JP2006074698A - Transmission quality compensation method for optical transmission system, and optical transmission system - Google Patents

Transmission quality compensation method for optical transmission system, and optical transmission system Download PDF

Info

Publication number
JP2006074698A
JP2006074698A JP2004258858A JP2004258858A JP2006074698A JP 2006074698 A JP2006074698 A JP 2006074698A JP 2004258858 A JP2004258858 A JP 2004258858A JP 2004258858 A JP2004258858 A JP 2004258858A JP 2006074698 A JP2006074698 A JP 2006074698A
Authority
JP
Japan
Prior art keywords
transmission
path
transmission characteristic
setting
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004258858A
Other languages
Japanese (ja)
Other versions
JP4252020B2 (en
Inventor
Mikio Yagi
幹雄 八木
Shinya Tanaka
信哉 田中
Shuichi Satomi
秀一 里見
Shiro Ryu
史郎 笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SoftBank Corp
Original Assignee
Japan Telecom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Telecom Co Ltd filed Critical Japan Telecom Co Ltd
Priority to JP2004258858A priority Critical patent/JP4252020B2/en
Publication of JP2006074698A publication Critical patent/JP2006074698A/en
Application granted granted Critical
Publication of JP4252020B2 publication Critical patent/JP4252020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform a high-speed transmission characteristic compensation setting operation in all optical networks and to also flexibly deal with a dynamic change of a transmission line. <P>SOLUTION: A control means 7 sets a path comprised of specific nodes 4 and 5 and a link 6 through an independently provided control plane C to a data plane D formed from an optical communication network 3 comprised of the plurality of nodes 4 and 5 and the link 6, information is then communicated from a transmitting side 1 to a receiving side 2 via the set path. With path setting, an instruction to measure the transmission characteristics of the path is imparted from the control means to the transmitting side 1 and the receiving side 2 via the control plane C, and an instruction to set transmission characteristic compensation is imparted from the control means 7 to the receiving side 2 via the control plane C. Communication for measurement is performed via the data plane D in accordance with the instruction to measure the transmission characteristics of the path. On the receiving side 2, the transmission characteristics are measured by the communication for measurement, and transmission characteristic compensation setting is carried out. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光通信網を使用した光伝送システムにおける伝送品質補償方法及びシステムに関し、特に全光ネットワーク通信システムのような高速光伝送システムに好適な伝送品質補償方法及びシステムに関する。   The present invention relates to a transmission quality compensation method and system in an optical transmission system using an optical communication network, and more particularly to a transmission quality compensation method and system suitable for a high-speed optical transmission system such as an all-optical network communication system.

光通信網を使用した10Gbit/s以上の高速光伝送システムでは、波長分散、光増幅器の自然放出雑音光(ASE)、非線形光学効果等の伝送特性の影響で伝送品質が低下することが知られている。特に波長分散は、ビットレートの2乗のオーダで増加するため、40Gbit/sを超える超高速伝送システムの実現に大きな障害となる。   In a high-speed optical transmission system of 10 Gbit / s or more using an optical communication network, it is known that transmission quality deteriorates due to transmission characteristics such as wavelength dispersion, spontaneous emission noise light (ASE) of an optical amplifier, and nonlinear optical effect. ing. In particular, since chromatic dispersion increases on the order of the square of the bit rate, it is a major obstacle to the realization of an ultrahigh-speed transmission system exceeding 40 Gbit / s.

そこで、この種の高速光伝送システムでは、受信装置側に伝送経路での波長分散特性とは逆特性を有する光学格子等からなる波長分散補償器を設け、受信側で信号劣化を補償する技術が提案されている。このうち、例えば特許文献1には、受信側で受信データの誤り率、アイ開口度、Q値、クロック信号レベル等を測定し、その測定値に応じて波長分散を等化する自動等化システムが開示されている。   Therefore, in this type of high-speed optical transmission system, there is a technique for providing a chromatic dispersion compensator made of an optical grating or the like having reverse characteristics to the chromatic dispersion characteristics in the transmission path on the receiving apparatus side, and compensating for signal degradation on the receiving side. Proposed. Among these, for example, Patent Document 1 discloses an automatic equalization system that measures the error rate, eye opening, Q value, clock signal level, and the like of received data on the receiving side and equalizes chromatic dispersion according to the measured values. Is disclosed.

また、品質を測定し波長分散補償器を制御する方法として、例えば非特許文献1には、NRZ及びRZ信号からクロックを抽出、測定して、波長分散補償器を制御方法が開示されている。また、波長分散値を直接観測する方法として、非特許文献2には、光学周波数変調を用いて受信側が波長分散を測定する方法が開示されている。
特開平9−326755号公報、段落0014、図1 "Chromatic dispersion monitoring and automated compensation for NRZ and RZ data using clock regeneration and fading without adding signaling," Z.Pan, Q. Yu, Y.Xie, S. A. Havstad, A. E. Willner, D. S. Starodubov, and J. Feinberg, in Proc. OFC 2001, WH5, Mar, 2001 "In-service dispersion monitoring in 32 x 10.7 Gpbs WDM transmission system over transatlantic distance using optical frequency-modulation method," Y.Takushima, H. Yhoshimi, Y. Ozeki, K. Kikuchi, H. Yamauchi, Journal of lightwave technology, vol.22, no.1, Jan. 2004.
As a method for measuring quality and controlling a chromatic dispersion compensator, for example, Non-Patent Document 1 discloses a method for controlling a chromatic dispersion compensator by extracting and measuring a clock from NRZ and RZ signals. Further, as a method for directly observing the chromatic dispersion value, Non-Patent Document 2 discloses a method in which the receiving side measures chromatic dispersion using optical frequency modulation.
Japanese Patent Laid-Open No. 9-326755, paragraph 0014, FIG. "Chromatic dispersion monitoring and automated compensation for NRZ and RZ data using clock regeneration and fading without adding signaling," Z. Pan, Q. Yu, Y. Xie, SA Havstad, AE Willner, DS Starodubov, and J. Feinberg, in Proc OFC 2001, WH5, Mar, 2001 "In-service dispersion monitoring in 32 x 10.7 Gpbs WDM transmission system over transatlantic distance using optical frequency-modulation method," Y. Takushima, H. Yhoshimi, Y. Ozeki, K. Kikuchi, H. Yamauchi, Journal of lightwave technology, vol.22, no.1, Jan. 2004.

しかしながら、上述した従来の技術のうち、特許文献1、非特許文献1に開示された技術は、パス設定後、実際のデータを受信して、そのデータの誤り率、アイ開口度、Q値、クロック信号レベル等の伝送品質を測定し、最適点を探索しながら調整をしていく技術であるため、最適補償点の探索までに時間がかかり、これがデータ伝送処理の高速化へのオーバーヘッドとなる。
また、非特許文献2に開示された技術は、光学周波数変調を行っているため、パス上において、変調を歪めてしまうネットワーク装置が挿入されていた場合、正常に波長分散を測定することが困難となる。
However, among the conventional techniques described above, the techniques disclosed in Patent Document 1 and Non-Patent Document 1 receive actual data after setting a path, and the error rate, eye opening degree, Q value, This is a technology that measures the transmission quality such as the clock signal level and adjusts while searching for the optimum point, so it takes time to find the optimum compensation point, which becomes an overhead for speeding up the data transmission process. .
Further, since the technique disclosed in Non-Patent Document 2 performs optical frequency modulation, it is difficult to measure chromatic dispersion normally when a network device that distorts the modulation is inserted on the path. It becomes.

