JP2009000673A - Apparatus and method for monitoring water purification process - Google Patents

Apparatus and method for monitoring water purification process Download PDF

Info

Publication number
JP2009000673A
JP2009000673A JP2008017671A JP2008017671A JP2009000673A JP 2009000673 A JP2009000673 A JP 2009000673A JP 2008017671 A JP2008017671 A JP 2008017671A JP 2008017671 A JP2008017671 A JP 2008017671A JP 2009000673 A JP2009000673 A JP 2009000673A
Authority
JP
Japan
Prior art keywords
water
water purification
purification process
monitoring
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008017671A
Other languages
Japanese (ja)
Inventor
Yoshiharu Tanaka
良春 田中
Kazuyuki Taguchi
和之 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2008017671A priority Critical patent/JP2009000673A/en
Publication of JP2009000673A publication Critical patent/JP2009000673A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtration Of Liquid (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for monitoring a water purification process, each of which is used as a water quality monitor-control system of the water purification process of a purification plant and by each of which safe drinking water can be supplied stably while decreasing the infection with pathogenic bacteria. <P>SOLUTION: The apparatus for monitoring the water purification process, which is used for purifying raw water to obtain drinking water, is provided with: a pathogenic bacterium measurement system for measuring the number concentration of pathogenic bacteria in raw water; and a unit for detecting whether the measured number concentration of pathogenic bacteria in the raw water is equal to or higher than a preset value of the preset number concentration. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、浄水場の浄水プロセスの水質監視・制御システムにおいて、病原虫による感染を低減し、安全な飲料水の安定供給を可能とするシステムに関する。   The present invention relates to a water quality monitoring / control system for a water purification process in a water purification plant, which reduces infection by pathogenic insects and enables stable supply of safe drinking water.

浄水処理において、凝集沈殿と砂ろ過処理を組み合わせて行う方法が広く採用されている。
急速ろ過池では原水中の懸濁物質を薬品(凝集剤)により凝集沈殿させた後、この沈殿処理水をろ過砂が充填された砂ろ過池の粒状層に比較的速い流速で通し、主としてろ材への付着とろ層でのふるい分けによって濁質を除去する。原水が低い濁度の条件でも、急速ろ過池でろ過するのみではコロイド状態の懸濁物質の十分な除去は期待できないので凝集剤を用いて前処理を行う。
In water purification treatment, a method in which coagulation sedimentation and sand filtration treatment are combined is widely adopted.
In the rapid filtration basin, suspended substances in the raw water are coagulated and precipitated with chemicals (flocculant), and then this treated water is passed through the granular layer of the sand filter basin filled with filter sand at a relatively high flow rate, mainly as a filter medium. Remove turbidity by adhering to and sieving in the filter layer. Even if the raw water is low in turbidity, pre-treatment with a flocculant is not possible because sufficient removal of the colloidal suspended solids cannot be expected simply by filtering through a rapid filtration pond.

急速ろ過池は浄水処理工程で除濁の最終段階として用いられ、水質基準および非特許文献1に適合するろ過水が得られる浄化機能、濁質の抑留機能、水質水量の変動に対する緩衝機能、ろ過槽内に抑留した濁質を除去する逆流洗浄等の十分な洗浄機能が要求される。   The rapid filtration basin is used as the final stage of turbidity in the water purification process, and it provides a purification function that can provide filtered water that conforms to the water quality standards and Non-Patent Document 1, a turbidity retention function, a buffering function against fluctuations in water quality, and filtration. Sufficient cleaning functions such as back-flow cleaning to remove suspended matter retained in the tank are required.

厚生労働省告示「水道におけるクリプトスポリジウム暫定対策指針」(2001年)Ministry of Health, Labor and Welfare Notification “Provisional Guidelines for Cryptosporidium in Waterworks” (2001)

ろ過水の工程管理は現状では濁度を指標として行われている。
非特許文献1に基づく濁度管理は、凝集、沈殿、ろ過のそれぞれの工程が良好に機能しているか否かを判断する指標にはなるもののクリプトスポリジウムの除去性能を直接的に評価する指標としては十分といえない。
The process control of filtered water is currently performed using turbidity as an index.
Turbidity management based on Non-Patent Document 1 is an index for directly evaluating the removal performance of Cryptosporidium, although it can be an index for judging whether or not each process of aggregation, precipitation, and filtration functions well. Is not enough.

また、クリプトスポリジウムは微生物であるのでその存在を直接検出する方法としては顕微鏡による検査方法以外になくその測定には約4日要する。そのため、問題となる測定結果が得られた時点では既にそれ以前の4日間は、問題となる水質の状態で送水され消費された後となり、この方法を日々の管理に反映させることはきわめて難しい。   Since Cryptosporidium is a microorganism, the method for directly detecting its presence is not an inspection method using a microscope, and its measurement takes about 4 days. For this reason, when the measurement results in question are obtained, the previous four days are already after being consumed and consumed in the state of the water in question, and it is extremely difficult to reflect this method in daily management.

このため、クリプトスポリジウムによる汚染の恐れのある浄水施設では、安全性を考慮して凝集剤を過剰に注入し、日常管理していることが多く、薬品消費量や汚泥の発生量が必要以上に多くなるという課題を抱えている。   For this reason, in water purification facilities that may be contaminated with Cryptosporidium, the coagulant is excessively injected for safety, and is often managed on a daily basis, and chemical consumption and sludge generation are more than necessary. We have a problem of increasing.

本発明は、上述の問題点を鑑み、原水中のクリプトスポリジウムなどの水系感染微生物を短時間で測定することができる病原虫計測システムを備えた浄水プロセスの監視装置及び方法を提供するものである。   In view of the above-described problems, the present invention provides a monitoring device and a method for a water purification process including a pathogen measuring system that can measure waterborne infectious microorganisms such as Cryptosporidium in raw water in a short time. .

上述の目的を達成するために、本発明は、原水を浄水処理する浄水プロセスの監視装置において、前記浄水プロセスの監視装置が、原水中の病原虫の個数濃度が予め設定された値以上であることを検知して信号を出力する機能を有する病原虫個数濃度計測システムであることを特徴とし、予め設定された個数濃度の設定値以上が検出されたときに、浄水工程の運転条件を制御することで、浄水水質を維持することができる(請求項1の発明)。   In order to achieve the above-described object, the present invention provides a water purification process monitoring device for purifying raw water, wherein the water purification process monitoring device has a number concentration of pathogenic insects in the raw water equal to or higher than a preset value. It is a pathogen count concentration measuring system having a function of detecting this and outputting a signal, and controls the operating condition of the water purification process when a preset number concentration or more is detected. Thus, the quality of purified water can be maintained (invention of claim 1).

