JP2010034830A - Pre-equalized optical fiber communication system - Google Patents

Pre-equalized optical fiber communication system Download PDF

Info

Publication number
JP2010034830A
JP2010034830A JP2008194683A JP2008194683A JP2010034830A JP 2010034830 A JP2010034830 A JP 2010034830A JP 2008194683 A JP2008194683 A JP 2008194683A JP 2008194683 A JP2008194683 A JP 2008194683A JP 2010034830 A JP2010034830 A JP 2010034830A
Authority
JP
Japan
Prior art keywords
optical
dispersion
communication node
signal
optical communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008194683A
Other languages
Japanese (ja)
Other versions
JP5174573B2 (en
Inventor
Takashi Mizuochi
隆司 水落
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008194683A priority Critical patent/JP5174573B2/en
Publication of JP2010034830A publication Critical patent/JP2010034830A/en
Application granted granted Critical
Publication of JP5174573B2 publication Critical patent/JP5174573B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a pre-equalized optical fiber communication system capable of compensating the dispersion of an optical transmission line precisely at a high speed. <P>SOLUTION: An optical communication node A on the transmission side includes: a precoder (variable dispersion compensation means) 4a for supplying a dispersion amount (dispersion compensation setting value) beforehand to input signals to be input to an input terminal 2a; an optimization means 21a for adjusting the dispersion amount; and an electric/optical converter (E/O) 5a for converting electric signals generated by supplying the dispersion amount to the input signals to optical signals to output them to the optical fiber transmission line 11. An optical communication node B on the reception side includes, an error correction circuit (FEC) 3 for detecting the number of bit errors of the optical signals propagated through the optical fiber transmission line 11; and a monitoring optical interface (OSC) 10 for returning the detected number of bit errors through the optical fiber transmission line 12 to the optimization means 21a of the optical communication node A on the transmission side. The optimization means of the optical communication node A on the transmission side adjusts the dispersion amount and controls it to an optimum value on the basis of the monitoring optical interface (OSC). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は予等化光ファイバ通信システムに関し、特に、全光ネットワークにおいて、光ファイバ伝送路の分散を高速かつ精密に補償し、プロビジョニングやプロテクション、レストレーションを容易にする予等化光ファイバ通信システムに関するものである。   The present invention relates to a pre-equalized optical fiber communication system, and more particularly to a pre-equalized optical fiber communication system that compensates for dispersion of an optical fiber transmission line at high speed and precisely in an all-optical network and facilitates provisioning, protection, and restoration. It is about.

一般に光ファイバ通信システムでは、光ファイバ伝送路が有する波長分散による信号波形の歪みを補償する必要がある。分散補償の方法として、光ファイバ伝送路と逆符号の分散を有する分散補償ファイバを用いる方法が広く行われている。近年の40Gb/s以上の高速光ファイバ通信システムでは、温度やファイバ割り入れなどによるわずかな分散量の変化で波形が容易に歪んでしまうため、分散量固定の分散補償ファイバではなく、分散量を可変できる分散補償器の導入が始まっている。特に、動的に光パス(あるいは、Label Switch Path:LSP)を張り替える全光ネットワークでは、光パス毎に分散量が異なるため、可変分散補償器が必要となる。   In general, in an optical fiber communication system, it is necessary to compensate for signal waveform distortion due to chromatic dispersion in an optical fiber transmission line. As a dispersion compensation method, a method using a dispersion compensation fiber having dispersion opposite to that of an optical fiber transmission line is widely used. In recent high-speed optical fiber communication systems of 40 Gb / s or more, the waveform is easily distorted by a slight change in the dispersion amount due to temperature, fiber insertion, or the like. Introduction of variable dispersion compensators has begun. In particular, in an all-optical network in which an optical path (or Label Switch Path: LSP) is dynamically changed, the dispersion amount differs for each optical path, so a variable dispersion compensator is required.

新しい可変分散補償器として、プリディストーション方式がある(例えば、非特許文献1参照)。光ファイバの伝達関数と逆の伝達関数を時間軸上の畳み込みとして実現するもので、入力データ系列を電気的に演算する。ルックアップテーブルで構成されたFIRフィルタで逐次演算された予変調信号で光の直交変調を行うことで、光ファイバ伝送後に分散による群遅延が補償されるような複素電界を持つ光波形を発生させるものである。   As a new tunable dispersion compensator, there is a predistortion method (see, for example, Non-Patent Document 1). A transfer function opposite to that of an optical fiber is realized as a convolution on the time axis, and an input data series is electrically calculated. An optical waveform having a complex electric field that compensates for group delay due to dispersion after optical fiber transmission is generated by performing quadrature modulation of light with a premodulation signal sequentially calculated by an FIR filter configured with a look-up table. Is.

プリディストーション方式は、予め測定しておいた伝送路の分散をもとに、送信側でルックアップテーブルの値を設定するものであるが、他の従来の方法として、測定波長での分散測定にある程度の誤差が発生しても、短時間で最適な分散補償量に適応的に等化する方法が知られている(例えば、特許文献1参照)。受信端で観測したビット誤り数が最小になるよう、送信端にビット誤り数情報をフィードバックし、それに基づいて送信端の分散補償量を増減させて最適値に適応制御するものである。   In the predistortion method, the value of the lookup table is set on the transmission side based on the dispersion of the transmission line that has been measured in advance, but as another conventional method, dispersion measurement at the measurement wavelength is performed. There is known a method of adaptively equalizing an optimum dispersion compensation amount in a short time even if a certain amount of error occurs (see, for example, Patent Document 1). Bit error number information is fed back to the transmitting end so that the number of bit errors observed at the receiving end is minimized, and the dispersion compensation amount at the transmitting end is increased / decreased based on this feedback control to adaptively control the optimum value.

M. M. El Said, J. Sitch and M. I. Elmasry, “An Electrically Pre-Equalized 10-Gb/s Duobinary Transmission System”, IEEE Journal of Lightwave Technology, Vol. 23, No. 1, pp. 388-400, Jan. 2005M. M. El Said, J. Sitch and M. I. Elmasry, “An Electrically Pre-Equalized 10-Gb / s Duobinary Transmission System”, IEEE Journal of Lightwave Technology, Vol. 23, No. 1, pp. 388-400, Jan. 2005 特開2007−259281号公報JP 2007-259281 A

非特許文献1に開示された方式は、予め測定しておいた伝送路の分散をもとに、送信側でルックアップテーブルの値を設定しなければならず、また、光ファイバ伝送路の分散測定に誤差が発生した場合においても、それを高速かつ精密に補償することができないという問題点があった。   In the method disclosed in Non-Patent Document 1, the value of the look-up table must be set on the transmission side based on the dispersion of the transmission line measured in advance, and the dispersion of the optical fiber transmission line Even when an error occurs in the measurement, there is a problem that it cannot be compensated for at high speed and accurately.