そこで、波長分散補償の高速化を実現するための手法として、固定的なファイバパラメータ特性を用いる方法も提案されている(非特許文献3)。この方法は、予め光ネットワークの各リンクのファイバパラメータを測定しておき、パス設定時に必要となるリンクの値を足し合わせて、分散補償器に最適な補償値を設定するようにしたものである。
“Rapid automatic chromatic dispersion compensation using GMPLS signaling enhancement for dynamically reconfigurable all-optical network,” H.Hashimoto, et al. in Proc. ECOC2003, Paper Mo4.7.6, Sep. 2003.
Therefore, a method using fixed fiber parameter characteristics has also been proposed as a technique for realizing high-speed chromatic dispersion compensation (Non-Patent Document 3). In this method, fiber parameters of each link in the optical network are measured in advance, and the optimum compensation value is set in the dispersion compensator by adding the link values necessary for path setting. .
“Rapid automatic chromatic dispersion compensation using GMPLS signaling enhancement for dynamically reconfigurable all-optical network,” H. Hashimoto, et al. In Proc. ECOC2003, Paper Mo4.7.6, Sep. 2003.

しかし、この方法では、ファイバパラメータを事前に測定しておく必要があり、また、事前に測定した値は、気温変動、支障移転等により実際にパスを設定する際の値とは異なる可能性が高い。このため、トポロジーが動的に変化する全光ネットワークに対応し、且つ、動的に変化する光ファイバパラメータ特性に追従した測定及び補償動作が必要になる。しかしながら、上述した非特許文献3の技術では、事前に測定した時と、実際にパスを張る時の値が異なっている可能性が高く、補償を最適に行うことが困難である。また、各波長のデータを更にリンク毎にデータとして保持する必要があるため、多くの情報を保持する必要があるという問題もある。   However, with this method, it is necessary to measure the fiber parameters in advance, and the values measured in advance may be different from the values when the path is actually set due to temperature fluctuation, trouble transfer, etc. high. For this reason, it is necessary to perform a measurement and compensation operation corresponding to an all-optical network whose topology dynamically changes and following the optical fiber parameter characteristics which dynamically change. However, in the technique of Non-Patent Document 3 described above, there is a high possibility that the value measured in advance is different from the value when the path is actually set, and it is difficult to perform compensation optimally. Moreover, since it is necessary to hold the data of each wavelength as data for each link, there is also a problem that a lot of information needs to be held.

本発明は、このような問題点に鑑みなされたもので、高速の伝送特性補償設定動作が可能で、しかも伝送路の動的変化にも柔軟に対処することができる光伝送システムにおける伝送品質補償方法及びシステムを提供することを目的とする。   The present invention has been made in view of such problems, and is capable of performing a high-speed transmission characteristic compensation setting operation, and can also flexibly cope with a dynamic change in a transmission path, thereby compensating transmission quality in an optical transmission system. It is an object to provide a method and system.

本発明に係る第1の伝送品質補償方法は、複数のノード及びリンクからなる光通信網により形成されるデータプレーンに対して独立して設けられた制御プレーンを介してGMPLS(Generalized Multi-protocol Label Switching)プロトコルに基づいて制御手段が特定のノード及びリンクからなるパスを設定した後、前記設定されたパスを介して送信側から受信側へと情報の通信を行う光伝送システムの伝送品質補償方法において、前記制御手段から前記制御プレーンを介して前記受信側にパス設定要求を付与し、前記制御手段から前記送信側及び受信側へ前記制御プレーンを介して前記パスの伝送特性の測定指示を付与し、前記制御手段から前記受信側へ前記制御プレーンを介して前記測定されたパスの伝送特性を補償するための伝送特性補償設定の指示を付与し、前記送信側では、前記パスの伝送特性の測定指示に従って前記受信側へと前記データプレーンを介した測定用の通信を行い、前記受信側では、前記測定用の通信によって前記伝送特性を測定し、受信された情報の伝送特性補償のための伝送特性補償設定を実行し、前記受信側から前記制御プレーンを介して前記送信側へとパス設定確保通知を通信して設定を完了することを特徴とする。   A first transmission quality compensation method according to the present invention provides a GMPLS (Generalized Multi-protocol Label) via a control plane provided independently for a data plane formed by an optical communication network including a plurality of nodes and links. Switching quality compensation method for an optical transmission system in which information is communicated from a transmission side to a reception side via the set path after the control means sets a path consisting of a specific node and link based on the switching protocol. A path setting request is given from the control means to the receiving side via the control plane, and an instruction to measure the transmission characteristics of the path is given from the control means to the transmitting side and the receiving side via the control plane. And a transmission characteristic compensation setting instruction for compensating the measured transmission characteristic of the path via the control plane from the control means to the receiving side. The transmission side performs measurement communication via the data plane to the reception side in accordance with a measurement instruction for the transmission characteristic of the path, and the reception side performs the transmission characteristic by the measurement communication. , Execute transmission characteristic compensation setting for compensating transmission characteristics of received information, and communicate a path setting reservation notification from the receiving side to the transmitting side via the control plane to complete the setting. It is characterized by that.

また、本発明に係る第2の伝送品質補償方法は、複数のノード及びリンクからなる光通信網により形成されるデータプレーンに対して独立して設けられた制御プレーンを介してGMPLSプロトコルに基づいて制御手段が特定のノード及びリンクからなるパスを設定した後、前記制御手段から前記送信側及び受信側へ前記制御プレーンを介して前記パスの伝送特性の測定指示を付与し、前記制御手段から前記受信側へ前記制御プレーンを介して前記測定されたパスの伝送特性を補償するための伝送特性補償設定の指示を付与し、前記送信側では、前記パスの伝送特性の測定指示に従って前記受信側へと前記データプレーンを介した測定用の通信を行い、前記受信側では、前記測定用の通信によって前記伝送特性を測定し、受信された情報の伝送特性補償のための伝送特性補償設定を実行し、前記設定されたパスを介して送信側から受信側へと情報の通信を行うことを特徴とする。   The second transmission quality compensation method according to the present invention is based on the GMPLS protocol via a control plane provided independently for a data plane formed by an optical communication network including a plurality of nodes and links. After the control means sets a path consisting of a specific node and link, the control means gives an instruction to measure the transmission characteristics of the path through the control plane from the control means to the transmission side and the reception side, and from the control means An instruction of a transmission characteristic compensation setting for compensating the transmission characteristic of the measured path is given to the reception side via the control plane, and the transmission side transmits to the reception side according to the measurement instruction of the transmission characteristic of the path. And the communication for measurement via the data plane, and the reception side measures the transmission characteristic by the measurement communication and transmits the received information. Run the transmission characteristic compensation set for characteristic compensation, and performs communication of information to the receiving side from the transmitting side through the established path.