本発明は、その実施の形態で、上述した浄水プロセスの監視装置において、前記病原虫計測システムが、フィルタにより構成される分離濃縮部と、前記フィルタ表面上に捕捉された病原虫を含む微粒子を、洗浄水をフィルタのろ過水側から逆流させて、微粒子とクリプトスポリジウムを含んだ試料液として回収し、この回収試料液中の病原虫に特異的に結合する標識抗体を供給し、病原虫と標識抗体とを反応させ結合させる抗体反応部と、標識抗体と結合した病原虫の検出部とを備える(請求項2の発明)。   In the embodiment of the water purification process monitoring apparatus according to the present invention, the pathogen measurement system includes a separation and concentration unit configured by a filter, and fine particles containing the pathogen captured on the filter surface. The washing water is made to flow backward from the filtered water side of the filter and collected as a sample solution containing fine particles and Cryptosporidium, and a labeled antibody that specifically binds to the pathogen in the collected sample solution is supplied. An antibody reaction part that reacts and binds to the labeled antibody and a detection part for a pathogen that is bound to the labeled antibody are provided (invention of claim 2).

さらに、予め設定された個数濃度の設定値以上が検出されたときに、浄水プロセスのろ過工程からのろ過水中の検出対象の病原虫の大きさ以上の微粒子を連続的に計数する微粒子計測装置(例えば微粒子カウンタ)を用いて監視を強化する(請求項3の発明)。
また、本発明は、その実施の形態で、上述した浄水プロセスの監視装置において、前記予め設定された個数濃度の設定値は、その浄水施設の除去能力に応じて任意に設定可能である(請求項4の発明)。
Furthermore, when a preset number concentration or more is detected, a particle measuring device that continuously counts particles larger than the size of the pathogen to be detected in the filtered water from the filtration step of the water purification process ( For example, the monitoring is strengthened by using a fine particle counter.
Further, in the embodiment of the present invention, the preset value of the number concentration can be arbitrarily set according to the removal capability of the water purification facility in the above-described water purification process monitoring apparatus (claim). Item 4).

そして、孔径3μm以下フィルタで捕捉できるクリプトスポリジウムを監視対象とすることができる(請求項5の発明)。すなわち、原水中の水系感染微生物、例えばクリプトスポリジウムの個数濃度を高頻度に測定可能な病原虫計測システムを有することにより、原水中のクリプトスポリジウムの個数濃度を把握し、個数濃度がその浄水場の原水の定常個数濃度の設定値(通常は定常値の一桁以上多い個数濃度に設定)よりも多い個数濃度となった場合に、微粒子カウンタなどの微粒子計測装置にて、ろ過工程からのろ過水中の3μm以上の微粒子を連続的に計数することで、ろ過水中のクリプトスポリジウム相当径の3μm以上の微粒子数の連続監視を行い、測定結果に応じて、浄水工程の運転条件を制御し、浄水水質の安全性を確保できる。これにより、原水中の病原虫の個数濃度が上昇し、その浄水施設の除去能力を上回る個数濃度となるような水質状態になったときにも、浄水の安全性を確保することができる。   Then, Cryptosporidium that can be captured by a filter having a pore diameter of 3 μm or less can be monitored (invention of claim 5). In other words, by having a pathogen measuring system that can measure the number concentration of water-borne infectious microorganisms in raw water, such as Cryptosporidium, the number concentration of Cryptosporidium in raw water is ascertained. When the number concentration is higher than the set value of the steady number concentration of the raw water (usually set to a number concentration that is at least one digit higher than the steady value), the filtered water from the filtration process is measured with a particle counter such as a particle counter. By continuously counting particles of 3μm or more, the number of particles of Cryptosporidium equivalent diameter of 3μm or more in the filtered water is continuously monitored, and the operating conditions of the water purification process are controlled according to the measurement results, and the quality of the purified water Can be secured. Thereby, the safety of purified water can be ensured even when the number concentration of pathogenic insects in the raw water increases and the water quality is such that the number concentration exceeds the removal capacity of the water purification facility.

本発明では、原水を浄水処理する浄水プロセスの監視方法において、浄水処理する前の原水を採水し、原水中の病原虫数を計測し、その計測した原水中の病原虫の個数濃度が予め設定された値以上である時に信号を出力し、その信号に基づき浄水工程の運転条件を制御する(請求項6の発明)。   In the present invention, in the water purification process monitoring method for purifying the raw water, the raw water before the water purification treatment is collected, the number of pathogenic insects in the raw water is measured, and the number concentration of the pathogenic insects in the measured raw water is determined in advance. A signal is output when the value is equal to or greater than the set value, and the operation condition of the water purification process is controlled based on the signal (invention of claim 6).

そして、原水中の病原虫数の前記計測は、原水を分離濃縮部でろ過し、分離濃縮部のろ過で捕捉された病原虫を含む微粒子を回収し、検出対象の病原虫に特異的に結合する蛍光標識抗体により抗原抗体反応させ、蛍光測定により病原虫の存在を判断することができる(請求項7の発明)。   The above-mentioned measurement of the number of pathogens in the raw water is performed by filtering the raw water in the separation and concentration unit, collecting fine particles containing the pathogens captured by the filtration in the separation and concentration unit, and specifically binding to the pathogens to be detected. The presence of a pathogen can be determined by measuring the fluorescence with an antigen-antibody reaction using a fluorescently labeled antibody and measuring fluorescence (invention of claim 7).

さらに、原水中の病原虫数の計測により、原水中の病原虫の個数濃度がその浄水場の原水の定常個数濃度の設定値よりも多い個数濃度となった場合に、浄水プロセスのろ過工程におけるろ過水中の検出対象の病原虫の大きさ以上の微粒子を計数し、この微粒子測定結果に応じて、浄水工程の運転条件を制御し、浄水水質を維持することができる(請求項8の発明)。   Furthermore, when the number of pathogens in the raw water is measured and the number concentration of pathogens in the raw water is higher than the set value of the steady number concentration of the raw water in the water purification plant, Fine particles larger than the size of the pathogen to be detected in the filtered water are counted, and the operating condition of the water purification process can be controlled according to the result of the fine particle measurement to maintain the quality of the purified water (invention of claim 8). .

原水を取水して混和池で凝集処理し、フロック形成を経て沈殿池で濁度成分を分離し、ろ過工程でろ過水を得る工程を有する浄水プロセスで、計測した原水中の病原虫の個数濃度の値により制御する浄水工程の運転条件は、取水量の制御や取水の停止操作、凝集剤注入率やフロック形成池の攪拌強度G値を増加する制御、あるいは、ろ過工程の逆洗時に排出される水を原水に戻さずに下水道への排出する操作、ろ過工程で濃縮された病原虫を不活化する操作、病原虫を膜ろ過除去し原水に返流する操作のいずれかである(請求項9の発明)。   The concentration of pathogens in the raw water was measured in a water purification process that had the process of collecting raw water, coagulating it in a mixing pond, separating the turbidity components in a sedimentation basin through floc formation, and obtaining filtered water in the filtration process. The operating conditions of the water purification process controlled by the value of water are discharged at the time of control of water intake, stop operation of water intake, control to increase the flocculant injection rate and stirring intensity G value of the floc formation pond, or backwashing of the filtration process The water is discharged into the sewer without returning it to the raw water, the pathogen concentrated in the filtration process is inactivated, or the pathogen is removed by membrane filtration and returned to the raw water. 9 invention).

本発明に係る浄水プロセスの監視装置及び方法は、クリプトスポリジウムなどの原虫をはじめとした細菌、ウイルスのような水系感染微生物を短時間で高頻度に計測可能なシステムを備えた浄水システムに用いられることにより、従来、ほとんど対応ができなかった耐塩素性病原虫による原水の汚染に迅速に対応できるので水質の安全性を高めることができる。   INDUSTRIAL APPLICABILITY The apparatus and method for monitoring a water purification process according to the present invention are used in a water purification system having a system capable of measuring a bacterium such as cryptosporidium and other water-borne infectious microorganisms such as viruses in a short period of time. Thus, it is possible to quickly respond to contamination of raw water by chlorine-resistant pathogens that could not be dealt with conventionally, so that the safety of water quality can be improved.

以下に、添付図面を参照しながら、本発明に係る浄水プロセスの監視装置とその方法について、その実施の形態について説明する。
まず、図1に、本発明に係る浄水プロセスの監視装置の全体構成図について、その概括的な実施の形態を示す。
Embodiments of a water purification process monitoring apparatus and method according to the present invention will be described below with reference to the accompanying drawings.
First, FIG. 1 shows a general embodiment of an overall configuration diagram of a water purification process monitoring apparatus according to the present invention.

本実施の形態では、原水は混和池1に供給されると同時に病原虫計測システム8に送られる。
河川等より取水された水道原水に混和池1で凝集剤タンク2から凝集剤を注入し、フロック形成池3を経て沈殿池4にて濁度成分を分離後、ろ過池5にて砂ろ過処理される。
病原虫計測システム8は混和池1に入る前の原水を採水し、原水中の病原虫数を監視する。もし、原水中の病原虫が凝集沈殿、砂ろ過処理での除去性能を超えるような個数濃度が観測された時には、その個数濃度に応じて、病原虫計測システム8から信号を出力する(図中の破線)ことで、取水量の制御や取水の停止操作、あるいは、凝集剤注入率やフロック形成池の攪拌強度G値を増加する制御、あるいはろ過池の逆洗時に排出される水を原水に戻さずに下水道に排出する、あるいは、ろ過池で濃縮された病原虫を不活化(オゾン処理)あるいは除去(膜ろ過)する、不活性処理装置7を稼動させて処理した後に原水に返流する。
In the present embodiment, the raw water is supplied to the mixing pond 1 and simultaneously sent to the pathogen measuring system 8.
Injecting flocculant from the flocculant tank 2 in the mixing pond 1 into raw water taken from rivers, etc., separating the turbidity components in the sedimentation basin 4 through the floc-forming pond 3, and sand filtering in the filtration basin 5 Is done.
The pathogen measuring system 8 collects raw water before entering the mixing pond 1 and monitors the number of pathogenic insects in the raw water. If a number concentration is observed such that the pathogenic insects in the raw water exceed the removal performance by coagulation sedimentation and sand filtration, a signal is output from the pathogen measuring system 8 according to the number concentration (in the figure). By controlling the amount of water intake and stopping the water intake, or increasing the flocculant injection rate and the agitation strength G value of the floc formation pond, or the water discharged during backwashing of the filtration basin is used as raw water. Discharge into the sewer without returning, or inactivate (ozone treatment) or remove (membrane filtration) pathogenic insects concentrated in the filtration pond, operate the inactive treatment device 7 and return it to the raw water .

通常、本発明に係る病原虫計測システム8の測定値は1個/20L以下の値で推移していることが好ましい。この範囲であれば、凝集沈殿、急速ろ過の浄水処理が適正に行われた浄水システムでのクリプトスポリジウムの除去率は3log程度であることから、米国環境保護庁(USEPA)で目標とする年間許容感染リスクである10-4以下を確保することができる。 Usually, it is preferable that the measured value of the pathogen measuring system 8 according to the present invention changes at a value of 1 piece / 20 L or less. Within this range, the removal rate of Cryptosporidium in a water purification system that has been properly subjected to water treatment by coagulation sedimentation and rapid filtration is about 3 logs, so the annual permissible target set by the US Environmental Protection Agency (USEPA) The infection risk of 10 -4 or less can be secured.

なお、浄水施設の立地条件によっては、上流域の下水処理場からの排水や畜産排水の流入があることや、降雨時による河床の堆積物を巻き上げなどがある。通常の原水中に含まれる病原虫の個数濃度は、数個/20L以下であるが、このことにより、個数濃度が通常の時よりも一桁以上高い10個〜100個/20Lまで増加する危険性がある。このため、通常の浄水方法では許容感染リスクレベル以下に除去しきれない可能性があり、浄水中に許容感染リスク濃度を超えた病原虫が混入する危険性がある。   Depending on the location conditions of the water purification facility, there may be an inflow of wastewater from the sewage treatment plant in the upstream area or livestock wastewater, or the riverbed sediments may be rolled up during rainfall. The number concentration of pathogenic insects contained in normal raw water is several / 20L or less, but this increases the number concentration to 10 to 100 / 20L, which is one digit higher than usual. There is sex. For this reason, the normal water purification method may not be able to remove the permissible infection risk level or less, and there is a risk that pathogens exceeding the permissible infection risk concentration will be mixed in the clean water.

しかしながら、本発明に係る浄水プロセスの監視装置及び方法においては、病原虫計測システム8の測定結果により浄水能力を超える個数濃度で病原虫が流入してきた場合には、早い段階で、取水量の抑制を行うことができる。さらに、通常用いているアルミ系凝集剤の注入率を上げ、かつ鉄系凝集剤を加えるなどの措置により、除去率を確保し、浄水の目標とする年間許容感染リスクを10-4以下に保つことができる。 However, in the monitoring apparatus and method of the water purification process according to the present invention, when pathogenic insects flow in at a number concentration exceeding the water purification capacity based on the measurement result of the pathogen measuring system 8, the amount of water intake is suppressed at an early stage. It can be performed. Furthermore, the removal rate is secured by increasing the injection rate of the commonly used aluminum flocculant and adding an iron flocculant, and the annual permissible infection risk of water purification is kept below 10 -4. be able to.

また、原水中の病原虫の個数濃度が予め設定された個数濃度の設定値以上検出されたときに、さらに微粒子カウンタ6にて、ろ過池からのろ過水中の3μm以上の病原虫を含む微粒子を連続的に計数するようにしている。これにより、測定結果に応じて、浄水工程の運転条件(取水量の制御や取水の停止操作、凝集剤注入率やフロック形成池の攪拌強度G値を増加する制御あるいは、ろ過池の逆洗時の排出水を下水道へ排出する操作、ろ過池で濃縮された病原虫を不活化する操作、病原虫を膜ろ過除去し原水に返流する操作)を制御し、浄水水質の安全性を確保することができる。   In addition, when the number concentration of pathogenic insects in the raw water is detected to be equal to or higher than a preset value of the number concentration, fine particles containing pathogenic insects of 3 μm or more in the filtered water from the filtration pond are further detected by the particle counter 6. The counter is continuously counted. Thereby, depending on the measurement result, the operating conditions of the water purification process (control of the water intake, stop operation of water intake, control to increase the flocculant injection rate and stirring strength G value of the floc formation pond, or backwash of the filtration basin To control the operation of discharging the discharged water into the sewer, inactivating the pathogens concentrated in the filtration pond, and removing the pathogens through membrane filtration and returning them to the raw water) to ensure the safety of the purified water quality be able to.

