JP2006075753A - Method for trapping/collecting infectious microorganism, and its device - Google Patents

Method for trapping/collecting infectious microorganism, and its device Download PDF

Info

Publication number
JP2006075753A
JP2006075753A JP2004263529A JP2004263529A JP2006075753A JP 2006075753 A JP2006075753 A JP 2006075753A JP 2004263529 A JP2004263529 A JP 2004263529A JP 2004263529 A JP2004263529 A JP 2004263529A JP 2006075753 A JP2006075753 A JP 2006075753A
Authority
JP
Japan
Prior art keywords
hollow fiber
water
membrane
filtration membrane
sample water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004263529A
Other languages
Japanese (ja)
Inventor
Kazuyuki Taguchi
和之 田口
Yoshiharu Tanaka
良春 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2004263529A priority Critical patent/JP2006075753A/en
Publication of JP2006075753A publication Critical patent/JP2006075753A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable improvement of detection sensitivity and automation/labor saving of operations by collecting water-borne infectious microorganisms, especially an important cryptosporidium, from sample water with high efficiency and treating a large amount of the sample water in a short time. <P>SOLUTION: A method for carrying out the membrane filtration of the sample water and washing the filtration membrane to trap water-insoluble objects contained in the sample water comprises a process for supplying a prescribed amount of the sample water to an external pressure type porous hollow fiber filtration membrane, and a process for pressurizing the secondary side of the external pressure type porous hollow fiber filtration membrane and at the same time irradiating the surface of the hollow fiber filtration membrane with ultrasonic waves from the primary side. Peeled material is collected from the external pressure type porous hollow fiber filtration membrane. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、河川および湖沼などの環境水や上下水道の各処理プロセスの処理水など水中に存在する原虫、微生物、ウイルスといった感染性微生物を捕捉・回収する方法、およびその装置に関する。とくに前記水中に存在する感染性微生物の一つであるクリプトスポリジウムを捕捉・回収する方法、およびその装置に関する。 The present invention relates to a method and an apparatus for capturing and recovering infectious microorganisms such as protozoa, microorganisms, and viruses present in water such as environmental water such as rivers and lakes and treated water in each treatment process of water and sewage. In particular, the present invention relates to a method and apparatus for capturing and recovering Cryptosporidium, which is one of the infectious microorganisms present in the water.

環境中には多種多様な化学物質が存在するため、水道原水となる河川や湖沼などの環境水も様々な化学物質で汚染されていると考えられる。このような水道原水の水質問題のほかに、近年、クリプトスポリジウムなどの原虫類やウイルスなどによる水系感染症の報告例が多くなってきている。
それら感染性微生物のなかでも、クリプトスポリジウムはヒトなどのほ乳類に広く宿主域をもつ腸管寄生性の原虫であり、激しい下痢を伴う消化器系の疾病を引き起こす。特に免疫不全患者がクリプトスポリジウムに感染した場合、効果的な化学療法剤がないため、死に至るケースがある。またこれらの原虫は最小感染量が小さいこと、塩素消毒に強い耐性があり、浄水処理レベルの塩素濃度でほとんど不活化されないことなど、通常の病原細菌とは大きく異なる特徴がある。
さらにクリプトスポリジウムはヒト以外にも野生動物や牛や豚などの家畜にも感染するといわれており、浄水場の取水口上流域に下水処理場の排水溝などが存在しなくても、水道水源が汚染される可能性があり、水質衛生上重要な原虫である。
Since there are a wide variety of chemical substances in the environment, it is thought that environmental waters such as rivers and lakes that are raw water for water supply are also contaminated with various chemical substances. In addition to such water quality problems, there have been increasing reports of water-borne infectious diseases caused by protozoa such as Cryptosporidium and viruses.
Among these infectious microorganisms, Cryptosporidium is an intestinal parasitic protozoan that has a broad host range in mammals such as humans, and causes digestive diseases accompanied by severe diarrhea. In particular, when immunocompromised patients are infected with Cryptosporidium, there are cases where death occurs because there is no effective chemotherapeutic agent. In addition, these protozoa have characteristics that are greatly different from normal pathogenic bacteria, such as small minimum infectious dose, strong resistance to chlorine disinfection, and almost no inactivation at the chlorine concentration at the level of water purification.
Furthermore, Cryptosporidium is said to infect wild animals and livestock such as cattle and pigs in addition to humans, and even if there is no drainage channel of the sewage treatment plant in the upstream area of the intake of the water treatment plant, the tap water source is contaminated. It is a protozoan that is important for water sanitation.

クリプトスポリジウムの検出方法は、1996年に厚生省から「クリプトスポリジウム暫定対策指針」で示され、さらに1998年に指針の改正がなされ、試験方法も大幅に改正された。この試験方法の手順は大きく分けて、試料水採取、ろ過濃縮、剥離懸濁、分離精製、免疫蛍光染色、顕微鏡観察からなる。
試料水採取ステップでは、容量10〜20Lのポリエチレン容器に河川水など水道原水は10L、浄水や水道水は40Lを採取する。
ろ過濃縮ステップでは、直径47mmまたは90mm、ポアサイズ5μmの親水性ポリテトラフルオロエチレン(PTFE)ディスクフィルターを用い、加圧または吸引式のフィルターホルダーに取付け試料水をろ過する。
剥離懸濁ステップでは、濁質を捕捉したディスクフィルターを50mLの遠心管に入れ、1%PET溶液(0.02%ピロリン酸ナトリウム、0.03%EDTA−3Na、0.01%Tween80からなる誘出液)を添加し、激しく攪拌することでクリプトスポリジウムを含む濁質をディスクフィルターから剥離させる。
分離精製ステップでは、クリプトスポリジウムを認識する抗体が結合した免疫磁気ビーズにより懸濁液からクリプトスポリジウムを回収する。
免疫蛍光染色、顕微鏡観察では、蛍光標識した抗クリプトスポリジウムトスポリジウム抗体でクリプトスポリジウムトスポリジウムを染色し、蛍光顕微鏡で観察する。
The detection method of Cryptosporidium was indicated by the Ministry of Health and Welfare in 1996 under the “Provisional Countermeasure Guidelines for Cryptosporidium”. Furthermore, the guidelines were revised in 1998, and the test method was also greatly revised. The procedure of this test method is roughly divided into sample water collection, filtration concentration, exfoliation suspension, separation and purification, immunofluorescence staining, and microscopic observation.
In the sample water collecting step, 10 L of raw water such as river water and 40 L of purified water and tap water are collected in a polyethylene container having a capacity of 10 to 20 L.
In the filtration and concentration step, a hydrophilic polytetrafluoroethylene (PTFE) disc filter having a diameter of 47 mm or 90 mm and a pore size of 5 μm is used, and the sample water is filtered through a pressure or suction type filter holder.
In the exfoliation suspension step, the disc filter with trapped turbidity is placed in a 50 mL centrifuge tube and the 1% PET solution (0.02% sodium pyrophosphate, 0.03% EDTA-3Na, 0.01% Tween 80) is added. The turbidity containing Cryptosporidium is removed from the disk filter by vigorous stirring.
In the separation and purification step, Cryptosporidium is recovered from the suspension by immunomagnetic beads to which an antibody recognizing Cryptosporidium is bound.
In immunofluorescence staining and microscopic observation, Cryptosporidium tospodium is stained with a fluorescently labeled anti-Cryptosporidium tospodium antibody and observed with a fluorescence microscope.