また、特許文献1に開示された方式を用いれば、光ファイバ伝送路の分散を高速かつ精密に補償することができるものの、受信端で観測したビット誤り数を主信号のオーバヘッドに載せて送信端に転送する方式のため、受信端から送信端への分散補償が完了しており、かつ、主信号が導通している必要がある。すなわち、建設時のように、まだ主信号が導通しない時にはビット誤り数情報を送信端に転送できないという問題点があった。   Further, if the method disclosed in Patent Document 1 is used, dispersion of the optical fiber transmission line can be compensated at high speed and with precision, but the number of bit errors observed at the receiving end is placed on the overhead of the main signal. Therefore, dispersion compensation from the receiving end to the transmitting end must be completed, and the main signal needs to be conducted. That is, there is a problem in that the bit error number information cannot be transferred to the transmitting end when the main signal is not yet conducted as in construction.

この発明は、かかる問題点を解決するためになされたもので、建設時のような主信号が導通していない状態でも、受信端から送信端に分散補償制御情報を正確に転送し、光ファイバ伝送路の分散を高速かつ精密に補償することができる予等化光ファイバ通信システムを得ることを目的としている。   The present invention has been made to solve such a problem. Even when the main signal is not conducted as in construction, the dispersion compensation control information is accurately transferred from the receiving end to the transmitting end, and an optical fiber is provided. An object of the present invention is to obtain a pre-equalized optical fiber communication system capable of compensating for transmission path dispersion at high speed and with precision.

この発明は、光ファイバ伝送路を介して相互に接続された複数の光通信ノードを備えた予等化光ファイバ通信システムであって、送信側の光通信ノードは、自身が受信側の光通信ノードに対して送信した光信号のビット誤り数を当該受信側の光通信ノードから受信して、それに基づいて入力信号に与えるべき分散量を増減させる制御を行う最適化手段と、前記入力信号が入力され、当該入力信号に対して初回は所定の分散量およびそれ以降は前記最適化手段からの分散量を与えた電気信号を生成する可変分散補償手段と、前記可変分散補償手段からの前記電気信号を光信号に変換して、前記光ファイバ伝送路を介して前記受信側の光通信ノードに送信する電気/光変換手段とを有し、受信側の光通信ノードは、前記送信側の光通信ノードからの前記光信号を受信して電気信号に変換する光/電気変換手段と、前記光/電気変換手段からの前記電気信号に基づいて、前記光信号のビット誤り数を検出する誤り訂正手段と、検出された前記ビット誤り数を、前記光ファイバ伝送路を介して、前記送信側の光通信ノードに送信する受信側監視光インタフェースとを有し、前記受信側の光通信ノードの前記誤り訂正手段で検出したビット誤り数を前記送信側の光通信ノードの前記最適化手段に送信し、当該最適化手段は、受信した前記ビット誤り数に基づいて、前記受信側の光通信ノードにおけるビット誤り数が最小になるよう、前記分散量を最適な値に調整することを特徴とする予等化光ファイバ通信システムである。   The present invention relates to a pre-equalization optical fiber communication system including a plurality of optical communication nodes connected to each other via an optical fiber transmission line, and the transmission-side optical communication node itself is an optical communication on the reception side. Optimization means for controlling the amount of dispersion to be given to the input signal based on the received bit error number of the optical signal transmitted to the node from the receiving optical communication node; and A variable dispersion compensator for generating an electric signal which is input and given a predetermined dispersion amount for the first time and a dispersion amount from the optimizing device for the input signal thereafter, and the electric signal from the variable dispersion compensation unit. Electrical / optical conversion means for converting a signal into an optical signal and transmitting the optical signal to the reception-side optical communication node via the optical fiber transmission line, and the reception-side optical communication node includes the transmission-side optical communication node. From communication node An optical / electrical converter for receiving the optical signal and converting it into an electrical signal; an error correcting unit for detecting the number of bit errors in the optical signal based on the electrical signal from the optical / electrical converter; and a detection A reception-side supervisory optical interface that transmits the number of bit errors transmitted to the transmission-side optical communication node via the optical fiber transmission line, and the error correction means of the reception-side optical communication node The detected number of bit errors is transmitted to the optimization means of the transmission side optical communication node, and the optimization means determines the number of bit errors in the reception side optical communication node based on the received number of bit errors. In the pre-equalized optical fiber communication system, the dispersion amount is adjusted to an optimum value so as to be minimized.

この発明は、光ファイバ伝送路を介して相互に接続された複数の光通信ノードを備えた予等化光ファイバ通信システムであって、送信側の光通信ノードは、自身が受信側の光通信ノードに対して送信した光信号のビット誤り数を当該受信側の光通信ノードから受信して、それに基づいて入力信号に与えるべき分散量を増減させる制御を行う最適化手段と、前記入力信号が入力され、当該入力信号に対して初回は所定の分散量およびそれ以降は前記最適化手段からの分散量を与えた電気信号を生成する可変分散補償手段と、前記可変分散補償手段からの前記電気信号を光信号に変換して、前記光ファイバ伝送路を介して前記受信側の光通信ノードに送信する電気/光変換手段とを有し、受信側の光通信ノードは、前記送信側の光通信ノードからの前記光信号を受信して電気信号に変換する光/電気変換手段と、前記光/電気変換手段からの前記電気信号に基づいて、前記光信号のビット誤り数を検出する誤り訂正手段と、検出された前記ビット誤り数を、前記光ファイバ伝送路を介して、前記送信側の光通信ノードに送信する受信側監視光インタフェースとを有し、前記受信側の光通信ノードの前記誤り訂正手段で検出したビット誤り数を前記送信側の光通信ノードの前記最適化手段に送信し、当該最適化手段は、受信した前記ビット誤り数に基づいて、前記受信側の光通信ノードにおけるビット誤り数が最小になるよう、前記分散量を最適な値に調整することを特徴とする予等化光ファイバ通信システムであるので、建設時のような主信号が導通していない状態でも、受信端から送信端に分散補償制御情報を正確に転送し、光ファイバ伝送路の分散を高速かつ精密に補償することができる。   The present invention relates to a pre-equalization optical fiber communication system including a plurality of optical communication nodes connected to each other via an optical fiber transmission line, and the transmission-side optical communication node itself is an optical communication on the reception side. Optimization means for controlling the amount of dispersion to be given to the input signal based on the received bit error number of the optical signal transmitted to the node from the receiving optical communication node; and A variable dispersion compensator for generating an electric signal which is input and given a predetermined dispersion amount for the first time and a dispersion amount from the optimizing device for the input signal thereafter, and the electric signal from the variable dispersion compensation unit. Electrical / optical conversion means for converting a signal into an optical signal and transmitting the optical signal to the reception-side optical communication node via the optical fiber transmission line, and the reception-side optical communication node includes the transmission-side optical communication node. From communication node An optical / electrical converter for receiving the optical signal and converting it into an electrical signal; an error correcting unit for detecting the number of bit errors in the optical signal based on the electrical signal from the optical / electrical converter; and a detection A reception-side supervisory optical interface that transmits the number of bit errors transmitted to the transmission-side optical communication node via the optical fiber transmission line, and the error correction means of the reception-side optical communication node The detected number of bit errors is transmitted to the optimization means of the transmission side optical communication node, and the optimization means determines the number of bit errors in the reception side optical communication node based on the received number of bit errors. Since the pre-equalization optical fiber communication system is characterized in that the dispersion amount is adjusted to an optimum value so as to be minimized, even if the main signal is not conducted as in construction, the transmission is performed from the receiving end. The dispersion compensation controlling information transferred correctly to the end, the dispersion of the optical fiber transmission line can be fast and accurately compensated.