次に、本発明に係る浄水プロセスの監視装置及び方法における病原虫計測システム8を採用し、特にクリプトスポリジウムを検出する実施の形態について説明する。
まず、図2に、病原虫計測システム8について、実施例としての処理フローを示す。
Next, an embodiment in which the pathogen measuring system 8 in the water purification process monitoring apparatus and method according to the present invention is employed and particularly cryptosporidium is detected will be described.
First, FIG. 2 shows a processing flow as an embodiment of the pathogen measuring system 8.

本実施の形態では、浄水処理への導入前に分岐して取り出した原水100を貯留槽102に供給し、試料調整剤104を添加する。原水100は、必要に応じて原水中の100μmより大きいゴミを除去するため、貯留槽102に供給される際に、100μmメッシュフィルター等を通すことができる。
試料調整剤104は、後述するフィルタに捕捉された病原虫を剥離しやすくする濁質分散剤として機能する界面活性剤や、原水中のフミン酸等の色度成分(溶解性有機物)による膜ろ過性能低下を防ぐための添加物質として塩酸を挙げることができる。なお、界面活性剤としては、SDS(ドデシル硫酸ナトリウム)等を用いることができる。
In this Embodiment, the raw | natural water 100 branched and taken out before the introduction to a water purification process is supplied to the storage tank 102, and the sample preparation agent 104 is added. Since the raw water 100 removes dust larger than 100 μm in the raw water as needed, it can be passed through a 100 μm mesh filter or the like when supplied to the storage tank 102.
The sample preparation agent 104 is a membrane filtration using a surfactant that functions as a turbid dispersant that makes it easy to peel off pathogens captured by a filter, which will be described later, and a chromaticity component (soluble organic matter) such as humic acid in raw water. Hydrochloric acid can be mentioned as an additive material for preventing performance degradation. As the surfactant, SDS (sodium dodecyl sulfate) or the like can be used.

貯留槽102において調整された試料は、孔径2μmのフィルタより構成される分離濃縮部106に送られる。分離濃縮部106では、孔径2μmのフィルタを用いて、クリプトスポリジウムを含む微粒子をろ過により濃縮する。
フィルタ表面上に捕捉されたクリプトスポリジウムを含む微粒子は、分離濃縮部106内で洗浄水をフィルタのろ過水側から逆流させて、微粒子とクリプトスポリジウムを含んだ試料液として回収する。
The sample adjusted in the storage tank 102 is sent to a separation / concentration unit 106 constituted by a filter having a pore diameter of 2 μm. Separation and concentration unit 106 concentrates fine particles containing Cryptosporidium by filtration using a filter having a pore diameter of 2 μm.
The microparticles containing Cryptosporidium trapped on the filter surface are recovered as a sample solution containing the microparticles and Cryptosporidium by causing the washing water to flow backward from the filtered water side of the filter in the separation and concentration unit 106.

分離濃縮部106によって分離濃縮された回収試料液は、抗体反応部108に送られる。
抗体反応部108では、検出対象のクリプトスポリジウムに特異的に結合する蛍光標識抗体110と、回収試料液中の検出対象のクリプトスポリジウムとを抗原抗体反応により結合させる。このとき、1種類の蛍光標識抗体を用いる場合、夾雑物に非特異的に結合した蛍光標識抗体を擬陽性として判定してしまうおそれがある。このため、抗原認識部位の異なる複数の抗体を用意し、そのそれぞれに蛍光波長の異なる蛍光物質を結合した蛍光標識抗体でクリプトスポリジウムを多重標識する方法が好ましい。これによって、検出対象のクリプトスポリジウムの検出精度を向上させることができる。
なお、抗体自体は、当業者にとって公知の手法によって得ることができる。抗体は、ポリクローナル抗体、モノクローナル抗体などその種類を問わず、検出対象病原虫に特異性を有するものであれば用いることができる。一般的には、モノクローナル抗体が特異性に優れているので好ましい。
The collected sample solution separated and concentrated by the separation and concentration unit 106 is sent to the antibody reaction unit 108.
In the antibody reaction unit 108, the fluorescently labeled antibody 110 that specifically binds to the detection target cryptosporidium and the detection target cryptosporidium in the collected sample solution are combined by an antigen-antibody reaction. At this time, when one kind of fluorescently labeled antibody is used, there is a possibility that a fluorescently labeled antibody that is non-specifically bound to a contaminant is determined as a false positive. For this reason, it is preferable to prepare a plurality of antibodies having different antigen recognition sites and to multiplexly label Cryptosporidium with a fluorescently labeled antibody in which fluorescent substances having different fluorescence wavelengths are bound thereto. Thereby, the detection accuracy of Cryptosporidium to be detected can be improved.
The antibody itself can be obtained by a technique known to those skilled in the art. The antibody can be used regardless of its kind, such as a polyclonal antibody or a monoclonal antibody, as long as it has specificity for the pathogen to be detected. In general, a monoclonal antibody is preferable because of its excellent specificity.

次に、蛍光標識抗体110で標識した回収試料液を検出部112に送る。
検出部112は、蛍光散乱光強度を測定するための蛍光散乱光計測器を備えている。検出部112では、蛍光散乱光計測器によって、蛍光標識抗体が結合した検出対象のクリプトスポリジウムの蛍光散乱光強度を測定する。測定データは、判定部114に送られる。
Next, the recovered sample solution labeled with the fluorescently labeled antibody 110 is sent to the detection unit 112.
The detection unit 112 includes a fluorescence scattered light measuring instrument for measuring the fluorescence scattered light intensity. In the detection unit 112, the fluorescence scattered light intensity of Cryptosporidium to be detected to which the fluorescent labeled antibody is bound is measured by a fluorescence scattered light measuring instrument. The measurement data is sent to the determination unit 114.

検出部112では、複数の蛍光標識抗体を用いる多重標識を行う場合、複数の蛍光波長を同時に測定できるように構成することが好適である。   The detection unit 112 is preferably configured to be capable of simultaneously measuring a plurality of fluorescence wavelengths when performing multiple labeling using a plurality of fluorescently labeled antibodies.

また、通常、検出対象のクリプトスポリジウムは試料中にごく僅かしか存在しないため、1回の計測では検出できないおそれもある。そこで、検出部に循環させ、繰り返し測定することにより、検出対象のクリプトスポリジウムの検出感度を上げることができる(図中116)。   Moreover, since there is usually very little Cryptosporidium to be detected in the sample, there is a possibility that it cannot be detected by one measurement. Therefore, the sensitivity of detection of Cryptosporidium to be detected can be increased by circulating it through the detector and repeatedly measuring it (116 in the figure).

また、図2の実施の形態に係る病原虫計測システムは、試料保存部118を備える。試料保存部118では、検出部112によって検出された測定データをもとに、判定部114で測定した試料を保存するかどうかの判定を行う。分取した試料の再現性を確認する場合、保存した試料を再度上記検出部112に総液し、クリプトスポリジウムの検出を行う(図中120)。
一方、検出対象の病原虫が検出された場合、検出部112から排出された試料を保存容器に受け、保存する(図中122)。保存した試料は、混入しているクリプトスポリジウムが生存しているかの判定を行う試験及び/又は感染性があるかを判定する試験に供与することができる。なお、不要な試料は、排液として廃棄される(図中124)。
In addition, the pathogen measuring system according to the embodiment of FIG. The sample storage unit 118 determines whether to store the sample measured by the determination unit 114 based on the measurement data detected by the detection unit 112. When confirming the reproducibility of the collected sample, the stored sample is again added to the detection unit 112 again to detect Cryptosporidium (120 in the figure).
On the other hand, when a pathogenic insect to be detected is detected, the sample discharged from the detection unit 112 is received in a storage container and stored (122 in the figure). The stored sample can be provided to a test for determining whether contaminating Cryptosporidium is alive and / or a test for determining whether it is infectious. Unnecessary samples are discarded as drainage (124 in the figure).

次に、本発明に係る浄水プロセスの監視装置及び方法における病原虫計測システム8を採用し、特にクリプトスポリジウムを検出する実施の形態として、図1における病原虫計測システム8の構成について、図3で各構成要素の機能を明らかにしながら、以下に説明する。   Next, FIG. 3 shows the configuration of the pathogen measuring system 8 in FIG. 1 as an embodiment that employs the pathogen measuring system 8 in the water purification process monitoring apparatus and method according to the present invention, and particularly detects Cryptosporidium. This will be described below while clarifying the function of each component.

本実施の形態では、浄水処理への導入前に分岐して取り出した原水9を原水供給ポンプ10で貯留槽13に供給する。続いて試料調整剤11を試料調整剤供給ポンプ12で貯留槽13に供給し、混合する。試料調整剤は、後述するフィルタに捕捉されたクリプトスポリジウムを剥離しやすくする濁質分散剤として機能する界面活性剤や原水中のフミン酸等の色度成分(溶解性有機物)による膜ろ過性能低下を防ぐための添加物質として塩酸を挙げることができる。   In this Embodiment, the raw | natural water 9 branched and taken out before the introduction to a water purification process is supplied to the storage tank 13 with the raw | natural water supply pump 10. FIG. Subsequently, the sample adjusting agent 11 is supplied to the storage tank 13 by the sample adjusting agent supply pump 12 and mixed. The sample conditioner is reduced in membrane filtration performance due to chromaticity components (soluble organic matter) such as surfactant and humic acid in raw water that function as a turbid dispersant that makes it easy to peel off Cryptosporidium trapped in the filter described later Hydrochloric acid can be mentioned as an additive substance for preventing the above.

貯留槽13内で調整された試料は、次いで、ポンプ15を経由して分離濃縮部18に送り込まれる。この時、貯留槽13内の試料液が分離濃縮部18に全て送り込まれた事を、レベル計14による貯留槽13内の水位で、判別する。分離濃縮部18では、試料を孔径3μmのフィルタを用いてろ過し、フィルタ表面上にクリプトスポリジウムを含む3μmより大きい微粒子を捕捉、濃縮する。   The sample adjusted in the storage tank 13 is then sent to the separation and concentration unit 18 via the pump 15. At this time, it is determined by the water level in the storage tank 13 by the level meter 14 that all the sample liquid in the storage tank 13 has been sent to the separation and concentration unit 18. In the separation and concentration unit 18, the sample is filtered using a filter having a pore size of 3 μm, and fine particles larger than 3 μm containing Cryptosporidium are captured and concentrated on the filter surface.

フィルタ表面上に捕捉されたクリプトスポリジウムを含む微粒子は、洗浄水16を洗浄水供給ポンプ17により分離濃縮部18に供給し、洗浄水16をフィルタのろ過水側から逆流させて、微粒子とクリプトスポリジウムを含んだ試料液として回収する。洗浄水16は、純水に界面活性剤を混ぜて、さらにpHを中性に調整したものを用いることが好ましい。
回収された試料液を、ポンプ19を経由して抗体反応部22に供給する。
Fine particles containing Cryptosporidium trapped on the filter surface are supplied to the separation / concentration section 18 by the washing water supply pump 17 by the washing water 16, and the washing water 16 is caused to flow backward from the filtered water side of the filter. It collects as a sample liquid containing. As the washing water 16, it is preferable to use a solution obtained by mixing a surfactant with pure water and further adjusting the pH to neutral.
The collected sample solution is supplied to the antibody reaction unit 22 via the pump 19.

抗体反応部22では、クリプトスポリジウムと特異的に認識する蛍光標識抗体20を、蛍光標識抗体供給ポンプ21により注入し、試料と混合する。このとき、1種類の蛍光標識抗体を用いる場合、夾雑物に非特異的に結合した蛍光標識抗体を擬陽性を判定してしまう恐れがある。このため、抗原認識部位の異なる複数の抗体を用意し、そのそれぞれに蛍光波長の異なる蛍光物質を結合した蛍光標識抗体でクリプトスポリジウムを多重標識するようにすることが、クリプトスポリジウムの検出精度を向上させるために好ましい。   In the antibody reaction unit 22, a fluorescently labeled antibody 20 that specifically recognizes cryptosporidium is injected by a fluorescently labeled antibody supply pump 21 and mixed with a sample. At this time, when one kind of fluorescently labeled antibody is used, there is a possibility that the fluorescently labeled antibody that is nonspecifically bound to the contaminant is judged as false positive. For this reason, multiple Cryptosporidium detection accuracy is improved by preparing multiple antibodies with different antigen recognition sites and multiple-labeling Cryptosporidium with fluorescent substances with different fluorescence wavelengths attached to each of them. This is preferable.

多くの市販品の抗体による抗原抗体反応は、37℃では20〜30分、室温条件では1時間以上とされており、より高頻度に測定を行うためには試料と標識抗体を混合した後、混合液を別の容器に移し、次の試料を供給できるような構造とすることが好ましい。   The antigen-antibody reaction with many commercially available antibodies is 20 to 30 minutes at 37 ° C. and 1 hour or more at room temperature, and in order to measure more frequently, after mixing the sample and the labeled antibody, It is preferable that the mixed liquid be transferred to another container so that the next sample can be supplied.

さらに、クリプトスポリジウムを高頻度に測定するため、分離濃縮部18や抗体反応部22は複数用意し、バルブの切換え等によって試料ごとに別の分離濃縮部及び抗体反応部に供給することが好ましい。   Furthermore, in order to measure Cryptosporidium at a high frequency, it is preferable to prepare a plurality of separation / concentration units 18 and antibody reaction units 22 and supply them to separate separation / concentration units and antibody reaction units for each sample by switching valves or the like.

抗原抗体反応を効率よく進めるため、抗体反応部22には、試料温度を37℃に保つ恒温器を備え付けていることが好ましい。抗原抗体反応が終了した試料は、ポンプ24によって、検出部27に供給されるが、その際、シース液供給ポンプ26によりシース液25も検出部27に供給される。   In order to advance the antigen-antibody reaction efficiently, the antibody reaction part 22 is preferably equipped with a thermostat that keeps the sample temperature at 37 ° C. The sample for which the antigen-antibody reaction has been completed is supplied to the detection unit 27 by the pump 24. At this time, the sheath fluid 25 is also supplied to the detection unit 27 by the sheath fluid supply pump 26.