また、本発明に係る第1の伝送品質補償システムは、複数のノード及びリンクからなる光通信網により形成されるデータプレーンに対して独立して設けられた制御プレーンを介してGMPLSプロトコルに基づいて制御手段が特定のノード及びリンクからなるパスを設定した後、前記設定されたパスを介して送信側から受信側へと情報の通信を行う光伝送システムにおいて、前記送信側は、前記パスの伝送特性を測定するための前記データプレーンを介した伝送特性測定用通信手段を有し、前記受信側は、前記伝送特性測定用通信手段により通信された信号を受信して伝送特性を測定するための伝送特性測定手段と、伝送特性を補償する伝送特性補償手段と、測定された伝送特性に基づいて前記伝送特性補償手段に伝送特性を設定する設定手段とを有し、前記制御手段は、前記制御プレーンを介して、前記受信側にパス設定要求を付与することにより前記パスの設定要求を行い、前記伝送特性測定用通信手段及び伝送特性測定手段へ前記パスの伝送特性の測定指示を付与し、前記伝送特性測定手段へ前記設定手段による前記伝送特性補償手段への伝送特性の設定指示を付与し、前記受信側から前記制御プレーンを介して前記送信側へとパス設定確保通知を通信することによりパスの設定を完了するものであることを特徴とする。   The first transmission quality compensation system according to the present invention is based on the GMPLS protocol via a control plane provided independently for a data plane formed by an optical communication network including a plurality of nodes and links. In the optical transmission system in which information is communicated from the transmission side to the reception side via the set path after the control unit sets a path including a specific node and link, the transmission side transmits the path. A communication means for measuring transmission characteristics via the data plane for measuring characteristics, wherein the receiving side receives signals communicated by the communication means for measuring transmission characteristics and measures transmission characteristics A transmission characteristic measuring means, a transmission characteristic compensating means for compensating the transmission characteristic, and a setting means for setting the transmission characteristic in the transmission characteristic compensating means based on the measured transmission characteristic. And the control means makes a path setting request by giving a path setting request to the receiving side via the control plane, and transmits the path setting request to the transmission characteristic measuring communication means and the transmission characteristic measuring means. An instruction for measuring the transmission characteristic of the path is given, a setting instruction for setting the transmission characteristic to the transmission characteristic compensating unit by the setting unit is given to the transmission characteristic measuring unit, and the transmission is performed from the receiving side via the control plane. It is characterized in that the path setting is completed by communicating a path setting securing notification to the side.

更に、本発明に係る第2の伝送品質補償システムは、複数のノード及びリンクからなる光通信網により形成されるデータプレーンに対して独立して設けられた制御プレーンを介してGMPLSプロトコルに基づいて制御手段が特定のノード及びリンクからなるパスを設定した後、前記設定されたパスを介して送信側から受信側へと情報の通信を行う光伝送システムにおいて、前記送信側は、前記パスの伝送特性を測定するための前記データプレーンを介した伝送特性測定用通信手段を有し、前記受信側は、前記伝送特性測定用通信手段により通信された信号を受信して伝送特性を測定するための伝送特性測定手段と、伝送特性を補償する伝送特性補償手段と、測定された伝送特性に基づいて前記伝送特性補償手段に伝送特性を設定する設定手段とを有し、前記送信側から前記受信側にパス設定要求を付与することにより前記パスの設定要求を行い、前記受信側から前記制御プレーンを介して前記送信側へとパス設定確保通知を通信することによりパスの設定を完了した後、前記制御手段は、前記制御プレーンを介して、前記伝送特性測定用通信手段及び伝送特性測定手段へ前記パスの伝送特性の測定指示を付与し、前記伝送特性測定手段へ前記設定手段による前記伝送特性補償手段への伝送特性の設定指示を付与し、前記設定されたパスを介して送信側から受信側へと情報の通信を行うものであることを特徴とする。   Furthermore, the second transmission quality compensation system according to the present invention is based on the GMPLS protocol via a control plane provided independently of a data plane formed by an optical communication network including a plurality of nodes and links. In the optical transmission system in which information is communicated from the transmission side to the reception side via the set path after the control unit sets a path including a specific node and link, the transmission side transmits the path. A communication means for measuring transmission characteristics via the data plane for measuring characteristics, wherein the receiving side receives signals communicated by the communication means for measuring transmission characteristics and measures transmission characteristics A transmission characteristic measuring means, a transmission characteristic compensating means for compensating the transmission characteristic, and a setting means for setting the transmission characteristic in the transmission characteristic compensating means based on the measured transmission characteristic. The path setting request is made by giving a path setting request from the transmitting side to the receiving side, and a path setting ensuring notification is communicated from the receiving side to the transmitting side via the control plane. Then, after completing the path setting, the control means gives an instruction to measure the transmission characteristic of the path to the communication characteristic measurement communication means and the transmission characteristic measurement means via the control plane, and the transmission A transmission characteristic setting instruction to the transmission characteristic compensation unit by the setting unit is given to the characteristic measurement unit, and information is communicated from the transmission side to the reception side through the set path. And

本発明によれば、GMPLS制御プレーン上での一連のパスの設定動作に付随して、パスの伝送特性の測定指示と、測定されたパスの伝送特性を補償するための伝送特性補償設定の指示を付与するようにし、前記パスの伝送特性の測定指示に従ってデータプレーンを介した測定用の通信を行うと共に、これに基づく伝送特性の測定と、受信された情報の伝送特性補償のための伝送特性補償設定とを実行するようにしているので、データプレーンを介したデータ通信の開始に先立って、伝送特性の補償設定動作が制御プレーン上の操作によって完了する。このため、固定的なネットワークでなく全光ネットワークのような動的にトポロジーが変化するようなネットワークにおいても、高速の伝送特性補償設定動作が可能で、伝送路の動的変化にも柔軟に対処することができる。   According to the present invention, accompanying a series of path setting operations on the GMPLS control plane, a path transmission characteristic measurement instruction and a transmission characteristic compensation setting instruction for compensating the measured path transmission characteristic are provided. And performing communication for measurement via the data plane according to the measurement instruction of the transmission characteristic of the path, and measuring the transmission characteristic based on this and transmission characteristic for compensating the transmission characteristic of the received information Since compensation setting is executed, the transmission characteristic compensation setting operation is completed by an operation on the control plane prior to the start of data communication via the data plane. Therefore, even in a network where the topology changes dynamically, such as an all-optical network instead of a fixed network, high-speed transmission characteristics compensation setting operation is possible, and the dynamic change of the transmission path can be flexibly handled. can do.

以下、図面に基づいて本発明の実施の形態について説明する。
[第1の実施形態]
図1は、本発明が適用される光伝送システムの構成を示す図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
FIG. 1 is a diagram showing a configuration of an optical transmission system to which the present invention is applied.

送信局1と受信局2とは、光通信網3を介して接続されている。光通信網3は、エッジノード4a,4b、中継ノード5a,5b及びそれらを相互接続する光ファイバからなるリンク6a〜6fを備えて構成され、伝送すべき情報が、例えば40Gbit/sで高速伝送されるデータプレーンDを構成している。各エッジノード4a,4b及び中継ノード5a,5bは、光クロスコネクト(PXC)を含んでいる。   The transmitting station 1 and the receiving station 2 are connected via an optical communication network 3. The optical communication network 3 includes edge nodes 4a and 4b, relay nodes 5a and 5b, and links 6a to 6f made of optical fibers interconnecting them, and information to be transmitted is transmitted at a high speed of 40 Gbit / s, for example. The data plane D is configured. Each of the edge nodes 4a and 4b and the relay nodes 5a and 5b includes an optical cross connect (PXC).

送信局1、受信局2及び各ノード4a,4b,5a,5bは、制御手段としてのコントローラ7a〜7fからパス設定、伝送特性測定の指示を付与される。コントローラ7a〜7bは例えばハブ等を介して相互接続され、データプレーンDとは独立に相互の通信を行う制御プレーンCを構成している。   The transmitting station 1, the receiving station 2, and the nodes 4a, 4b, 5a, and 5b are given instructions for path setting and transmission characteristic measurement from the controllers 7a to 7f as control means. The controllers 7a to 7b are interconnected via a hub or the like, for example, and constitute a control plane C that performs mutual communication independently of the data plane D.