実施の形態1.
この発明の実施の形態1に係る予等化光ファイバ通信システムについて図1を参照しながら説明する。図1は、この発明の実施の形態1に係る予等化光ファイバ通信システムの構成を示す図である。なお、以下では、各図中、同一符号は同一又は相当部分を示す。
Embodiment 1 FIG.
A pre-equalized optical fiber communication system according to Embodiment 1 of the present invention will be described with reference to FIG. 1 is a diagram showing a configuration of a pre-equalized optical fiber communication system according to Embodiment 1 of the present invention. In the following, in each drawing, the same reference numerals indicate the same or corresponding parts.

図1において、この実施の形態1に係る予等化光ファイバ通信システムは、光ファイバ伝送路11、12により接続された光通信ノードAと光通信ノードBとが設けられているまた、これらの光通信ノードA,Bを制御するための制御プレーン100も設けられている(図2参照)。   In FIG. 1, the pre-equalization optical fiber communication system according to the first embodiment is provided with an optical communication node A and an optical communication node B connected by optical fiber transmission lines 11 and 12, and these A control plane 100 for controlling the optical communication nodes A and B is also provided (see FIG. 2).

光通信ノードAには、入力信号が入力される入力端子2aと、対向局である光通信ノードBから送信されて光ファイバ伝送路12を伝搬した光信号のビット誤り数を検出する誤り訂正回路(FEC)3aと、入力信号に初回は制御プレーン100からの所定の分散量(分散補償設定値)を与え、次回以降は後述の最適化手段21aからの分散量(分散補償設定値)を与えて、予変調を行うプリコーダ4a(可変分散補償回路)と、プリコーダ4a(可変分散補償回路)からの電気信号を光信号に変換して、光ファイバ伝送路11に出力する電気/光変換器(E/O)5aと、光通信ノードBから送信されて光ファイバ伝送路12を伝搬した光信号を受信して、電気信号に変換する光/電気変換器(O/E)6aと、後述するメモリ(RAM)8aに記憶された分散量および後述の最適化手段21aからの分散量をプリコード値(設定値)に変換するための変換テーブル7a(変換テーブル記憶手段)と、制御プレーン100から通知される(補償すべきおおまかな)前記所定の分散量を記憶するメモリ(RAM)8aと、光通信ノードBで検出されて送信されてくる光ファイバ伝送路12を伝搬した光信号のビット誤り数に基づいて、当該ビット誤り数が最小になるまで、プリコーダ4a(可変分散補償回路)の分散量の設定値変更を行って、分散量の最適値を検出する最適化手段21aと、出力信号が出力される出力端子9aと、光通信ノード間に監視チャネルを形成する監視光インタフェース(OSC)10aとが設けられている。なお、ここで、メモリ(RAM)8aと、変換テーブル7aと、プリコーダ(可変分散補償回路)4aとは、入力信号に所定の分散量を予め与える可変分散補償手段を構成している。   The optical communication node A includes an input terminal 2a to which an input signal is input, and an error correction circuit that detects the number of bit errors of the optical signal transmitted from the optical communication node B that is the opposite station and propagated through the optical fiber transmission line 12. (FEC) 3a and the input signal are given a predetermined dispersion amount (dispersion compensation setting value) from the control plane 100 for the first time, and a dispersion amount (dispersion compensation setting value) from the optimization means 21a described later is given next time. Thus, a precoder 4a (variable dispersion compensation circuit) that performs pre-modulation, and an electrical / optical converter that converts an electrical signal from the precoder 4a (variable dispersion compensation circuit) into an optical signal and outputs the optical signal to the optical fiber transmission line 11 ( E / O) 5a, an optical / electrical converter (O / E) 6a that receives an optical signal transmitted from the optical communication node B and propagates through the optical fiber transmission line 12, and converts the optical signal into an electrical signal; Memory (RAM) A conversion table 7a (conversion table storage unit) for converting the amount of dispersion stored in a and the amount of dispersion from the optimization unit 21a described later into a precoded value (set value) and the control plane 100 are notified ( Based on the number of bit errors of the optical signal propagated through the optical fiber transmission line 12 detected and transmitted by the optical communication node B, and a memory (RAM) 8a for storing the predetermined dispersion amount to be compensated) Until the number of bit errors is minimized, the setting value of the dispersion amount of the precoder 4a (variable dispersion compensation circuit) is changed, and the optimization means 21a for detecting the optimum value of the dispersion amount and the output signal are output. An output terminal 9a and a monitoring optical interface (OSC) 10a that forms a monitoring channel between the optical communication nodes are provided. Here, the memory (RAM) 8a, the conversion table 7a, and the precoder (variable dispersion compensation circuit) 4a constitute variable dispersion compensation means for giving a predetermined dispersion amount to the input signal in advance.

なお、当該構成のうち、光通信ノードAが送信側である際に用いる構成は、最適化手段21aと、メモリ(RAM)8aと、変換テーブル7aと、プリコーダ(可変分散補償回路)4aと、電気/光変換器(E/O)5aである。また、光通信ノードAが送信側である際に用いる構成は、光/電気変換器(O/E)6aと、誤り訂正回路(FEC)3aと、監視光インタフェース(OSC)10aである。   Among the configurations, the configuration used when the optical communication node A is the transmission side includes an optimization unit 21a, a memory (RAM) 8a, a conversion table 7a, a precoder (variable dispersion compensation circuit) 4a, An electric / optical converter (E / O) 5a. The configuration used when the optical communication node A is the transmission side is an optical / electrical converter (O / E) 6a, an error correction circuit (FEC) 3a, and a supervisory optical interface (OSC) 10a.