検出部27は、蛍光散乱光強度を測定するための蛍光散乱光計測器を備えている。検出部27により、蛍光標識抗体が結合したクリプトスポリジウムの蛍光強度を測定し、その測定データを判定部28に送る。複数の蛍光標識抗体を用いる多重標識を行う場合、複数の蛍光波長を同時に測定できる計測部であることが好ましい。
判定部28では、検出部27によって検出された測定データをもとに、試料保存の要否を判定する。さらに、測定データをもとに原水中に含まれるクリプトスポリジウムの混入レベルを把握し、浄水プロセスにフィードバック制御を行うことができる。
The detection unit 27 includes a fluorescence scattered light measuring instrument for measuring the fluorescence scattered light intensity. The detection unit 27 measures the fluorescence intensity of Cryptosporidium bound with the fluorescently labeled antibody, and sends the measurement data to the determination unit 28. When multiple labeling using a plurality of fluorescently labeled antibodies is performed, it is preferable that the measurement unit be capable of simultaneously measuring a plurality of fluorescence wavelengths.
The determination unit 28 determines whether or not sample storage is necessary based on the measurement data detected by the detection unit 27. Furthermore, the mixing level of Cryptosporidium contained in the raw water can be grasped based on the measurement data, and feedback control can be performed for the water purification process.

検出部27による計測終了後、試料は試料保存部29に送られる。
試料保存部29では、クリプトスポリジウムが検出された場合、検出部27から排出された試料を、流路切換えバルブ31により試料保存容器30に受け、保存する。保存した試料は、混入しているクリプトスポリジウムが生存しているかどうかの判定及び/又は感染性があるかの判定を行うために、試験に供与することができる。保存の不要な試料は、排液として排出される。
After the measurement by the detection unit 27 is completed, the sample is sent to the sample storage unit 29.
In the sample storage unit 29, when Cryptosporidium is detected, the sample discharged from the detection unit 27 is received and stored in the sample storage container 30 by the flow path switching valve 31. The stored sample can be submitted to the test to determine if contaminating Cryptosporidium is alive and / or whether it is infectious. Samples that do not need to be stored are drained.

また、検出精度を向上させるため試料を試料保存部29より流路切換えバルブ23への循環流路を介して、検出部27に循環させ、繰り返し測定することが好ましい。
本実施の形態では、試料をポンプ24にて検出部27に送り、測定を行った後、流路切換えバルブ31によって試料を循環させて繰り返し蛍光測定を行う。これによって、測定データを積分し、個数濃度の低いクリプトスポリジウムの検出確率を向上させる。
なお、測定データをもとに流路切換えバルブ31を切換えることで、試料の循環と廃棄を設定することが好ましい。
In order to improve the detection accuracy, it is preferable that the sample is circulated to the detection unit 27 through a circulation channel from the sample storage unit 29 to the channel switching valve 23 and repeatedly measured.
In the present embodiment, the sample is sent to the detection unit 27 by the pump 24 and measured, and then the sample is circulated by the flow path switching valve 31 to repeatedly measure fluorescence. This integrates the measurement data and improves the detection probability of Cryptosporidium having a low number concentration.
Note that it is preferable to set the circulation and disposal of the sample by switching the flow path switching valve 31 based on the measurement data.

本実施の形態の病原虫計測システムにより、原水からのクリプトスポリジウムの分離濃縮から測定試料の調製までは1時間程度で可能であり、全測定時間も3時間以内とすることができ、従来の検査方法と比較し、短時間で高頻度に計測することが可能となる。   With the pathogen measurement system of this embodiment, it can be done in about 1 hour from the separation and concentration of Cryptosporidium from raw water to the preparation of the measurement sample, and the total measurement time can be within 3 hours. Compared with the method, it becomes possible to measure frequently in a short time.

本発明に係る実施例の浄水プロセスの監視装置の概要を示す概念図である。It is a conceptual diagram which shows the outline | summary of the monitoring apparatus of the water purification process of the Example which concerns on this invention. 本発明に係る実施例の病原虫計測システムの概要を示す処理フローの図である。It is a figure of the processing flow which shows the outline | summary of the pathogen measuring system of the Example which concerns on this invention. 本発明に係る実施例の病原虫計測システムの実施形態を説明する概念図である。It is a conceptual diagram explaining embodiment of the pathogen measuring system of the Example which concerns on this invention.

符号の説明Explanation of symbols

1 混和池
2 凝集剤タンク
3 フロック形成池
4 沈殿池
5 ろ過池
6 微粒子カウンタ
7 不活性処理装置
8 病原虫計測システム
9 原水
10 原水供給ポンプ
11 試料調整剤
12 試料調整剤供給ポンプ
13 貯留槽
14 レベル計
15 ポンプ
16 洗浄水
17 洗浄水供給ポンプ
18 分離濃縮部
19 ポンプ
20 蛍光標識抗体
21 蛍光標識抗体供給ポンプ
22 抗体反応部
23 流路切換えバルブ
24 ポンプ
25 シース液
26 シース液供給ポンプ
27 検出部
28 判定部
29 試料保存部
30 試料保存容器
31 流路切換えバルブ
DESCRIPTION OF SYMBOLS 1 Mixing pond 2 Coagulant tank 3 Flock formation pond 4 Sedimentation basin 5 Filtration basin 6 Fine particle counter 7 Inactive processing device 8 Pathogen measuring system 9 Raw water 10 Raw water supply pump 11 Sample conditioner 12 Sample conditioner supply pump 13 Reservoir 14 Level meter 15 Pump 16 Washing water 17 Washing water supply pump 18 Separation and concentration unit 19 Pump 20 Fluorescent labeled antibody 21 Fluorescent labeled antibody supply pump 22 Antibody reaction unit 23 Flow path switching valve 24 Pump 25 Sheath liquid 26 Sheath liquid supply pump 27 Detection unit 28 Determination Unit 29 Sample Storage Unit 30 Sample Storage Container 31 Channel Switching Valve

Claims (9)

原水を浄水処理する浄水プロセスの監視装置において、前記プロセスの監視装置が、原水中の病原虫の個数濃度が予め設定された値以上であることを検知して信号を出力する機能を有する病原虫個数濃度計測システムを備え、前記予め設定された個数濃度の設定値以上が検出されたときに、浄水工程の運転条件を制御し、浄水水質を維持することを特徴とする浄水プロセスの監視装置。   In the water purification process monitoring apparatus for purifying raw water, the process monitoring apparatus detects that the number concentration of pathogenic insects in the raw water is equal to or higher than a preset value and outputs a signal. An apparatus for monitoring a water purification process, comprising a number concentration measurement system, which controls operating conditions of a water purification process and maintains the quality of purified water when a preset number concentration value or more is detected. 請求項1に記載の浄水プロセスの監視装置において、
前記病原虫個数濃度計測システムが、
フィルタにより構成される分離濃縮部と、
前記フィルタ表面上に捕捉された病原虫を含む微粒子を回収した試料中の病原虫に特異的に結合する標識抗体を供給し、病原虫と標識抗体とを反応させ結合させる抗体反応部と、
標識抗体と結合した病原虫の検出部と
を備えることを特徴とする浄水プロセスの監視装置。
In the monitoring device of the water purification process according to claim 1,
The pathogen count concentration measuring system is
A separation and concentration unit constituted by a filter;
Supplying a labeled antibody that specifically binds to the pathogen in the sample from which the microparticles containing the pathogen captured on the filter surface have been collected, and reacting and binding the pathogen to the labeled antibody; and
A water purification process monitoring device comprising: a pathogen detection unit coupled with a labeled antibody.
請求項1〜2のいずれかに記載の浄水プロセスの監視装置において、
微粒子を計測できる微粒子計測装置を更に備え、原水中の病原虫の個数濃度がその浄水場の原水の定常個数濃度の設定値よりも多い個数濃度となった場合に、浄水プロセスのろ過工程におけるろ過水中の検出対象の病原虫の大きさ以上の微粒子を前記微粒子計測装置で連続的に計数し、測定結果に応じて、浄水工程の運転条件を制御し、浄水水質を維持することを特徴とする浄水プロセスの監視装置。
In the monitoring apparatus of the water purification process in any one of Claims 1-2,
It is further equipped with a fine particle measuring device that can measure fine particles, and when the number concentration of pathogens in the raw water is higher than the set value of the steady number concentration of raw water in the water purification plant, filtration in the filtration process of the water purification process Fine particles larger than the size of pathogenic insects to be detected in water are continuously counted by the fine particle measuring device, and the operating conditions of the water purification process are controlled according to the measurement results to maintain the purified water quality. Monitoring device for water purification process.
請求項1〜3のいずれかに記載の浄水プロセスの監視装置において、
前記予め設定された個数濃度の設定値は、その浄水施設の除去能力に応じて任意に設定可能であることを特徴とする浄水プロセスの監視装置。
In the monitoring apparatus of the water purification process in any one of Claims 1-3,
The preset value of the number concentration can be arbitrarily set according to the removal capacity of the water purification facility.
請求項1〜4のいずれかに記載の浄水プロセスの監視装置において、
前記病原虫がクリプトスポリジウムであることを特徴とする浄水プロセスの監視装置。
In the monitoring apparatus of the water purification process in any one of Claims 1-4,
An apparatus for monitoring a water purification process, wherein the pathogen is Cryptosporidium.
原水を浄水処理する浄水プロセスの監視方法において、
浄水処理する前の原水を採水し、前記原水中の病原虫数を計測し、前記計測した原水中の病原虫の個数濃度が予め設定された値以上である時に信号を出力し、前記信号に基づき浄水工程の運転条件を制御し、浄水水質を維持することを特徴とする浄水プロセスの監視方法。
In the monitoring method of the water purification process that purifies raw water,
Sample raw water before water purification treatment, measure the number of pathogenic insects in the raw water, and output a signal when the measured number concentration of pathogenic insects in the raw water is greater than or equal to a preset value, the signal The control method of the water purification process characterized by controlling the operating condition of the water purification process based on the above and maintaining the quality of the purified water.
請求項6に記載の浄水プロセスの監視方法において、
前記原水中の病原虫数の前記計測は、原水を分離濃縮部でろ過し、分離濃縮部のろ過で捕捉された病原虫を含む微粒子を回収し、検出対象の病原虫に特異的に結合する蛍光標識抗体により抗原抗体反応させ、蛍光測定により病原虫の存在を判断することを特徴とする浄水プロセスの監視方法。
In the monitoring method of the water purification process of Claim 6,
The measurement of the number of pathogens in the raw water is performed by filtering the raw water with a separation and concentration unit, collecting fine particles containing the pathogens captured by the filtration of the separation and concentration unit, and specifically binding to the pathogens to be detected. A method for monitoring a water purification process, characterized in that an antigen-antibody reaction is carried out with a fluorescently labeled antibody, and the presence of a pathogen is judged by fluorescence measurement.
請求項6〜7に記載の浄水プロセスの監視方法において、
前記原水中の病原虫数の前記計測により、原水中の病原虫の個数濃度がその浄水場の原水の定常個数濃度の設定値よりも多い個数濃度となった場合に、浄水プロセスのろ過工程におけるろ過水中の検出対象の病原虫の大きさ以上の微粒子を計数し、前記微粒子の測定結果に応じて、浄水工程の運転条件を制御し、浄水水質を維持することを特徴とする浄水プロセスの監視方法。
In the monitoring method of the water purification process of Claims 6-7,
In the filtration step of the water purification process, when the number concentration of the pathogens in the raw water is higher than the set value of the steady number concentration of the raw water in the water purification plant by the measurement of the number of pathogens in the raw water, Monitoring the water purification process characterized by counting fine particles larger than the size of pathogens to be detected in filtered water, controlling the operating conditions of the water purification process according to the measurement results of the fine particles, and maintaining the quality of the purified water Method.
請求項6〜8に記載の浄水プロセスの監視方法において、
原水を取水して混和池で凝集処理し、フロック形成を経て沈殿池で濁度成分を分離し、ろ過工程でろ過水を得るステップを有し、前記浄水工程の運転条件は、取水量の制御や取水の停止操作、凝集剤注入率やフロック形成池の攪拌強度G値を増加する制御、あるいは、ろ過工程の逆洗時排出水を下水道に排出する操作、ろ過工程で濃縮された病原虫を不活化する操作、病原虫を膜ろ過除去し原水に返流する操作の少なくともいずれかであることを特徴とする浄水プロセスの監視方法。
In the monitoring method of the water purification process of Claims 6-8,
The raw water is taken and coagulated in the mixing pond, the turbidity component is separated in the sedimentation basin after flock formation, and the filtered water is obtained in the filtration process. Control to increase the flocculant injection rate and floc formation pond agitation value, or to drain the drainage water during backwashing in the filtration process to the sewer, and to remove pathogens concentrated in the filtration process A method for monitoring a water purification process, characterized in that it is at least one of an operation to inactivate and an operation to remove pathogenic insects through membrane filtration and return to raw water.
JP2008017671A 2007-05-24 2008-01-29 Apparatus and method for monitoring water purification process Pending JP2009000673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008017671A JP2009000673A (en) 2007-05-24 2008-01-29 Apparatus and method for monitoring water purification process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007137396 2007-05-24
JP2008017671A JP2009000673A (en) 2007-05-24 2008-01-29 Apparatus and method for monitoring water purification process

Publications (1)

Publication Number Publication Date
JP2009000673A true JP2009000673A (en) 2009-01-08

Family

ID=40099766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008017671A Pending JP2009000673A (en) 2007-05-24 2008-01-29 Apparatus and method for monitoring water purification process

Country Status (2)