この実施形態では、制御プレーンC上でのパス設定動作は、GMPLSシグナリングで使用されているRSVP−TE(Resource Reservation Protocol-Traffic Engineering)メッセージに基づいて行うことができる。周知のように、MPLSでは、パケットの本来の宛先アドレスとは別個に、固定長のラベル情報を持ち、このラベル情報に基づいてパケットの転送を行う。各ノード4a,4b,5a,5bには、入力ラベル及び入力インタフェース(IF)に対する出力ラベル及び出力インタフェース(IF)の関係を示すラベルテーブルが保持されており、パケット中継時には、受信パケットの本来の宛先ではなく、ラベルに基づいて次の転送先ノードを決定し、受信パケットのラベルを書き換えて次の転送先ノードに転送する。これを送信部から受信部まで繰り返すことにより、設定されたパスに従ってパケットデータが送信される。   In this embodiment, the path setting operation on the control plane C can be performed based on an RSVP-TE (Resource Reservation Protocol-Traffic Engineering) message used in GMPLS signaling. As is well known, MPLS has fixed-length label information separately from the original destination address of the packet, and transfers the packet based on this label information. Each node 4a, 4b, 5a, 5b holds a label table indicating the relationship between the output label and the output interface (IF) with respect to the input label and the input interface (IF). The next transfer destination node is determined based on the label, not the destination, and the label of the received packet is rewritten and transferred to the next transfer destination node. By repeating this from the transmission unit to the reception unit, packet data is transmitted along the set path.

パスは、確立対象となるパス上のノードに対して始点から終点へかけてホップバイホップ(hop-by-Hop)で順次設定されていく。   Paths are sequentially set in a hop-by-hop manner from the start point to the end point for nodes on the path to be established.

図2は、本発明の第1の実施形態に係る光伝送システムの要部を示すブロック図である。   FIG. 2 is a block diagram showing a main part of the optical transmission system according to the first embodiment of the present invention.

図において、送信局1には、送信装置11と、伝送特性測定用送信器12とが備えられている。伝送特性測定用送信器12は、パス設定時にコンローラ7aから出力される伝送特性測定信号送信指示に基づいて、例えば正弦波状の伝送特性測定信号を出力する。   In the figure, the transmission station 1 includes a transmission device 11 and a transmission characteristic measurement transmitter 12. The transmission characteristic measurement transmitter 12 outputs, for example, a sinusoidal transmission characteristic measurement signal based on a transmission characteristic measurement signal transmission instruction output from the controller 7a when setting a path.

また、受信局2には、受信装置21の他に、設定された伝送特性に基づいて、受信情報の補償動作行う伝送特性補償器22と、伝送特性測定信号を受信して、受信された伝送特性測定信号から伝送特性、例えば波長分散値を測定する伝送特性測定用受信器23と、この伝送特性測定用受信器23の測定値に基づいて伝送特性補償器22を設定する制御部24とを備えている。伝送特性補償器22としては、例えば波長分散特性の異なる複数のファイバーブラッグ格子(FBG)を切り替えて使用するものなどを用いることができる。伝送特性測定用受信器23は、コンローラ7fから制御プレーンCを介して供給されたパス設定するチャネル情報に基づいて伝送特性測定用信号を受信する。なお、チャネル情報には、例えばチャネル番号(波長)とビットレートとを含む。   In addition to the receiving device 21, the receiving station 2 receives a transmission characteristic compensator 22 that performs a compensation operation of received information based on the set transmission characteristic, and a transmission characteristic measurement signal. A transmission characteristic measuring receiver 23 for measuring a transmission characteristic, for example, a chromatic dispersion value from the characteristic measurement signal, and a control unit 24 for setting the transmission characteristic compensator 22 based on the measured value of the transmission characteristic measuring receiver 23; I have. As the transmission characteristic compensator 22, for example, one that switches and uses a plurality of fiber Bragg gratings (FBGs) having different wavelength dispersion characteristics can be used. The transmission characteristic measurement receiver 23 receives a transmission characteristic measurement signal based on channel information for path setting supplied from the controller 7f via the control plane C. The channel information includes, for example, a channel number (wavelength) and a bit rate.

次に、このように構成された光伝送システムのパス設定動作及び伝送特性補償動作について説明する。   Next, the path setting operation and the transmission characteristic compensation operation of the optical transmission system configured as described above will be described.

図3は、パス設定時の各ノード間のメッセージの流れを示す図、図4は、コントローラ7a,7f、送信局1及び受信局2におけるフローチャートであり、どちらも通常矢印は、制御プレーンC上でのメッセージを示し、白抜き矢印はデータプレーンD上でのデータの流れを示している。   FIG. 3 is a diagram showing a message flow between nodes at the time of path setting, and FIG. 4 is a flowchart in the controllers 7a and 7f, the transmitting station 1 and the receiving station 2, and both arrows are on the control plane C. The white arrow indicates the flow of data on the data plane D.

まず、送信側のコントローラ7aがパス設定要求を入力すると(S11)、コントローラ7aは、RSVP−PATHメッセージにより、チャネル情報付きのパスの設定要求を行う(S12)。   First, when the controller 7a on the transmission side inputs a path setting request (S11), the controller 7a makes a path setting request with channel information by an RSVP-PATH message (S12).

図5に、RSVP−Pathメッセージの一例を示す。RSVP−Pathメッセージは、Common header, “Session” Object, “Message ID” Object, “Explicit Route” Object, “Sender TSpec” Object等から形成されるが、“Sender TSpec” Objectにチャネル情報(CH-info)を埋め込むことが可能である。すなわち、“Sender TSpec”は、サービス毎にFragmentを持つ。Fragmentは、複数のParameterを持つ。例えばParameter #127 に “peak_data_rate”というフィールドがあり、ここにビットレートを書き込む。また、WDMチャネル情報についても、例えば、いずれかのParameter番号に書き込んでおく。   FIG. 5 shows an example of the RSVP-Path message. The RSVP-Path message is formed by Common header, “Session” Object, “Message ID” Object, “Explicit Route” Object, “Sender TSpec” Object, etc., but the channel information (CH-info ) Can be embedded. That is, “Sender TSpec” has a Fragment for each service. Fragment has multiple parameters. For example, Parameter # 127 has a field called “peak_data_rate” where the bit rate is written. Also, the WDM channel information is written in any Parameter number, for example.

このRSVP−Pathメッセージは、GMPLSプロトコルに基づいて、図3に示すように、送信局1→エッジノード4a→中継ノード5a→エッジノード4b→受信局2のコントローラに順次転送され、各ノードでのパスの確立が順次行われる。GMPLSプロトコルを拡張することで、この各ノードでのパスの確立動作が終了すると、コントローラ7aは、送信局1に伝送特性補償動作開始指示を出力する(S13)。これを受けて、伝送特性測定用送信器12は、伝送特性測定用信号を、データプレーンDの設定されたパスを介して受信局2に向けて送信する(S21)。   Based on the GMPLS protocol, the RSVP-Path message is sequentially transferred to the controller of the transmitting station 1, the edge node 4a, the relay node 5a, the edge node 4b, and the receiving station 2 as shown in FIG. Path establishment is performed sequentially. When the path establishment operation at each node is completed by extending the GMPLS protocol, the controller 7a outputs a transmission characteristic compensation operation start instruction to the transmitting station 1 (S13). In response to this, the transmission characteristic measurement transmitter 12 transmits the transmission characteristic measurement signal to the receiving station 2 through the path in which the data plane D is set (S21).