なお、水処理技術に関する報告は数多くある。たとえば、特許文献1では「膜フィルタの外表面を超音波で洗浄する超音波洗浄装置を備えた膜分離装置」、「超音波が水中のあらゆる箇所に高速で伝搬し、水中で発生するキャビテーションによる衝撃波で瀘過面に付着した固形物を除去すること」が記載され、「日詰まりやファウリングの解決手段として、圧縮空気をろ過の反対方向から圧入する」ことが示されている。しかしながら、この特許文献1では、原液から固形物とろ液膜に分離する技術、あるいは日詰まりやファウリングを解決するために膜に存在する固形物を分離・除去する技術が開示されているにとどまるものであり、水中に含まれる固形物を確認するために膜に存在する固形物の殆どを回収する技術まで開示していないし、感染性微生物、とくにクリプトスポリジウムを捕捉・回収する技術まで開示していない。さらに、中空糸膜表面に1次側より超音波を照射すると同時に中空糸膜表面を加圧処理する技術までは開示されていない。   There are many reports on water treatment technology. For example, in Patent Document 1, “a membrane separation apparatus equipped with an ultrasonic cleaning device that cleans the outer surface of a membrane filter with ultrasonic waves”, “ultrasonic waves propagate at high speed to every location in water, and cavitation occurs in water. "Removing the solid matter attached to the filtration surface with a shock wave" is described, and it is shown that "pressurized air is injected in the opposite direction of filtration as a solution to clogging and fouling". However, this Patent Document 1 only discloses a technique for separating a solid from a stock solution into a filtrate and a filtrate film, or a technique for separating and removing solids present in a film in order to solve clogging and fouling. In order to confirm the solids contained in the water, no technology is disclosed to recover most of the solids present in the membrane, and no technology is disclosed to capture and recover infectious microorganisms, especially Cryptosporidium. Absent. Furthermore, there is no disclosure of a technique for irradiating the hollow fiber membrane surface with ultrasonic waves from the primary side and simultaneously pressurizing the hollow fiber membrane surface.

また特許文献2では「浸漬型膜瀘過装置の膜面を超音波振動させ、膜面から汚濁物質を剥離させ」、「膜面に付着する汚濁物質は超音波振動によって剥離し易い状態にあるので、少量の逆洗水によって十分な洗浄効果を得る」ことが記載されており、特許文献3では、「処理槽内の被処理水又は膜エレメントの膜の内側の被処理水を、超音波による衝撃波と洗浄液との洗浄カとの相乗作用により処理する」ことが開示され、特許文献4では「膜の二次側から加圧して-次側に空気を通す空気逆洗と、一次側より薬液を効果的に供給し、効率よく洗浄する」技術が開示されている。しかしながら、これら特許文献2〜4も、原液から固形物とろ液膜に分離する技術、あるいは原液のろ過効率向上のための膜に存在する固形物の分離・除去に関する技術が開示されているにとどまるものであり、水中に含まれる固形物を確認するために膜に存在する固形物の殆どを回収する技術まで開示していないし、感染性微生物、とくにクリプトスポリジウムを捕捉・回収する技術まで開示していない。ましてや、中空糸膜表面に1次側より超音波を照射すると同時に中空糸膜表面を加圧処理する技術までは開示されていない。
その点、特許文献5はたしかにクリプトスポリジウムの回収技術が記載されているが、そこでは、従来の水処理技術ではクリプトスポリジウムを十分満足できる程度に回収することはできないとの認識から、クリプトスポリジウムの特殊性に基づいていろいろと試行し、その結果、開発されたクリプトスポリジウムの回収に有効な膜モジュールが記載されている程度である。
Further, in Patent Document 2, “the membrane surface of the submerged membrane filtration device is ultrasonically vibrated and the pollutant is peeled off from the membrane surface”, “the pollutant adhering to the membrane surface is easily peeled off by the ultrasonic vibration. Therefore, it is described that a sufficient cleaning effect can be obtained with a small amount of backwash water. In Patent Document 3, “water to be treated in a treatment tank or water to be treated inside a membrane of a membrane element is treated with ultrasonic waves. In Japanese Patent Application Laid-Open No. 2004-260688, “the treatment is performed by the synergistic effect of the shock wave generated by the shock wave and the cleaning liquid of the cleaning liquid”, and “Patent Document 4 pressurizes from the secondary side of the membrane— A technique of “effectively supplying a chemical solution and cleaning efficiently” is disclosed. However, these Patent Documents 2 to 4 only disclose a technique for separating a solid from a stock solution into a solid and a filtrate membrane, or a technique for separating and removing a solid present in a membrane for improving the filtration efficiency of the stock solution. In order to confirm the solids contained in the water, no technology is disclosed to recover most of the solids present in the membrane, and no technology is disclosed to capture and recover infectious microorganisms, especially Cryptosporidium. Absent. Furthermore, there is no disclosure of a technique for irradiating the hollow fiber membrane surface with ultrasonic waves from the primary side and simultaneously pressurizing the hollow fiber membrane surface.
In that respect, Patent Document 5 describes a technique for recovering Cryptosporidium. However, from the recognition that Cryptosporidium cannot be recovered to a satisfactory degree by conventional water treatment techniques, Various attempts were made based on the particularity. As a result, the developed membrane module effective for recovery of Cryptosporidium has been described.

特開2003−126663号公報JP 2003-126663 A 特開2001−17970号公報JP 2001-17970 A 特開平11−319517号公報JP 11-319517 A 特開平11−90190号公報JP-A-11-90190 特開2001−842号公報JP 2001-842 A

上述のクリプトスポリジウムに関する試験方法は、複雑であるため熟練した技術が必要であり、作業者の負担が大きく、作業ステップの自動化や省力化が望まれている。
また、上述の試験方法は試料水中からクリプトスポリジウムを捕捉し回収するとき、試料水の濁質によりディスクフィルターが目詰まりをおこし、短時間でろ過速度が低下するため全試験工程にかかる時間が長くなり迅速な測定ができず、大量の試料水を効率よく処理できないという問題もある。さらに、上述のろ過濃縮および剥離懸濁にけるクリプトスポリジウムの回収率は数%〜80%前後とばらつきが大きく、平均的には60%程度と低く(クリプトスポリジウム 解説と試験方法 145〜147頁 社団法人日本水道協会)、クリプトスポリジウムが実際に存在するにもかかわらず、陰性と判断される可能性があるなど、改善すべき問題点が多い。
The above-described test method for Cryptosporidium is complicated and requires a skillful technique, which places a heavy burden on the operator, and is desired to automate work steps and save labor.
In the above test method, when Cryptosporidium is captured and recovered from the sample water, the disk filter is clogged by the turbidity of the sample water, and the filtration speed decreases in a short time. Therefore, there is a problem that rapid measurement cannot be performed and a large amount of sample water cannot be efficiently processed. Furthermore, the recovery rate of Cryptosporidium in the above-mentioned filtration concentration and exfoliation suspension varies widely from around several percent to 80%, and is as low as about 60% on average (Cryptosporidium commentary and test method pages 145 to 147) Japan Waterworks Association), there are many problems that need to be improved, such as the possibility of being judged negative even though Cryptosporidium actually exists.