図1において、光通信ノードBの各構成において、光通信ノードAの各構成と同一番号で、かつ、末尾のaの代わりにbを振ったものは、光通信ノードBにおける光通信ノードAと同様の機能ブロックであることを示す。   In FIG. 1, in each configuration of the optical communication node B, the same number as that of each configuration of the optical communication node A and b in place of “a” at the end is the same as the optical communication node A in the optical communication node B. Indicates a similar functional block.

すなわち、光通信ノードBには、入力信号が入ってくる入力端子2bと、誤り訂正回路(FEC)3bと、予変調を行うプリコーダ(可変分散補償回路)4bと、電気/光変換器(E/O)5bと、光/電気変換器(O/E)6bと、分散量とプリコード値(設定値)の変換テーブル7bと、制御プレーン100から通知される所定の分散量を記憶したメモリ(RAM)8bと、分散量の最適値を検出する最適化手段21bと、出力信号が出力される出力端子9bと、監視光インタフェース(OSC)10bとが設けられている。なお、これらの構成については、上述の通り、光通信ノードAと同様であるため、ここでは説明を省略する。   That is, the optical communication node B includes an input terminal 2b for receiving an input signal, an error correction circuit (FEC) 3b, a precoder (variable dispersion compensation circuit) 4b for premodulation, and an electric / optical converter (E / O) 5b, an optical / electrical converter (O / E) 6b, a dispersion amount / precoding value (setting value) conversion table 7b, and a memory storing a predetermined dispersion amount notified from the control plane 100 (RAM) 8b, an optimization means 21b for detecting an optimum value of the dispersion amount, an output terminal 9b for outputting an output signal, and a monitoring optical interface (OSC) 10b are provided. Since these configurations are the same as those of the optical communication node A as described above, the description thereof is omitted here.

図2は、この発明の実施の形態1に係る予等化光ファイバ通信システムの制御プレーン100と各光通信ノードA〜Fの関係の一例を示す図である。   FIG. 2 is a diagram showing an example of the relationship between the control plane 100 and each of the optical communication nodes A to F in the pre-equalized optical fiber communication system according to Embodiment 1 of the present invention.

図1においては、光通信ノードがA,Bの2つだけが設けられている例を示したが、実際には、図2に示すように複数個設けられており、それらはすべて同様の構成である。従って、以下の説明において、共通の構成について述べる場合には、各構成要素を示す番号の末尾のa,b等の符号を省略し、数値のみで示すこととする(例えば、入力信号2a,2b,・・・とせずに、単に、入力信号2として示す)。   FIG. 1 shows an example in which only two optical communication nodes A and B are provided, but actually, a plurality of optical communication nodes are provided as shown in FIG. It is. Therefore, in the following description, when a common configuration is described, reference numerals such as a and b at the end of the numbers indicating the respective components are omitted and only numerical values are indicated (for example, input signals 2a and 2b). ,..., Simply shown as input signal 2).

すなわち、各光通信ノードには、入力信号が入ってくる入力端子2と、誤り訂正回路(FEC)3と、予変調を行うプリコーダ(可変分散補償回路)4と、電気/光変換器(E/O)5と、光/電気変換器(O/E)6と、分散量とプリコード値(設定値)の変換テーブル7と、制御プレーン100から通知された補償すべきおおまかな分散量を記憶したメモリ(RAM)8と、可変分散補償の最適値を検出する最適化手段21と、出力信号が出て行く出力端子9と、監視光インタフェース(OSC)10とが設けられている。   That is, each optical communication node has an input terminal 2 for receiving an input signal, an error correction circuit (FEC) 3, a precoder (variable dispersion compensation circuit) 4 for performing pre-modulation, and an electric / optical converter (E / O) 5, optical / electrical converter (O / E) 6, dispersion amount and precoded value (setting value) conversion table 7, and approximate dispersion amount to be compensated notified from the control plane 100 A stored memory (RAM) 8, an optimization means 21 for detecting an optimum value of variable dispersion compensation, an output terminal 9 from which an output signal is output, and a monitoring optical interface (OSC) 10 are provided.

図3は、この発明の実施の形態1に係る予等化光ファイバ通信システムのプリコーダ(可変分散補償回路)4及び電気/光変換器(E/O)5の具体例を示す図である。   FIG. 3 is a diagram showing a specific example of the precoder (variable dispersion compensation circuit) 4 and the electrical / optical converter (E / O) 5 of the pre-equalized optical fiber communication system according to Embodiment 1 of the present invention.

図3において、(a)は、プリコーダ(可変分散補償回路)4として、ルックアップテーブルと高速D/A変換器(高速デジタル/アナログ変換器)を用い、電気/光変換器(E/O)5として、光直交変調器(I/Q変調器)を用いた例を示す。   In FIG. 3, (a) uses a look-up table and a high-speed D / A converter (high-speed digital / analog converter) as a precoder (variable dispersion compensation circuit) 4, and an electric / optical converter (E / O). 5 shows an example using an optical quadrature modulator (I / Q modulator).

(b)は、プリコーダ(可変分散補償回路)4として、デジタルFIRフィルタと高速D/A変換器を用い、電気/光変換器(E/O)5として、光直交変調器(I/Q変調器)を用いた例を示す。   (B) uses a digital FIR filter and a high-speed D / A converter as a precoder (variable dispersion compensation circuit) 4, and an optical quadrature modulator (I / Q modulation) as an electrical / optical converter (E / O) 5. An example using a container is shown.

(c)は、プリコーダ(可変分散補償回路)4として、高速アナログトランスバーサルフィルタを用い、電気/光変換器(E/O)5として、光直交変調器(I/Q変調器)を用いた例を示す。   (C) uses a high-speed analog transversal filter as the precoder (variable dispersion compensation circuit) 4 and an optical quadrature modulator (I / Q modulator) as the electrical / optical converter (E / O) 5. An example is shown.

プリコーダ(可変分散補償回路)4及び電気/光変換器(E/O)5は、分散補償量や回路規模によって、上記(a)〜(c)のいずれかの方式を適宜選択して用いる。また、ここに挙げた3方式に限るものではなく、他の構成にしてもよい。なお、図3に示す「パラメータ」とは、後述するプリコード値に相当するものである。   The precoder (variable dispersion compensation circuit) 4 and the electrical / optical converter (E / O) 5 select and use one of the methods (a) to (c) as appropriate depending on the dispersion compensation amount and circuit scale. Further, the present invention is not limited to the three methods listed here, and other configurations may be used. The “parameter” shown in FIG. 3 corresponds to a pre-coded value that will be described later.

つぎに、この実施の形態1に係る予等化光ファイバ通信システムの動作について図面を参照しながら説明する。   Next, the operation of the pre-equalized optical fiber communication system according to the first embodiment will be described with reference to the drawings.