一方、コントローラ7fは、パス設定要求(RSVP−PATH)を受信すると(S41)、その中に含まれるチャネル情報を抽出し、受信局2の伝送特性測定用受信器23に通知すると共に、伝送特性補償開始指示を出力する(S42)。これにより、伝送特性測定用受信器23は、指定されたWDMチャネルで指定されたビットレートの測定用信号を受信し、受信された信号から波長分散値等の伝送特性を測定する。また、制御部24は、測定された伝送特性とは逆特性を伝送特性補償器22に設定する(S31)。伝送特性補償器22への設定動作が完了したら、制御部24は、コントローラ7fに設定完了通知を行い(S32)、これを受けたコントローラ7fは、パス設定確保通知(RSVP−RESV)を出力する(S43)。受信局2におけるパス設定要求の受信からパス設定確保通知の出力までがデータプレーンDの物理特性確保のための期間となる。   On the other hand, when the controller 7f receives the path setting request (RSVP-PATH) (S41), the controller 7f extracts the channel information contained therein and notifies the transmission characteristic measurement receiver 23 of the receiving station 2 together with the transmission characteristics. A compensation start instruction is output (S42). Thereby, the transmission characteristic measuring receiver 23 receives the measurement signal of the bit rate specified by the specified WDM channel, and measures the transmission characteristics such as the chromatic dispersion value from the received signal. Further, the control unit 24 sets a reverse characteristic to the measured transmission characteristic in the transmission characteristic compensator 22 (S31). When the setting operation to the transmission characteristic compensator 22 is completed, the control unit 24 sends a setting completion notification to the controller 7f (S32), and the controller 7f receiving the notification outputs a path setting ensuring notification (RSVP-RESV). (S43). The period from the reception of the path setting request at the receiving station 2 to the output of the path setting securing notification is a period for securing the physical characteristics of the data plane D.

受信局2から出力されたパス設定確保通知(RSVP−Resv.)は、図3に示すように、受信局2→エッジノード4b→中継ノード5a→エッジノード4a→送信局1の各コントローラに順次転送され、コントローラ7aでパス設定確保通知を受信したら、データプレーンDを介したデータ通信を開始する(S15)。   The path setting reservation notification (RSVP-Resv.) Output from the receiving station 2 is sequentially sent to each controller of the receiving station 2 → edge node 4b → relay node 5a → edge node 4a → transmitting station 1 as shown in FIG. When the controller 7a receives the path setting reservation notification, data communication via the data plane D is started (S15).

この実施形態によれば、図3に示すように、送信局1におけるパス設定要求の出力からパス設定確保通知の受信までの間がパス設定確保のための時間であり、この設定時間に物理特性確保が行われるので、伝送品質補償のための設定時間を短縮することができ、しかもデータ通信に先立つパス設定時に行われるので、データ通信開始時には常に品質保証がされている。本発明は、GMPLSプロトコルを利用した制御フローの中に、新たに波長分散測定及び測定された波長分散補償値の逆特性の伝送特性補償器への通知というフローを追加して一連のフローとするものであり、従来のGMPLSプロトコルによる波長パス設定では困難であった40Gbit/s以上の波長パス設定時における波長パスの品質保証を行うことが可能となる。   According to this embodiment, as shown in FIG. 3, the time from the output of the path setting request in the transmitting station 1 to the reception of the path setting securing notification is the time for securing the path setting. Since the reservation is performed, the setting time for transmission quality compensation can be shortened, and since it is performed at the time of path setting prior to data communication, quality assurance is always performed at the start of data communication. The present invention adds to the control flow using the GMPLS protocol a flow of a new chromatic dispersion measurement and a flow of notifying the transmission characteristic compensator of the inverse characteristic of the measured chromatic dispersion compensation value to form a series of flows. Therefore, it is possible to guarantee the quality of the wavelength path when setting a wavelength path of 40 Gbit / s or more, which was difficult with the wavelength path setting by the conventional GMPLS protocol.

更に、上記処理はGMPLSシグナリングの拡張であるため、新たなプロトコルを用いることなく実現が可能である。

[第2の実施形態]
図6は、本発明の第2の実施形態に係る光伝送システムのパス設定時における各ノード間のメッセージの流れを示す図である。
Furthermore, since the above process is an extension of GMPLS signaling, it can be realized without using a new protocol.

[Second Embodiment]
FIG. 6 is a diagram illustrating a message flow between nodes when a path is set in the optical transmission system according to the second embodiment of the present invention.

この実施形態が第1の実施形態と異なる点は、送信局1から受信局2へのパス設定要求と、受信局2から送信局1へのパス設定確保通知とによるパス設定確保動作の直後に、データプレーンDの物理特性確保の操作を行っている点である。この場合には、パス設定後、通信機器の監視モードであるAdministrative Status Testing Mode(監視状態テストモード)にセットし、測定及び特性補償動作が実行され、データプレーンセットアップの完了通知が受信局2から送信局1に転送されて来たら、Administrative StatusTesting Mode(監視状態テストモード)を解除する、以後、通信サービスを確立する。
[第3の実施形態]
図7は、本発明の第3の実施形態に係る光伝送システムの要部の構成を示す図である。
This embodiment differs from the first embodiment immediately after the path setting ensuring operation by the path setting request from the transmitting station 1 to the receiving station 2 and the path setting ensuring notification from the receiving station 2 to the transmitting station 1. The operation of securing the physical characteristics of the data plane D is performed. In this case, after setting the path, it is set to Administrative Status Testing Mode (monitoring state test mode) which is the monitoring mode of the communication device, the measurement and the characteristic compensation operation are executed, and the data plane setup completion notification is received from the receiving station 2 When the data is transferred to the transmitting station 1, the administrative status testing mode (monitoring status test mode) is canceled. Thereafter, the communication service is established.
[Third Embodiment]
FIG. 7 is a diagram illustrating a configuration of a main part of an optical transmission system according to the third embodiment of the present invention.

この実施形態では、送信部30及び受信部40が、ユーザ宅に設置されている場合を想定している。この場合には、伝送特性測定用送信器12が送信側のエッジノード50a、伝送特性測定用受信器23が受信側のエッジノード50bにそれぞれ設置される。このように、エッジノード50a,50bに伝送特性測定用送受信器を設置することで、これら送受信器を、エッジノード50a,50bを介した多くのパスで共用して使用することができる。エッジノード50a,50bと送信器30及び受信器40とをそれぞれ接続するアクセス回線8a,8bは、通常、距離が短い。また、一度回線を敷設したら回線が変わることは殆ど無い。更に、光ファイバパラメータは、温度による変化も距離が短いため非常に小さい。これらのことから、回線工事時のデータをそのまま利用できる。   In this embodiment, the case where the transmission part 30 and the receiving part 40 are installed in the user's house is assumed. In this case, the transmission characteristic measurement transmitter 12 is installed at the transmission-side edge node 50a, and the transmission characteristic measurement receiver 23 is installed at the reception-side edge node 50b. In this way, by installing transmission characteristic measuring transceivers in the edge nodes 50a and 50b, these transceivers can be shared and used in many paths through the edge nodes 50a and 50b. The access lines 8a and 8b that connect the edge nodes 50a and 50b to the transmitter 30 and the receiver 40, respectively, usually have a short distance. Also, once the line is laid, the line hardly changes. Furthermore, the optical fiber parameters are very small because the change with temperature is also short. Therefore, the data at the time of line construction can be used as it is.