上述の問題点を鑑み、水系感染微生物を試料水中から高効率で回収、その中でもとくに重要なクリプトスポリジウムを試料水中から高効率で回収し、短時間で大量の試料水を処理することで検出感度を高め、さらには作業の自動化・省力化を図ることができる、水中の水系感染微生物の捕捉および回収方法、およびその方法に使用される装置を提供することが本発明である。さらに、重要な水系感染微生物の一つであるクリプトスポリジウムの捕捉および回収方法、およびその方法に使用される装置を提供することも本発明である。   In view of the above-mentioned problems, water-borne infectious microorganisms are recovered from sample water with high efficiency. Among them, particularly important Cryptosporidium is recovered from sample water with high efficiency, and a large amount of sample water is processed in a short period of time. It is an object of the present invention to provide a method for capturing and collecting water-borne infectious microorganisms in water, and an apparatus used for the method, which can enhance the process and further automate and save labor. Furthermore, it is also an object of the present invention to provide a method for capturing and recovering Cryptosporidium, which is one of important water-borne infectious microorganisms, and an apparatus used for the method.

前記水系感染微生物、その中でもとくにクリプトスポリジウムの捕捉および回収方法として、所定量の試料水を外圧式多孔質中空糸ろ過膜(以下、中空糸膜ということがある)に通水し、その後中空糸膜の二次側を加圧し、中空糸膜に捕捉されたクリプトスポリジウムなどの水系感染微生物を含む微粒子(以下、微粒子ということがある)を剥離させながら、かつ中空糸膜表面全体に容器内に設置した超音波発生器から超音波を照射し、振動させ中空糸膜に捕捉され微粒子を物理的に剥離し、中空糸膜の一次側のクリプトスポリジウム含有懸濁液を回収する構成とすると、クリプトスポリジウムなどの水系感染微生物を効率よく捕捉および回収することができることに気づいた。さらに、その中空糸膜を浄水で通水した後、中空糸膜の二次側を加圧し、かつ中空糸膜表面全体に超音波を照射すると、クリプトスポリジウムを捕捉し、回収することができることに気づいた。
本発明者らは、それらの点を基にしてさらに工夫を重ね、本発明に到達した。
As a method for capturing and recovering the above water-borne infectious microorganisms, particularly Cryptosporidium, a predetermined amount of sample water is passed through an external pressure porous hollow fiber filtration membrane (hereinafter sometimes referred to as hollow fiber membrane), and then hollow fiber Pressurize the secondary side of the membrane to release fine particles containing water-borne infectious microorganisms such as Cryptosporidium trapped in the hollow fiber membrane (hereinafter sometimes referred to as fine particles) and place the entire hollow fiber membrane surface inside the container. When the ultrasonic generator is radiated, vibrated and trapped in the hollow fiber membrane, the fine particles are physically peeled off, and the cryptosporidium-containing suspension on the primary side of the hollow fiber membrane is collected. It has been found that waterborne infectious microorganisms such as Ptosporidium can be efficiently captured and recovered. Furthermore, after passing the hollow fiber membrane with purified water, when the secondary side of the hollow fiber membrane is pressurized and the entire surface of the hollow fiber membrane is irradiated with ultrasonic waves, Cryptosporidium can be captured and recovered. Noticed.
The inventors of the present invention have further devised based on these points, and have reached the present invention.

すなわち、本発明の請求項1にかかる発明は、試料水の所定量を外圧式多孔質中空糸ろ過膜に通水する第一の工程、その外圧式多孔質中空糸ろ過膜の二次側をたとえば空気で加圧すると同時にその中空糸ろ過膜表面に一次側より超音波を照射する第二の工程を含み、その中空糸ろ過膜に捕捉された微粒子を剥離させ、回収することを特徴とする試料水中に存在する感染性微生物を捕捉・回収する方法である。
請求項2に係る発明は、請求項1の発明において、外圧式多孔質中空糸ろ過膜表面に一次側より界面活性剤を供給し、外圧式多孔質中空糸ろ過膜から剥離物を剥離しやすくすることを特徴とする。とくに、界面活性剤を含む浄水で該ろ過膜を、その膜の表面に存在する付着物などを剥離しやすくなる時間浸漬するように保持することを特徴とする。
そして、前記第二の工程に次いで、前記第二の工程で剥離された微粒子を含む懸濁液を排出する第三の工程と、前記外圧式多孔質中空糸ろ過膜の一次側より浄水を注入する第四の工程と、前記外圧式多孔質中空糸ろ過膜の二次側を加圧すると同時に一次側より超音波を照射して浄水による洗浄を行う第五の工程により、感染性微生物をより効率的に捕捉・回収することを可能とする。さらに、第五の工程での洗浄処理に使用された浄水を排水する第六の工程からの排出液と前記第三工程からの排出液合一し、排出液中の感染性微生物を分子する工程によっても、感染性微生物の捕捉・回収が可能である。
That is, in the invention according to claim 1 of the present invention, the first step of passing a predetermined amount of sample water through the external pressure porous hollow fiber filtration membrane, the secondary side of the external pressure porous hollow fiber filtration membrane is For example, it includes a second step of irradiating the surface of the hollow fiber filtration membrane with ultrasonic waves from the primary side simultaneously with pressurization with air, and the fine particles captured by the hollow fiber filtration membrane are peeled off and collected. This method captures and collects infectious microorganisms present in sample water.
The invention according to claim 2 is the invention according to claim 1, wherein the surfactant is supplied from the primary side to the surface of the external pressure porous hollow fiber filtration membrane, and the exfoliation is easily separated from the external pressure porous hollow fiber filtration membrane. It is characterized by doing. In particular, the filter membrane is held with purified water containing a surfactant so as to be soaked for a time that makes it easy to peel off deposits and the like present on the surface of the membrane.
Then, following the second step, purified water is injected from the primary side of the external pressure type porous hollow fiber filtration membrane, and the third step of discharging the suspension containing the fine particles separated in the second step. And the fifth step of pressurizing the secondary side of the external pressure porous hollow fiber filtration membrane and simultaneously irradiating ultrasonic waves from the primary side to wash with purified water, Enables efficient capture and recovery. Further, the step of combining the effluent from the sixth step for draining the purified water used in the cleaning process in the fifth step and the effluent from the third step, and molecularizing infectious microorganisms in the effluent Can also capture and collect infectious microorganisms.

請求項3に係る発明は、試料水の所定量を導入する外圧式多孔質中空糸ろ過膜を有するモジュール、前記中空糸ろ過膜の二次側を空気で加圧する手段、および前記中空糸ろ過膜に一次側より超音波を照射する手段を備え、前記中空糸ろ過膜への加圧と超音波照射を同時に行い、前記中空糸ろ過膜の剥離物からクリプトスポリジウムを含む感染性微生物を捕捉する構造であることを特徴とする試料水中に存在する感染性微生物を捕捉・回収する装置の発明である。その発明において、外圧式多孔質中空糸ろ過膜表面に一次側より界面活性剤を供給する手段をさらに備えることを特徴とする発明が、請求項4の発明である。請求項5に係る発明は、請求項3または4の発明において、外圧式多孔質中空糸ろ過膜を浄水で通水する手段をさらに備え、その外圧式多孔質中空糸ろ過膜の二次側を加圧すると同時にその中空糸ろ過膜表面に一次側より超音波を照射することを特徴とする。   The invention according to claim 3 is a module having an external pressure type porous hollow fiber filtration membrane for introducing a predetermined amount of sample water, means for pressurizing a secondary side of the hollow fiber filtration membrane with air, and the hollow fiber filtration membrane. Having a means for irradiating ultrasonic waves from the primary side, and simultaneously applying pressure to the hollow fiber filtration membrane and ultrasonic irradiation to capture infectious microorganisms containing Cryptosporidium from the peeled product of the hollow fiber filtration membrane It is an invention of an apparatus for capturing and recovering infectious microorganisms present in sample water. In the invention, the invention according to claim 4 is characterized by further comprising means for supplying a surfactant from the primary side to the surface of the external pressure porous hollow fiber filtration membrane. The invention according to claim 5 is the invention of claim 3 or 4, further comprising means for passing the external pressure type porous hollow fiber filtration membrane with purified water, wherein the secondary side of the external pressure type porous hollow fiber filtration membrane is disposed on the secondary side. Simultaneously with pressurization, the surface of the hollow fiber filtration membrane is irradiated with ultrasonic waves from the primary side.

以下、本発明を詳細に説明する。
本発明での試料水(以下、原水ということがある)としては、環境水であればどのような水でも使用できるのであり、具体的には河川水、湖沼水、上下水道の各処理プロセスの処理水などが好ましい。これら原水をそのまま使用してもよいが、前処理を施してもよい。たとえば、あらかじめ原水を放置して沈降物を除去する処理、あるいは凝集剤を加え、攪拌処理して、汚濁物質をある程度除去する処理を施しておいてもよい。さらには、感染性微生物への薬剤を添加・撹拌して、クリプトスポリジウム以外の感染性微生物を除去する処理を施してもよい。
Hereinafter, the present invention will be described in detail.
As the sample water (hereinafter sometimes referred to as raw water) in the present invention, any water can be used as long as it is environmental water. Specifically, each of the treatment processes of river water, lake water, and water and sewage systems is used. Treated water is preferred. These raw waters may be used as they are, but may be pretreated. For example, raw water may be left in advance to remove sediment, or a flocculant may be added and stirred to remove contaminants to some extent. Further, a treatment for removing infectious microorganisms other than Cryptosporidium by adding and stirring a drug to the infectious microorganism may be performed.

この原水の所定量を本発明では外圧式多孔質中空糸膜を使用してろ過処理する。この外圧式多孔質中空糸膜はとくに限定されないのであり、一般的に使用される中空糸を採用すればよい。原水の所定量としては、原水の性状により変動する場合もあるが、たとえば20L,40L、100Lなどを例示できるが、とくに限定されない。重要なことは処理した原水の量を明確にし、最終的に試料水中の感染性微生物、とくにクリプトスポリジウムの個数濃度を明らかにすることである。   In the present invention, a predetermined amount of the raw water is filtered using an external pressure porous hollow fiber membrane. The external pressure type porous hollow fiber membrane is not particularly limited, and a generally used hollow fiber may be adopted. The predetermined amount of raw water may vary depending on the properties of the raw water, and examples thereof include 20L, 40L, and 100L, but are not particularly limited. What is important is to clarify the amount of raw water treated, and finally to determine the number concentration of infectious microorganisms, especially Cryptosporidium, in the sample water.

本発明では、上記所定量の原水をろ過した後に、中空糸膜表面に一次側より超音波を照射して、中空糸膜からの剥離物を含む懸濁液を得ることが、発明の要件の一つである。すなわち、この超音波照射により、超音波が水中のあらゆる方向に高速で伝播され、中空糸膜表面の一次側表面に存在する微粒子を剥離することができる。
本発明における超音波処理は一般的に用いられる超音波照射機を用いて、一般的な照射方法を採用することができる。たとえば、100W程度の超音波照射機を用いて、20〜100kHzで、数秒〜数分間超音波処理することができる。
In the present invention, after filtering the predetermined amount of raw water, the surface of the hollow fiber membrane is irradiated with ultrasonic waves from the primary side to obtain a suspension containing a peeled material from the hollow fiber membrane. One. That is, by this ultrasonic irradiation, ultrasonic waves are propagated at high speed in all directions in water, and fine particles present on the primary surface of the hollow fiber membrane surface can be peeled off.
For the ultrasonic treatment in the present invention, a general irradiation method can be adopted using a generally used ultrasonic irradiation machine. For example, using an ultrasonic irradiator of about 100 W, ultrasonic treatment can be performed at 20 to 100 kHz for several seconds to several minutes.

本発明では、前記超音波照射と同時に外圧式多孔質中空糸膜の二次側を加圧することが、本発明の特徴の一つである。すなわち、前記超音波照射と同時にこの中空糸膜の二次側を加圧することにより、中空糸膜表面の一次側表面に存在する微粒子をほぼ完全に剥離することができる。
本発明における加圧処理は一般的に用いられる機器を用いて、一般的な加圧方法を採用することができる。たとえば、空気加圧法を採用するときには、一般的なエアポンプを用い、一般的な加圧方法を適用して、中空糸膜の二次側を空気加圧する。
In the present invention, it is one of the features of the present invention to pressurize the secondary side of the external pressure porous hollow fiber membrane simultaneously with the ultrasonic irradiation. That is, by pressurizing the secondary side of the hollow fiber membrane simultaneously with the ultrasonic irradiation, the fine particles existing on the primary side surface of the hollow fiber membrane surface can be almost completely peeled off.
The pressurization treatment in the present invention can employ a general pressurization method using a commonly used device. For example, when the air pressurization method is employed, a general air pump is used and a general pressurization method is applied to air-pressurize the secondary side of the hollow fiber membrane.

本発明では、前記処理する際に界面活性剤を共存させておくことが好ましい。界面活性剤としては一般的な界面活性剤を使用することができる。とくにエーテル型あるいはエステル型に代表される中性の界面活性剤が好ましい。たとえば、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテルなどのポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンソルビタンモノオレエートなどのソルビタン脂肪酸エステルから選ばれる単独あるいは2種以上を例示することができる。また、「クリプトスポリジウム 解説と試験方法」(日本水道協会)に示されている、1%PET溶液(0.02%ピロリン酸ナトリウム、0.03%EDTA−3Na、0.01%Tween80(ポリオキシエチレンソルビタンモノオレエート))を用いてもよい。上記界面活性剤の添加量は一般的に使用される量でよい。
ここで、界面活性剤を所定量含む界面活性剤溶液を調製し、その溶液でろ過膜を浸漬し、その膜の表面に存在する付着物などを剥離しやすくする。その浸漬時間はろ過膜の性状、膜の付着物の状態などにより変動するので一概に規定することができないのであり、要はろ過膜表面から付着物などを剥離しやすくなるような時間とすればよい。
In the present invention, it is preferable to coexist a surfactant during the treatment. A general surfactant can be used as the surfactant. In particular, neutral surfactants represented by ether type or ester type are preferred. For example, polyoxyethylene octylphenyl ether, polyoxyethylene alkylphenyl ether such as polyoxyethylene nonylphenyl ether, sorbitan fatty acid ester such as polyoxyethylene alkyl ether, polyoxyethylene sorbitan monooleate, or a combination of two or more Can be illustrated. In addition, a 1% PET solution (0.02% sodium pyrophosphate, 0.03% EDTA-3Na, 0.01% Tween 80 (polyoxy) is shown in “Explanation and Test Method of Cryptosporidium” (Japan Water Works Association). Ethylene sorbitan monooleate)) may also be used. The amount of the surfactant added may be a commonly used amount.
Here, a surfactant solution containing a predetermined amount of a surfactant is prepared, and the filtration membrane is immersed in the solution to easily peel off deposits and the like present on the surface of the membrane. The soaking time varies depending on the properties of the filtration membrane, the state of the deposits on the membrane, etc., so it cannot be specified unconditionally. In short, if the time is set so that the deposits etc. are easily peeled off from the filtration membrane surface Good.

かくして処理された中空糸膜を浄水で通水し、再度物理的処理を施すのが、本発明の特徴の一つである。ここで、中空糸膜を浄水で通水する際に、界面活性剤を共存させておくとより好ましい効果をもたらすことができる。用いる界面活性剤は上記のものから適宜選び、使用すればよい。その使用量も一般的に使用される量でよい。この通水後の中空糸膜を、再度超音波処理し。加圧処理することが望ましい。この超音波処理し。加圧処理する具体的な方法はすでに上記で説明した方法とほぼ同様である。   It is one of the features of the present invention that the hollow fiber membrane thus treated is passed with purified water and subjected to physical treatment again. Here, when passing the hollow fiber membrane with purified water, it is possible to bring about a more preferable effect when a surfactant is allowed to coexist. The surfactant to be used may be appropriately selected from the above and used. The amount used may be a generally used amount. The hollow fiber membrane after passing water is subjected to ultrasonic treatment again. It is desirable to apply pressure treatment. This is sonicated. The specific method for the pressure treatment is almost the same as the method already described above.

本発明では、前記処理法により得られた剥離物を含む懸濁液に、クリプトスポリジウムと特異的に反応する物質を添加し、その懸濁液からクリプトスポリジウムを分離する態様も含む。
ここでいうクリプトスポリジウムと特異的に反応する物質としては、抗原―抗体反応を利用する抗体、とくに蛍光標識抗体を例示することができる。その物質の使用量やその物質を使用して、クリプトスポリジウムを捕捉する方法も一般的な方法を採用することができる。
The present invention also includes an embodiment in which a substance that specifically reacts with Cryptosporidium is added to the suspension containing the exfoliated material obtained by the treatment method, and Cryptosporidium is separated from the suspension.
Examples of the substance that specifically reacts with Cryptosporidium herein include an antibody utilizing an antigen-antibody reaction, particularly a fluorescently labeled antibody. A general method can be adopted for the amount of the substance used and the method for capturing Cryptosporidium using the substance.

本発明により、河川および湖沼などの環境水や上下水道の各処理プロセスの処理水などの試料水中に存在する原虫、微生物、ウイルスといった感染性微生物の検出試験において、試料水から感染性微生物を含む微粒子を効率よく捕捉・回収することができ、また、ろ過濃縮および剥離懸濁ステップを自動化することができるため、作業の省力化を図ることができる。とくに、感染性微生物としてその捕捉・回収が求められているクリプトスポリジウムについては、80%以上の回収率を達成することができる。また、自動化することができるので、熟練者でなくとも再現性のあるデータを得ることができる。 According to the present invention, in the detection test of infectious microorganisms such as protozoa, microorganisms and viruses existing in sample water such as environmental water such as rivers and lakes and treated water of each treatment process of water and sewage, infectious microorganisms are contained in the sample water. Fine particles can be efficiently captured and collected, and the filtration concentration and separation / suspension steps can be automated, so that labor saving can be achieved. In particular, for Cryptosporidium, which is required to be captured and recovered as an infectious microorganism, a recovery rate of 80% or more can be achieved. Moreover, since it can be automated, reproducible data can be obtained even if it is not an expert.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

(実施の形態1)
本発明の水中の微粒子捕捉および回収装置の概略図を図1に示す。
水中の微粒子を捕捉する外圧式の中空糸膜1を中空糸膜容器7に収める。該中空糸膜容器7は、各種液体を供給できる供給口2と、ろ過水を排出するろ過水排出口3と、微粒子を回収する微粒子排出口4と、中空糸膜表面から微粒子を剥離させる超音波発生器6を供える。
供給口2へは、試料水9.浄水19および界面活性剤8がそれぞれ供給ポンプ、供給弁を介して供給される。ろ過水排出口3から、空気がエアポンプ12およびエアポンプ弁17を介して中空糸膜1の二次側を加圧する。微粒子排出口4から、中空糸膜1表面から剥離した微粒子を回収する構造を持つ。
(実施の形態2)
(Embodiment 1)
A schematic diagram of an apparatus for capturing and collecting fine particles in water of the present invention is shown in FIG.
An external pressure type hollow fiber membrane 1 for capturing fine particles in water is placed in a hollow fiber membrane container 7. The hollow fiber membrane container 7 includes a supply port 2 that can supply various liquids, a filtered water discharge port 3 that discharges filtered water, a fine particle discharge port 4 that collects fine particles, and an ultrafine particle that peels off the surface of the hollow fiber membrane. A sound wave generator 6 is provided.
Sample water 9. The purified water 19 and the surfactant 8 are supplied through a supply pump and a supply valve, respectively. From the filtered water discharge port 3, air pressurizes the secondary side of the hollow fiber membrane 1 through the air pump 12 and the air pump valve 17. From the fine particle discharge port 4, the fine particles separated from the surface of the hollow fiber membrane 1 are collected.
(Embodiment 2)

本発明の水中の微粒子捕捉および回収装置の異なる概略図を図2に示す。
試料水を中空糸膜に通水する工程では、試料水供給弁13とろ過水排出弁16が開き、界面活性剤供給弁14と微粒子排出弁15とエアポンプ弁17と浄水供給弁18が閉じる。試料水9が試料水供給ポンプ20により供給口2から中空糸膜容器7に供給され、中空糸膜1で全量ろ過され、ろ過水10がろ過水排出口3からろ過水排出弁16を経て、排出される。試料水を100L供給後、界面活性剤を供給する工程に移行する。
A different schematic of the apparatus for capturing and collecting particulates in water of the present invention is shown in FIG.
In the step of passing the sample water through the hollow fiber membrane, the sample water supply valve 13 and the filtrate water discharge valve 16 are opened, and the surfactant supply valve 14, the fine particle discharge valve 15, the air pump valve 17, and the purified water supply valve 18 are closed. Sample water 9 is supplied from the supply port 2 to the hollow fiber membrane container 7 by the sample water supply pump 20, and is filtered through the hollow fiber membrane 1, and the filtrate 10 is passed from the filtrate discharge port 3 through the filtrate discharge valve 16. Discharged. After supplying 100 L of sample water, the process proceeds to a step of supplying a surfactant.

界面活性剤を供給する工程では、界面活性剤供給弁14とろ過水排出弁16が開き、試料水供給弁13と微粒子排出弁15とエアポンプ弁17と浄水供給弁18が閉じる。界面活性剤8として1%PET溶液(0.02%ピロリン酸ナトリウム、0.03%EDTA−3Na、0.01%Tween80(ポリオキシエチレン(20)ソルビタンモノオレエート))を界面活性剤供給ポンプ22により中空糸膜容器内に滞留した試料水に供給され、微粒子剥離工程に移行する。
ここで、界面活性剤の添加量は中空糸膜容器7の容積分とし、その量の界面活性剤が該容器7内に存在する原水を押出し、その容器7内を界面活性剤で置換するように、界面活性剤を容器7内に注入する。その後膜から剥離しやすくなるよう所定時間その状態のまま保持する。
In the step of supplying the surfactant, the surfactant supply valve 14 and the filtered water discharge valve 16 are opened, and the sample water supply valve 13, the particulate discharge valve 15, the air pump valve 17, and the purified water supply valve 18 are closed. 1% PET solution (0.02% sodium pyrophosphate, 0.03% EDTA-3Na, 0.01% Tween 80 (polyoxyethylene (20) sorbitan monooleate)) as surfactant 8 is a surfactant supply pump 22 is supplied to the sample water retained in the hollow fiber membrane container, and the process proceeds to the fine particle peeling step.
Here, the addition amount of the surfactant is the volume of the hollow fiber membrane container 7, and the surfactant of that amount is extruded from the raw water present in the container 7, and the inside of the container 7 is replaced with the surfactant. Then, a surfactant is injected into the container 7. Thereafter, the film is kept in that state for a predetermined time so that it can be easily peeled off from the film.