光通信ノードAにおいて、入力端子2aから入力された入力信号(電気信号)は、誤り訂正回路(FEC)3aでフレーム化および誤り訂正符号化された後、プリコーダ(可変分散補償回路)4aに入力される。一方で、ネットワーク全体を制御する制御プレーン100から、補償すべきおおまかな所定の分散量が通知されている。   In the optical communication node A, an input signal (electric signal) input from the input terminal 2a is framed and error correction encoded by an error correction circuit (FEC) 3a, and then input to a precoder (variable dispersion compensation circuit) 4a. Is done. On the other hand, a rough predetermined dispersion amount to be compensated is notified from the control plane 100 that controls the entire network.

通知された分散量は、メモリ(RAM)8aに記憶される。メモリ(RAM)8aに記憶した分散量が変換テーブル7aでプリコード値に変換され、プリコーダ(可変分散補償回路)4aに与えられる。プリコーダ(可変分散補償回路)4aにより、当該プリコード値が入力信号(電気信号)に与えられ、電気/光変換器(E/O)5aによって、それが光信号に変換されることによって、光ファイバ伝送路11の分散と逆関数の畳み込みがなされる(これにより、光ファイバ伝送路11の分散を補償する)。   The notified amount of distribution is stored in the memory (RAM) 8a. The dispersion amount stored in the memory (RAM) 8a is converted into a precoded value by the conversion table 7a, and is supplied to the precoder (variable dispersion compensation circuit) 4a. A precoder (variable dispersion compensation circuit) 4a gives the precoded value to an input signal (electrical signal), and the electric / optical converter (E / O) 5a converts it into an optical signal. Convolution of the inverse function of the dispersion of the fiber transmission line 11 is performed (this compensates for the dispersion of the optical fiber transmission line 11).

電気/光変換器(E/O)5aから出力され、光ファイバ伝送路11を伝搬した光信号は、光通信ノードBにおいて、光/電気変換器(O/E)6bで受信され、電気信号に変換されて、誤り訂正回路(FEC)3bでビット誤りが訂正されるとともに、デフレーム化され、出力端子9bからの出力信号となる。   The optical signal output from the electrical / optical converter (E / O) 5a and propagated through the optical fiber transmission line 11 is received by the optical / electrical converter (O / E) 6b in the optical communication node B, and the electrical signal. The bit error is corrected by the error correction circuit (FEC) 3b and deframed to become an output signal from the output terminal 9b.

また、誤り訂正回路(FEC)3bにおいては、光/電気変換器(O/E)6bに変換された電気信号に基づいて、光ファイバ伝送路11を伝搬した光信号のビット誤り数を検出する。検出されたビット誤り数は、監視光インタフェース(OSC)21bによって、光ファイバ伝送路12を介して、光通信ノードAに送信される。光通信ノードAにおいては、送信されてきたビット誤り数に基づいて、当該ビット誤り数が最小になるまで、プリコーダ4a(可変分散補償回路)の分散量の設定値変更を行って、分散量の最適値を検出する。このようにすることにより、受信側で検出するビット誤り数(分散補償誤差)を主信号とは別の監視制御光信号で送信側に転送して、光ファイバ伝送路の分散を補償する。   The error correction circuit (FEC) 3b detects the number of bit errors in the optical signal propagated through the optical fiber transmission line 11 based on the electrical signal converted to the optical / electrical converter (O / E) 6b. . The detected number of bit errors is transmitted to the optical communication node A through the optical fiber transmission line 12 by the monitoring optical interface (OSC) 21b. In the optical communication node A, based on the number of transmitted bit errors, the dispersion amount setting value of the precoder 4a (variable dispersion compensation circuit) is changed until the number of bit errors is minimized, Find the optimal value. By doing so, the number of bit errors (dispersion compensation error) detected on the receiving side is transferred to the transmitting side by a supervisory control optical signal different from the main signal, and the dispersion of the optical fiber transmission line is compensated.

なお、光通信ノードBから光通信ノードAへの信号の流れも上記と同様である。   The signal flow from the optical communication node B to the optical communication node A is the same as described above.

図4は、この発明の実施の形態1に係る予等化光ファイバ通信システムの動作を示すフローチャートである。   FIG. 4 is a flowchart showing the operation of the pre-equalized optical fiber communication system according to Embodiment 1 of the present invention.

ステップ101において、制御プレーン100は、まず、LSP(Label Switch Path)毎におおまかに設定された所定の分散量を各光通信ノードに通知する。当該分散量は初回の際に用いられるものである。   In step 101, the control plane 100 first notifies each optical communication node of a predetermined dispersion amount roughly set for each LSP (Label Switch Path). The amount of dispersion is used at the first time.

ステップ201において、各光通信ノードは、制御プレーン100から通知された分散量をメモリ(RAM)8に書き込んでおく。   In step 201, each optical communication node writes the dispersion amount notified from the control plane 100 in the memory (RAM) 8.

次に、ステップ202において、各光通信ノードに主信号を送受信するトランスポンダカードが挿入され、光信号が発光しはじめる。初回においては、分散量の初期値として、メモリ(RAM)8に記憶された分散量をプリコード値に変換したものが使われるが、この段階で分散量が最適値になっている補償は無く、主信号が導通するとは限らない。さらに、光通信ノードBから光通信ノードAに向かう主信号もまだ発光していないものとする。このようにして、初回は、メモリ(RAM)8に記憶された所定の分散量が入力信号に与えられ、それが電気/光変換器(E/O)5aによって光信号に変換されて、光ファイバ伝送路11に出力される。なお、プリコード値による光ファイバ伝送路の分散の補償の仕方の詳細は、例えば特許文献1に詳しく説明されているので、そちらを参照されたい。   Next, in step 202, a transponder card that transmits and receives a main signal is inserted into each optical communication node, and an optical signal starts to be emitted. In the first time, as the initial value of the dispersion amount, a value obtained by converting the dispersion amount stored in the memory (RAM) 8 into the pre-coded value is used, but there is no compensation that the dispersion amount becomes the optimum value at this stage. The main signal is not always conducted. Further, it is assumed that the main signal from the optical communication node B to the optical communication node A has not been emitted yet. Thus, at the first time, a predetermined dispersion amount stored in the memory (RAM) 8 is given to the input signal, which is converted into an optical signal by the electrical / optical converter (E / O) 5a, and the optical signal is It is output to the fiber transmission line 11. Note that details of how to compensate for dispersion in the optical fiber transmission line by the precoded value are described in detail in, for example, Patent Document 1, so refer to that.