パス設定の際には、エッジノード50aからエッジノード50bについては、上述と同様の伝送特性の測定を行う。測定結果は、コントローラ7e,7fを介して伝送特性補償器22が設置された受信部40へ通知される。アクセス回線8a,8bについては、例えば図8に示すように、事前に測定された波長分散の、波長と芯線(アクセス回線)番号との関係テーブルをいずれかのコントローラの内部に設けておき、使用する波長のデータから波長分散値を読み込み、これを補償デバイスノードである受信部50へ通知する。受信部50では、通知された値を基に、パス上の波長分散値を計算。算出された値から、最適である補償値を求め、伝送特性補償器22に設定する。上記補償動作が完了後、パス設定が完了する。
[第4の実施形態]
図9は、本発明の第4の実施形態に係る光伝送システムの要部を示すブロック図である。
At the time of path setting, transmission characteristics similar to those described above are measured for the edge nodes 50a to 50b. The measurement result is notified to the receiving unit 40 in which the transmission characteristic compensator 22 is installed via the controllers 7e and 7f. For the access lines 8a and 8b, for example, as shown in FIG. 8, a relationship table of wavelength and core line (access line) number of chromatic dispersion measured in advance is provided in one of the controllers. The chromatic dispersion value is read from the wavelength data to be transmitted, and this is notified to the receiving unit 50 which is the compensation device node. The receiving unit 50 calculates the chromatic dispersion value on the path based on the notified value. An optimum compensation value is obtained from the calculated value and set in the transmission characteristic compensator 22. After the compensation operation is completed, the path setting is completed.
[Fourth Embodiment]
FIG. 9 is a block diagram showing a main part of an optical transmission system according to the fourth embodiment of the present invention.

この実施形態は、伝送特性測定用受信器23の他、伝送測定補償器22及び制御部24についても、エッジノード70に設置され、受信部60には設置されていない点が第3の実施形態と異なっている。この場合、伝送特性補償器22には、アクセス回線8bでの波長分散も考慮した補償値を設定する。   In this embodiment, in addition to the transmission characteristic measurement receiver 23, the transmission measurement compensator 22 and the control unit 24 are also installed in the edge node 70 and not installed in the reception unit 60. Is different. In this case, the transmission characteristic compensator 22 is set with a compensation value that also considers chromatic dispersion in the access line 8b.

このように、本実施形態の光伝送システムによれば、GMPLS制御プレーンを用いて、伝送特性測定及び測定された伝送特性の補償器への設定を行うことにより、これまでGMPLSプロトコルによる波長パス設定時の品質保証は困難であったが、本発明により、40Gbit/s以上の波長パスには必要不可欠な波長分散に対して、品質保証を行うことができる。   As described above, according to the optical transmission system of the present embodiment, by using the GMPLS control plane, transmission characteristic measurement and setting of the measured transmission characteristic to the compensator are performed, so that the wavelength path setting by the GMPLS protocol has been performed so far. Although quality assurance at the time was difficult, according to the present invention, quality assurance can be performed for chromatic dispersion indispensable for a wavelength path of 40 Gbit / s or more.

本発明が適用される光伝送システムの構成を示す図である。It is a figure which shows the structure of the optical transmission system with which this invention is applied. 本発明の第1の実施形態に係る光伝送システムの要部を示すブロック図である。It is a block diagram which shows the principal part of the optical transmission system which concerns on the 1st Embodiment of this invention. 同システムにおけるパス設定時の各ノード間のメッセージの流れを示す図である。It is a figure which shows the flow of the message between each node at the time of the path | pass setting in the same system. コントローラ、送信局及び受信局の処理を示すフローチャートである。It is a flowchart which shows a process of a controller, a transmission station, and a receiving station. 同システムで使用されるRSVPメッセージの詳細を示す図である。It is a figure which shows the detail of the RSVP message used with the system. 本発明の第2の実施形態に係る光伝送システムにおけるパス設定時の各ノード間のメッセージの流れを示す図である。It is a figure which shows the flow of the message between each node at the time of the path | pass setup in the optical transmission system concerning the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る光伝送システムの要部を示すブロック図である。It is a block diagram which shows the principal part of the optical transmission system which concerns on the 3rd Embodiment of this invention. 同システムにおけるアクセス回線の波長分散データテーブルを示す図である。It is a figure which shows the chromatic dispersion data table of the access line in the system. 本発明の第4の実施形態に係る光伝送システムの要部を示すブロック図である。It is a block diagram which shows the principal part of the optical transmission system which concerns on the 4th Embodiment of this invention.

1…送信局
2…受信局
3…光通信網
4a,4b,50a,50b,70…エッジノード
5a,5b…中継ノード
6a〜6f…リンク
7a〜7f…コントローラ
8a,8b…アクセス回線
11…送信装置
12…伝送特性測定用送信器
21…受信装置
22…伝送特性補償器
23…伝送特性測定用受信器
24…制御部
30…送信部
40,60…受信部
DESCRIPTION OF SYMBOLS 1 ... Transmission station 2 ... Reception station 3 ... Optical communication network 4a, 4b, 50a, 50b, 70 ... Edge node 5a, 5b ... Relay node 6a-6f ... Link 7a-7f ... Controller 8a, 8b ... Access line 11 ... Transmission Device 12 ... Transmitter for measuring transmission characteristics 21 ... Receiving device 22 ... Compensator for transmitting characteristics 23 ... Receiver for measuring transmission characteristics 24 ... Control unit 30 ... Transmitting unit 40, 60 ... Receiving unit

Claims (10)

複数のノード及びリンクからなる光通信網により形成されるデータプレーンに対して独立して設けられた制御プレーンを介してGMPLSプロトコルに基づいて制御手段が特定のノード及びリンクからなるパスを設定した後、前記設定されたパスを介して送信側から受信側へと情報の通信を行う光伝送システムの伝送品質補償方法において、
前記制御手段から前記制御プレーンを介して前記受信側にパス設定要求を付与し、前記制御手段から前記送信側及び受信側へ前記制御プレーンを介して前記パスの伝送特性の測定指示を付与し、前記制御手段から前記受信側へ前記制御プレーンを介して前記測定されたパスの伝送特性を補償するための伝送特性補償設定の指示を付与し、
前記送信側では、前記パスの伝送特性の測定指示に従って前記受信側へと前記データプレーンを介した測定用の通信を行い、
前記受信側では、前記測定用の通信によって前記伝送特性を測定し、受信された情報の伝送特性補償のための伝送特性補償設定を実行し、前記受信側から前記制御プレーンを介して前記送信側へとパス設定確保通知を通信して設定を完了する
ことを特徴とする伝送品質補償方法。
After the control means sets a path consisting of a specific node and link based on the GMPLS protocol via a control plane provided independently for a data plane formed by an optical communication network consisting of a plurality of nodes and links In the transmission quality compensation method of the optical transmission system for communicating information from the transmission side to the reception side via the set path,
A path setting request is given from the control means to the receiving side via the control plane, and a measurement instruction of transmission characteristics of the path is given from the control means to the transmitting side and the receiving side via the control plane, Giving an instruction of transmission characteristic compensation setting for compensating the transmission characteristic of the measured path from the control means to the reception side via the control plane;
The transmission side performs measurement communication via the data plane to the reception side according to the measurement instruction of the transmission characteristics of the path,
The reception side measures the transmission characteristic by the communication for measurement, executes transmission characteristic compensation setting for transmission characteristic compensation of received information, and the transmission side from the reception side via the control plane A transmission quality compensation method comprising: completing a setting by communicating a path setting reservation notification to
複数のノード及びリンクからなる光通信網により形成されるデータプレーンに対して独立して設けられた制御プレーンを介してGMPLSプロトコルに基づいて制御手段が特定のノード及びリンクからなるパスを設定した後、
前記制御手段から前記送信側及び受信側へ前記制御プレーンを介して前記パスの伝送特性の測定指示を付与し、前記制御手段から前記受信側へ前記制御プレーンを介して前記測定されたパスの伝送特性を補償するための伝送特性補償設定の指示を付与し、
前記送信側では、前記パスの伝送特性の測定指示に従って前記受信側へと前記データプレーンを介した測定用の通信を行い、
前記受信側では、前記測定用の通信によって前記伝送特性を測定し、受信された情報の伝送特性補償のための伝送特性補償設定を実行し、
前記設定されたパスを介して送信側から受信側へと情報の通信を行う光伝送システムの伝送品質補償方法。
After the control means sets a path consisting of a specific node and link based on the GMPLS protocol via a control plane provided independently for a data plane formed by an optical communication network consisting of a plurality of nodes and links ,
An instruction to measure the transmission characteristics of the path is given from the control means to the transmitting side and the receiving side via the control plane, and the measured path is transmitted from the control means to the receiving side via the control plane. Gives instructions for transmission characteristic compensation settings to compensate the characteristics,
The transmission side performs measurement communication via the data plane to the reception side according to the measurement instruction of the transmission characteristics of the path,
On the receiving side, the transmission characteristic is measured by the measurement communication, the transmission characteristic compensation setting for the transmission characteristic compensation of the received information is executed,
A transmission quality compensation method for an optical transmission system for communicating information from a transmission side to a reception side via the set path.
前記パスの設定は、前記制御手段から前記制御プレーンを介して前記受信側にパス設定要求を付与することにより行われ、
前記パス設定要求には、設定しようとするパスのチャネル番号(波長)及びビットレート情報を含むチャネル情報が付加されている
ことを特徴とする請求項1又は2記載の伝送品質補償方法。
The path setting is performed by giving a path setting request from the control means to the receiving side via the control plane,
The transmission quality compensation method according to claim 1 or 2, wherein channel information including a channel number (wavelength) and bit rate information of a path to be set is added to the path setting request.
前記測定用の通信は、前記送信側の送信装置から出力される信号により行い、前記伝送特性の測定及び前記伝送特性補償は、前記受信側の受信装置で行われることを特徴とする請求項1乃至3のいずれか1項記載の伝送品質補償方法。   2. The measurement communication is performed by a signal output from the transmission device on the transmission side, and the measurement of the transmission characteristics and the transmission characteristic compensation are performed on the reception device on the reception side. 4. The transmission quality compensation method according to any one of items 1 to 3. 前記測定用の通信は、前記送信側のエッジノードから出力される信号により行い、前記伝送特性の測定及び前記伝送特性補償は、事前に測定された波長分散に関するテーブルから使用する波長の波長分散を抽出し、前記受信側のエッジノードで行われることを特徴とする請求項1乃至3のいずれか1項記載の伝送品質補償方法。   The measurement communication is performed by a signal output from the edge node on the transmission side, and the transmission characteristic measurement and the transmission characteristic compensation are performed by calculating a chromatic dispersion of a wavelength to be used from a pre-measured chromatic dispersion table. 4. The transmission quality compensation method according to claim 1, wherein the transmission quality compensation is performed at the edge node on the receiving side. 複数のノード及びリンクからなる光通信網により形成されるデータプレーンに対して独立して設けられた制御プレーンを介してGMPLSプロトコルに基づいて制御手段が特定のノード及びリンクからなるパスを設定した後、前記設定されたパスを介して送信側から受信側へと情報の通信を行う光伝送システムにおいて、
前記送信側は、前記パスの伝送特性を測定するための前記データプレーンを介した伝送特性測定用通信手段を有し、
前記受信側は、前記伝送特性測定用通信手段により通信された信号を受信して伝送特性を測定するための伝送特性測定手段と、伝送特性を補償する伝送特性補償手段と、測定された伝送特性に基づいて前記伝送特性補償手段に伝送特性を設定する設定手段とを有し、
前記制御手段は、前記制御プレーンを介して、前記受信側にパス設定要求を付与することにより前記パスの設定要求を行い、前記伝送特性測定用通信手段及び伝送特性測定手段へ前記パスの伝送特性の測定指示を付与し、前記伝送特性測定手段へ前記設定手段による前記伝送特性補償手段への伝送特性の設定指示を付与し、前記受信側から前記制御プレーンを介して前記送信側へとパス設定確保通知を通信することによりパスの設定を完了するものである
ことを特徴とする光伝送システム。
After the control means sets a path consisting of a specific node and link based on the GMPLS protocol via a control plane provided independently for a data plane formed by an optical communication network consisting of a plurality of nodes and links In the optical transmission system that performs communication of information from the transmission side to the reception side via the set path,
The transmission side has a communication means for measuring transmission characteristics via the data plane for measuring transmission characteristics of the path,
The receiving side receives a signal communicated by the transmission characteristic measurement communication means and measures the transmission characteristic, a transmission characteristic compensation means for compensating the transmission characteristic, and the measured transmission characteristic And setting means for setting transmission characteristics to the transmission characteristic compensation means based on
The control means makes a path setting request by giving a path setting request to the receiving side via the control plane, and transmits the path transmission characteristics to the transmission characteristic measuring communication means and the transmission characteristic measuring means. And a setting instruction of the transmission characteristic to the transmission characteristic compensation means by the setting means to the transmission characteristic measuring means, and path setting from the receiving side to the transmitting side via the control plane An optical transmission system that completes path setting by communicating a reservation notification.
複数のノード及びリンクからなる光通信網により形成されるデータプレーンに対して独立して設けられた制御プレーンを介してGMPLSプロトコルに基づいて制御手段が特定のノード及びリンクからなるパスを設定した後、前記設定されたパスを介して送信側から受信側へと情報の通信を行う光伝送システムにおいて、
前記送信側は、前記パスの伝送特性を測定するための前記データプレーンを介した伝送特性測定用通信手段を有し、
前記受信側は、前記伝送特性測定用通信手段により通信された信号を受信して伝送特性を測定するための伝送特性測定手段と、伝送特性を補償する伝送特性補償手段と、測定された伝送特性に基づいて前記伝送特性補償手段に伝送特性を設定する設定手段とを有し、
前記送信側から前記受信側にパス設定要求を付与することにより前記パスの設定要求を行い、前記受信側から前記制御プレーンを介して前記送信側へとパス設定確保通知を通信することによりパスの設定を完了した後、
前記制御手段は、前記制御プレーンを介して、前記伝送特性測定用通信手段及び伝送特性測定手段へ前記パスの伝送特性の測定指示を付与し、前記伝送特性測定手段へ前記設定手段による前記伝送特性補償手段への伝送特性の設定指示を付与し、前記設定されたパスを介して送信側から受信側へと情報の通信を行うものである
ことを特徴とする光伝送システム。
After the control means sets a path consisting of a specific node and link based on the GMPLS protocol via a control plane provided independently for a data plane formed by an optical communication network consisting of a plurality of nodes and links In the optical transmission system that performs communication of information from the transmission side to the reception side via the set path,
The transmission side has a communication means for measuring transmission characteristics via the data plane for measuring the transmission characteristics of the path,
The receiving side receives a signal communicated by the transmission characteristic measurement communication means and measures the transmission characteristic, a transmission characteristic compensation means for compensating the transmission characteristic, and the measured transmission characteristic And setting means for setting transmission characteristics to the transmission characteristic compensation means based on
The path setting request is made by giving a path setting request from the transmitting side to the receiving side, and a path setting ensuring notification is communicated from the receiving side to the transmitting side via the control plane. After completing the settings,
The control means gives an instruction to measure the transmission characteristic of the path to the transmission characteristic measurement communication means and the transmission characteristic measurement means via the control plane, and the transmission characteristic by the setting means to the transmission characteristic measurement means. An optical transmission system characterized in that a transmission characteristic setting instruction is given to the compensation means, and information is communicated from the transmitting side to the receiving side via the set path.
前記制御手段は、前記制御プレーンを介して前記受信側にパス設定要求を付与することにより前記パスの設定要求を行うものであり、
前記パス設定要求には、設定しようとするパスのチャネル番号(波長)及びビットレート情報を含むチャネル情報が付加されている
ことを特徴とする請求項6または7記載の光伝送システム。
The control means performs the path setting request by giving a path setting request to the receiving side via the control plane,
8. The optical transmission system according to claim 6, wherein channel information including a channel number (wavelength) and bit rate information of a path to be set is added to the path setting request.
前記伝送特性測定用通信手段は、前記送信側の送信装置に設けられており、前記伝送特性測定手段及び前記伝送特性補償手段は、前記受信側の受信装置に設けられていることを特徴とする請求項6乃至8のいずれか1項記載の光伝送システム。   The transmission characteristic measurement communication means is provided in the transmission device on the transmission side, and the transmission characteristic measurement means and the transmission characteristic compensation means are provided in the reception device on the reception side. The optical transmission system according to claim 6. 前記伝送特性測定用通信手段は、前記測定側のエッジノードに設けられており、前記伝送特性測定手段及び前記伝送特性補償手段は、前記受信側のエッジノードに設けられ、事前に測定された波長分散に関するテーブルから使用する波長の波長分散を抽出して前記伝送特性の測定及び前記伝送特性補償を行うことを特徴とする請求項6乃至8のいずれか1項記載の光伝送システム。