微粒子剥離工程では、エアポンプ弁17が開き、試料水供給弁13とろ過水排出弁16と界面活性剤供給弁14と微粒子排出弁15と浄水供給弁18が閉じる。エアポンプ12により中空糸膜の二次側を加圧しながら、超音波発生器6から中空糸膜表面の一次側に超音波が照射され、エアポンプ12と超音波発生器6が停止し、微粒子回収工程に移行する。   In the fine particle separation step, the air pump valve 17 is opened, and the sample water supply valve 13, the filtrate discharge valve 16, the surfactant supply valve 14, the fine particle discharge valve 15, and the purified water supply valve 18 are closed. While the air pump 12 pressurizes the secondary side of the hollow fiber membrane, the ultrasonic wave is irradiated from the ultrasonic generator 6 to the primary side of the hollow fiber membrane surface, the air pump 12 and the ultrasonic generator 6 are stopped, and the particulate collection step Migrate to

微粒子回収工程では、微粒子排出弁15が開き、試料水供給弁13とろ過水排出弁16と界面活性剤供給弁14と、エアポンプ弁17と浄水供給弁18が閉じる。中空糸膜容器内の微粒子懸濁液11を回収し、浄水供給工程に移行する。
浄水供給工程では、浄水供給弁18とろ過水排出弁16が開き、試料水供給弁13と界面活性剤供給弁14と、微粒子排出弁15とエアポンプ弁17が閉じる。中空糸膜洗浄用の浄水19が浄水供給ポンプ21により中空糸膜容器7の容積分供給され、所定時間経過後、洗浄工程に移行する。
洗浄工程では、エアポンプ弁17が開き、試料水供給弁13とろ過水排出弁16と界面活性剤供給弁14と微粒子排出弁15と浄水供給弁18が閉じる。エアポンプ12により中空糸膜内を加圧しながら、超音波発生器6から中空糸膜表面に超音波が照射され、中空糸膜を洗浄し、中空糸膜表面に残存する微粒子を剥離させる。次いで、エアポンプ12と超音波発生器6が停止し、洗浄水排出工程に移行する。
In the particulate collection process, the particulate discharge valve 15 is opened, and the sample water supply valve 13, the filtrate water discharge valve 16, the surfactant supply valve 14, the air pump valve 17 and the purified water supply valve 18 are closed. The fine particle suspension 11 in the hollow fiber membrane container is collected, and the process proceeds to the purified water supply step.
In the purified water supply process, the purified water supply valve 18 and the filtered water discharge valve 16 are opened, and the sample water supply valve 13, the surfactant supply valve 14, the particulate discharge valve 15 and the air pump valve 17 are closed. The purified water 19 for washing the hollow fiber membrane is supplied by the purified water supply pump 21 by the volume of the hollow fiber membrane container 7, and after a predetermined time has passed, the process proceeds to the washing step.
In the cleaning process, the air pump valve 17 is opened, and the sample water supply valve 13, the filtrate discharge valve 16, the surfactant supply valve 14, the particulate discharge valve 15, and the purified water supply valve 18 are closed. While pressurizing the inside of the hollow fiber membrane with the air pump 12, the ultrasonic generator 6 irradiates the surface of the hollow fiber membrane with ultrasonic waves to wash the hollow fiber membrane and peel off the fine particles remaining on the surface of the hollow fiber membrane. Next, the air pump 12 and the ultrasonic generator 6 are stopped, and the process proceeds to the washing water discharge process.

洗浄水排出工程では、微粒子排出弁15が開き、試料水供給弁13とろ過水排出弁16と界面活性剤供給弁14と、エアポンプ弁17と浄水供給弁18が閉じ、中空糸膜容器内の洗浄水を排出し、微粒子回収工程で得られた微粒子懸濁液とともに、微粒子中のクリプトスポリジウムの分離精製工程に進む。   In the washing water discharge step, the particulate discharge valve 15 is opened, the sample water supply valve 13, the filtrate water discharge valve 16, the surfactant supply valve 14, the air pump valve 17 and the purified water supply valve 18 are closed, and the inside of the hollow fiber membrane container is closed. The washing water is discharged, and the process proceeds to the separation and purification process of Cryptosporidium in the fine particles together with the fine particle suspension obtained in the fine particle recovery process.

微粒子中のクリプトスポリジウムの分離精製工程では、微粒子回収工程で得られた微粒子懸濁液が微粒子懸濁液保持部31の容器(図示していない)内に収められ、必要に応じて前処理などがなされたのち、分離精製処理部(図示していない)から各種薬液などが添加・配合され、微粒子中のクリプトスポリジウムの分離精製が行われる。微粒子中のクリプトスポリジウムの分離精製方法としては、たとえば、密度勾配遠心法や免疫ビーズ法などが知られている。前者の方法は、微粒子の懸濁液を遠心分離処理し、水層に各種の薬品を加えてさらに遠心分離処理し、一定の部分を集める方法である。後者の方法は、微粒子の懸濁液に、クリプトスポリジウムと特異的に反応する抗体を表面に配した磁気ビーズを添加して、撹拌し、磁石で磁気ビーズを回収する方法である。なお、微粒子中のクリプトスポリジウムの分離政工程は制御部32により制御されている。   In the step of separating and purifying Cryptosporidium in the fine particles, the fine particle suspension obtained in the fine particle recovery step is stored in a container (not shown) of the fine particle suspension holding unit 31 and, if necessary, pretreatment or the like. Then, various chemicals and the like are added and blended from a separation and purification processing unit (not shown), and Cryptosporidium in fine particles is separated and purified. Known methods for separating and purifying Cryptosporidium in fine particles include, for example, a density gradient centrifugation method and an immunobead method. The former method is a method in which a suspension of fine particles is subjected to a centrifugal separation process, various chemicals are added to the aqueous layer, the centrifugal process is further performed, and a certain portion is collected. The latter method is a method in which a magnetic bead having an antibody that specifically reacts with Cryptosporidium is added to a suspension of fine particles, the magnetic bead is stirred, and the magnetic bead is collected with a magnet. The separation process of Cryptosporidium in the fine particles is controlled by the control unit 32.

再度、試料水を処理するときは中空糸膜のみを交換することが望ましい。
上述の工程において各種弁、各ポンプ、超音波発生器はコントローラにより自動的に制御可能であり、クリプトスポリジウム試験方法における試料水のろ過濃縮ステップおよび剥離懸濁ステップが自動化でき、作業の省力化を図ることができる。
さらに、中空糸膜の二次側を加圧し、中空糸膜表面の微粒子を剥離させながら、超音波発生器から超音波を照射し、振動させ中空糸膜表面に付着した微粒子を物理的に剥離し、かつ中空糸膜間に入り込んだ微粒子を誘出させる界面活性剤を供給することで中空糸膜上で捕捉された微粒子を効率よく回収することができる。
When processing the sample water again, it is desirable to replace only the hollow fiber membrane.
In the above process, various valves, pumps, and ultrasonic generators can be automatically controlled by a controller, and the sample water filtration and concentration step and exfoliation suspension step in the Cryptosporidium test method can be automated, saving labor. Can be planned.
Further, pressurize the secondary side of the hollow fiber membrane, and while peeling off the fine particles on the surface of the hollow fiber membrane, irradiate ultrasonic waves from an ultrasonic generator and vibrate to physically peel off the fine particles attached to the hollow fiber membrane surface. In addition, the fine particles captured on the hollow fiber membrane can be efficiently recovered by supplying a surfactant that induces the fine particles that have entered between the hollow fiber membranes.

以下に、各工程と各種弁の開閉をまとめて表1に示す。
表1

Figure 2006075753

Table 1 summarizes each process and the opening and closing of various valves.
Table 1
Figure 2006075753

表中、○は数字にて示される弁を開けることを意味し、−は数字にて示される弁を閉めることを意味する。 In the table, ◯ means that a valve indicated by a number is opened, and-means that a valve indicated by a number is closed.

なお、本発明を次のように記載することもできる。
(1) 水中に存在するクリプトスポリジウムを捕捉・回収し、染色するクリプトスポリジウムの検出方法において、前記水の所定量を外圧式多孔質中空糸膜を用いたろ過膜に通水した後、外圧式多孔質中空糸膜の二次側を加圧すると同時に、中空糸膜表面に一次側より超音波を照射することを特徴とする水中に存在するクリプトスポリジウムの検出方法。
(2) 加圧処理および超音波処理と同時に、界面活性剤を供給することを特徴とする上記(1)の水中に存在するクリプトスポリジウムの検出方法。
(3) クリプトスポリジウムと特異的に結合する抗体を備えるビーズを添加してクリプトスポリジウムを捕捉することを特徴とする上記(1)または(2)記載の水中に存在するクリプトスポリジウムの検出方法。
In addition, this invention can also be described as follows.
(1) In the detection method of Cryptosporidium that captures, recovers, and stains Cryptosporidium present in water, after passing a predetermined amount of the water through a filtration membrane using an external pressure porous hollow fiber membrane, an external pressure type A method for detecting Cryptosporidium present in water, wherein the secondary side of the porous hollow fiber membrane is pressurized and at the same time the surface of the hollow fiber membrane is irradiated with ultrasonic waves from the primary side.
(2) The method for detecting Cryptosporidium present in water as described in (1) above, wherein a surfactant is supplied simultaneously with the pressure treatment and the ultrasonic treatment.
(3) The method for detecting Cryptosporidium present in water as described in (1) or (2) above, wherein beads comprising an antibody that specifically binds Cryptosporidium are added to capture Cryptosporidium.

(4) 水中に存在するクリプトスポリジウムの捕捉・回収装置において、前記水を導入する外圧式多孔質中空糸膜を有するモジュール、前記膜を空気で加圧する手段、前記膜に一次側より超音波を照射する手段、およびを中空糸膜からの剥離物を含む液体にクリプトスポリジウムと特異的に結合する物質を添加する手段を備え、前記膜への加圧と超音波照射を同時に行い、前記膜から剥離物を得るからクリプトスポリジウムを捕捉させたる構造であることを特徴とする水中のクリプトスポリジウムの回収装置。
(5) 水中に存在するクリプトスポリジウムを捕捉・回収装置において、前記水を導入する外圧式多孔質中空糸膜を有するモジュール、前記膜を空気で加圧する手段、前記膜に一次側より超音波を照射する手段、界面活性剤供給手段、およびを中空糸膜からの剥離物を含む液体にクリプトスポリジウムと特異的に結合する物質を添加する手段を備え、前記膜への加圧と超音波照射と界面活性剤供給を同時に行い、前記膜に捕捉されたクリプトスポリジウムを剥離させる構造であることを特徴とする水中のクリプトスポリジウムの回収装置。
(6) 外圧式多孔質中空糸ろ過膜からの剥離物の懸濁液に、クリプトスポリジウムと特異的に結合する物質を添加してクリプトスポリジウムを捕捉する工程をさらに含むことを特徴とする上記(2)または(3)記載の試料水中に存在する感染性微生物を捕捉・回収する方法。
(7) 外圧式多孔質中空糸ろ過膜を加圧すると同時に超音波を照射する工程の次に外圧式多孔質中空糸ろ過膜を浄水で通水する工程および該外圧式多孔質中空糸ろ過膜の二次側を加圧すると同時にその中空糸ろ過膜表面に一次側より超音波を照射する工程をさらに含むことを特徴とする試料水中に存在する感染性微生物を捕捉・回収する方法。
(4) In a Cryptosporidium capture / recovery device existing in water, a module having an external pressure porous hollow fiber membrane for introducing the water, means for pressurizing the membrane with air, and applying ultrasonic waves to the membrane from the primary side Irradiating means, and means for adding a substance that specifically binds Cryptosporidium to the liquid containing the exfoliated material from the hollow fiber membrane, and simultaneously applying pressure and ultrasonic irradiation to the membrane, An apparatus for recovering Cryptosporidium in water, characterized in that Cryptosporidium is trapped in order to obtain a peeled material.
(5) In a Cryptosporidium capture / recovery device in water, a module having an external pressure porous hollow fiber membrane for introducing water, means for pressurizing the membrane with air, and ultrasonic waves from the primary side to the membrane A means for irradiating, a means for supplying a surfactant, and a means for adding a substance that specifically binds Cryptosporidium to the liquid containing the exfoliated material from the hollow fiber membrane. An apparatus for recovering Cryptosporidium in water, wherein the surfactant is supplied at the same time and Cryptosporidium trapped in the membrane is peeled off.
(6) The method further comprising the step of trapping Cryptosporidium by adding a substance that specifically binds Cryptosporidium to the suspension of exfoliated material from the external pressure porous hollow fiber filtration membrane ( The method for capturing and collecting infectious microorganisms present in the sample water as described in 2) or (3).
(7) The step of passing the external pressure porous hollow fiber filtration membrane with purified water following the step of applying pressure to the external pressure porous hollow fiber filtration membrane and simultaneously irradiating with ultrasonic waves, and the external pressure porous hollow fiber filtration membrane A method of capturing and recovering infectious microorganisms present in sample water, further comprising the step of irradiating the surface of the hollow fiber filtration membrane with ultrasonic waves from the primary side at the same time as pressurizing the secondary side.

実施例の水中の微粒子捕捉および回収装置の概略図Schematic diagram of an apparatus for capturing and collecting fine particles in water according to an embodiment 実施例の水中の微粒子捕捉および回収装置の上記と異なる概略図Schematic different from the above of the apparatus for capturing and collecting fine particles in water of the embodiment

符号の説明Explanation of symbols

1中空糸膜、
2供給口、
3ろ過水排出口、
4微粒子排出口、
5超音波発生器電源、
6超音波発生器、
7中空糸膜容器、
8界面活性剤、
9試料水、
10ろ過水、
11微粒子懸濁液、
12エアポンプ、
13試料水供給弁、
14界面活性剤供給弁、
15微粒子排出弁、
16ろ過水排出弁、
17エアポンプ弁、
18浄水供給弁、
19浄水、
20試料水供給ポンプ、
21浄水供給ポンプ、
22界面活性剤供給ポンプ
30処理水(処理終了)
31微粒子懸濁液保持部
32制御部

1 hollow fiber membrane,
2 supply ports,
3 Filtration water outlet,
4 particulate outlet,
5 ultrasonic generator power supply,
6 ultrasonic generators,
7 hollow fiber membrane container,
8 surfactants,
9 sample water,
10 filtered water,
11 fine particle suspension,
12 air pump,
13 sample water supply valve,
14 surfactant supply valve,
15 particulate discharge valve,
16 filtered water discharge valve,
17 air pump valve,
18 clean water supply valve,
19 water purification,
20 sample water supply pump,
21 purified water supply pump,
22 Surfactant supply pump 30 treated water (end of treatment)
31 fine particle suspension holding unit 32 control unit

Claims (5)

試料水を膜ろ過し、そのろ過膜を洗浄して試料水に含まれる水不溶性物体を捕捉する方法において、前記試料水の所定量を外圧式多孔質中空糸ろ過膜に通水する第一の工程、およびその外圧式多孔質中空糸ろ過膜の二次側を加圧すると同時にその中空糸ろ過膜表面に一次側より超音波を照射する第二の工程を含み、外圧式多孔質中空糸ろ過膜から剥離物を回収することを特徴とする試料水中に存在する感染性微生物を捕捉・回収する方法。 In a method of membrane filtration of sample water and washing the filtration membrane to capture water-insoluble matter contained in the sample water, a first amount of the sample water passed through an external pressure porous hollow fiber filtration membrane And a second step of irradiating the surface of the hollow fiber filtration membrane with ultrasonic waves from the primary side at the same time as pressurizing the secondary side of the external pressure porous hollow fiber filtration membrane. A method for capturing and recovering infectious microorganisms present in sample water, which comprises collecting exfoliated material from a membrane. 外圧式多孔質中空糸ろ過膜表面に膜の一次側より界面活性剤を供給する工程をさらに含むことを特徴とする請求項1項記載の試料水中に存在する感染性微生物を捕捉・回収する方法。 2. The method for capturing and recovering infectious microorganisms present in sample water according to claim 1, further comprising a step of supplying a surfactant from the primary side of the membrane to the surface of the external pressure porous hollow fiber filtration membrane. . 試料水の所定量を導入する外圧式多孔質中空糸ろ過膜を有するモジュール、前記中空糸ろ過膜の二次側を空気で加圧する手段、および前記中空糸ろ過膜に一次側より超音波を照射する手段を備え、前記中空糸ろ過膜への加圧と超音波照射を同時に行い、前記中空糸ろ過膜の剥離物からクリプトスポリジウムを含む感染性微生物を捕捉する構造であることを特徴とする試料水中に存在する感染性微生物を捕捉・回収する装置。 Module having an external pressure type porous hollow fiber filtration membrane for introducing a predetermined amount of sample water, means for pressurizing the secondary side of the hollow fiber filtration membrane with air, and irradiating the hollow fiber filtration membrane with ultrasonic waves from the primary side A sample that has a structure for simultaneously performing pressurization and ultrasonic irradiation to the hollow fiber filtration membrane to capture infectious microorganisms including cryptosporidium from the peeled product of the hollow fiber filtration membrane A device that captures and collects infectious microorganisms present in water. 外圧式多孔質中空糸ろ過膜表面に一次側より界面活性剤を供給する手段をさらに備えることを特徴とする請求項3記載の試料水中に存在する感染性微生物を捕捉・回収する装置。 4. The apparatus for capturing and recovering infectious microorganisms present in sample water according to claim 3, further comprising means for supplying a surfactant from the primary side to the surface of the external pressure type porous hollow fiber filtration membrane. 外圧式多孔質中空糸ろ過を浄水で通過する手段をさらに備えることを特徴とする請求項3または4記載の試料水中に存在する感染性微生物を捕捉・回収する装置。







The apparatus for capturing and recovering infectious microorganisms present in sample water according to claim 3 or 4, further comprising means for passing external pressure porous hollow fiber filtration with purified water.







JP2004263529A 2004-09-10 2004-09-10 Method for trapping/collecting infectious microorganism, and its device Pending JP2006075753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004263529A JP2006075753A (en) 2004-09-10 2004-09-10 Method for trapping/collecting infectious microorganism, and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004263529A JP2006075753A (en) 2004-09-10 2004-09-10 Method for trapping/collecting infectious microorganism, and its device

Publications (1)

Publication Number Publication Date
JP2006075753A true JP2006075753A (en) 2006-03-23

Family

ID=36155653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004263529A Pending JP2006075753A (en) 2004-09-10 2004-09-10 Method for trapping/collecting infectious microorganism, and its device

Country Status (1)

Country Link
JP (1) JP2006075753A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201421A (en) * 2008-02-28 2009-09-10 Metawater Co Ltd Method and apparatus for measuring microorganism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201421A (en) * 2008-02-28 2009-09-10 Metawater Co Ltd Method and apparatus for measuring microorganism

Similar Documents

Publication Publication Date Title
JP2009000673A (en) Apparatus and method for monitoring water purification process
CN111285515B (en) Ultraviolet and ultrasonic combined ship ballast water treatment method
DK3329994T3 (en) REACTOR FOR THE ENZYMATIC MACERATION OF BIOGENIC CONSTITUENTS OF A PARTICLE SAMPLE AND USE OF THE REACTOR
US20120012539A1 (en) Water treatment apparatus and method for using same
US6875363B2 (en) Process and device for the treatment of water, particularly for ships
JP2007033353A (en) Microorganism detecting system
JP2005081247A (en) Apparatus for cleaning contaminated soil
JP5586867B2 (en) Water quality automatic measuring apparatus and method
RU2502678C2 (en) Method of fluid purification by flotation
JP2009201421A (en) Method and apparatus for measuring microorganism
JP2000140585A (en) Operation of membrane separation apparatus, and membrane separation apparatus
KR20140103609A (en) Apparatus for treating sewage in ship and fish farm
JP2006075753A (en) Method for trapping/collecting infectious microorganism, and its device
JP2016059829A (en) Wastewater treatment apparatus of penetration liquid washing including fluorescent liquid and developer generated in penetration flaw detection inspection, and method therefor
KR102109560B1 (en) Method for cleaning submerged membrane using photocatalyst and UV-scattering media
JPH09327611A (en) Method and apparatus for filtering sparingly filterable waste liquid
CN110078175A (en) A kind of ultrafiltration and air-floating integral unit and application
WO2019012184A1 (en) Method and system for treatment of an underwater surface and material removed from it
JP2005143379A (en) Method and apparatus for recovering microorganism
US5626746A (en) Filtering device containing chemical encapsulation filter and size discriminating filter
JP2000042307A (en) Water purification plant water treatment system
JP4488670B2 (en) Microbial recovery method and recovery device
JP4401251B2 (en) General waste incineration wastewater treatment method
KR101779119B1 (en) Ballast water treatment system and method
JP5001879B2 (en) Microbial recovery method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080314

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080314

RD04 Notification of resignation of power of attorney

Effective date: 20080317

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090513

A131 Notification of reasons for refusal

Effective date: 20090602

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100119