ステップ203において、受信側の光通信ノードBの光/電気変換器(O/E)6bが当該光信号を受信して、電気信号に変換し、誤り訂正回路(FEC)3bに転送すると、誤り訂正回路(FEC)3bがビット誤り数を検出し、検出したビット誤り数が最小か否かの判定を行って、最小でなければ、ステップ204に進む。ステップ204において、そのビット誤り数の情報を、光通信ノードBの監視光インタフェース(OSC)10bにより、光通信ノードAに向けて送信する。ステップ205において、光通信ノードAの監視光インタフェース(OSC)10aがこれを受信して、最適化手段21aに転送する。ステップ206において、最適化手段21aは、プリコーダ4aに対し、分散量をわずかに増減させる制御(予め設定された増減幅だけ増加または減少させる制御)を行い、増減の都度、ステップ203〜206の処理を繰り返し、ステップ203の判定においてビット誤り数が最小と判断されるまで、プリコーダ(可変分散補償手段)4aの分散量の設定値変更を行う。ビット誤り数を最小化する制御の詳細は、例えば特許文献1に詳しく説明されているので、そちらを参照されたい。ステップ203で、ビット誤り数が最小になった時点で、ステップ207に進み、主信号開通状態となる。   In step 203, if the optical / electrical converter (O / E) 6b of the optical communication node B on the receiving side receives the optical signal, converts it into an electrical signal, and transfers it to the error correction circuit (FEC) 3b, an error occurs. The correction circuit (FEC) 3b detects the number of bit errors, and determines whether or not the detected number of bit errors is the minimum. In step 204, the information on the number of bit errors is transmitted toward the optical communication node A through the monitoring optical interface (OSC) 10b of the optical communication node B. In step 205, the monitoring optical interface (OSC) 10a of the optical communication node A receives this and transfers it to the optimization means 21a. In step 206, the optimization means 21a performs control for slightly increasing / decreasing the amount of dispersion (control for increasing / decreasing by a preset increase / decrease width) to the precoder 4a. Is repeated until the number of bit errors is determined to be minimum in the determination in step 203, and the set value of the dispersion amount of the precoder (variable dispersion compensation means) 4a is changed. Details of the control for minimizing the number of bit errors are described in detail in, for example, Patent Document 1, so refer to that. In step 203, when the number of bit errors is minimized, the process proceeds to step 207, where the main signal is opened.

ステップ208において、最適化された分散量を、そのLSPにおける真の分散量として、メモリ(RAM)8の分散量を更新する。メモリ(RAM)8の更新と同時に、制御プレーン100にその分散量を通知する。   In step 208, the distribution amount in the memory (RAM) 8 is updated with the optimized distribution amount as the true distribution amount in the LSP. Simultaneously with the update of the memory (RAM) 8, the distribution amount is notified to the control plane 100.

そして、ステップ209において、制御プレーン100は、全ての光通信ノードに更新後の分散量を再通知する。   In step 209, the control plane 100 re-notifies all the optical communication nodes of the updated dispersion amount.

ここで、分散量の最適化を行うためのパラメータとして、ビット誤り数を用いる例を示したが、分散の最適値からのずれによって受信側で生じる警報(例えば、LOS OF SIGNAL,LOSS OF FRAMEなど)を用いても、同様の効果が得られることは言うまでもない。   Here, an example is shown in which the number of bit errors is used as a parameter for optimizing the dispersion amount. However, an alarm (for example, LOS OF SIGNAL, LOSS OF FRAME, etc.) generated on the receiving side due to a deviation from the optimum dispersion value is shown. It goes without saying that the same effect can be obtained even if the above is used.

また、分散補償設定値の最適化を行うためのパラメータとして、分散の最適値からのずれを示すパラメータ(例えば、受信側で抽出したクロック成分の強度など)であれば、どのような信号を用いても同様の効果が得られることは言うまでもない。   Further, as a parameter for optimizing the dispersion compensation set value, any signal is used as long as it is a parameter indicating a deviation from the optimum dispersion value (for example, the intensity of the clock component extracted on the receiving side). However, it goes without saying that the same effect can be obtained.

また、可変分散補償器として、プリコーダ4の例を示したが、送信側で使用できる分散補償器であれば、ファイバグレーティングを用いたものなど光学式の分散補償器を用いても同様の効果が得られることは言うまでもない。   Further, the example of the precoder 4 is shown as the variable dispersion compensator. However, if the dispersion compensator can be used on the transmission side, the same effect can be obtained by using an optical dispersion compensator such as a fiber grating. It goes without saying that it is obtained.

以上のように、本実施の形態1においては、光ファイバ伝送路を通じて相互に接続された複数の光通信ノードを備えた予等化光ファイバ通信システムであって、送信側の光通信ノードは、入力信号に所定の分散量を予め与えるプリコーダ(可変分散補償手段)4と、分散量の最適値を検出する最適化手段21とを備え、また、受信側の光通信ノードは、光ファイバ伝送路を伝搬した光信号のビット誤り数を検出する誤り訂正回路(FEC)3を備えて、受信側の光通信ノードの誤り訂正回路(FEC)3で検出したビット誤り数を、監視光インタフェース(OSC)10を用いて、送信側の光通信ノードの最適化手段に転送し、それに基づいて、分散量の調整を行って最適値に制御するようにしたので、光ファイバ伝送路の分散を高速かつ精密に補償することができ、高速のプロビジョニング、プロテクション、レストレーションを可能とするだけでなく、主信号が導通していないシステム建設段階でも効率的に最適値への制御が可能になるという効果を奏する。   As described above, in the first embodiment, a pre-equalized optical fiber communication system including a plurality of optical communication nodes connected to each other through an optical fiber transmission line, the transmitting optical communication node is: A precoder (variable dispersion compensation means) 4 for giving a predetermined dispersion amount to an input signal in advance, and an optimization means 21 for detecting an optimum value of the dispersion amount are provided, and the optical communication node on the receiving side includes an optical fiber transmission line And an error correction circuit (FEC) 3 for detecting the number of bit errors of the optical signal propagated through the optical signal, and the number of bit errors detected by the error correction circuit (FEC) 3 of the optical communication node on the receiving side is determined by the monitoring optical interface (OSC). ) 10 is transferred to the optimization means of the optical communication node on the transmission side, and based on this, the dispersion amount is adjusted and controlled to the optimum value. Spirit In addition to enabling high-speed provisioning, protection, and restoration, it is possible to efficiently control to the optimum value even in the system construction stage where the main signal is not conducted. .

この発明の実施の形態1に係る予等化光ファイバ通信システムの構成を示す図である。It is a figure which shows the structure of the pre-equalization optical fiber communication system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る予等化光ファイバ通信システムの制御プレーンと各光通信ノードの関係を示す図である。It is a figure which shows the relationship between the control plane of each pre-equalization optical fiber communication system which concerns on Embodiment 1 of this invention, and each optical communication node. この発明の実施の形態1に係る予等化光ファイバ通信システムのプリコーダの具体例を示す図である。It is a figure which shows the specific example of the precoder of the pre-equalization optical fiber communication system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る予等化光ファイバ通信システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the pre-equalization optical fiber communication system which concerns on Embodiment 1 of this invention.

符号の説明Explanation of symbols

2,2a,2b 入力端子、3,3a,3b 誤り訂正回路(FEC)、4,4a,4b プリコーダ(可変分散補償回路)、5,5a,5b 電気/光変換器(E/O)、6,6a,6b 光/電気変換器(O/E)、7,7a,7b 変換テーブル、8,8a,8b メモリ(RAM)、9,9a,9b 出力端子、10,10a,10b 監視光インタフェース(OSC)、11,12 光ファイバ伝送路、21,21a,21b 最適化手段、100 制御プレーン、A,B,C,D,E,F 光通信ノード。   2, 2a, 2b input terminals, 3, 3a, 3b error correction circuit (FEC), 4, 4a, 4b precoder (variable dispersion compensation circuit), 5, 5a, 5b electrical / optical converter (E / O), 6 , 6a, 6b Optical / electrical converter (O / E), 7, 7a, 7b conversion table, 8, 8a, 8b Memory (RAM), 9, 9a, 9b Output terminal 10, 10a, 10b Monitoring optical interface ( OSC), 11, 12 optical fiber transmission line, 21, 21a, 21b optimization means, 100 control plane, A, B, C, D, E, F optical communication nodes.

Claims (2)

光ファイバ伝送路を介して相互に接続された複数の光通信ノードを備えた予等化光ファイバ通信システムであって、
送信側の光通信ノードは、
自身が受信側の光通信ノードに対して送信した光信号のビット誤り数を当該受信側の光通信ノードから受信して、それに基づいて入力信号に与えるべき分散量を増減させる制御を行う最適化手段と、
前記入力信号が入力され、当該入力信号に対して初回は所定の分散量およびそれ以降は前記最適化手段からの分散量を与えた電気信号を生成する可変分散補償手段と、
前記可変分散補償手段からの前記電気信号を光信号に変換して、前記光ファイバ伝送路を介して前記受信側の光通信ノードに送信する電気/光変換手段と
を有し、
受信側の光通信ノードは、
前記送信側の光通信ノードからの前記光信号を受信して電気信号に変換する光/電気変換手段と、
前記光/電気変換手段からの前記電気信号に基づいて、前記光信号のビット誤り数を検出する誤り訂正手段と、
検出された前記ビット誤り数を、前記光ファイバ伝送路を介して、前記送信側の光通信ノードに送信する受信側監視光インタフェースと
を有し、
前記受信側の光通信ノードの前記誤り訂正手段で検出したビット誤り数を前記送信側の光通信ノードの前記最適化手段に送信し、当該最適化手段は、受信した前記ビット誤り数に基づいて、前記受信側の光通信ノードにおけるビット誤り数が最小になるよう、前記分散量を最適な値に調整する
ことを特徴とする予等化光ファイバ通信システム。
A pre-equalized optical fiber communication system comprising a plurality of optical communication nodes connected to each other via an optical fiber transmission line,
The optical communication node on the transmission side
Optimization that performs control to increase or decrease the amount of dispersion to be given to the input signal based on the number of bit errors of the optical signal transmitted to the optical communication node on the receiving side from the receiving optical communication node Means,
A variable dispersion compensator for generating an electric signal to which the input signal is input and for which the input signal is given a predetermined dispersion amount for the first time and a dispersion amount from the optimization means thereafter;
An electrical / optical conversion means for converting the electrical signal from the variable dispersion compensation means into an optical signal and transmitting the optical signal to the optical communication node on the receiving side via the optical fiber transmission line;
The optical communication node on the receiving side
Optical / electrical conversion means for receiving the optical signal from the optical communication node on the transmitting side and converting it into an electrical signal;
Error correction means for detecting the number of bit errors in the optical signal based on the electrical signal from the optical / electrical conversion means;
A reception-side monitoring optical interface that transmits the detected number of bit errors to the transmission-side optical communication node via the optical fiber transmission line;
The number of bit errors detected by the error correction means of the receiving side optical communication node is transmitted to the optimization means of the transmitting side optical communication node, and the optimization means is based on the received number of bit errors. The dispersion amount is adjusted to an optimal value so that the number of bit errors in the optical communication node on the receiving side is minimized.
前記可変分散補償手段は、
初回の際に用いる前記所定の分散量を記憶するメモリと、
前記メモリに記憶された前記所定の分散量および前記最適化手段からの分散量をプリコード値に変換する変換テーブルと、
前記プリコード値に基づいて前記光ファイバ伝送路の分散を補償するプリコーダと
から構成されることを特徴とする請求項1に記載の予等化光ファイバ通信システム。
The variable dispersion compensation means includes
A memory for storing the predetermined amount of dispersion used for the first time;
A conversion table for converting the predetermined amount of dispersion stored in the memory and the amount of dispersion from the optimization means into precoded values;
The pre-equalized optical fiber communication system according to claim 1, further comprising: a precoder that compensates for dispersion of the optical fiber transmission line based on the precoded value.
JP2008194683A 2008-07-29 2008-07-29 Pre-equalized optical fiber communication system Expired - Fee Related JP5174573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008194683A JP5174573B2 (en) 2008-07-29 2008-07-29 Pre-equalized optical fiber communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008194683A JP5174573B2 (en) 2008-07-29 2008-07-29 Pre-equalized optical fiber communication system

Publications (2)

Publication Number Publication Date
JP2010034830A true JP2010034830A (en) 2010-02-12
JP5174573B2 JP5174573B2 (en) 2013-04-03

Family

ID=41738823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008194683A Expired - Fee Related JP5174573B2 (en) 2008-07-29 2008-07-29 Pre-equalized optical fiber communication system

Country Status (1)

Country Link
JP (1) JP5174573B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109711A (en) * 2010-11-16 2012-06-07 Mitsubishi Electric Corp Optical transmission system
WO2012085979A1 (en) * 2010-12-24 2012-06-28 三菱電機株式会社 Optical communication device
JP2012191313A (en) * 2011-03-09 2012-10-04 Mitsubishi Electric Corp Communication system, communication device, and communication control method
JP2012195798A (en) * 2011-03-17 2012-10-11 Mitsubishi Electric Corp Optical transmission system and optical transmission method
WO2013058276A1 (en) * 2011-10-20 2013-04-25 三菱電機株式会社 Pre-equalized optical transmitter and pre-equalized optical transmission method
JP2013150057A (en) * 2012-01-17 2013-08-01 Mitsubishi Electric Corp Communication device
JP2014042229A (en) * 2012-06-06 2014-03-06 Zte (Usa) Inc Method and device for pre-equalization and post-equalization in optical communication system
CN104780019A (en) * 2014-12-03 2015-07-15 中国航天科工集团第三研究院第八三五七研究所 Method for storing optical fiber communication data
US20190044654A1 (en) * 2017-08-03 2019-02-07 Facebook, Inc. Adaptable forward error correction

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321805A (en) * 1994-08-02 1996-12-03 Fujitsu Ltd Light transmission system, light multiplex transmission system and its peripheral technology
JPH09326755A (en) * 1996-06-03 1997-12-16 Nippon Telegr & Teleph Corp <Ntt> Automatic equalizing system
JP2002208892A (en) * 2001-01-10 2002-07-26 Fujitsu Ltd Dispersion compensation method, dispersion compensating device and optical transmission system
JP2004274238A (en) * 2003-03-06 2004-09-30 Japan Telecom Co Ltd Dispersion compensation method and system for optical communication line for dynamic control
JP2006060571A (en) * 2004-08-20 2006-03-02 Fujitsu Ltd Wavelength division multiplex optical transmission system
JP2006074698A (en) * 2004-09-06 2006-03-16 Japan Telecom Co Ltd Transmission quality compensation method for optical transmission system, and optical transmission system
JP2007259281A (en) * 2006-03-24 2007-10-04 Mitsubishi Electric Corp Optical fiber communication system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321805A (en) * 1994-08-02 1996-12-03 Fujitsu Ltd Light transmission system, light multiplex transmission system and its peripheral technology
JPH09326755A (en) * 1996-06-03 1997-12-16 Nippon Telegr & Teleph Corp <Ntt> Automatic equalizing system
JP2002208892A (en) * 2001-01-10 2002-07-26 Fujitsu Ltd Dispersion compensation method, dispersion compensating device and optical transmission system
JP2004274238A (en) * 2003-03-06 2004-09-30 Japan Telecom Co Ltd Dispersion compensation method and system for optical communication line for dynamic control
JP2006060571A (en) * 2004-08-20 2006-03-02 Fujitsu Ltd Wavelength division multiplex optical transmission system
JP2006074698A (en) * 2004-09-06 2006-03-16 Japan Telecom Co Ltd Transmission quality compensation method for optical transmission system, and optical transmission system
JP2007259281A (en) * 2006-03-24 2007-10-04 Mitsubishi Electric Corp Optical fiber communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012062566; 妹尾尚一郎、馬場義昌、水落隆司、杉原隆嗣、本島邦明: '"プリディストーションによって設定自動化を実現する全光ネットワークの提案"' 電子情報通信学会技術研究報告 IEICE Technical Report PN205-107, 200603, p.47-52, (社)電子情報通信学会 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109711A (en) * 2010-11-16 2012-06-07 Mitsubishi Electric Corp Optical transmission system
JP5414915B2 (en) * 2010-12-24 2014-02-12 三菱電機株式会社 Optical communication device
WO2012085979A1 (en) * 2010-12-24 2012-06-28 三菱電機株式会社 Optical communication device
US8942568B2 (en) 2010-12-24 2015-01-27 Mitsubishi Electric Corporation Optical communication apparatus
JP2012191313A (en) * 2011-03-09 2012-10-04 Mitsubishi Electric Corp Communication system, communication device, and communication control method
JP2012195798A (en) * 2011-03-17 2012-10-11 Mitsubishi Electric Corp Optical transmission system and optical transmission method
WO2013058276A1 (en) * 2011-10-20 2013-04-25 三菱電機株式会社 Pre-equalized optical transmitter and pre-equalized optical transmission method
JP5680215B2 (en) * 2011-10-20 2015-03-04 三菱電機株式会社 Pre-equalized optical transmitter and pre-equalized optical transmission method
US9118422B2 (en) 2011-10-20 2015-08-25 Mitsubishi Electric Corporation Pre-equalized optical transmitter and pre-equalized optical transmission method
JP2013150057A (en) * 2012-01-17 2013-08-01 Mitsubishi Electric Corp Communication device
JP2014042229A (en) * 2012-06-06 2014-03-06 Zte (Usa) Inc Method and device for pre-equalization and post-equalization in optical communication system
CN104780019A (en) * 2014-12-03 2015-07-15 中国航天科工集团第三研究院第八三五七研究所 Method for storing optical fiber communication data
US20190044654A1 (en) * 2017-08-03 2019-02-07 Facebook, Inc. Adaptable forward error correction
US10574391B2 (en) * 2017-08-03 2020-02-25 Facebook, Inc. Adaptable forward error correction

Also Published As

Publication number Publication date
JP5174573B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
JP5174573B2 (en) Pre-equalized optical fiber communication system
JP4739076B2 (en) Optical fiber communication system
Khanna et al. A robust adaptive pre-distortion method for optical communication transmitters
JP5015284B2 (en) Optical transmitter, optical transmission method, and optical transmission / reception system
US9515763B2 (en) Digital coherent receiver and receiving method of optical signal
US7660537B2 (en) Simultaneous electrical pre-compensation of self-phase modulation and chromatic dispersion
CN104170283B (en) Optical sender, photoreceiver, optical transmission system and the method increasing system signal noise ratio
JP6358024B2 (en) Optical transmitter and method for correcting waveform distortion
US9838133B2 (en) Compensation of non-linear transmitter impairments in optical communication networks
WO2012073590A1 (en) Optical transport system, optical transmitter device and optical receiver device
Khanna et al. Joint adaptive pre-compensation of transmitter I/Q skew and frequency response for high order modulation formats and high baud rates
US9935715B2 (en) Calibrating an apparatus supporting pluggable optics
JP2006094500A (en) Equalizer having tunable optical and electronic dispersion compensation
JP6125988B2 (en) Coherent CFP optical transmitter and loss characteristic compensation method
EP2634934B1 (en) Optical transmitter
US8755694B2 (en) Method and a system with distortion compensation
JP5522056B2 (en) Optical communication system and optical communication method
JP5289428B2 (en) Digital signal processing optical transmitter
JP6502663B2 (en) Optical communication device
JP4850767B2 (en) Distributed pre-equalization optical transmitter
Waegemans et al. 10.7 Gb/s electronic predistortion transmitter using commercial FPGAs and D/A converters implementing real-time DSP for chromatic dispersion and SPM compensation
JP5106233B2 (en) Optical transmitter and optical receiver
JP5523582B2 (en) Optical transmission system, optical transmitter and optical receiver
JP2010050641A (en) Optical receiver, optical transceiver, and method for optical reception
JP2015008355A (en) Optical transmitter and optical receiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121228

R150 Certificate of patent or registration of utility model

Ref document number: 5174573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees