JP2006075819A - Catalyst for producing alpha, beta-unsaturated carboxylic acid and method for preparation thereof and method for producing alpha, beta-unsaturated carboxylic acid - Google Patents

Catalyst for producing alpha, beta-unsaturated carboxylic acid and method for preparation thereof and method for producing alpha, beta-unsaturated carboxylic acid Download PDF

Info

Publication number
JP2006075819A
JP2006075819A JP2005034343A JP2005034343A JP2006075819A JP 2006075819 A JP2006075819 A JP 2006075819A JP 2005034343 A JP2005034343 A JP 2005034343A JP 2005034343 A JP2005034343 A JP 2005034343A JP 2006075819 A JP2006075819 A JP 2006075819A
Authority
JP
Japan
Prior art keywords
catalyst
carboxylic acid
unsaturated carboxylic
pore volume
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005034343A
Other languages
Japanese (ja)
Other versions
JP2006075819A5 (en
JP4699038B2 (en
Inventor
Yuji Fujimori
祐治 藤森
Ko Ninomiya
航 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2005034343A priority Critical patent/JP4699038B2/en
Publication of JP2006075819A publication Critical patent/JP2006075819A/en
Publication of JP2006075819A5 publication Critical patent/JP2006075819A5/ja
Application granted granted Critical
Publication of JP4699038B2 publication Critical patent/JP4699038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for producing an α,β-unsaturated carboxylic acid from an olefin or an α,β-unsaturated aldehyde through the liquid phase oxidation in good reaction performance, a method for preparing this catalyst and a method for producing the α,β-unsaturated carboxylic acid by using this catalyst. <P>SOLUTION: This catalyst for producing the α,β-unsaturated carboxylic acid comprises a carrier having 0.40-1.50 cc/g total pore volume as measured by the nitrogen gas adsorption method and a metal carried on the carrier. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、オレフィンまたはα,β−不飽和アルデヒドから液相酸化によりα,β−不飽和カルボン酸を製造するための触媒、その製造方法、およびその触媒を用いたα,β−不飽和カルボン酸の製造方法に関するものである。   The present invention relates to a catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde by liquid phase oxidation, a method for producing the same, and an α, β-unsaturated carboxylic acid using the catalyst. The present invention relates to a method for producing an acid.

α,β−不飽和カルボン酸は、工業上有用な物質が多い。アクリル酸やメタクリル酸は、合成樹脂原料などの用途に極めて大量に使用されている。例えば、メタクリル酸の製造においては、イソブテンの気相酸化法や液相酸化法、アセトンシアンヒドリン経由の方法などがあるが、特別に有利な方法があるわけでなく、これらいくつかの方法で工業的に生産されている。   Many α, β-unsaturated carboxylic acids are industrially useful. Acrylic acid and methacrylic acid are used in extremely large quantities for applications such as synthetic resin raw materials. For example, in the production of methacrylic acid, there are a gas phase oxidation method, a liquid phase oxidation method of isobutene, a method via acetone cyanohydrin, etc., but there are no particularly advantageous methods. It is produced industrially.

オレフィンまたはα,β−不飽和アルデヒドを分子状酸素により液相酸化してα,β−不飽和カルボン酸を得るための触媒および方法については、従来より盛んに研究されている。例えば、金を担持した触媒の存在下に行なう方法(特許文献1)、パラジウム金属触媒を用いる方法(特許文献2〜6)、モリブデン化合物とパラジウム触媒を用いる方法(特許文献7)などが挙げられる。   A catalyst and a method for obtaining an α, β-unsaturated carboxylic acid by liquid phase oxidation of an olefin or α, β-unsaturated aldehyde with molecular oxygen have been actively studied. For example, a method of performing in the presence of a catalyst supporting gold (Patent Document 1), a method of using a palladium metal catalyst (Patent Documents 2 to 6), a method of using a molybdenum compound and a palladium catalyst (Patent Document 7), and the like. .

特許文献1〜7に記載されている触媒の中には、活性炭、アルミナ、シリカ等の担体に担持されているものもある。それら担体の物性については、特許文献1において「疎水性担体あるいは通常の担体を疎水化処離したものが良い」との記載があるのみであり、それ以外の担体の物性に言及したものは見られない。
特開2001−172222号公報 特開昭60−155148号公報 特開昭60−139341号公報 特開昭60−139643号公報 米国特許第4435598号明細書 国際公開第02/083299号パンフレット 特開昭56−59722号公報
Some of the catalysts described in Patent Documents 1 to 7 are supported on a support such as activated carbon, alumina, or silica. Regarding the physical properties of these carriers, there is only a description in Patent Document 1 that “hydrophobic carriers or those obtained by subjecting ordinary carriers to hydrophobic treatment are good”. I can't.
JP 2001-172222 A JP 60-155148 A JP 60-139341 A JP-A-60-139634 U.S. Pat. No. 4,435,598 International Publication No. 02/083299 Pamphlet JP 56-59722 A

本発明者が特許文献1〜7の実施例に記載された方法に準じて製造した触媒を用いてプロピレンからアクリル酸を製造したところ、特許文献1〜7で記載されている副生成物(例えば、アセトアルデヒド、アセトン、アクロレイン、酢酸、二酸化炭素)以外に多様なポリマーやオリゴマーが多く副生することを見出した。特許文献1〜7ではこれらのポリマーやオリゴマーを捕捉しておらず、これらの副生成物を含めた実際のアクリル酸の選択率や生産性などの反応成績は特許文献1〜7の実施例に記載されたものより低くなることが判明した。このように、α,β−不飽和カルボン酸の製造方法における反応成績は未だ十分とは言えず、さらなる向上が望まれていた。   When this inventor manufactured acrylic acid from propylene using the catalyst manufactured according to the method described in the Example of patent documents 1-7, the by-product described in patent documents 1-7 (for example, In addition to acetaldehyde, acetone, acrolein, acetic acid, carbon dioxide), various polymers and oligomers were found to be a by-product. In Patent Documents 1 to 7, these polymers and oligomers are not captured, and reaction results such as the selectivity and productivity of actual acrylic acid including these by-products are in the Examples of Patent Documents 1 to 7. It was found to be lower than that described. Thus, the reaction results in the method for producing an α, β-unsaturated carboxylic acid have not been sufficient yet, and further improvement has been desired.

本発明は、オレフィンまたはα,β−不飽和アルデヒドから液相酸化によりα,β−不飽和カルボン酸を良好な反応成績で製造可能な触媒、その製造方法、およびその触媒を用いたα,β−不飽和カルボン酸の製造方法を提供することを目的とする。   The present invention relates to a catalyst capable of producing an α, β-unsaturated carboxylic acid with good reaction results by liquid phase oxidation from an olefin or an α, β-unsaturated aldehyde, a production method thereof, and α, β using the catalyst. -It aims at providing the manufacturing method of unsaturated carboxylic acid.

本発明者らは、触媒を製造する際に使用する担体の物性、特に細孔容積により触媒性能が大きく影響されることを見出し本発明に至った。   The present inventors have found that the catalyst performance is greatly influenced by the physical properties of the carrier used when producing the catalyst, particularly the pore volume, and have led to the present invention.

本発明のα,β−不飽和カルボン酸製造用触媒は、オレフィンまたはα,β−不飽和アルデヒドから液相酸化によりα,β−不飽和カルボン酸を製造するための触媒であって、窒素ガス吸着法により測定した全細孔容積が0.40〜1.50cc/gである担体に、金属が担持されていることを特徴とするα,β−不飽和カルボン酸製造用触媒である。   The catalyst for producing an α, β-unsaturated carboxylic acid according to the present invention is a catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde by liquid phase oxidation, which is a nitrogen gas. A catalyst for producing an α, β-unsaturated carboxylic acid, characterized in that a metal is supported on a support having a total pore volume measured by an adsorption method of 0.40 to 1.50 cc / g.

本発明のα,β−不飽和カルボン酸製造用触媒の製造方法は、上記のα,β−不飽和カルボン酸製造用触媒の製造方法であって、前記担体の存在下で金属化合物を還元剤で還元するα,β−不飽和カルボン酸製造用触媒の製造方法である。   The method for producing a catalyst for producing an α, β-unsaturated carboxylic acid according to the present invention is a method for producing the catalyst for producing an α, β-unsaturated carboxylic acid as described above, wherein the metal compound is reduced in the presence of the carrier. It is a manufacturing method of the catalyst for (alpha), (beta) -unsaturated carboxylic acid manufacturing reduced by.

本発明のα,β−不飽和カルボン酸の製造方法は、上記のα,β−不飽和カルボン酸製造用触媒の存在下、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素によって液相中で酸化するα,β−不飽和カルボン酸の製造方法である。   The method for producing an α, β-unsaturated carboxylic acid according to the present invention is a method in which an olefin or an α, β-unsaturated aldehyde is dissolved in a liquid phase with molecular oxygen in the presence of the above-mentioned catalyst for producing an α, β-unsaturated carboxylic acid. This is a method for producing an α, β-unsaturated carboxylic acid that is oxidized at the same time.

本発明によれば、オレフィンまたはα,β−不飽和アルデヒドから液相酸化によりα,β−不飽和カルボン酸を良好な反応成績で製造可能な触媒、その製造方法、およびその触媒を用いたα,β−不飽和カルボン酸の製造方法を提供できる。   According to the present invention, a catalyst capable of producing an α, β-unsaturated carboxylic acid with good reaction results by liquid phase oxidation from an olefin or an α, β-unsaturated aldehyde, its production method, and α using the catalyst , Β-unsaturated carboxylic acid production method can be provided.

(1)α,β−不飽和カルボン酸製造用触媒
本発明のα,β−不飽和カルボン酸製造用触媒(以下、単に「触媒」と称することもある)は、オレフィンまたはα,β−不飽和アルデヒドから液相酸化によりα,β−不飽和カルボン酸を製造するための触媒であって、窒素ガス吸着法により測定した全細孔容積が0.40〜1.50cc/gである担体に、金属が担持されていることを特徴とするα,β−不飽和カルボン酸製造用触媒である。
(1) Catalyst for producing α, β-unsaturated carboxylic acid The catalyst for producing α, β-unsaturated carboxylic acid of the present invention (hereinafter sometimes simply referred to as “catalyst”) is olefin or α, β-unsaturated. A catalyst for producing an α, β-unsaturated carboxylic acid from a saturated aldehyde by liquid phase oxidation, wherein the total pore volume measured by a nitrogen gas adsorption method is 0.40 to 1.50 cc / g. A catalyst for producing an α, β-unsaturated carboxylic acid characterized in that a metal is supported.

上記のような触媒を用いることで、オレフィンまたはα,β−不飽和アルデヒドから液相酸化によりα,β−不飽和カルボン酸を良好な反応成績で製造可能となる。本発明の触媒は、オレフィンの中でも特にプロピレンおよびイソブチレン、α,β−不飽和アルデヒドの中でも特にアクロレインおよびメタクロレインの液相酸化に有効である。   By using the catalyst as described above, it is possible to produce an α, β-unsaturated carboxylic acid with good reaction results by liquid phase oxidation from an olefin or an α, β-unsaturated aldehyde. The catalyst of the present invention is effective for liquid phase oxidation of acrolein and methacrolein, particularly among propylene, isobutylene and α, β-unsaturated aldehyde among olefins.

本発明の触媒は、担体に金属が担持されている担持触媒である。以下、本発明の触媒として使用可能な担体及び金属について説明する。   The catalyst of the present invention is a supported catalyst in which a metal is supported on a carrier. Hereinafter, the support | carrier and metal which can be used as a catalyst of this invention are demonstrated.

(1−1)担体
担体の種類には特に制限がなく、活性炭、カーボンブラック、シリカ、アルミナ、マグネシア、カルシア、ジルコニア、チタニア等の代表的な担体を使用できる。中でも活性炭またはシリカを用いることが好ましい。通常、活性炭は、炭化、整粒、賦活、洗浄、乾燥および粉砕のプロセスにより製造されるが、本発明においてその製造プロセスには特に制限はない。活性炭の原料である炭素質物質にも、特に制限はなく、ヤシガラ、石炭、木質および合成樹脂など種々の原料を用いることができる。賦活方法にも特に制限はなく、水蒸気、炭酸ガス、酸素、リン酸、リン酸塩および塩化亜鉛などを用いて賦活することができる。賦活後の活性炭は、必要に応じて、鉱酸、塩酸および水などにより洗浄され、乾燥された後、使用に供される。製品活性炭に含有される不純物のうち、塩素は触媒性能に悪影響を及ぼす可能性があるため、できるだけ少ない方が好ましい。したがって、塩化亜鉛や塩酸を用いて製造された活性炭は、十分に洗浄し含有塩素をできる限り除去することが好ましい。活性炭の形状にも特に制限はなく、粉末状、球状、ペレット状および繊維状など種々の活性炭が使用できる。活性炭のBET比表面積は、300m2/g以上が好ましく、600m2/g以上が特に好ましい。また、4000m2/g以下が好ましく、2500m2/g以下が特に好ましい。
(1-1) Carrier There are no particular restrictions on the type of carrier, and typical carriers such as activated carbon, carbon black, silica, alumina, magnesia, calcia, zirconia, and titania can be used. Among them, it is preferable to use activated carbon or silica. Normally, activated carbon is produced by a process of carbonization, sizing, activation, washing, drying and pulverization, but the production process is not particularly limited in the present invention. There is no restriction | limiting in particular also in the carbonaceous substance which is a raw material of activated carbon, Various raw materials, such as coconut husk, coal, woody, and a synthetic resin, can be used. There is no restriction | limiting in particular also in the activation method, It can activate using water vapor | steam, a carbon dioxide gas, oxygen, phosphoric acid, a phosphate, zinc chloride, etc. Activated activated carbon is washed with mineral acid, hydrochloric acid, water, etc., if necessary, dried, and then used. Of the impurities contained in the product activated carbon, chlorine is likely to adversely affect the catalyst performance, so it is preferable that it be as small as possible. Therefore, it is preferable that the activated carbon produced using zinc chloride or hydrochloric acid is sufficiently washed to remove contained chlorine as much as possible. There is no restriction | limiting in particular also in the shape of activated carbon, Various activated carbons, such as a powder form, spherical shape, a pellet form, and a fiber form, can be used. BET specific surface area of the activated carbon is preferably at least 300 meters 2 / g, and particularly preferably equal to or greater than 600m 2 / g. Moreover, 4000 m < 2 > / g or less is preferable and 2500 m < 2 > / g or less is especially preferable.

本発明では、窒素ガス吸着法により測定した全細孔容積が0.40〜1.50cc/gである担体を選択して使用する。このような担体を利用することで、オレフィンまたはα,β−不飽和アルデヒドから液相酸化により高選択率及び高生産的にα,β−不飽和カルボン酸を製造できるようになる。以下、その構成及び製造方法を説明する。   In the present invention, a carrier having a total pore volume measured by a nitrogen gas adsorption method of 0.40 to 1.50 cc / g is selected and used. By using such a carrier, α, β-unsaturated carboxylic acid can be produced from olefin or α, β-unsaturated aldehyde by liquid phase oxidation with high selectivity and high productivity. Hereinafter, the configuration and the manufacturing method will be described.

特に、高選択的に目的生成物を得るためには、全細孔容積が0.40〜0.80cc/gである担体を選択することが好ましい。より好ましくは0.47cc/g以上であり、より好ましくは0.70cc/g以下であり、さらに好ましくは0.67cc/g以下である。このような条件を満たす担体を用いることにより、副生成物の生成が少なく、アクリル酸、メタクリル酸等の目的生成物を良好な選択率で得ることができる。これは、全細孔容積を前述の範囲の中でも小さめの範囲とすることにより、オリゴマー等の副生成物を抑制して、目的生成物の選択率がより向上するものと思われる。またこの場合、細孔径2nm以上50nm以下のメソポア孔の細孔容積の割合は、全細孔容積の40%以下が好ましく、より好ましくは35%以下であり、さらに好ましくは30%以下であり、特に好ましくは20%以下である。また、上記メソポア孔の細孔容積の割合は、全細孔容積の5%以上が好ましく、より好ましくは7%以上、さらに好ましくは9%以上である。特にこの場合、同じ細孔容積であればメソポア孔の比率が低いほどオリゴマー等の副生成物が生成しずらくなるため、選択率がさらに向上するものと思われる。さらに、担体のBET比表面積が、600m2/g以上が好ましく、800m2/g以上がより好ましく、2000m2/g以下が好ましく、1500m2/g以下がより好ましい。 In particular, in order to obtain the target product with high selectivity, it is preferable to select a carrier having a total pore volume of 0.40 to 0.80 cc / g. More preferably, it is 0.47 cc / g or more, More preferably, it is 0.70 cc / g or less, More preferably, it is 0.67 cc / g or less. By using a carrier that satisfies such conditions, there is little production of by-products, and target products such as acrylic acid and methacrylic acid can be obtained with good selectivity. This is considered to be because the by-products such as oligomers are suppressed and the selectivity of the target product is further improved by setting the total pore volume to a smaller range in the above range. In this case, the ratio of the pore volume of the mesopores having a pore diameter of 2 nm to 50 nm is preferably 40% or less, more preferably 35% or less, and further preferably 30% or less of the total pore volume. Particularly preferably, it is 20% or less. Further, the ratio of the pore volume of the mesopores is preferably 5% or more of the total pore volume, more preferably 7% or more, and further preferably 9% or more. In particular, in this case, if the pore volume is the same, the lower the ratio of mesopores, the more difficult it is to produce by-products such as oligomers. Further, BET specific surface area of the carrier is preferably at least 600 meters 2 / g, more preferably at least 800 m 2 / g, preferably not more than 2000 m 2 / g, more preferably at most 1500 m 2 / g.

特に、高生産的に目的生成物を得るためには、全細孔容積が0.80〜1.50cc/gである担体を選択することが好ましい。より好ましくは0.85cc/g以上であり、さらに好ましくは0.90cc/g以上であり、より好ましくは1.40cc/g以下であり、さらに好ましくは1.30cc/g以下である。このような条件を満たす担体を用いることにより、触媒活性が高く、アクリル酸、メタクリル酸等の目的生成物を良好な生産性で得ることができる。これは、細孔容積を前述の範囲の中でも大きめの範囲とすることにより、反応物および生成物の細孔内拡散が容易になり、生産性がより向上するものと思われる。また、細孔径2nm以上50nm以下のメソポア孔の細孔容積の割合は、全細孔容積の10%以上が好ましく、より好ましくは20%以上であり、さらに好ましくは30%以上であり、特に好ましくは40%以上である。また、好ましくは65%以下であり、より好ましくは60%以下であり、さらに好ましくは55%以下である。特にこの場合、同じ細孔容積であればメソポア孔の比率が高いほど細孔内拡散は容易となるため、生産効率がさらに向上するものと思われる。さらに、担体のBET比表面積が、100m2/g以上が好ましく、300m2/g以上がより好ましく、5000m2/g以下が好ましく、4000m2/g以下がより好ましい。 In particular, in order to obtain the target product with high productivity, it is preferable to select a carrier having a total pore volume of 0.80 to 1.50 cc / g. More preferably, it is 0.85 cc / g or more, More preferably, it is 0.90 cc / g or more, More preferably, it is 1.40 cc / g or less, More preferably, it is 1.30 cc / g or less. By using a carrier satisfying such conditions, the catalytic activity is high, and target products such as acrylic acid and methacrylic acid can be obtained with good productivity. This is considered to be that by making the pore volume a larger range in the above-mentioned range, the diffusion of reactants and products into the pores is facilitated, and the productivity is further improved. Further, the ratio of the pore volume of mesopores having a pore diameter of 2 nm or more and 50 nm or less is preferably 10% or more of the total pore volume, more preferably 20% or more, still more preferably 30% or more, particularly preferably. Is 40% or more. Moreover, it is preferably 65% or less, more preferably 60% or less, and further preferably 55% or less. In particular, in this case, if the pore volume is the same, the higher the ratio of mesopores, the easier the diffusion in the pores, and thus the production efficiency seems to be further improved. Further, BET specific surface area of the carrier is preferably at least 100 m 2 / g, more preferably at least 300 meters 2 / g, preferably not more than 5000 m 2 / g, more preferably at most 4000 m 2 / g.

なお、担体の全細孔容積、細孔径2nm以上50nm以下のメソポア孔の細孔容積及びBET比表面積は、例えば、Micromeritics社製自動比表面積/細孔分布測定装置TriStar3000(商品名)等により測定できる。   The total pore volume of the carrier, the pore volume of the mesopores having a pore diameter of 2 nm to 50 nm and the BET specific surface area are measured by, for example, an automatic specific surface area / pore distribution measuring device TriStar 3000 (trade name) manufactured by Micromeritics. it can.

