説明する概念図である。These are the conceptual diagrams explaining the principle of a spiral tube. は、αとp及びdとの関係を示す図である。These are figures which show the relationship between (alpha), p, and d. は、αが45度以上、αが60度以上、αが75度以上のそれぞれの場合のwを示し、また、上述のそれぞれの場合におけるdとβ及びpとの関係を示す図である。These show w in each case where α is 45 degrees or more, α is 60 degrees or more, and α is 75 degrees or more, and also show the relationship between d, β and p in each of the above cases. は、αが75度の一定の場合におけるdとwとの関係を示す図である。These are figures which show the relationship between d and w in the case where α is constant at 75 degrees. は、帯材の両端に凸部を成形する圧延を示す概念図である。These are the conceptual diagrams which show the rolling which shape | molds a convex part at the both ends of a strip | belt material. は、突合面がピンの挿入によって開かないように凸部を回転ロ−ラ−で挟み込む手段を示す概念図である。These are the conceptual diagrams which show the means which pinches | interposes a convex part with a rotation roller so that an abutting surface may not open by insertion of a pin. は、従来技術として、突合せ部に回転工具のショルダ−の直径と等しい幅の凸部を設けた場合の正面図と側面図である。These are the front view and side view at the time of providing the convex part of the width | variety equal to the diameter of the shoulder of a rotary tool as a prior art in a butt | matching part.

符号の説明Explanation of symbols

w:帯材(3)の幅。α:切断角度(突合面の傾斜角度)。c:切断箇所の長さ(管の円周の長さ)。d:管の直径。p:スパイラルのピッチ長さ。β:帯材(3)の供給角度。a(b):1ピッチ当たりの突合面の接合長さ。θ:ピンの挿入角度。η:トウ部の角度。1:駆動ロ−ル。2:加圧ロ−ル。3:帯材。4:スパイラル状成形体。5:ピン。6:ショルダ−。7:回転工具。8:ショルダ−(6)面の凹面。9:被接合材。10:裏当て材の役割を兼ね備えた回転ロ−ラ−。11:回転工具(7)を取り付けるア−ム。12(13):圧延ロ−ル。14:帯材(3)の両端に成形する凸部。15:図12に示す凸部の取り残し部分。16:突合面の開き防止回転ロ−ラ−。17:仮止め溶接位置。矢印18:回転方向。矢印19:成形体(4)又は被接合体の移動方向。矢印20:接合方向。21:ガイドロ−ラ−。22:回転フリ−のストッパ−。

Figure 2006075898
w: The width of the strip (3). α: Cutting angle (inclination angle of butt surface). c: Length of the cut portion (circumferential length of the tube). d: Diameter of the tube. p: Spiral pitch length. β: Supply angle of the strip (3). a (b): Joining length of abutting surfaces per pitch. θ: Pin insertion angle. η: angle of the toe part. 1: Drive roll. 2: Pressure roll. 3: Band material. 4: Spiral shaped product. 5: Pin. 6: Shoulder. 7: Rotary tool. 8: Concave surface of the shoulder (6) surface. 9: Joined material. 10: A rotating roller that also serves as a backing material. 11: Arm for attaching the rotary tool (7). 12 (13): Rolling roll. 14: Convex parts formed on both ends of the strip (3). 15: The remaining part of the convex part shown in FIG. 16: Rotating roller for preventing abutting surfaces from opening. 17: Temporary welding position. Arrow 18: direction of rotation. Arrow 19: the moving direction of the molded body (4) or the joined body. Arrow 20: Joining direction. 21: Guide roller. 22: Stopper for rotation free.
Figure 2006075898

Claims (7)

帯材(3)を当該帯材の両側面(a,b)が突合うように円形のスパイラル状に成形するロ−ル成形手段(1、2)と、当該成形体(4)の突合箇所(a,b)の内周面にピン(5)とピンの周囲に凹面(8)を有するショルダ−(6)からなる回転工具(7)を配備し、当該工具を回転させながらピンを後退角(θ)をもってショルダ−の部分が当該突合箇所に食い込むまで挿入し、当該成形体の突合箇所の外周面に裏当て材の役割を兼ね備えた回転ロ−ラ−(10)によってばりを生じさせながら裏ビ−ドを成形する摩擦攪拌接合手段と、の連続工程によって製造されたことを特徴とするアルミニウム及びアルミニウム合金のスパイラル管。  Roll forming means (1, 2) for forming the strip (3) into a circular spiral shape so that both side surfaces (a, b) of the strip are abutted, and the abutting location of the molded body (4) A rotary tool (7) comprising a shoulder (6) having a pin (5) on the inner peripheral surface of (a, b) and a concave surface (8) around the pin is provided, and the pin is retracted while rotating the tool. Insert the shoulder part with an angle (θ) until the shoulder part bites into the abutting part, and generate a flash on the outer peripheral surface of the abutting part of the molded body by a rotating roller (10) that also serves as a backing material. And a friction stir welding means for forming a back bead, and a spiral tube of aluminum and an aluminum alloy produced by a continuous process. 帯材(3)を当該帯材の両側面(a,b)が突合うように円形のスパイラル状に成形するロ−ル成形手段(1、2)と、当該成形体(4)の突合箇所(a,b)の内周面にピン(5)とピンの周囲に凹面(8)を有するショルダ−(6)からなる回転工具(7)を配備し、当該工具を回転させながらピンを後退角(θ)をもってショルダ−の部分が当該突合箇所に食い込むまで挿入し、当該成形体の突合箇所の外周面に裏当て材の役割を兼ね備えた回転ロ−ラ−(10)によってばりを生じさせながら裏ビ−ドを成形する摩擦攪拌接合手段と、の連続工程によって製造されたことを特徴とするアルミニウム及びアルミニウム合金のスパイラル管の製造方法。  Roll forming means (1, 2) for forming the strip (3) into a circular spiral shape so that both side surfaces (a, b) of the strip are abutted, and the abutting location of the molded body (4) A rotary tool (7) comprising a shoulder (6) having a pin (5) on the inner peripheral surface of (a, b) and a concave surface (8) around the pin is provided, and the pin is retracted while rotating the tool. Insert the shoulder part with an angle (θ) until the shoulder part bites into the abutting part, and generate a flash on the outer peripheral surface of the abutting part of the molded body by a rotating roller (10) that also serves as a backing material. A manufacturing method of a spiral tube of aluminum and aluminum alloy, characterized by being manufactured by a continuous process of friction stir welding means for forming a back bead. 両被接合材(9)の突合箇所の一方の面にピン(5)とピンの周囲に凹面(8)を有するショルダ−(6)からなる回転工具(7)を配備し、当該工具を回転させながらピンを後退角(θ)をもってショルダ−の部分が当該突合箇所に食い込むまで挿入し、両被接合材の突合箇所の他方の面に裏当て材の役割を兼ね備えた回転ロ−ラ−(10)によってばりを生じさせながら裏ビ−ドを成形する手段を有して接合されることを特徴とするアルミニウム及びアルミニウム合金の摩擦攪拌接合方法。  A rotating tool (7) comprising a pin (5) and a shoulder (6) having a concave surface (8) around the pin is provided on one surface of the abutting portion of both the workpieces (9), and the tool is rotated. Rotating roller with a receding angle (θ) until the shoulder part bites into the abutting part, and the other side of the abutting part of both materials to be joined serves as a backing material ( 10) A method of friction stir welding of aluminum and aluminum alloy, characterized in that it is joined with means for forming a back bead while producing flash according to 10). ピン(5)を先細りの螺旋形状とし、当該ピンのねじ込み方向と逆方向に回転工具(7)を回転させながら接合することを特徴とする請求項3記載の摩擦攪拌接合方法。  The friction stir welding method according to claim 3, wherein the pin (5) has a tapered spiral shape and is joined while rotating the rotary tool (7) in a direction opposite to the screwing direction of the pin. 回転工具(7)がピン(5)とショルダ−(6)との組立構造からなり、かつ、ピンの長さの微調整ができる精密ねじ構造を有することを特徴とする請求項3又は請求項4記載の摩擦攪拌接合方法。  The rotary tool (7) is composed of an assembly structure of a pin (5) and a shoulder (6), and has a precision screw structure capable of fine adjustment of the length of the pin. 4. The friction stir welding method according to 4. 両被接合材(9)の突合箇所にピン(5)の最小直径よりも小さい幅の凸部(14)を設けて接合することを特徴とする請求項3、請求項4又は請求項5記載の摩擦攪拌接合方法。  The protrusions (14) having a width smaller than the minimum diameter of the pin (5) are provided at the abutting locations of the two materials to be bonded (9) and bonded together. Friction stir welding method. 両被接合材(9)の突合箇所の一方の面にピン(5)とピンの周囲に凹面(8)を有するショルダ−(6)からなる回転工具(7)を配備し、当該工具を回転させながらピンを後退角(θ)をもってショルダ−の部分が当該突合箇所に食い込むまで挿入し、両被接合材の突合箇所の他方の面に裏当て材の役割を兼ね備えた回転ロ−ラ−(10)によってばりを生じさせながら裏ビ−ドを成形する手段を有して接合されることを特徴とするアルミニウム及びアルミニウム合金の摩擦攪拌接合の構造体。  A rotating tool (7) comprising a pin (5) and a shoulder (6) having a concave surface (8) around the pin is provided on one surface of the abutting portion of both the workpieces (9), and the tool is rotated. Rotating roller with a receding angle (θ) until the shoulder part bites into the abutting part, and the other side of the abutting part of both materials to be joined serves as a backing material ( 10) A structure for friction stir welding of aluminum and an aluminum alloy, characterized in that the structure is joined with means for forming a back bead while producing flash.
JP2004295420A 2004-09-09 2004-09-09 Aluminum and aluminum alloy spiral tube, and its manufacturing method, friction stir welding method, and structure of friction stir-welded aluminum and aluminum alloy Pending JP2006075898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004295420A JP2006075898A (en) 2004-09-09 2004-09-09 Aluminum and aluminum alloy spiral tube, and its manufacturing method, friction stir welding method, and structure of friction stir-welded aluminum and aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004295420A JP2006075898A (en) 2004-09-09 2004-09-09 Aluminum and aluminum alloy spiral tube, and its manufacturing method, friction stir welding method, and structure of friction stir-welded aluminum and aluminum alloy

Publications (1)

Publication Number Publication Date
JP2006075898A true JP2006075898A (en) 2006-03-23

Family

ID=36155786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004295420A Pending JP2006075898A (en) 2004-09-09 2004-09-09 Aluminum and aluminum alloy spiral tube, and its manufacturing method, friction stir welding method, and structure of friction stir-welded aluminum and aluminum alloy

Country Status (1)

Country Link
JP (1) JP2006075898A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152997A1 (en) * 2007-06-14 2008-12-18 Nippon Light Metal Company, Ltd. Joining method
JP2008307570A (en) * 2007-06-14 2008-12-25 Nippon Light Metal Co Ltd Joining method
DE102005060178B4 (en) * 2005-12-14 2010-04-15 Eads Deutschland Gmbh Friction stir tool with conformable shoulder and its use
CN102019501B (en) * 2009-09-10 2012-10-10 中国航空工业集团公司北京航空制造工程研究所 Friction stir welding method for circular seam
CN102794560B (en) * 2007-08-10 2014-06-25 日本轻金属株式会社 Joining method and method of manufacturing joint structure
CN105964723A (en) * 2016-06-12 2016-09-28 上海航天设备制造总厂 Double-side welding double-side forming method for large-diameter aluminum alloy pipe spiral stirring friction welding device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005060178B4 (en) * 2005-12-14 2010-04-15 Eads Deutschland Gmbh Friction stir tool with conformable shoulder and its use
TWI504458B (en) * 2007-06-14 2015-10-21 Nippon Light Metal Co Bonding method
JP2008307570A (en) * 2007-06-14 2008-12-25 Nippon Light Metal Co Ltd Joining method
CN103722288B (en) * 2007-06-14 2016-03-16 日本轻金属株式会社 Joint method
CN103273189A (en) * 2007-06-14 2013-09-04 日本轻金属株式会社 Joining method
CN103722288A (en) * 2007-06-14 2014-04-16 日本轻金属株式会社 Jointing method
WO2008152997A1 (en) * 2007-06-14 2008-12-18 Nippon Light Metal Company, Ltd. Joining method
CN101678500B (en) * 2007-06-14 2014-08-20 日本轻金属株式会社 Joining method
TWI477339B (en) * 2007-06-14 2015-03-21 Nippon Light Metal Co Bonding method
CN103273189B (en) * 2007-06-14 2015-09-02 日本轻金属株式会社 Joint method
CN102794560B (en) * 2007-08-10 2014-06-25 日本轻金属株式会社 Joining method and method of manufacturing joint structure
CN102019501B (en) * 2009-09-10 2012-10-10 中国航空工业集团公司北京航空制造工程研究所 Friction stir welding method for circular seam
CN105964723A (en) * 2016-06-12 2016-09-28 上海航天设备制造总厂 Double-side welding double-side forming method for large-diameter aluminum alloy pipe spiral stirring friction welding device
WO2017215525A1 (en) * 2016-06-12 2017-12-21 上海航天设备制造总厂 Double-sided welding and double-sided shaping method for large-diameter aluminum alloy tube-making helical friction stir welding (fsw) equipment

Similar Documents

Publication Publication Date Title
US8393522B2 (en) Joining method and joining tool
US20070057015A1 (en) Tapered friction stir welding and processing tool
US9541224B2 (en) Method of manufacturing coiled tubing using multi-pass friction stir welding
US8763882B2 (en) Friction stir welding method for metal material and metal material welded body obtained thereby
WO2017215525A1 (en) Double-sided welding and double-sided shaping method for large-diameter aluminum alloy tube-making helical friction stir welding (fsw) equipment
JP2000334583A (en) Repairing method of joined part by friction stirring joining
JP2020506804A (en) Assembled welding mill for pipe production
JP2006075898A (en) Aluminum and aluminum alloy spiral tube, and its manufacturing method, friction stir welding method, and structure of friction stir-welded aluminum and aluminum alloy
JP2004106030A (en) Method and apparatus for manufacturing special shaped tube stock for hydraulic bulging
JP3264322B2 (en) Method of manufacturing cylinder using friction stir welding and manufacturing apparatus used for the method
EP1504844B1 (en) Method of manufacturing annular body
JP4232339B2 (en) Butt welding method of metal by friction stir welding
JP5915371B2 (en) UOE steel pipe manufacturing method
KR20100130435A (en) Tab piece, method of fabaricating tab piece, method of thick pipe
JP2004148337A (en) Method for forming joined part of welded steel pipe and apparatus for producing the welded steel pipe
JP6539362B2 (en) Aluminum structural member
JP2005199293A (en) Method for manufacturing welded tube having high workability
JPH05154545A (en) Production of clad steel welded pipe
JP6756253B2 (en) Joining method
JP4598626B2 (en) Seam welding method for sink
US20230045091A1 (en) Method for welding half coil of reactor
JP2003326318A (en) Method for manufacturing double pipe, and double pipe
JP2861528B2 (en) Laser welding method for steel sheet for press forming
JPH01278911A (en) Manufacture of tapered tube
WO2020059218A1 (en) Welding method and method for producing composite rolled material