Country Link
JP (1) JP2009000673A (en)
CN (1) CN101310818A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236861A (en) * 2009-03-30 2010-10-21 Metawater Co Ltd Apparatus and method for automatic measurement of water quality
WO2013084444A1 (en) 2011-12-05 2013-06-13 リオン株式会社 Biological particle counter, biological particle counting method, dialysate monitoring system, and water purification monitoring system
CN104155276A (en) * 2014-08-22 2014-11-19 哈尔滨工业大学 Drinking water high-risk pollutant monitoring and early warning system and use method thereof
WO2016047068A1 (en) * 2014-09-22 2016-03-31 国立研究開発法人科学技術振興機構 Method for detecting target molecule, and kit for use in said method
JP2016111940A (en) * 2014-12-11 2016-06-23 アズビル株式会社 Detector of microorganism having metabolic activity
JP2016111941A (en) * 2014-12-11 2016-06-23 アズビル株式会社 Detector of microorganism
CN106044873A (en) * 2016-06-22 2016-10-26 何颖 Water purification system
WO2019130954A1 (en) * 2017-12-25 2019-07-04 パナソニックIpマネジメント株式会社 Pathogen detection system and pathogen detection method
CN112955730A (en) * 2019-03-06 2021-06-11 松下知识产权经营株式会社 Pathogen detection device and pathogen detection method
CN113049349A (en) * 2021-03-16 2021-06-29 上海科泽智慧环境科技有限公司 Anti-turbidity interference device of water quality analyzer
WO2021247408A1 (en) * 2020-06-02 2021-12-09 Pangolin Llc Ai and data system to monitor pathogens in wastewater and methods of use
WO2022181047A1 (en) * 2021-02-26 2022-09-01 横河電機株式会社 Water treatment method, control apparatus, and water treatment system
WO2022201978A1 (en) * 2021-03-26 2022-09-29 横河電機株式会社 Filter evaluating device, purifying device, and filter evaluating method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112461B (en) * 2021-11-09 2024-01-30 中科检测技术服务(广州)股份有限公司 Virus removal testing device and method for water purifier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042307A (en) * 1998-07-27 2000-02-15 Hitachi Ltd Water purification plant water treatment system
JP2005262048A (en) * 2004-03-17 2005-09-29 Toshiba Corp Drinking water supply control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042307A (en) * 1998-07-27 2000-02-15 Hitachi Ltd Water purification plant water treatment system
JP2005262048A (en) * 2004-03-17 2005-09-29 Toshiba Corp Drinking water supply control system

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236861A (en) * 2009-03-30 2010-10-21 Metawater Co Ltd Apparatus and method for automatic measurement of water quality
WO2013084444A1 (en) 2011-12-05 2013-06-13 リオン株式会社 Biological particle counter, biological particle counting method, dialysate monitoring system, and water purification monitoring system
US9267845B2 (en) 2011-12-05 2016-02-23 Rion Co., Ltd. Apparatus for counting viable particles in liquid in real time, dialysis fluid monitoring system and purified water monitoring system using the apparatus, and method of counting viable particles in liquid in real time
EP3211402A1 (en) 2011-12-05 2017-08-30 Rion Co., Ltd. Viable particle counter and dialysis fluid monitoring system
CN104155276A (en) * 2014-08-22 2014-11-19 哈尔滨工业大学 Drinking water high-risk pollutant monitoring and early warning system and use method thereof
WO2016047068A1 (en) * 2014-09-22 2016-03-31 国立研究開発法人科学技術振興機構 Method for detecting target molecule, and kit for use in said method
KR20170057241A (en) * 2014-09-22 2017-05-24 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 Method for detecting target molecule, and kit for use in said method
JPWO2016047068A1 (en) * 2014-09-22 2017-07-06 国立研究開発法人科学技術振興機構 Target molecule detection method and kit used therefor
KR102461615B1 (en) 2014-09-22 2022-11-01 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 Method for detecting target molecule, and kit for use in said method
JP2016111940A (en) * 2014-12-11 2016-06-23 アズビル株式会社 Detector of microorganism having metabolic activity
JP2016111941A (en) * 2014-12-11 2016-06-23 アズビル株式会社 Detector of microorganism
CN106044873A (en) * 2016-06-22 2016-10-26 何颖 Water purification system
JPWO2019130954A1 (en) * 2017-12-25 2021-01-14 パナソニックIpマネジメント株式会社 Pathogen detection system and pathogen detection method
WO2019130954A1 (en) * 2017-12-25 2019-07-04 パナソニックIpマネジメント株式会社 Pathogen detection system and pathogen detection method
JP7228845B2 (en) 2017-12-25 2023-02-27 パナソニックIpマネジメント株式会社 Pathogen detection system and pathogen detection method
CN112955730A (en) * 2019-03-06 2021-06-11 松下知识产权经营株式会社 Pathogen detection device and pathogen detection method
CN112955730B (en) * 2019-03-06 2024-04-19 松下知识产权经营株式会社 Pathogen detection device and pathogen detection method
WO2021247408A1 (en) * 2020-06-02 2021-12-09 Pangolin Llc Ai and data system to monitor pathogens in wastewater and methods of use
WO2022181047A1 (en) * 2021-02-26 2022-09-01 横河電機株式会社 Water treatment method, control apparatus, and water treatment system
JP2022131800A (en) * 2021-02-26 2022-09-07 横河電機株式会社 Water treatment method, control device, and water treatment system
JP7342901B2 (en) 2021-02-26 2023-09-12 横河電機株式会社 Water treatment methods, control devices, and water treatment systems
CN113049349A (en) * 2021-03-16 2021-06-29 上海科泽智慧环境科技有限公司 Anti-turbidity interference device of water quality analyzer
CN113049349B (en) * 2021-03-16 2023-01-31 上海科泽智慧环境科技有限公司 Anti-turbidity interference device of water quality analyzer
WO2022201978A1 (en) * 2021-03-26 2022-09-29 横河電機株式会社 Filter evaluating device, purifying device, and filter evaluating method

Also Published As

Publication number Publication date
CN101310818A (en) 2008-11-26

Similar Documents

Publication Publication Date Title
JP2009000673A (en) Apparatus and method for monitoring water purification process
Talvitie et al. Solutions to microplastic pollution–Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies
Rechenburg et al. Impact of sewage treatment plants and combined sewer overflow basins on the microbiological quality of surface water
KR101509109B1 (en) Dual mode membrane filtration system of pressure-immersion combination type, and variable control method for the same
KR102013255B1 (en) Seawater Desalination Plant and Control Method for the same
CN108473346B (en) Wastewater treatment method and wastewater treatment system
JP2008068200A (en) Flocculation device and flocculation method
JP5586867B2 (en) Water quality automatic measuring apparatus and method
JP2007033353A (en) Microorganism detecting system
Hasnaningrum et al. Planning advanced treatment of tap water consumption in Universitas Pertamina
JP2009201421A (en) Method and apparatus for measuring microorganism
Kus et al. Performance of granular medium filtration and membrane filtration in treating stormwater for harvesting and reuse
McCuin et al. Occurrence of Cryptosporidium oocysts in US wastewaters
JP2000042307A (en) Water purification plant water treatment system
Łaskawiec et al. Treatment of pool water installation washings in a flocculation/ultrafiltration integrated system
JP2002282623A (en) Method and apparatus for monitoring water filtrate in quick filtration
JP4956235B2 (en) Method for separation and concentration of microorganisms in water
JP2004188273A (en) Ultraviolet irradiation system
JP5430463B2 (en) Microorganism detection method by flow cytometry and apparatus used therefor
JP2009222566A (en) Microorganism measuring method and system
JP2005334777A (en) Water purifier
JP2007236221A (en) Method for separation of microorganism
WO2022181047A1 (en) Water treatment method, control apparatus, and water treatment system
JP7496786B2 (en) Water purification method and water purification device
JP2000046721A (en) Water-controlling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120203

A131 Notification of reasons for refusal

Effective date: 20120217

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626