(1−2)金属
担体に担持される金属は、液相酸化の触媒として機能するものであれば特に制約を受けないが、貴金属が好ましく、パラジウムまたは金がより好ましく、パラジウムが特に好ましい。金属は1種でも良く2種以上でも良い。また、液相酸化の触媒として機能しない金属を含んでいても良い。触媒活性の観点から、液相酸化の触媒として機能しない金属は50原子%以下であることが好ましい。
(1-2) Metal The metal supported on the carrier is not particularly limited as long as it functions as a catalyst for liquid phase oxidation, but is preferably a noble metal, more preferably palladium or gold, and particularly preferably palladium. One kind or two or more kinds of metals may be used. Moreover, the metal which does not function as a catalyst of liquid phase oxidation may be included. From the viewpoint of catalytic activity, the amount of metal that does not function as a catalyst for liquid phase oxidation is preferably 50 atomic% or less.

ここで、本発明では、上記の担体に、平均粒子径が1〜8nmの範囲にあるパラジウムが担持されていることが好ましい。金属としてパラジウムを選択し、平均粒子径を上記範囲にすることにより、α,β−不飽和アルデヒドからα,β−不飽和カルボン酸をより高収率で製造可能な触媒となる。前記の平均粒子径は1.2nm以上がより好ましく、1.4nm以上がさらに好ましい。また、上記の平均粒子径は7nm以下がより好ましく、6nm以下がさらに好ましい。このとき、触媒におけるパラジウム以外の金属を含んでいても良いが、触媒活性の観点から、パラジウム以外の金属は50原子%以下であることが好ましい。   Here, in the present invention, it is preferable that palladium having an average particle diameter in the range of 1 to 8 nm is supported on the carrier. By selecting palladium as the metal and setting the average particle size within the above range, a catalyst capable of producing an α, β-unsaturated carboxylic acid from an α, β-unsaturated aldehyde in a higher yield can be obtained. The average particle diameter is more preferably 1.2 nm or more, and further preferably 1.4 nm or more. The average particle diameter is more preferably 7 nm or less, and further preferably 6 nm or less. At this time, a metal other than palladium in the catalyst may be contained, but from the viewpoint of catalytic activity, the metal other than palladium is preferably 50 atom% or less.

ここで、上記のパラジウムの平均粒子径とは、触媒中のパラジウムについて透過型電子顕微鏡によって測定したものであり、具体的には以下のようにして算出を行なった値である。   Here, the average particle diameter of the palladium is a value obtained by measuring the palladium in the catalyst with a transmission electron microscope, and is specifically a value calculated as follows.

透過型電子顕微鏡の観察画像を等倍でプリントアウトし、視野内のパラジウムの領域50点を無作為にピックアップしてそれぞれの粒子径を計測する。パラジウムの領域の形状はほぼ円形であるので、全て円形であると近似して計測する。この操作を3視野について実施し、計測値の平均をとり平均粒子径とする。なお、透過型電子顕微鏡の観察はパラジウムの粒子径の計測が可能な観察倍率で行なうものとする。   The observation image of the transmission electron microscope is printed at an equal magnification, and 50 particles of palladium in the field of view are randomly picked up and each particle size is measured. Since the shape of the palladium region is almost circular, it is measured by approximating that it is all circular. This operation is carried out for three visual fields, and the average of the measured values is taken as the average particle diameter. The observation with a transmission electron microscope is performed at an observation magnification capable of measuring the particle diameter of palladium.

なお、触媒中のパラジウムの平均粒子径は、用いる担体の種類及びBET比表面積、触媒の調製に用いる溶媒の種類及び混合溶媒の場合の混合比、触媒の原料であるパラジウム化合物の種類及び濃度、パラジウム化合物を還元する温度及び時間等の様々な条件により変化する。本発明においては、それらの条件を適宜選択して設定し、得られる触媒中のパラジウムの平均粒子径を上記の範囲とする必要がある。   The average particle diameter of palladium in the catalyst is the type of support used and the BET specific surface area, the type of solvent used for the preparation of the catalyst and the mixing ratio in the case of a mixed solvent, the type and concentration of the palladium compound that is the raw material of the catalyst, It varies depending on various conditions such as temperature and time for reducing the palladium compound. In the present invention, it is necessary to appropriately select and set those conditions, and to set the average particle diameter of palladium in the obtained catalyst within the above range.

(2)α,β−不飽和カルボン酸製造用触媒の製造方法
次に、上記のような本発明のα,β−不飽和カルボン酸製造用触媒を製造する方法について説明する。
(2) Method for Producing α, β-Unsaturated Carboxylic Acid Production Catalyst Next, a method for producing the above-described catalyst for producing an α, β-unsaturated carboxylic acid according to the present invention will be described.

本発明の触媒の製造方法は特に限定されないが、担体の存在下で金属化合物を還元剤によって還元する方法をとることが好ましい。具体的には、例えば、担体を分散させた金属化合物の溶液を調製し、そこに還元剤を加えて還元する液相還元法、金属化合物の溶液を担体に含浸させたものを乾燥し、還元雰囲気で還元する気相還元法等により製造することができる。なかでも、液相還元法が好ましい。以下、液相還元法による触媒の製造方法について説明する。   The method for producing the catalyst of the present invention is not particularly limited, but it is preferable to take a method of reducing a metal compound with a reducing agent in the presence of a carrier. Specifically, for example, a liquid phase reduction method in which a solution of a metal compound in which a carrier is dispersed is prepared, and a reducing agent is added thereto to reduce the solution, and a carrier impregnated with a metal compound solution is dried and reduced. It can be produced by a gas phase reduction method that reduces in an atmosphere. Of these, the liquid phase reduction method is preferred. Hereinafter, a method for producing a catalyst by the liquid phase reduction method will be described.

使用する金属化合物としては、触媒となる金属の、塩化物、酸化物、酢酸塩、硝酸塩、硫酸塩、テトラアンミン錯体、又はアセチルアセトナト錯体等が好ましく、金属の、塩化物、酸化物、酢酸塩、硝酸塩、又は硫酸塩がより好ましく、金属の、塩化物、酢酸塩、又は硝酸塩がさらに好ましい。これらは単独で使用することもでき、複数を組み合わせて使用することもできる。   The metal compound used is preferably a metal chloride, oxide, acetate, nitrate, sulfate, tetraammine complex, acetylacetonate complex or the like, which is a metal chloride, oxide, acetate. Nitrate, sulfate, or sulfate is more preferable, and metal chloride, acetate, or nitrate is more preferable. These can be used alone or in combination.

また、これら金属化合物としては、不純物として塩素を実質的に含まないものを使用することも好ましい。より具体的には、金属化合物中の塩素が1000ppm以下であることが好ましい。すなわち、酢酸塩、硝酸塩、ビスアセチルアセトナート錯体等の塩素を含まない金属化合物を用いることが好ましい。金属としてパラジウムを選択する場合、例えば、酢酸パラジウム、硝酸パラジウム、ビスアセチルアセトナートパラジウムを好適に使用できる。   Moreover, as these metal compounds, it is also preferable to use those which do not substantially contain chlorine as an impurity. More specifically, the chlorine in the metal compound is preferably 1000 ppm or less. That is, it is preferable to use a metal compound that does not contain chlorine, such as acetate, nitrate, and bisacetylacetonate complex. When palladium is selected as the metal, for example, palladium acetate, palladium nitrate, and bisacetylacetonate palladium can be suitably used.

金属化合物を溶解する溶媒としては、金属化合物及び還元剤の溶解性並びに担体の分散性等によって適宜選択され、水、アルコール類、ケトン類、有機酸類、炭化水素類、またはこれらの群から選ばれる2種以上の混合溶媒を用いることができる。溶媒としては、アルコール類、ケトン類、有機酸類からなる群から選ばれる1種または2種以上の有機溶媒が好ましく、C2〜C6の有機酸類、ターシャリーブタノール、および、C3〜C6のケトン類からなる群より選ばれる1種またはこれらの混合物がより好ましい。 The solvent for dissolving the metal compound is appropriately selected depending on the solubility of the metal compound and the reducing agent and the dispersibility of the carrier, and is selected from water, alcohols, ketones, organic acids, hydrocarbons, or a group thereof. Two or more mixed solvents can be used. As the solvent, one or more organic solvents selected from the group consisting of alcohols, ketones, and organic acids are preferable. C 2 -C 6 organic acids, tertiary butanol, and C 3 -C 6 One kind selected from the group consisting of these ketones or a mixture thereof is more preferred.

より性能の高い触媒を製造できることから、有機溶媒と水との混合溶媒とすることも好ましい。有機溶媒と水との混合溶媒とする場合、アルコール類、ケトン類、有機酸類からなる群から選ばれる1種または2種以上の有機溶媒と水との混合溶媒が好ましい。中でも、有機酸類から選ばれる1種または2種以上の溶媒と水との混合溶媒が好ましい。有機酸類としては、酢酸、プロピオン酸、n−酪酸、iso−酪酸、n−吉草酸およびiso−吉草酸からなる群から選ばれる少なくとも1つが好ましい。中でもn−吉草酸または酢酸が特に好ましい。その際の水の量は特に限定されないが、混合溶媒の質量に対して5質量%以上が好ましく、より好ましくは8質量%以上である。また、上記の水の量は60質量%以下が好ましく、より好ましくは50質量%以下であり、さらに好ましくは40質量%以下である。混合溶媒の場合、均一な状態であることが望ましいが、不均一な状態であっても差し支えない。   Since a catalyst with higher performance can be produced, it is also preferable to use a mixed solvent of an organic solvent and water. When a mixed solvent of an organic solvent and water is used, a mixed solvent of one or more organic solvents selected from the group consisting of alcohols, ketones and organic acids and water is preferable. Among these, a mixed solvent of one or two or more solvents selected from organic acids and water is preferable. The organic acids are preferably at least one selected from the group consisting of acetic acid, propionic acid, n-butyric acid, iso-butyric acid, n-valeric acid and iso-valeric acid. Of these, n-valeric acid or acetic acid is particularly preferred. The amount of water at that time is not particularly limited, but is preferably 5% by mass or more, more preferably 8% by mass or more, based on the mass of the mixed solvent. The amount of water is preferably 60% by mass or less, more preferably 50% by mass or less, and still more preferably 40% by mass or less. In the case of a mixed solvent, a uniform state is desirable, but a non-uniform state may be used.

上記溶媒中に担体と金属化合物を、所望の順序または同時に溶媒に加えて、担体を分散させた金属化合物の溶液を調製する。金属化合物の濃度は、0.1質量%以上が好ましく、より好ましくは0.2質量%以上であり、特に好ましくは0.5質量%以上である。また、上記金属化合物の濃度は、20質量%以下が好ましく、より好ましくは10質量%以下であり、さらに好ましくは7質量%以下であり、特に好ましくは4質量%以下である。   A carrier and a metal compound are added to the solvent in the solvent in the desired order or simultaneously to prepare a solution of the metal compound in which the carrier is dispersed. The concentration of the metal compound is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and particularly preferably 0.5% by mass or more. The concentration of the metal compound is preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 7% by mass or less, and particularly preferably 4% by mass or less.

次いで、この担体が分散した金属化合物溶液に還元剤を加えて還元し、担体に金属が担持された触媒が得られる。   Subsequently, a reducing agent is added to the metal compound solution in which the carrier is dispersed to reduce the metal compound solution, thereby obtaining a catalyst in which the metal is supported on the carrier.

使用する還元剤は特に制限されず、金属化合物中の酸化状態の金属を還元する能力を有するものであればよい。例えば、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、水素、ギ酸、ギ酸の塩、アルコール類およびオレフィン類などを用いることができる。中でも、ホルムアルデヒド、プロピレン、イソブチレン、1−ブテン、および、2−ブテンからなる群より選ばれる少なくともひとつが好ましく、ホルムアルデヒド、プロピレンまたはイソブチレンがより好ましい。   The reducing agent to be used is not particularly limited as long as it has an ability to reduce an oxidized metal in the metal compound. For example, hydrazine, formaldehyde, sodium borohydride, hydrogen, formic acid, formic acid salts, alcohols and olefins can be used. Among these, at least one selected from the group consisting of formaldehyde, propylene, isobutylene, 1-butene, and 2-butene is preferable, and formaldehyde, propylene, or isobutylene is more preferable.

還元剤として例えばプロピレン等の気体を用いる場合、オートクレーブなどの加圧装置中に担体が分散した金属化合物溶液を仕込み、内部を還元剤で加圧することにより還元を行なう方法とすることが好ましい。その圧力は0.1〜1.0MPa(ゲージ圧;以下、圧力の表記は全てゲージ圧表記とする)とすることが好ましい。   When a gas such as propylene is used as the reducing agent, it is preferable to carry out the reduction by charging a metal compound solution in which the carrier is dispersed in a pressurizing apparatus such as an autoclave and pressurizing the inside with a reducing agent. The pressure is preferably 0.1 to 1.0 MPa (gauge pressure; hereinafter, all pressures are expressed as gauge pressures).

還元剤が液体又は固体の場合は、担体が分散した金属化合物溶液中に還元剤を添加することで還元を行なうことができる。このときの還元剤の使用量は、金属化合物1モルに対して1〜50モル程度が好ましい。   When the reducing agent is liquid or solid, the reduction can be performed by adding the reducing agent to the metal compound solution in which the carrier is dispersed. In this case, the amount of the reducing agent used is preferably about 1 to 50 mol with respect to 1 mol of the metal compound.

還元時の系の温度および還元時間は、還元方法、用いる担体及び金属化合物、溶媒、還元剤等により異なるので一概に言えないが、液相還元法の場合、還元温度は−5℃以上が好ましく、より好ましくは0℃以上であり、さらに好ましくは15℃以上である。また、還元温度は150℃以下が好ましく、より好ましくは100℃以下であり、さらに好ましくは80℃以下である。還元時間は0.1時間以上が好ましく、より好ましくは0.25時間以上であり、さらに好ましくは0.5時間以上である。また、還元時間は24時間以下が好ましく、より好ましくは4時間以下であり、さらに好ましくは3時間以下、特により好ましくは2時間以下である。   The temperature and reduction time of the system at the time of reduction vary depending on the reduction method, the carrier and metal compound used, the solvent, the reducing agent, etc., but cannot generally be said, but in the case of the liquid phase reduction method, the reduction temperature is preferably −5 ° C. or higher. More preferably, it is 0 degreeC or more, More preferably, it is 15 degreeC or more. The reduction temperature is preferably 150 ° C. or lower, more preferably 100 ° C. or lower, and further preferably 80 ° C. or lower. The reduction time is preferably 0.1 hour or longer, more preferably 0.25 hour or longer, and further preferably 0.5 hour or longer. The reduction time is preferably 24 hours or less, more preferably 4 hours or less, still more preferably 3 hours or less, and particularly preferably 2 hours or less.

還元後、分散液から担体に金属が担持された触媒を分離する。この方法は特に限定されないが、例えば、ろ過、遠心分離等の方法を用いることができる。分離された触媒は適宜乾燥される。乾燥方法は特に限定されず、種々の方法を用いることができる。   After the reduction, the catalyst having the metal supported on the carrier is separated from the dispersion. Although this method is not specifically limited, For example, methods, such as filtration and centrifugation, can be used. The separated catalyst is appropriately dried. The drying method is not particularly limited, and various methods can be used.

なお、還元後に触媒と分離された溶液に含まれる金属の濃度は10mg/l以下にすることが好ましい。この量は還元前の金属化合物濃度や還元条件等により調節できる。溶液中の金属の有無はヒドラジン等の還元剤を添加することにより簡便に確認でき、また、溶液中の金属の量はICP等の元素分析で定量することができる。   The concentration of the metal contained in the solution separated from the catalyst after the reduction is preferably 10 mg / l or less. This amount can be adjusted by the concentration of the metal compound before the reduction, the reduction conditions, and the like. The presence or absence of metal in the solution can be easily confirmed by adding a reducing agent such as hydrazine, and the amount of metal in the solution can be quantified by elemental analysis such as ICP.

触媒の金属担持率は、担持前の担体に対して0.1質量%以上が好ましく、より好ましくは0.5質量%以上であり、さらに好ましくは1質量%以上であり、特に好ましくは4質量%以上である。また、触媒の金属担持率は、担持前の担体の質量に対して40質量%以下が好ましく、より好ましくは30質量%以下であり、さらに好ましくは20質量%以下であり、特に好ましくは15質量%以下である。担持率は、触媒調製に用いた担体質量、金属化合物中の金属の質量、還元後に触媒と分離された溶液に含まれる金属の質量から求めることができる。   The metal loading ratio of the catalyst is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, further preferably 1% by mass or more, and particularly preferably 4% by mass with respect to the carrier before loading. % Or more. Further, the metal loading of the catalyst is preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less, and particularly preferably 15% by mass with respect to the mass of the carrier before loading. % Or less. The loading rate can be determined from the mass of the carrier used for preparing the catalyst, the mass of the metal in the metal compound, and the mass of the metal contained in the solution separated from the catalyst after the reduction.

このようにして製造された触媒は、溶媒で洗浄後、分散液の状態で反応に使用しても良く、遠心分離やろ過により分離して反応に使用しても良い。   The catalyst thus produced may be used for the reaction in the form of a dispersion after washing with a solvent, or may be used for the reaction after separation by centrifugation or filtration.

触媒は、液相酸化に供する前に、活性化してもよい。活性化の方法は特に限定されず、種々の方法を用いることができる。活性化の方法としては水素気流中の還元雰囲気下で加熱する方法が好ましい。   The catalyst may be activated before being subjected to liquid phase oxidation. The activation method is not particularly limited, and various methods can be used. As a method of activation, a method of heating in a reducing atmosphere in a hydrogen stream is preferable.

(3)α,β−不飽和カルボン酸の製造方法
次に、このようにして得られた本発明のα,β−不飽和カルボン酸製造用触媒を用いて、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素によって液相酸化してα,β−不飽和カルボン酸を製造する方法について説明する。
(3) Method for Producing α, β-Unsaturated Carboxylic Acid Next, using the thus obtained catalyst for producing α, β-unsaturated carboxylic acid of the present invention, olefin or α, β-unsaturated A method for producing an α, β-unsaturated carboxylic acid by liquid phase oxidation of aldehyde with molecular oxygen will be described.

液相酸化の原料のオレフィンとしては、例えば、プロピレン、イソブチレン、2−ブテン等が挙げられる。また、原料のα,β−不飽和アルデヒドとしては、例えば、アクロレイン、メタクロレイン、クロトンアルデヒド(β−メチルアクロレイン)、シンナムアルデヒド(β−フェニルアクロレイン)等が挙げられる。原料のオレフィンまたはα,β−不飽和アルデヒドには、不純物として飽和炭化水素および/または低級飽和アルデヒド等が少々含まれていてもよい。   Examples of the olefin as a raw material for liquid phase oxidation include propylene, isobutylene, 2-butene and the like. Examples of the raw α, β-unsaturated aldehyde include acrolein, methacrolein, crotonaldehyde (β-methylacrolein), and cinnamaldehyde (β-phenylacrolein). The raw material olefin or α, β-unsaturated aldehyde may contain some saturated hydrocarbons and / or lower saturated aldehydes as impurities.

液相酸化で製造されるα,β−不飽和カルボン酸は、原料がオレフィンの場合、オレフィンと同一炭素骨格を有するα,β−不飽和カルボン酸である。また、原料がα,β−不飽和アルデヒドの場合、α,β−不飽和アルデヒドのアルデヒド基がカルボキシル基に変化したα,β−不飽和カルボン酸である。   The α, β-unsaturated carboxylic acid produced by liquid phase oxidation is an α, β-unsaturated carboxylic acid having the same carbon skeleton as the olefin when the raw material is an olefin. When the raw material is an α, β-unsaturated aldehyde, it is an α, β-unsaturated carboxylic acid in which the aldehyde group of the α, β-unsaturated aldehyde is changed to a carboxyl group.

本発明の触媒は、プロピレンまたはアクロレインからアクリル酸、イソブチレンまたはメタクロレインからメタクリル酸を製造する液相酸化に好適である。   The catalyst of the present invention is suitable for liquid phase oxidation for producing acrylic acid from propylene or acrolein, and methacrylic acid from isobutylene or methacrolein.

反応に用いる分子状酸素源には、空気が経済的であるが、純酸素または純酸素と空気の混合ガスを用いることもでき、必要であれば、空気または純酸素を窒素、二酸化炭素、水蒸気等で希釈した混合ガスを用いることもできる。   Air is economical as the molecular oxygen source used in the reaction, but pure oxygen or a mixed gas of pure oxygen and air can also be used. If necessary, air or pure oxygen is converted into nitrogen, carbon dioxide, water vapor. It is also possible to use a mixed gas diluted with the same.

液相酸化に用いる溶媒は特に限定されないが、例えば、水;ターシャリーブタノール、シクロヘキサノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;酢酸、プロピオン酸、n−酪酸、iso−酪酸、n−吉草酸、iso−吉草酸等の有機酸類;酢酸エチル、プロピオン酸メチル等の有機酸エステル類;ヘキサン、シクロヘキサン、トルエン等の炭化水素類、またはこれらの群から選ばれる2種以上の混合溶媒を用いることができる。中でも、アルコール類、ケトン類、有機酸類および有機酸エステル類からなる群から選ばれる1種または2種以上の溶媒が好ましく、C2〜C6の有機酸類、ターシャリーブタノール、および、C3〜C6のケトン類からなる群より選ばれる1種またはこれらの混合物がより好ましく、ターシャリーブタノール、酢酸およびn−吉草酸のいずれかを含むことが特に好ましい。また、アルコール類、ケトン類、有機酸類および有機酸エステル類からなる群から選ばれる1種または2種以上の溶媒と水との混合溶媒とすることにより、液相酸化反応の成績はさらに向上するので好ましい。その際の水の量は特に限定されないが、混合溶媒の質量に対して2質量%以上が好ましく、より好ましくは5質量%以上であり、70質量%以下が好ましく、より好ましくは50質量%以下である。溶媒は均一であることが望ましいが、不均一な状態で用いても差し支えない。 Although the solvent used for liquid phase oxidation is not specifically limited, For example, Water; Alcohols, such as tertiary butanol and cyclohexanol; Ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone; Acetic acid, propionic acid, n-butyric acid, iso- Organic acids such as butyric acid, n-valeric acid and iso-valeric acid; organic acid esters such as ethyl acetate and methyl propionate; hydrocarbons such as hexane, cyclohexane and toluene, or two or more selected from these groups The mixed solvent can be used. Among these, one or two or more solvents selected from the group consisting of alcohols, ketones, organic acids and organic acid esters are preferable, C 2 to C 6 organic acids, tertiary butanol, and C 3 to One type selected from the group consisting of C 6 ketones or a mixture thereof is more preferable, and it is particularly preferable that any one of tertiary butanol, acetic acid and n-valeric acid is included. In addition, by using a mixed solvent of one or more solvents selected from the group consisting of alcohols, ketones, organic acids and organic acid esters and water, the results of the liquid phase oxidation reaction are further improved. Therefore, it is preferable. The amount of water at that time is not particularly limited, but is preferably 2% by mass or more, more preferably 5% by mass or more, and preferably 70% by mass or less, more preferably 50% by mass or less, based on the mass of the mixed solvent. It is. Although the solvent is desirably uniform, it may be used in a non-uniform state.

液相酸化反応は連続式、バッチ式の何れの形式で行ってもよいが、生産性を考慮すると工業的には連続式が好ましい。   The liquid phase oxidation reaction may be carried out in either a continuous type or a batch type, but in view of productivity, the continuous type is preferred industrially.

原料であるオレフィンまたはα,β−不飽和アルデヒドの使用量は、溶媒100質量部に対して、0.1質量部以上が好ましく、より好ましくは0.5質量部以上である。また、20質量部以下が好ましく、より好ましくは10質量部以下である。   The amount of the olefin or α, β-unsaturated aldehyde used as a raw material is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the solvent. Moreover, 20 mass parts or less are preferable, More preferably, it is 10 mass parts or less.

分子状酸素の使用量は、原料であるオレフィンまたはα,β−不飽和アルデヒド1モルに対して、0.1モル以上が好ましく、より好ましくは0.3モル以上であり、特に好ましくは0.5モル以上である。また、上記分子状酸素の使用量は、30モル以下が好ましく、より好ましくは25モル以下であり、さらに好ましくは20モル以下であり、特に好ましくは15モル以下であり、最も好ましくは10モル以下である。   The amount of molecular oxygen to be used is preferably at least 0.1 mol, more preferably at least 0.3 mol, particularly preferably at least 0.1 mol, based on 1 mol of the raw material olefin or α, β-unsaturated aldehyde. 5 moles or more. The amount of molecular oxygen used is preferably 30 mol or less, more preferably 25 mol or less, still more preferably 20 mol or less, particularly preferably 15 mol or less, and most preferably 10 mol or less. It is.

触媒は液相酸化を行なう反応液に懸濁させた状態で使用することが好ましいが、固定床で使用してもよい。触媒の使用量は、反応器内に存在する溶液100質量部に対して、反応器内に存在する触媒として0.1質量部以上が好ましく、より好ましくは0.5質量部以上であり、特に好ましくは1質量部以上である。また、上記触媒の使用量は、30質量部以下が好ましく、より好ましくは20質量部以下であり、特に好ましくは15質量部以下である。   The catalyst is preferably used in a state of being suspended in a reaction solution for performing liquid phase oxidation, but may be used in a fixed bed. The amount of catalyst used is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, particularly 100 parts by mass of the solution present in the reactor as the catalyst present in the reactor. Preferably it is 1 part by mass or more. The amount of the catalyst used is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and particularly preferably 15 parts by mass or less.

反応温度および反応圧力は、用いる溶媒および反応原料によって適宜選択される。反応温度は30℃以上が好ましく、より好ましくは50℃以上であり、さらに好ましくは60℃以上であり、特に好ましくは70℃以上である。また、反応温度は200℃以下が好ましく、より好ましくは150℃以下である。反応圧力は大気圧(0MPa)以上が好ましく、より好ましくは0.5MPa以上であり、さらに好ましくは2MPa以上であり、10MPa以下が好ましく、より好ましくは7MPa以下であり、さらに好ましくは5MPa以下である。   The reaction temperature and reaction pressure are appropriately selected depending on the solvent used and the reaction raw materials. The reaction temperature is preferably 30 ° C or higher, more preferably 50 ° C or higher, still more preferably 60 ° C or higher, and particularly preferably 70 ° C or higher. The reaction temperature is preferably 200 ° C. or lower, more preferably 150 ° C. or lower. The reaction pressure is preferably atmospheric pressure (0 MPa) or more, more preferably 0.5 MPa or more, further preferably 2 MPa or more, preferably 10 MPa or less, more preferably 7 MPa or less, and further preferably 5 MPa or less. .

加圧での反応を行なう際には、撹拌機能をもつオートクレーブを用いることが好ましい。   When performing the reaction under pressure, it is preferable to use an autoclave having a stirring function.

以下、本発明について実施例、比較例を挙げて更に具体的に説明するが、本発明は実施例に限定されるものではない。下記の実施例および比較例中の「部」は「質量部」を意味する。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to an Example. In the following Examples and Comparative Examples, “part” means “part by mass”.

(原料および生成物の分析)
原料および生成物の分析はガスクロマトグラフィーを用いて行った。なお、オレフィンまたはα,β−不飽和アルデヒドの反応率、生成するα,β−不飽和アルデヒドの選択率、生成するポリマー・オリゴマーの選択率、生成するα,β−不飽和カルボン酸の選択率及び生産性は以下のように定義される。
オレフィンまたはα,β−不飽和アルデヒドの反応率(%)=(B/A)×100
α,β−不飽和アルデヒドの選択率(%) =(C/B)×100
α,β−不飽和カルボン酸の選択率(%) =(D/B)×100
ポリマー・オリゴマーの選択率(%) =(E/B)×100
α,β−不飽和カルボン酸の生産性(g/(g・h)) =F/(G×H)
ここで、Aは供給したオレフィンまたはα,β−不飽和アルデヒドのモル数、Bは反応したオレフィンまたはα,β−不飽和アルデヒドのモル数、Cは生成したα,β−不飽和アルデヒドのモル数、Dは生成したα,β−不飽和カルボン酸のモル数、Eはポリマーおよびオリゴマーの総質量(単位:g)を供給したオレフィンまたはα,β−不飽和アルデヒドの分子量で除して算出したオレフィンまたはα,β−不飽和アルデヒド換算のポリマーおよびオリゴマーのモル数、Fは生成したα,β−不飽和カルボン酸の質量(単位:g)、Gは使用した触媒に含まれる金属の質量(単位:g)、Hは反応時間(単位:h)である。ここで、α,β−不飽和アルデヒドの液相酸化反応の場合には、C/B=0である。
(Analysis of raw materials and products)
Analysis of raw materials and products was performed using gas chromatography. In addition, reaction rate of olefin or α, β-unsaturated aldehyde, selectivity of α, β-unsaturated aldehyde to be produced, selectivity of polymer / oligomer to be produced, selectivity of α, β-unsaturated carboxylic acid to be produced And productivity is defined as follows.
Reaction rate of olefin or α, β-unsaturated aldehyde (%) = (B / A) × 100
Selectivity of α, β-unsaturated aldehyde (%) = (C / B) × 100
Selectivity of α, β-unsaturated carboxylic acid (%) = (D / B) × 100
Selectivity of polymer / oligomer (%) = (E / B) × 100
Productivity of α, β-unsaturated carboxylic acid (g / (g · h)) = F / (G × H)
Here, A is the number of moles of olefin or α, β-unsaturated aldehyde supplied, B is the number of moles of reacted olefin or α, β-unsaturated aldehyde, and C is the mole of α, β-unsaturated aldehyde produced. Number, D is the number of moles of α, β-unsaturated carboxylic acid produced, E is calculated by dividing the total mass (unit: g) of the polymer and oligomer by the molecular weight of the olefin or α, β-unsaturated aldehyde supplied. Of olefin or α, β-unsaturated aldehyde converted polymer and oligomer, F is the mass of the α, β-unsaturated carboxylic acid produced (unit: g), G is the mass of the metal contained in the catalyst used (Unit: g), H is the reaction time (unit: h). Here, in the case of the liquid phase oxidation reaction of α, β-unsaturated aldehyde, C / B = 0.

[担体の物性測定]
担体の細孔容積、細孔分布は、Micromeritics社製自動比表面積/細孔分布測定装置TriStar3000(商品名)を用いて、窒素ガス吸着法に基づく定容法により測定した。この方法により測定可能な細孔径はおよそ1〜100nmの範囲であり、本発明において記載されている全ての細孔容積、細孔分布は相対圧(吸着平衡圧/飽和蒸気圧)を上昇させる方向での窒素吸着量の変化(吸着等温線)をもとに算出した。
[Measurement of physical properties of carrier]
The pore volume and pore distribution of the support were measured by a constant volume method based on a nitrogen gas adsorption method using an automatic specific surface area / pore distribution measuring device TriStar 3000 (trade name) manufactured by Micromeritics. The pore diameter measurable by this method is in the range of approximately 1 to 100 nm, and all pore volumes and pore distributions described in the present invention are in the direction of increasing the relative pressure (adsorption equilibrium pressure / saturated vapor pressure). It was calculated based on the change in nitrogen adsorption amount (adsorption isotherm).

上記の測定において、t−plot法を用いて担体の単位質量あたりの全細孔容積、およびBET比表面積を測定した。また、BJH法を用いて細孔径2nm以上50nm以下の細孔(メソポア孔)の細孔容積を算出して、全細孔容積に対する割合を算出した。   In the above measurement, the total pore volume per unit mass of the support and the BET specific surface area were measured using the t-plot method. Moreover, the pore volume of pores (mesopores) having a pore diameter of 2 nm or more and 50 nm or less was calculated using the BJH method, and the ratio to the total pore volume was calculated.

[実施例1]
(触媒調製)
酢酸パラジウム(N.E.ケムキャット製)1部を88質量%n−吉草酸水溶液55部に溶解した。この溶液をオートクレーブに移し、クラレケミカル社製合成原料活性炭(全細孔容積は0.64cc/g、BET比表面積は1313m2/g、細孔径2nm以上50nm以下のメソポア孔の細孔容積の割合は全細孔容積の7.8%)5部を加えて撹拌した。プロピレンを0.5MPaまで導入した後、50℃まで30分で昇温して30分間還元を行なった。還元終了後、得られた担持パラジウム触媒をろ過後、88質量%酢酸水溶液で洗浄、置換した後、ろ過して、担持率10質量%のパラジウム含有担持触媒を得た。
[Example 1]
(Catalyst preparation)
1 part of palladium acetate (manufactured by NE Chemcat) was dissolved in 55 parts of an 88 mass% n-valeric acid aqueous solution. This solution was transferred to an autoclave, and synthetic raw material activated carbon manufactured by Kuraray Chemical Co., Ltd. (total pore volume was 0.64 cc / g, BET specific surface area was 1313 m 2 / g, and the pore volume ratio of mesopore pores having a pore diameter of 2 nm to 50 nm) Was 7.8% of the total pore volume) and stirred. After introducing propylene to 0.5 MPa, the temperature was raised to 50 ° C. in 30 minutes and reduction was performed for 30 minutes. After completion of the reduction, the obtained supported palladium catalyst was filtered, washed with 88 mass% acetic acid aqueous solution and replaced, and then filtered to obtain a palladium-containing supported catalyst having a loading ratio of 10 mass%.

(反応評価)
オートクレーブに反応溶媒として200ppmのパラメトキシフェノール(重合禁止剤)を含有する88質量%酢酸水溶液135部を入れ、上記の担持率10質量%のパラジウム含有担持触媒5.5部を添加した。さらにメタクロレイン4.5部を添加して容器を密閉した後、撹拌をしながら90℃まで昇温した。空気を3.2MPaまで導入してメタクロレインの酸化反応を20分間行なった。酸化反応における分子状酸素の使用量はメタクロレイン1モルに対して0.76モルであった。反応終了後、オートクレーブを室温付近まで冷却した後、反応液を取り出した。触媒を分離した反応液をガスクロマトグラフィーにより分析した。
(Reaction evaluation)
In an autoclave, 135 parts of an 88% by mass aqueous acetic acid solution containing 200 ppm paramethoxyphenol (polymerization inhibitor) as a reaction solvent was added, and 5.5 parts of the palladium-containing supported catalyst having the above-mentioned supporting rate of 10% by mass was added. Furthermore, after adding 4.5 parts of methacrolein and sealing the container, the temperature was raised to 90 ° C. while stirring. Air was introduced to 3.2 MPa and methacrolein was oxidized for 20 minutes. The amount of molecular oxygen used in the oxidation reaction was 0.76 mol per 1 mol of methacrolein. After completion of the reaction, the autoclave was cooled to near room temperature, and then the reaction solution was taken out. The reaction solution from which the catalyst was separated was analyzed by gas chromatography.

このとき、メタクロレインの反応率84.0%、メタクリル酸選択率83.2%、メタクリル酸生産性23.1g/(g・h)であった。   At this time, the reaction rate of methacrolein was 84.0%, the selectivity of methacrylic acid was 83.2%, and the productivity of methacrylic acid was 23.1 g / (g · h).

[実施例2]
担体としてクラレケミカル社製ヤシ殻原料活性炭(全細孔容積は0.49cc/g、BET比表面積は988m2/g、細孔径2nm以上50nm以下のメソポア孔の細孔容積の割合は全細孔容積の10%)を使用した以外は、実施例1と同様の方法で触媒調製、反応評価を行なった。
[Example 2]
Coconut shell raw material activated carbon manufactured by Kuraray Chemical Co., Ltd. (total pore volume is 0.49 cc / g, BET specific surface area is 988 m 2 / g, and the ratio of pore volume of mesopores having a pore diameter of 2 nm to 50 nm is the total pore volume. Catalyst preparation and reaction evaluation were performed in the same manner as in Example 1 except that 10% of the volume) was used.

このとき、メタクロレインの反応率89.7%、メタクリル酸選択率84.7%、メタクリル酸生産性25.2g/(g・h)であった。   At this time, the reaction rate of methacrolein was 89.7%, the selectivity of methacrylic acid was 84.7%, and the productivity of methacrylic acid was 25.2 g / (g · h).

[実施例3]
担体としてダイネン社製石炭原料活性炭(全細孔容積は0.46cc/g、BET比表面積は753m2/g、細孔径2nm以上50nm以下のメソポア孔の細孔容積の割合は全細孔容積の33%)を使用した以外は、実施例1と同様の方法で触媒調製、反応評価を行なった。
[Example 3]
Coal raw material activated carbon made by Dainen Co. as a carrier (total pore volume is 0.46 cc / g, BET specific surface area is 753 m 2 / g, and the pore volume ratio of mesopores with a pore diameter of 2 nm to 50 nm is the total pore volume. Catalyst preparation and reaction evaluation were performed in the same manner as in Example 1 except that 33%) was used.

このとき、メタクロレインの反応率84.4%、メタクリル酸選択率80.1%、メタクリル酸生産性22.4g/(g・h)であった。   At this time, the reaction rate of methacrolein was 84.4%, the selectivity of methacrylic acid was 80.1%, and the productivity of methacrylic acid was 22.4 g / (g · h).

[実施例4]
担体としてクラレケミカル社製合成原料活性炭(全細孔容積は0.75cc/g、BET比表面積は1613m2/g、細孔径2nm以上50nm以下のメソポア孔の細孔容積の割合は全細孔容積の4.0%)を使用した以外は、実施例1と同様の方法で触媒調製、反応評価を行なった。
[Example 4]
Synthetic raw material activated carbon manufactured by Kuraray Chemical Co., Ltd. (total pore volume is 0.75 cc / g, BET specific surface area is 1613 m 2 / g, and the pore volume ratio of mesopores having a pore diameter of 2 nm to 50 nm is the total pore volume. 4.0%) was used, and catalyst preparation and reaction evaluation were performed in the same manner as in Example 1.

このとき、メタクロレインの反応率78.3%、メタクリル酸選択率80.1%、メタクリル酸生産性20.8g/(g・h)であった。   The reaction rate of methacrolein was 78.3%, methacrylic acid selectivity was 80.1%, and methacrylic acid productivity was 20.8 g / (g · h).

[実施例5]
担体としてダイネン社製石炭原料活性炭(全細孔容積は0.92cc/g、BET比表面積は1345m2/g、細孔径2nm以上50nm以下のメソポア孔の細孔容積の割合は全細孔容積の52%)を使用し、反応時間を11分とした以外は、実施例1と同様の方法で触媒調製、反応評価を行なった。
[Example 5]
Coal raw material activated carbon made by Dainen Co. as a carrier (total pore volume is 0.92 cc / g, BET specific surface area is 1345 m 2 / g, and the pore volume ratio of mesopores with pore diameters of 2 nm to 50 nm is the total pore volume. The catalyst was prepared and the reaction was evaluated in the same manner as in Example 1 except that the reaction time was 11 minutes.

このとき、メタクロレインの反応率90.3%、メタクリル酸選択率77.3%、メタクリル酸生産性は42.1g/(g・h)であった。   At this time, the reaction rate of methacrolein was 90.3%, the selectivity of methacrylic acid was 77.3%, and the productivity of methacrylic acid was 42.1 g / (g · h).

[実施例6]
担体としてクラレケミカル社製合成原料活性炭(全細孔容積は1.27cc/g、BET比表面積は2587m2/g、細孔径2nm以上50nm以下のメソポア孔の細孔容積の割合は全細孔容積の26%)を使用し、反応時間を11分とした以外は、実施例1と同様の方法で触媒調製、反応評価を行なった。
[Example 6]
Synthetic raw material activated carbon manufactured by Kuraray Chemical Co., Ltd. (total pore volume is 1.27 cc / g, BET specific surface area is 2587 m 2 / g, pore volume ratio of mesopores with pore diameters of 2 nm to 50 nm is the total pore volume The catalyst was prepared and the reaction was evaluated in the same manner as in Example 1, except that the reaction time was 11 minutes.

このとき、メタクロレインの反応率89.5%、メタクリル酸選択率78.3%、メタクリル酸生産性は42.3g/(g・h)であった。   At this time, the reaction rate of methacrolein was 89.5%, the selectivity of methacrylic acid was 78.3%, and the productivity of methacrylic acid was 42.3 g / (g · h).

[実施例7]
担体としてノリット社製木炭原料活性炭(全細孔容積は1.30cc/g、BET比表面積は1692m2/g、細孔径2nm以上50nm以下のメソポア孔の細孔容積の割合は全細孔容積の58%)を使用し、反応時間を15分とした以外は、実施例1と同様の方法で触媒調製、反応評価を行なった。
[Example 7]
Charcoal raw material activated carbon made by Norit as a carrier (total pore volume is 1.30 cc / g, BET specific surface area is 1692 m 2 / g, and the pore volume ratio of mesopores having a pore diameter of 2 nm to 50 nm is the total pore volume 58%) and the reaction time was 15 minutes, and the catalyst preparation and reaction evaluation were performed in the same manner as in Example 1.

このとき、メタクロレインの反応率86.9%、メタクリル酸選択率76.2%、メタクリル酸生産性は29.3g/(g・h)であった。   At this time, the reaction rate of methacrolein was 86.9%, the selectivity of methacrylic acid was 76.2%, and the productivity of methacrylic acid was 29.3 g / (g · h).

[比較例1]
担体として関西熱化学社製石炭原料活性炭(全細孔容積は1.61cc/g、BET比表面積は3174m2/g、細孔径2nm以上50nm以下のメソポア孔の細孔容積の割合は全細孔容積の35%)を使用した以外は、実施例1と同様の方法で触媒調製、反応評価を行なった。
[Comparative Example 1]
Coal raw material activated carbon manufactured by Kansai Thermochemical Co., Ltd. as a carrier (total pore volume is 1.61 cc / g, BET specific surface area is 3174 m 2 / g, and the ratio of the pore volume of mesopores having a pore diameter of 2 nm to 50 nm is the total pore volume. Catalyst preparation and reaction evaluation were performed in the same manner as in Example 1 except that 35% of the volume) was used.

このとき、メタクロレインの反応率35.0%、メタクリル酸選択率24.3%、メタクリル酸生産性2.8g/(g・h)であった。   At this time, the reaction rate of methacrolein was 35.0%, the selectivity of methacrylic acid was 24.3%, and the productivity of methacrylic acid was 2.8 g / (g · h).

[比較例2]
担体としてノリット社製木材原料活性炭(全細孔容積は1.61cc/g、BET比表面積は1680m2/g、細孔径2nm以上50nm以下のメソポア孔の細孔容積の割合は全細孔容積の68%)を使用した以外は、実施例1と同様の方法で触媒調製、反応評価を行なった。
[Comparative Example 2]
Wood raw material activated carbon manufactured by Norit as a carrier (total pore volume is 1.61 cc / g, BET specific surface area is 1680 m 2 / g, and the pore volume ratio of mesopores having a pore diameter of 2 nm to 50 nm is the total pore volume. The catalyst was prepared and the reaction was evaluated in the same manner as in Example 1 except that 68%) was used.

このとき、メタクロレインの反応率83.1%、メタクリル酸選択率54.5%、メタクリル酸生産性15.0g/(g・h)であった。   At this time, the reaction rate of methacrolein was 83.1%, the selectivity of methacrylic acid was 54.5%, and the productivity of methacrylic acid was 15.0 g / (g · h).

[比較例3]
担体としてクラレケミカル社製合成原料活性炭(全細孔容積は0.37cc/g、BET比表面積は690m2/g、細孔径2nm以上50nm以下のメソポア孔の細孔容積の割合は全細孔容積の2.7%)を使用した以外は、実施例1と同様の方法で触媒調製、反応を行なった。
[Comparative Example 3]
Synthetic raw material activated carbon manufactured by Kuraray Chemical Co., Ltd. (total pore volume is 0.37 cc / g, BET specific surface area is 690 m 2 / g, pore volume ratio of mesopores with pore diameters of 2 nm to 50 nm is the total pore volume 2.7%) was used, and the catalyst was prepared and reacted in the same manner as in Example 1.

このとき、メタクロレインの反応率50.5%、メタクリル酸選択率65.2%、メタクリル酸生産性10.9g/(g・h)であった。   At this time, the reaction rate of methacrolein was 50.5%, the selectivity of methacrylic acid was 65.2%, and the productivity of methacrylic acid was 10.9 g / (g · h).

表1に実施例1〜7及び比較例1〜3で使用した担体の物性および反応成績の一覧を示す。全細孔容積が0.40〜1.50cc/gである担体を使用した実施例1〜7において、メタクリル酸の選択率及び生産性が良好であることがわかった。さらに、全細孔容積が小さめの担体を使用した実施例1〜4において、メタクリル酸選択率が特に良好であることがわかった。また全細孔容積が大きめの担体を使用した実施例5〜7において、メタクリル酸の生産性が特に良好であることがわかった。   Table 1 shows a list of physical properties and reaction results of the carriers used in Examples 1 to 7 and Comparative Examples 1 to 3. In Examples 1 to 7 using a carrier having a total pore volume of 0.40 to 1.50 cc / g, it was found that the selectivity and productivity of methacrylic acid were good. Furthermore, in Examples 1-4 using the support | carrier with a small total pore volume, it turned out that methacrylic acid selectivity is especially favorable. In Examples 5 to 7 using a carrier having a large total pore volume, it was found that the productivity of methacrylic acid was particularly good.

Figure 2006075819
Figure 2006075819

[実施例8]
(触媒調製)
酢酸パラジウム(N.E.ケムキャット製)1.05部を酢酸20部に溶解した。シリカ担体(全細孔容積は0.68cc/g、BET比表面積は450m2/g、細孔径2nm以上50nm以下のメソポア孔の細孔容積の割合は全細孔容積の100%)10部に酢酸溶液を加えて振とうした後、エバポレーションを行った。その後、空気中450℃で3時間焼成を行った。得られた触媒前駆体を37質量%ホルムアルデヒド水溶液13部に加えた。70℃に加熱し、2時間攪拌保持し、吸引ろ過後、水および75質量%t−ブタノール水溶液でろ過洗浄して、担持率5質量%のパラジウム含有担持触媒を得た。
[Example 8]
(Catalyst preparation)
1.05 parts of palladium acetate (manufactured by NE Chemcat) was dissolved in 20 parts of acetic acid. 10 parts of silica support (total pore volume is 0.68 cc / g, BET specific surface area is 450 m 2 / g, pore volume ratio of mesopores with a pore diameter of 2 nm to 50 nm is 100% of the total pore volume) After adding an acetic acid solution and shaking, evaporation was performed. Then, it baked at 450 degreeC in the air for 3 hours. The obtained catalyst precursor was added to 13 parts of a 37 mass% formaldehyde aqueous solution. The mixture was heated to 70 ° C., stirred and held for 2 hours, suction filtered, and then filtered and washed with water and a 75 mass% t-butanol aqueous solution to obtain a palladium-containing supported catalyst having a loading ratio of 5 mass%.

(反応評価)
オートクレーブに上記の方法で得た触媒全量(10.5部)と反応溶媒として75質量%t−ブタノール水溶液100部、p−メトキシフェノール0.02部を入れ、オートクレーブを密閉した。次いで、イソブチレンを2.75部導入し、攪拌(回転数1000rpm)を開始し、90℃まで昇温した。昇温完了後、オートクレーブに窒素を内圧2.3MPaまで導入した後、圧縮空気を内圧4.6MPaまで導入した。反応中に内圧が0.1MPa低下した時点で、酸素を導入して内圧を0.1MPa昇圧する操作を10回繰り返した。10回目の酸素導入後、内圧が0.1MPa低下した時点で反応を終了した。このときの反応時間は56分であった。酸化反応における分子状酸素の使用量はイソブチレン1モルに対して3.48モルであった。
(Reaction evaluation)
The autoclave was sealed with 100% of a 75% by weight aqueous t-butanol solution and 0.02 part of p-methoxyphenol as the reaction solvent, and the total amount of the catalyst obtained by the above method (10.5 parts). Next, 2.75 parts of isobutylene was introduced, stirring (rotation speed: 1000 rpm) was started, and the temperature was raised to 90 ° C. After completion of the temperature increase, nitrogen was introduced into the autoclave to an internal pressure of 2.3 MPa, and then compressed air was introduced to an internal pressure of 4.6 MPa. When the internal pressure decreased by 0.1 MPa during the reaction, the operation of introducing oxygen and increasing the internal pressure by 0.1 MPa was repeated 10 times. The reaction was terminated when the internal pressure decreased by 0.1 MPa after the 10th introduction of oxygen. The reaction time at this time was 56 minutes. The amount of molecular oxygen used in the oxidation reaction was 3.48 moles per mole of isobutylene.

反応終了後、氷浴でオートクレーブ内を氷冷した。オートクレーブのガス出口にガス捕集袋を取り付け、ガス出口を開栓して出てくるガスを回収しながら反応器内の圧力を開放した。オートクレーブから触媒入りの反応液を取り出し、メンブランフィルターで触媒を分離して、反応液を回収した。回収した反応液と捕集したガスをガスクロマトグラフィーにより分析し、反応率及び選択率を算出した。   After completion of the reaction, the inside of the autoclave was ice-cooled in an ice bath. A gas collection bag was attached to the gas outlet of the autoclave, and the pressure in the reactor was released while collecting the gas that was opened by opening the gas outlet. The reaction solution containing the catalyst was taken out from the autoclave, the catalyst was separated with a membrane filter, and the reaction solution was recovered. The collected reaction liquid and the collected gas were analyzed by gas chromatography, and the reaction rate and selectivity were calculated.

このとき、イソブチレンの反応率90.7%、メタクロレイン選択率28.2%、メタクリル酸選択率28.6%、メタクリル酸生産性2.2g/(g・h)であった。   At this time, the reaction rate of isobutylene was 90.7%, methacrolein selectivity 28.2%, methacrylic acid selectivity 28.6%, and methacrylic acid productivity 2.2 g / (g · h).

[実施例9]
使用する担体をシリカ/アルミナ(SiO2/Al23)のモル比が200のY型ゼオライト(全細孔容積は0.50cc/g、BET比表面積は629m2/g、細孔径2nm以上50nm以下のメソポア孔の細孔容積の割合は全細孔容積の42%)に変更した以外は実施例8と同様の方法で、パラジウム金属が担持されたY型ゼオライト担持型パラジウム含有触媒を得た。
[Example 9]
The support used is a Y-type zeolite having a silica / alumina (SiO 2 / Al 2 O 3 ) molar ratio of 200 (total pore volume of 0.50 cc / g, BET specific surface area of 629 m 2 / g, pore diameter of 2 nm or more) A Y-zeolite-supported palladium-containing catalyst on which palladium metal was supported was obtained in the same manner as in Example 8 except that the proportion of the mesopore pores of 50 nm or less was changed to 42% of the total pore volume). It was.

上記で得られた触媒を用いて、反応時間を38分とした以外は実施例8と同様の方法で反応を行った。このとき、イソブチレンの反応率75.2%、メタクロレイン選択率49.9%、メタクリル酸選択率19.0%、メタクリル酸生産性1.9g/(g・h)であった。   The reaction was carried out in the same manner as in Example 8 except that the reaction time was 38 minutes using the catalyst obtained above. At this time, the reaction rate of isobutylene was 75.2%, methacrolein selectivity was 49.9%, methacrylic acid selectivity was 19.0%, and methacrylic acid productivity was 1.9 g / (g · h).

[比較例4]
使用する担体をシリカ/アルミナ(SiO2/Al23)のモル比が485のH−ZSM−5型ゼオライト(全細孔容積は0.20cc/g、BET比表面積は343m2/g、細孔径2nm以上50nm以下のメソポア孔の細孔容積の割合は全細孔容積の29%)に変更した以外は実施例8と同様の方法で、パラジウム金属が担持されたH−ZSM−5ゼオライト担持型パラジウム含有触媒を得た。
[Comparative Example 4]
The support used is an H-ZSM-5 type zeolite having a silica / alumina (SiO 2 / Al 2 O 3 ) molar ratio of 485 (total pore volume is 0.20 cc / g, BET specific surface area is 343 m 2 / g, H-ZSM-5 zeolite carrying palladium metal in the same manner as in Example 8 except that the ratio of the pore volume of mesopores having a pore diameter of 2 nm to 50 nm was changed to 29% of the total pore volume) A supported palladium-containing catalyst was obtained.

上記で得られた触媒を用いて、反応時間を107分とした以外は実施例8と同様の方法で反応を行った。このとき、イソブチレンの反応率67.4%、メタクロレイン選択率59.1%、メタクリル酸選択率15.4%、メタクリル酸生産性0.5g/(g・h)であった。   The reaction was carried out in the same manner as in Example 8 except that the reaction time was 107 minutes using the catalyst obtained above. The reaction rate of isobutylene was 67.4%, methacrolein selectivity 59.1%, methacrylic acid selectivity 15.4%, and methacrylic acid productivity 0.5 g / (g · h).

表2に実施例8及び9並びに比較例4で使用した担体の物性および反応成績の一覧を示す。全細孔容積が0.40〜1.50cc/gである担体を使用した実施例8及び9において、メタクリル酸の選択率及び生産性が良好であることがわかった。   Table 2 shows a list of physical properties and reaction results of the carriers used in Examples 8 and 9 and Comparative Example 4. In Examples 8 and 9 using a carrier having a total pore volume of 0.40 to 1.50 cc / g, it was found that the selectivity and productivity of methacrylic acid were good.

Figure 2006075819
Figure 2006075819

以上のように、本発明の触媒を用いることで、オレフィンまたはα,β−不飽和アルデヒドから液相酸化によりα,β−不飽和カルボン酸を良好な反応成績で製造できることが分かった。   As described above, it was found that by using the catalyst of the present invention, α, β-unsaturated carboxylic acid can be produced from olefin or α, β-unsaturated aldehyde by liquid phase oxidation with good reaction results.

Claims (7)

オレフィンまたはα,β−不飽和アルデヒドから液相酸化によりα,β−不飽和カルボン酸を製造するための触媒であって、窒素ガス吸着法により測定した全細孔容積が0.40〜1.50cc/gである担体に、金属が担持されていることを特徴とするα,β−不飽和カルボン酸製造用触媒。   A catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde by liquid phase oxidation, wherein the total pore volume measured by a nitrogen gas adsorption method is 0.40 to 1. A catalyst for producing an α, β-unsaturated carboxylic acid, wherein a metal is supported on a carrier of 50 cc / g. 前記担体の、窒素ガス吸着法により測定した全細孔容積が0.40〜0.80cc/gである請求項1記載のα,β−不飽和カルボン酸製造用触媒。   The catalyst for producing an α, β-unsaturated carboxylic acid according to claim 1, wherein the total pore volume of the carrier measured by a nitrogen gas adsorption method is 0.40 to 0.80 cc / g. 前記担体の、窒素ガス吸着法により測定した細孔径2nm以上50nm以下のメソポア孔の細孔容積の割合が全細孔容積の40%以下である請求項2記載のα,β−不飽和カルボン酸製造用触媒。   The α, β-unsaturated carboxylic acid according to claim 2, wherein the ratio of the pore volume of mesopores having a pore diameter of 2 nm or more and 50 nm or less measured by a nitrogen gas adsorption method of the carrier is 40% or less of the total pore volume. Catalyst for production. 前記担体の、窒素ガス吸着法により測定した全細孔容積が0.80〜1.50cc/gである請求項1記載のα,β−不飽和カルボン酸製造用触媒。   The catalyst for producing an α, β-unsaturated carboxylic acid according to claim 1, wherein the total pore volume of the carrier measured by a nitrogen gas adsorption method is 0.80 to 1.50 cc / g. 前記担体の、窒素ガス吸着法により測定した細孔径2nm以上50nm以下のメソポア孔の細孔容積の割合が全細孔容積の10%以上である請求項4記載のα,β−不飽和カルボン酸製造用触媒。   The α, β-unsaturated carboxylic acid according to claim 4, wherein a ratio of the pore volume of mesopores having a pore diameter of 2 nm or more and 50 nm or less measured by a nitrogen gas adsorption method of the carrier is 10% or more of the total pore volume. Catalyst for production. 請求項1〜5いずれか記載のα,β−不飽和カルボン酸製造用触媒の製造方法であって、前記担体の存在下で金属化合物を還元剤で還元するα,β−不飽和カルボン酸製造用触媒の製造方法。   A method for producing a catalyst for producing an α, β-unsaturated carboxylic acid according to any one of claims 1 to 5, wherein the α, β-unsaturated carboxylic acid is produced by reducing a metal compound with a reducing agent in the presence of the carrier. For producing a catalyst for use. 請求項1〜5いずれか記載のα,β−不飽和カルボン酸製造用触媒の存在下、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素によって液相中で酸化するα,β−不飽和カルボン酸の製造方法。
An α, β-unsaturation which oxidizes an olefin or α, β-unsaturated aldehyde in the liquid phase with molecular oxygen in the presence of the catalyst for producing an α, β-unsaturated carboxylic acid according to claim 1. A method for producing carboxylic acid.
JP2005034343A 2004-02-10 2005-02-10 Catalyst for producing α, β-unsaturated carboxylic acid, method for producing the same, and method for producing α, β-unsaturated carboxylic acid Active JP4699038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034343A JP4699038B2 (en) 2004-02-10 2005-02-10 Catalyst for producing α, β-unsaturated carboxylic acid, method for producing the same, and method for producing α, β-unsaturated carboxylic acid

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004033256 2004-02-10
JP2004033256 2004-02-10
JP2004233287 2004-08-10
JP2004233287 2004-08-10
JP2005034343A JP4699038B2 (en) 2004-02-10 2005-02-10 Catalyst for producing α, β-unsaturated carboxylic acid, method for producing the same, and method for producing α, β-unsaturated carboxylic acid

Publications (3)

Publication Number Publication Date
JP2006075819A true JP2006075819A (en) 2006-03-23
JP2006075819A5 JP2006075819A5 (en) 2008-03-13
JP4699038B2 JP4699038B2 (en) 2011-06-08

Family

ID=36155715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034343A Active JP4699038B2 (en) 2004-02-10 2005-02-10 Catalyst for producing α, β-unsaturated carboxylic acid, method for producing the same, and method for producing α, β-unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JP4699038B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152234A (en) * 2005-12-05 2007-06-21 Mitsubishi Rayon Co Ltd PALLADIUM-CONTAINING SUPPORTED CATALYST, ITS MANUFACTURING METHOD AND MANUFACTURING METHOD OF alpha, beta-UNSATURATED CARBOXYLIC ACID

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11157821A (en) * 1997-12-03 1999-06-15 Nippon Chem Ind Co Ltd Activated carbon and its production
JP2000024502A (en) * 1997-09-25 2000-01-25 Mitsui Chemicals Inc Catalyst for producing methacrylic acid and production thereof
JP2002191979A (en) * 2000-12-27 2002-07-10 Daicel Chem Ind Ltd Oxidation catalyst and method for producing carbonyl compound using the catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024502A (en) * 1997-09-25 2000-01-25 Mitsui Chemicals Inc Catalyst for producing methacrylic acid and production thereof
JPH11157821A (en) * 1997-12-03 1999-06-15 Nippon Chem Ind Co Ltd Activated carbon and its production
JP2002191979A (en) * 2000-12-27 2002-07-10 Daicel Chem Ind Ltd Oxidation catalyst and method for producing carbonyl compound using the catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152234A (en) * 2005-12-05 2007-06-21 Mitsubishi Rayon Co Ltd PALLADIUM-CONTAINING SUPPORTED CATALYST, ITS MANUFACTURING METHOD AND MANUFACTURING METHOD OF alpha, beta-UNSATURATED CARBOXYLIC ACID

Also Published As

Publication number Publication date
JP4699038B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP4846576B2 (en) Palladium-containing catalyst and method for producing the same
KR101264031B1 (en) CATALYST FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID AND METHOD FOR PREPARATION THEREOF, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID
JP2007203284A (en) Palladium-supported catalyst and its manufacturing method
JP5001543B2 (en) Method for producing palladium-containing supported catalyst
JP3884695B2 (en) Catalyst for production of α, β-unsaturated carboxylic acid
JP4699038B2 (en) Catalyst for producing α, β-unsaturated carboxylic acid, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP4204491B2 (en) Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP2007245068A (en) NOBLE METAL-CONTAINING CATALYST AND PRODUCTION METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID USING IT
JP4507247B2 (en) Catalyst for production of α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid, production method thereof and use thereof
JP4908332B2 (en) Oxidation catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP4676887B2 (en) Method for producing α, β-unsaturated carboxylic acid, catalyst therefor and method for producing the same
JP2007044607A (en) Noble metal-containing catalyst and method for producing alpha,beta-unsaturated carboxylic acid and alpha,beta-unsaturated carboxylic acid anhydride by using the same
JP5084004B2 (en) Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP4377670B2 (en) Method for producing palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid using the same
JP5340705B2 (en) Method for producing noble metal-containing catalyst, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride
JP5906752B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP5416886B2 (en) Palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid
JP5910873B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP2007290976A (en) METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID AND ACID ANHYDRIDE CONTAINING alpha,beta-UNSATURATED CARBOXYLIC ACID BACKBONE
JP5609394B2 (en) Method for producing palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid
JP2005218953A (en) PALLADIUM-CONTAINING CATALYST, MANUFACTURING METHOD THEREFOR AND METHOD FOR PRODUCING alpha, beta-UNSATURATED CARBOXYLIC ACID
JP2005125306A (en) CATALYST FOR PRODUCTION OF alpha,beta-UNSATURATED CARBOXYLIC ACID, PRODUCTION METHOD THEREOF AND PRODUCTION METHOD FOR alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2009297634A (en) NOBLE METAL-CONTAINING CATALYST, METHOD OF MANUFACTURING THE SAME AND METHOD OF MANUFACTURING alpha,beta-UNSATURATED CARBOXYLIC ACID
CN1917956B (en) Catalyst for producing alpha, beta-unsaturated carboxylic acid and method for preparation thereof and method for producing alpha, beta-unsaturated carboxylic acid
JP2008212818A (en) Method of manufacturing palladium-containing supported catalyst

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

R151 Written notification of patent or utility model registration

Ref document number: 4699038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250