The transmission characteristic measurement communication means is provided in the measurement-side edge node, and the transmission characteristic measurement means and the transmission characteristic compensation means are provided in the reception-side edge node and are measured in advance. 9. The optical transmission system according to claim 6, wherein the transmission characteristic is measured and the transmission characteristic compensation is performed by extracting chromatic dispersion of a wavelength to be used from a dispersion table.







JP2004258858A 2004-09-06 2004-09-06 Transmission quality compensation method for optical transmission system and optical transmission system Expired - Fee Related JP4252020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004258858A JP4252020B2 (en) 2004-09-06 2004-09-06 Transmission quality compensation method for optical transmission system and optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004258858A JP4252020B2 (en) 2004-09-06 2004-09-06 Transmission quality compensation method for optical transmission system and optical transmission system

Publications (2)

Publication Number Publication Date
JP2006074698A true JP2006074698A (en) 2006-03-16
JP4252020B2 JP4252020B2 (en) 2009-04-08

Family

ID=36154778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004258858A Expired - Fee Related JP4252020B2 (en) 2004-09-06 2004-09-06 Transmission quality compensation method for optical transmission system and optical transmission system

Country Status (1)

Country Link
JP (1) JP4252020B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028144A (en) * 2005-07-15 2007-02-01 Hitachi Communication Technologies Ltd Optical network device, and optical network
JP2007259281A (en) * 2006-03-24 2007-10-04 Mitsubishi Electric Corp Optical fiber communication system
JP2008066989A (en) * 2006-09-06 2008-03-21 Ntt Communications Kk Route state management system, controller, network management device, communication equipment and route state management method
JP2008236699A (en) * 2007-03-23 2008-10-02 Nec Corp Optical signal monitoring system and optical signal monitoring method
JP2009147416A (en) * 2007-12-11 2009-07-02 Mitsubishi Electric Corp Optical transmission system
JP2010034830A (en) * 2008-07-29 2010-02-12 Mitsubishi Electric Corp Pre-equalized optical fiber communication system
JP2011182447A (en) * 2011-04-25 2011-09-15 Hitachi Ltd Optical network device and system
JP2011199688A (en) * 2010-03-19 2011-10-06 Fujitsu Ltd Optical node, optical network system, and polarization mode dispersion measuring method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4755457B2 (en) * 2005-07-15 2011-08-24 株式会社日立製作所 Optical network device and optical network
US7848648B2 (en) 2005-07-15 2010-12-07 Hitachi, Ltd. Optical network equipment and optical network
US8346078B2 (en) 2005-07-15 2013-01-01 Hitachi, Ltd. Optical network equipment and optical network
JP2007028144A (en) * 2005-07-15 2007-02-01 Hitachi Communication Technologies Ltd Optical network device, and optical network
JP4739076B2 (en) * 2006-03-24 2011-08-03 三菱電機株式会社 Optical fiber communication system
JP2007259281A (en) * 2006-03-24 2007-10-04 Mitsubishi Electric Corp Optical fiber communication system
JP4664258B2 (en) * 2006-09-06 2011-04-06 エヌ・ティ・ティ・コミュニケーションズ株式会社 Route state management system, control device, network management device, communication device, and route state management method
JP2008066989A (en) * 2006-09-06 2008-03-21 Ntt Communications Kk Route state management system, controller, network management device, communication equipment and route state management method
JP2008236699A (en) * 2007-03-23 2008-10-02 Nec Corp Optical signal monitoring system and optical signal monitoring method
US8064765B2 (en) 2007-03-23 2011-11-22 Nec Corporation Optical signal monitoring system and optical signal monitoring method
JP2009147416A (en) * 2007-12-11 2009-07-02 Mitsubishi Electric Corp Optical transmission system
JP2010034830A (en) * 2008-07-29 2010-02-12 Mitsubishi Electric Corp Pre-equalized optical fiber communication system
JP2011199688A (en) * 2010-03-19 2011-10-06 Fujitsu Ltd Optical node, optical network system, and polarization mode dispersion measuring method
JP2011182447A (en) * 2011-04-25 2011-09-15 Hitachi Ltd Optical network device and system

Also Published As

Publication number Publication date
JP4252020B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP4755457B2 (en) Optical network device and optical network
EP2467960B1 (en) Methods and node entities in optical networks
WO2009000198A1 (en) Method, system and apparatus for building wavelength channel
Tsuritani et al. Optical path computation element interworking with network management system for transparent mesh networks
US20120321297A1 (en) Routing and validation of paths in a wavelength switched optical network
JP2009118101A (en) Optical wavelength multiplexed transmission apparatus
EP2493102A1 (en) System and method for selecting an optical path in an optical network
US8831424B2 (en) Channel validation in optical networks using multi-channel impairment evaluation
JP4252020B2 (en) Transmission quality compensation method for optical transmission system and optical transmission system
US20170104632A1 (en) Placement of wavelength shifters in optical networks
JP4520097B2 (en) Dispersion compensation method for optical communication path with dynamic control
JP6848691B2 (en) Search for the shortest and minimum playback route in the network
JP4523644B2 (en) Evaluation method of feasibility of optical path in optical communication network
JP2008503948A6 (en) Evaluation method of feasibility of optical path in optical communication network
US8670666B2 (en) Channel validation in optical networks using multi-channel impairment evaluation
Salvadori et al. Signalling-based architectures for impairment-aware lightpath set-up in GMPLS networks
Azodolmolky et al. DICONET NPOT: An impairments aware tool for planning and managing dynamic optical networks
JP4695990B2 (en) Optical network, node device, and route calculation server
Hu et al. Integrating Physical Layer Modeling in the Simulation of Dynamic WDM Optical Networks with Direct and Coherent Detection
Garbhapu et al. Physical-layer-aware network simulator for future optical functionalities
Fei Impacts of physical layer impairments on optical network performance
Morea et al. Improved aggregated impairment information for Bi-directional lightpath establishments
JP2006217468A (en) Optical signal quality assurance method for optical transmission system and optical transmission system
JP5117592B2 (en) Optical network device and optical network system
Salvadori et al. Distributed optical control plane for dynamic lightpath establishment in translucent optical networks based on reachability graph

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees